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Abstract. Rainfall and soil moisture are two key elements

in modeling the interactions between the land surface and

the atmosphere. Accurate and high-resolution real-time pre-

cipitation is crucial for monitoring and predicting the onset

of floods, and allows for alert and warning before the im-

pact becomes a disaster. Assimilation of remote sensing data

into a flood-forecasting model has the potential to improve

monitoring accuracy. Space-borne microwave observations

are especially interesting because of their sensitivity to sur-

face soil moisture and its change. In this study, we assimilate

satellite soil moisture retrievals using the Variable Infiltration

Capacity (VIC) land surface model, and a dynamic assimila-

tion technique, a particle filter, to adjust the Tropical Rain-

fall Measuring Mission Multi-satellite Precipitation Analy-

sis (TMPA) real-time precipitation estimates. We compare

updated precipitation with real-time precipitation before and

after adjustment and with NLDAS gauge-radar observations.

Results show that satellite soil moisture retrievals provide ad-

ditional information by correcting errors in rainfall bias. The

assimilation is most effective in the correction of medium

rainfall under dry to normal surface conditions, while lim-

ited/negative improvement is seen over wet/saturated sur-

faces. On the other hand, high-frequency noises in satellite

soil moisture impact the assimilation by increasing rainfall

frequency. The noise causes larger uncertainty in the false-

alarmed rainfall over wet regions. A threshold of 2 mm day−1

soil moisture change is identified and applied to the assimi-

lation, which masked out most of the noise.

1 Introduction

Precipitation is perhaps the most important variable in con-

trolling energy and mass fluxes that dominate climate and

particularly the terrestrial hydrological and ecological sys-

tems. Precipitation estimates, together with hydrologic mod-

els, provide the foundation for understanding the global en-

ergy and water cycles (Sorooshian, 2004; Ebert et al., 2007).

However, obtaining accurate measurements of precipitation

at regional to global scales has always been challenging

due to its small-scale, space–time variability, and the sparse

networks in many regions. Such limitations impede precise

modeling of the hydrologic responses to precipitation. There

is a clear need for improved, spatially distributed precipita-

tion estimates to support hydrological modeling applications.

In recent years, remotely sensed satellite precipitation has

become a critical data source for a variety of hydrologi-

cal applications, especially in poorly monitored regions such

as sub-Saharan Africa due to its large spatial coverage. To

date, a number of fine-scale, satellite-based precipitation es-

timates are now in operational production. One of the most

frequently used is the Tropical Rainfall Measuring Mission

Multi-satellite Precipitation Analysis (TMPA) product (Huff-

man et al., 2007). Over the 17-year lifetime since the launch

of the Tropical Rainfall Measuring Mission (TRMM) in

1997, a series of high-resolution (0.25◦ and 3-hourly), quasi-

global (50◦ S–50◦ N), near-real-time, TRMM-based precipi-

tation estimates have been developed and made available to

the research and applications communities (Huffman et al.,

2007, 2010). Flood forecasting and monitoring is one ma-

jor application for real-time satellite rainfall products (Wu et

al., 2014). However, the applicability of satellite precipitation

products for near-real-time hydrological applications that in-
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clude drought and flood monitoring has been hampered by

their need for gauge-based adjustment.

While it is possible to create such estimates solely from

one type of sensor, researchers have increasingly moved to

using combinations of sensors in an attempt to improve accu-

racy, coverage and resolution. A promising avenue for rain-

fall correction is through the assimilation of satellite-based

surface soil moisture into a water balance model (Pan and

Wood, 2006). Over land, the physical relationship between

variations in soil water storage and rainfall accumulation

contain complementary information that can be exploited

for the mutual benefit of both types of products (Massari et

al., 2014; Crow et al., 2009). Unlike instantaneous rain rate,

satellite surface soil moisture retrievals utilize low-frequency

microwave signals and possess some memory reflecting an-

tecedent rainfall amounts.

Studies have demonstrated that in situ (Brocca et al., 2009,

2013; Matgen et al., 2012) and satellite (Francois et al., 2003;

Pellarin et al., 2008, 2013; Brocca et al., 2014) estimates of

surface soil moisture could contribute to precipitation esti-

mates by providing useful information concerning the sign

and magnitude of antecedent rainfall accumulation errors.

In particular, Brocca et al. (2014) estimated daily rainfall

on a global scale based on satellite SM products by invert-

ing the soil water balance equation. Crow et al. (2003, 2009,

2011) corrected space-borne rainfall retrievals by assimilat-

ing remotely sensed surface soil moisture retrievals into an

Antecedent Precipitation Index (API) based soil water bal-

ance model using a Kalman filter (Kalman, 1960). However,

these studies focused on multi-day aggregation periods and a

space aggregated correction at 1◦ resolution for the corrected

precipitation totals. This limits their applicability in appli-

cations such as near real-time flood forecasting. Wanders et

al. (2015) tried to overcome this limitation by the correction

of 3-hourly satellite precipitation totals with a set of satellite

soil moisture and land surface temperature observations. One

important conclusion by Wanders et al. (2015) is that their re-

sults showed the limited potential for satellite soil moisture

observations for correcting precipitation at high resolution if

“all-weather” – i.e., microwave-based – land surface temper-

atures are not available coincidently, as was the case with

AMSR-E.

But this is not always the case, and it is also noted

that current low-frequency microwave soil moisture missions

(specifically SMAP and SMOS) do not have radiometers

at frequencies useful for estimating land surface tempera-

tures, even though a 37 GHz sensor is part of the AMSR2

system. In fact, SMAP and SMOS use LST from weather

model analysis fields in their algorithms. Unfortunately, the

lowest microwave frequency of AMSR2 precludes retrieving

soil moisture from many areas with heavy vegetation, and

AMSR2 has a significant dry bias with less availability than

AMSR-E, but is no longer operable. So, improvements to

satellite precipitation from the Global Precipitation Mission

products must rely solely on satellite soil moisture products,

and the improvements to the assimilation algorithms are the

goal of this study.

Thus, we focus exclusively on the usefulness of assim-

ilating soil moisture products to improve satellite rainfall.

We propose as part of the work how to improve the gener-

ation of rain particles and the bias correction of the satel-

lite soil moisture observations, as well as to enhance the as-

similation algorithm to maximize the information that can

be gained from using soil moisture alone to adjust precipi-

tation. Due to the very strong and complicated spatial struc-

ture of precipitation, that is non-Gaussian and non-stationary

in both time and space (Wanders et al., 2015), a more ad-

vanced method is applied to generate possible precipitation

fields than were used in earlier studies or in Wanders et

al. (2015) (see Sect. 2.2.2). Furthermore, a more advanced

bias-correction method is also applied to account for the

reported problems in the second-order statistics of the soil

moisture retrievals. We used a soil moisture remote sensing

product to improve the real-time remote sensing precipita-

tion product, TMPA 3B42RT, through a particle filter (PF),

and therefore offer an improved basis for quantitatively mon-

itoring and predicting flood events, especially in those parts

of the world where in situ networks are too sparse to sup-

port more traditional methods of hydrologic monitoring and

prediction. The precipitation enhancement experiments are

carried out over the continental US (CONUS) and the pre-

cipitation skill is validated against the NLDAS gauge-radar

precipitation product. Section 5 presents a comparison of the

results from this study to the earlier studies related to improv-

ing satellite precipitation.

2 Methods

2.1 Overview

Random replicates of satellite precipitation are generated

based on real-time TMPA (3B42RT) retrievals and its un-

certainty (Pan et al., 2010), which are then used to force

the VIC land surface model (LSM) where one output of in-

terest is surface soil moisture. Satellite soil moisture data

products are compared and merged with the 3B42RT prod-

uct to improve the accuracy of the satellite precipitation

estimates. A schematic for the study approach is provided

in Fig. 1. Based on real-time 3B42RT retrievals, a set of

possible precipitation estimates (a.k.a. replicates or parti-

cles) {pi t}i=1,2,...,N is generated with assigned initial prior

probability weights {wi}i=1,2,...,N . These rainfall rates are

then used to force the VIC land surface model to pro-

duce soil moisture predictions {θ i}i=1,2,...,N . Retrievals of

AMSR-E satellite surface soil moisture using the Land Sur-

face Microwave Model (LSMEM) (Pan et al., 2014) are then

merged with the LSM-based soil moisture within the par-

ticle filter (PF) that compares AMSR-E/LSMEM changes

in soil moisture, 1SM, to the LSM predicted soil moisture
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Table 1. Error statistics of recovered precipitation and effect of surface saturation in the idealized experiment (mm day−1).

[Recovered [3B42RT] − 0 0–0.2 0.2–0.5 0.5–1.0 1.0–1.5 1.5–2 2–2.5 2.5–5.0 5.0–7.5 7.5–10 10–15 15–20 20–25 > 25

NLDAS] − [NLDAS]

[NLDAS]

All surface Bias 0.24 0.20 0.37 0.51 0.71 0.87 1.09 0.67 1.16 1.30 2.51 3.32 3.75 3.95

conditions MAE 0.40 0.42 0.66 0.86 1.14 1.41 1.70 1.48 2.24 2.63 4.21 5.56 6.70 9.76

Unsaturated Bias 0.23 0.19 0.29 0.40 0.52 0.68 0.82 0.65 1.10 1.27 2.19 2.88 3.14 3.14

surface MAE 0.39 0.41 0.59 0.75 0.95 1.21 1.43 1.45 2.17 2.58 3.88 5.11 6.07 8.94

Saturated Bias 2.31 5.06 47.65 42.58 50.67 44.09 59.64 6.83 16.09 9.19 46.47 57.98 65.33 64.09

surface MAE 3.35 5.54 48.71 43.73 52.43 46.96 61.85 9.64 21.42 15.01 49.07 60.78 69.53 70.73
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Figure 1. Schematic for the dynamic assimilation of AMSR-

E/LSMEM1SM into TMPA (3B42RT) with the particle filter (PF).

changes. From these, posterior weights {wi+}i=1,2,...,N are

calculated for each precipitation member (particle) that takes

into account the uncertainties of AMSR-E/LSMEM 1SM

retrievals. From these updated weights, an updated precipi-

tation probability distribution is constructed, where the pre-

cipitation particle with the highest probability is taken as

the “best” adjusted precipitation estimate (3B42RTADJ). The

procedure is carried out over the continental US (CONUS)

region on a grid-by-grid basis (0.25◦) and a daily time step.

Allowing for a 6-month model spin-up period, the adjust-

ment is done from January 2003 to July 2007.

2.2 Modeling, statistical tools and data sources

2.2.1 The particle filter

Data assimilation methods are capable of dynamically merg-

ing predictions from a state equation (i.e., the land surface

model) with measurements (i.e., AMSR-E retrievals) to min-

imize uncertainties from both the predictions and measure-

ments. It is assumed that the source of uncertainty in the land

surface model predictions comes solely from the real-time

satellite precipitation, so that the particle filter (PF) provides

an algorithm to update the precipitation based on the AMSR-

E retrievals. The state evolution of a particle filter from dis-

crete time t − 1 to t can be represented as

θt = ft (θt−1, pt , κt , αt ) , (1)

where θt is the first-layer soil moisture at time t , whose value

is predicted by the state equation (Eq. 1) as ft (•), and in the

study is the hydrological model VIC, which takes in forcing

data, including precipitation (pt ) and other forcings (κt ); and

simulates land surface states (soil moisture and soil temper-

atures at various levels, snow, etc.) and fluxes (evapotranspi-

ration, runoff) at time t . Herein we are basically interested

only in the first-layer (top 10 cm) soil moisture state and pre-

cipitation forcing, so other states and fluxes are not explicitly

shown. αt is the random error in the prediction of θt , whose

statistics are known but not its value at any specific time.

At time t , the satellite surface soil moisture retrieval, θ∗t ,

can be related to the VIC modeled first-layer soil moisture θt
as

θ∗t = ht (θt , βt ) , (2)

where ht is taken as a regression that transforms the VIC sim-

ulated first-layer soil moisture to satellite surface soil mois-

ture. βt is the noise in this regression relationship. The two

noises αt and βt are assumed to be independent of each other

at all times t .

At time t , given a 3B42RT precipitation estimate, psat
t , a

set of N precipitation replicates {pit }i=1,2,...,N and their asso-

ciated initial prior probability weight {wit }i=1,2,...,N are gen-

erated.

g
(
psat
t

)
∼

{
pit , w

i
t

}
i=1,2,...,N

(3)

N∑
i=1

wit = 1 (4)

g( ) is a probability density function. For N precipitation

replicates, {pit }i=1,2,...,N , the propagation of the states from

time step (t − 1) to t is by the VIC land surface model repre-

sented in Eq. (1). The VIC land surface model simulates the

10 cm first-layer soil moisture, {θ it }i=1,2,...,N , for each pre-

cipitation replicate:
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Figure 2. Schematic for the strategy for processing prior and posterior probability densities in the particle filter. The missing rainfall event

in TMPA (circled in the right panel of a, correspond to red triangle in b) against satellite signals as detected by AMSR-E/LSMEM 1SM

(circled in the left panel of a, correspond to red triangle in c), and recovered by assimilating AMSR-E/LSMEM 1SM into TMPA (marked

by red triangle in d).

{
θ it = ft

(
θt−1, p

i
t , κt , αt

)}
i=1,2,...,N

, (5)

with the associated weights assigned to the precipitation

member:{
θ it , w

i
t

}
i=1,2,...,N

=

{
ft

(
θt−1, p

i
t , κt , αt

)
, wit

}
i=1,2,...,N

. (6)

If the satellite soil moisture retrieval at time t is θ∗t , the update

of precipitation forcing is accomplished by updating the im-

portance weight of each replicate given the “measurement”

θ∗t :

wi+t ∼
{
g
(
θ it |θ

∗
t

)}
i=1,2,...,N

(7)

N∑
i=1

wi+t = 1. (8)

The likelihood function g(θ it |θ
∗
t ) can be derived from ht and

g(βt ). The schematic of the utilized strategy is shown in

Fig. 2 with a synthetic example of a missing rainfall pat-

tern in the TMPA compared with satellite 1SM. The pri-

mary disadvantage of the particle filter is the large number

of replicates required to accurately represent the conditional

probability densities of pt and θt . When the measurements

exceed a few hundred, the particle filter is not computation-

ally practical for land surface problems. Considering compu-

tation efficiency, we set the number of independent particles,

N , from the prior distribution to be 200.

2.2.2 Precipitation replicates generation

We generate precipitation replicates, {pit }i=1,2,...,N , based on

statistics comparing NLDAS and 3B42RT precipitation, as

shown in Fig. 3. Given a 3B42RT precipitation measurement

(binned by magnitude), with bin minimum and maximum in-

dicated in Fig. 3, precipitation replicates are generated based

on the corresponding 15th, 30th, 70th, 85th percentiles and
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Figure 3. Statistics of NLDAS precipitation given 3B42RT precip-

itation measurement. Boxplot shows the minimum, 15 % quantile,

30 % quantile, median, 70 % quantile, 85 % quantile and maximum

value of NLDAS precipitation given 3B42RT precipitation in a cer-

tain bin.

the maximum NLDAS precipitation of the particular quantile

bin as follows: 15 % of the replicates are generated with val-

ues uniformly distributed from 0 and 15th percentile; 15 %

of replicates with values from 15th to 30th percentile; 20 %

of replicates with values from 30th percentile to the median;

20 % of the replicates generated from the median to 70th;

15 % with values from 70th to 85th percentile; and 15 % from

the 85th percentile to the maximum precipitation value. Note

that although the generation of particles is based on statistics

calculated from NLDAS, results show little difference gener-

ating precipitation ensembles uniformly distributed between

0 and 200 mm day−1.

2.2.3 AMSR-E/LSMEM soil moisture retrievals

The soil moisture product is derived from multiple mi-

crowave channels of the Advanced Microwave Scanning Ra-
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diometer for EOS (AMSR-E) instrument. The retrieval algo-

rithm by Pan et al. (2014) is an enhanced version of the Land

Surface Microwave Emission Model (LSMEM). The near

surface soil moisture and vegetation optical depth (VOD) are

estimated simultaneously from a dual polarization approach

that utilizes both horizontal (H) and vertical (V) polarizations

measurement by the space-borne sensor. The input AMSR-

E brightness temperature comes from the NSIDC AMSR-

E/Aqua Daily Global Quarter-Degree Gridded Brightness

Temperatures product (overlapping swaths in the same day

are truncated so that only the latest one is present). Conse-

quently, the soil moisture retrievals are also gridded at 0.25◦

with one ascending map and one descending map at the daily

time step. A maximum threshold value of 0.6 m3 m−3 has

been applied manually to reduce error from open water bod-

ies. According to Pan et al. (2014), the soil moisture data set

based on observations from AMSR-E are shown to be consis-

tent at large scales in terms of reproducing the spatial pattern

of soil moisture from VIC land surface model simulation.

Ascending soil moisture retrievals (equatorial crossing time

01:30 LT – local time) is assimilated in this study.

Similarly, while the spatial patterns of the basic statistics

of AMSR-E/LSMEM SM retrievals compare well to VIC

simulations (Pan et al., 2014), VIC has its top layer (10 cm),

which is deeper than the detection depth of AMSR-E, so that

the mean and temporal variability of the retrievals are higher

than the VIC simulated soil moisture (Fig. 4 in Pan et al.,

2014). Considering this difference between detection depths,

we pre-process soil moisture retrievals for each pixel as fol-

lows:

1. Rescale soil moisture retrievals (AMSR-E/LSMEM

SM) to have the same minimum and maximum range

as VIC-simulated first-layer soil moisture.

2. Calculate a daily soil moisture change. As satellite re-

trievals are manually truncated to be no more than

0.6 m3 m−3 (equivalent to 60 mm of water in the top soil

layer in VIC), retrievals larger than 0.6 m3 m−3 are ex-

cluded.

3. Fit a second-order polynomial regression model with

1SM (all units in mm of water in the top layer) from

satellite and VIC simulation on a monthly basis and

3× 3 grid scale (window).

After pre-processing, the distribution of soil moisture change

matches fairly well with 1SMVIC (Fig. 4). The mean ab-

solute difference reduces from a spatial average of 5.25 to

0.71 mm day−1, with relatively larger value over the east-

ern CONUS. According to Pan et al. (2014), the no-skill or

negative-skill areas occur mostly over eastern dense forests

due to vegetation blockage of the soil moisture signal (Pan

et al., 2014). The accuracy of soil moisture retrievals is also

limited by mountainous topography and the occurrence of

snow and frozen ground during winter whose identification

VIC	  1st	  layer	  ΔSM	  

AMSR-‐E/LSMEM	  ΔSM	  

AMSR-‐E/LSMEM	  ΔSM*	  

Figure 4. Empirical cumulative distribution function of changes in

soil moisture from top layer soil moisture from NLDAS precipi-

tation forced VIC simulation (black), and AMSR-E/LSMEM soil

moisture retrieval before (red) and after (blue) pre-processing.

from satellite observations is often difficult. For the purpose

of this study, we assign zero weight to the 3B42RTADJ and

rely exclusively on the initial 3B42RT precipitation for time

steps when the VIC model predicts snow cover or frozen sur-

faces.

2.2.4 VIC land surface model

The Variable Infiltration Capacity (VIC) model (Liang et

al., 1994) is used to dynamically simulate the hydrologi-

cal responses of soil moisture to precipitation, surface radi-

ation and surface meteorology. The VIC model solves the

full energy and water balance over each 0.25 ◦ grid cell

independently, thus ensuring its computational efficiency.

The assumption of independency poses limitation on the

application of LSM at very high spatial resolution (e.g.,

1 km× 1 km) over large areas. Three-layer soil moisture

is simulated through a soil–vegetation–atmosphere trans-

fer (SVAT) scheme, which also accounts for sub-grid-scale

heterogeneity of vegetation, soil and topography. A detailed

soil moisture algorithm description can be found in Liang

et al. (1996). The VIC model has been validated extensively

over CONUS by evaluating soil moisture and simulations to

observations (Robock et al., 2003; Schaake et al., 2004).

3 Idealized experiment

Before applying the particle filter assimilation algorithm to

3B42RT precipitation estimates, we conducted an idealized

experiment where we treat the NLDAS precipitation as the

“truth” and the NLDAS precipitation forced VIC simulations

as “satellite observed” soil moisture. As an idealized ex-

periment, we adjust TMPA real-time precipitation estimates

based on these “satellite observations”. Phase 2 of the North

American Land Data Assimilation System (NLDAS-2) rain-

www.hydrol-earth-syst-sci.net/19/4275/2015/ Hydrol. Earth Syst. Sci., 19, 4275–4291, 2015



4280 W. Zhan et al.: Correction of real-time satellite precipitation with satellite soil moisture observations

3B42RT'on'2006/03/22' SM'on'2006/03/21'

3B42RTADJ'on'2006/03/22' ΔSM'on'2006/03/22'

NLDAS'on'2006/03/22' [mm/day]'

2'

<2'

6'

10'

<6'

<10'

10'

45'

30'
25'

15'
20'

35'
40'

0.0'

10.0'
7.5'

2.5'
5.0'

12.5'
15.0'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

3B42RT'on'2003/10/27' SM'on'2003/10/26'

3B42RTADJ'on'2003/10/27' ΔSM'on'2003/10/27'

NLDAS'on'2003/10/27' [mm/day]'

2'

=2'

6'

10'

=6'

=10'

10'

45'

30'
25'

15'
20'

35'
40'

0.0'

10.0'
7.5'

2.5'
5.0'

12.5'
15.0'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

3B42RT'on'2003/10/27' SM'on'2003/10/26'

3B42RTADJ'on'2003/10/27' ΔSM'on'2003/10/27'

NLDAS'on'2003/10/27' [mm/day]'

2'

=2'

6'

10'

=6'

=10'

10'

45'

30'
25'

15'
20'

35'
40'

0.0'

10.0'
7.5'

2.5'
5.0'

12.5'
15.0'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

3B42RT'on'2006/03/22' SM'on'2006/03/21'

3B42RTADJ'on'2006/03/22' ΔSM'on'2006/03/22'

NLDAS'on'2006/03/22' [mm/day]'

2'

<2'

6'

10'

<6'

<10'

10'

45'

30'
25'

15'
20'

35'
40'

0.0'

10.0'
7.5'

2.5'
5.0'

12.5'
15.0'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

3B42RT'on'2003/10/27' SM'on'2003/10/26'

3B42RTADJ'on'2003/10/27' ΔSM'on'2003/10/27'

NLDAS'on'2003/10/27' [mm/day]'

2'

=2'

6'

10'

=6'

=10'

10'

45'

30'
25'

15'
20'

35'
40'

0.0'

10.0'
7.5'

2.5'
5.0'

12.5'
15.0'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

3B42RT'on'2003/10/27' SM'on'2003/10/26'

3B42RTADJ'on'2003/10/27' ΔSM'on'2003/10/27'

NLDAS'on'2003/10/27' [mm/day]'

2'

=2'

6'

10'

=6'

=10'

10'

45'

30'
25'

15'
20'

35'
40'

0.0'

10.0'
7.5'

2.5'
5.0'

12.5'
15.0'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

3B42RT'on'2006/03/22' SM'on'2006/03/21'

3B42RTADJ'on'2006/03/22' ΔSM'on'2006/03/22'

NLDAS'on'2006/03/22' [mm/day]'

2'

<2'

6'

10'

<6'

<10'

10'

45'

30'
25'

15'
20'

35'
40'

0.0'

10.0'
7.5'

2.5'
5.0'

12.5'
15.0'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

3B42RT'on'2006/03/22' SM'on'2006/03/21'

3B42RTADJ'on'2006/03/22' ΔSM'on'2006/03/22'

NLDAS'on'2006/03/22' [mm/day]'

2'

<2'

6'

10'

<6'

<10'

10'

45'

30'
25'

15'
20'

35'
40'

0.0'

10.0'
7.5'

2.5'
5.0'

12.5'
15.0'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

3B42RT'on'2003/10/27' SM'on'2003/10/26'

3B42RTADJ'on'2003/10/27' ΔSM'on'2003/10/27'

NLDAS'on'2003/10/27' [mm/day]'

2'

=2'

6'

10'

=6'

=10'

10'

45'

30'
25'

15'
20'

35'
40'

0.0'

10.0'
7.5'

2.5'
5.0'

12.5'
15.0'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

3B42RT'on'2003/10/27' SM'on'2003/10/26'

3B42RTADJ'on'2003/10/27' ΔSM'on'2003/10/27'

NLDAS'on'2003/10/27' [mm/day]'

2'

=2'

6'

10'

=6'

=10'

10'

45'

30'
25'

15'
20'

35'
40'

0.0'

10.0'
7.5'

2.5'
5.0'

12.5'
15.0'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

3B42RT'on'2006/03/22' SM'on'2006/03/21'

3B42RTADJ'on'2006/03/22' ΔSM'on'2006/03/22'

NLDAS'on'2006/03/22' [mm/day]'

2'

<2'

6'

10'

<6'

<10'

10'

45'

30'
25'

15'
20'

35'
40'

0.0'

10.0'
7.5'

2.5'
5.0'

12.5'
15.0'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

3B42RT'on'2006/03/22' SM'on'2006/03/21'

3B42RTADJ'on'2006/03/22' ΔSM'on'2006/03/22'

NLDAS'on'2006/03/22' [mm/day]'

2'

<2'

6'

10'

<6'

<10'

10'

45'

30'
25'

15'
20'

35'
40'

0.0'

10.0'
7.5'

2.5'
5.0'

12.5'
15.0'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

47N'
46N'
45N'
44N'
43N'
42N'
41N'
40N'
39N'

98W' 94W' 92W' 90W'96W' 88W' 86W'

a)	  
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b)	  
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c)	  

h)	  

d)	   e)	  

i)	   j)	  

Figure 5. Two cases with recovered spatial rainfall pattern in the idealized experiment after merging satellite soil moisture retrieval on

(a)–(e) 27 October 2003 and (f)–(j) 22 March 2006.

fall forcing combines hourly WSR-88D radar analyses from

the National Weather Service (NWS) and daily gauge reports

(∼ 13 000/day) from the Climate Prediction Center (CPC)

(Ek et al., 2011). The data set, with a spatial resolution

of 0.125◦ and hourly observations, was pre-processed into

0.25◦ daily precipitation to be consistent with that of 3B42RT

and AMSR-E/LSMEM SM data sets. Hourly NLDAS and

3-hourly 3B42RT precipitation is aggregated into daily pre-

cipitation defined by a period shifted ∼ 7.5 h into the future

(21:00–21:00 LT), allowing for a necessary delay for soil

moisture to respond to incoming rainfall. The idealized ex-

periment is designed to test whether the algorithm is able to

retrieve rainfall forcing with soil moisture change, assuming

that the soil moisture observations are 100 % accurate.

Results show that, with the knowledge of first-layer soil

moisture change (via the “satellite observations”), the ad-

justment is able to recover intensity and spatial pattern of

forcing precipitation (Fig. 5g). Average mean absolute error

(MAE) of daily rainfall amount is reduced by 52.9 % (2.91 to

1.37 mm day−1) over the region. Figure 5a to e shows an ex-

ample of the recovered rainfall field from the idealized ex-

periment for 27 October 2003. The spatial pattern matches

the original NLDAS precipitation well.

3.1 Effect of surface soil saturation

While successfully recovering the general pattern of NLDAS

precipitation based on first-layer soil moisture, the idealized

experiment is not always able to recover the precipitation vol-

ume due to the fact that the top-layer soil moisture alone does

not contain the complete memory of the previous day’s rain-

fall. Deeper soil moisture, evapotranspiration and runoff also

carry part of this information. As the surface gets wetter, the

VIC first-layer soil moisture has smaller variation. If the in-

coming precipitation brings the surface to saturation, the VIC

model redistributes the soil moisture vertically though verti-

cal moisture flow and generates runoff. Hence, soil moisture

increments,1SM, near saturation are less correlated with in-

coming precipitation as they change minimally to additional

incoming rainfall. An example demonstrating this saturation

effect is shown in Fig. 5f to j. When incoming precipitation

brings the surface SM to (near) saturation, there is very lim-
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ited improvement after the adjustment. Because of the low

sensitivity of the soil surface to precipitation, there is little

change in1SM in response to precipitation variations among

the replicates. It is almost always the case that the algorithm

is not able to find a “matching” 1SM.

We separately evaluate the skill improvement in the recov-

ered NLDAS precipitation with and without surface satura-

tion. Figure 6 (statistics provided in Table 1) confirms the

effect of surface saturation on adjusted precipitation, which

is well described in previous studies (e.g., Brocca et al.,

2013, 2014). The recovered precipitation, when the surface

soil is saturated, only contributes more noise rather than an

improvement to the rainfall estimates. The VIC model com-

putes the moisture flow between soil layers using an hourly

time step. If the first-layer soil moisture exceeds its maxi-

mum capacity, it is considered to be a surface saturation case.

As seen in Fig. 5, there is very limited or negative skill in

the recovered precipitation under saturated surface soil mois-

ture conditions. Such circumstances are identified and the

AMSR-E/LSMEM 1SM observation disregarded by assign-

ing zero weight to the 3B42RTADJ values. Thus, for wetter

areas with heavy precipitation that potentially would bring

the surface soil moisture to saturation, the 3B42RT product

is less likely to be adjusted according to satellite 1SM, and

the best precipitation estimate is 3B42RT.

3.2 Effect of SM uncertainty

In the idealized experiment, NLDAS-VIC soil moisture is

taken as truth with zero uncertainty associated with (θ∗t ).

However, this assumption is not valid for real satellite SM

retrievals, mean absolute error of which is approximately

3 % vol. vol.−1 (McCabe et al., 2005). To consider this, we

added error to the “truth” SM (normally distributed with

zero mean and standard deviations of 1, 2, 3, 4 and 5 mm),

and simulated the effect of SM uncertainty to evaluate the

associated adjustment errors. Figure 7 shows that larger

soil moisture observation errors lead to larger error vari-

ation after adjustment. This also suggests that soil mois-

ture responds to precipitation non-linearly based on dif-

ferent initial conditions. An estimated wetter surface has

lower sensitivity to an incoming rainfall amount, resulting

in larger error in the recovered NLDAS precipitation. As

shown in Fig. 7, the error standard deviation of the recov-

ered NLDAS precipitation increases with surface water con-

tent (statistics shown in Table 2). As we add noise larger

than N (0.1 mm) into “true” SM observation, there is a wet

bias of approximately 1 mm day−1 regardless of first-layer

soil moisture level. This suggests that when the difference

between first-layer SM and saturation is less than 8 mm,

the median of the errors in the recovered NLDAS precip-

itation grows from 0.16 to 1.89 mm day−1 when we add

N (0.5 mm) noise, while the inter-quantile range (IQR) in-

creases from 1.71 to 7.04 mm day−1. Acknowledging such

a wet bias, to avoid introducing any more unintentional bias
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Figure 6. Accuracy of recovered precipitation in an idealized ex-

periment: (a) overall performance and separately comparing the im-

provement performance of recovered NLDAS precipitation (b) with

and (c) without surface saturation condition. Statistics provided in

Table 1.
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in the 3B42RTADJ estimates, we take as zero the uncertainty

of AMSR-E/LSMEM SM retrievals, i.e., we take ht (θt ) as

our single observation θ∗t and adjust the 3B42RT estimates

accordingly.

It is noteworthy that the soil moisture change is calculated

based on previous days’ soil water contents. Therefore errors

tend to accumulate over time until they are “re-set” when a

significant precipitation event takes place. This type of un-

certainty accounts for a small portion of the total error in the

adjusted precipitation (black being the no-error case in Fig. 7

with the “true” change in soil moisture from every time step).

As complete global coverage is not provided with each orbit

of the AMSR-E sensor, on average 44.01 % of the time steps

(< 0.6 m3 m−3) during the study period have observations,

with more frequent overpasses at higher latitudes (Fig. 4e

in Pan et al., 2014). This observation gap unavoidably intro-

duces extra uncertainty into the retrieval of the precipitation

signal. To further avoid possible additional errors, we update

the forcing rainfall when a 1SM temporal match (±0.4 mm)

is available, and keep the original precipitation if a match is

not available.

4 Improvement on real-time precipitation estimates

and their validation

The adjustment of real TMPA 3B42RT retrievals based on

AMSR-E/LSMEM 1SM is carried out using the methods

described in Sect. 2.2.3, and results from the idealized ex-

periment (Sect. 3) with regard to the circumstances where an

adjustment is applied.

An example of TMPA 3B42RT adjustment is provided

in Fig. 8, where a snapshot of the rainfall field is shown

(Fig. 8b) and compared with NLDAS on 26 May 2006

and the adjusted rainfall pattern based on AMSR-E/LSMEM

1SM. The 3B42RTADJ rainfall field (Fig. 8c) is similar in

terms of its spatial distribution compared to NLDAS precip-

itation estimates (Fig. 8d).

On average, TMPA 3B42RT and AMSR-E/LSMEM1SM

have a spatial Pearson correlation coefficient of 0.37 (shown

in Fig. 9, left panels), compared to 0.52 for the correlation

between NLDAS and1SM. After the adjustment procedure,

the Pearson correlation coefficient between 3B42RTADJ and

AMSR-E/LSMEM1SM increases to 0.53 (shown in Fig. 9),

indicating that the correction method is successful. A below-

average increase in correlation is found over the western

mountainous region, the Great Lakes region and the east-

ern high vegetated and populated region. Additionally, the

satellite soil moisture suffers from snow/ice/standing water

contamination, which affects the potential for improved re-

sults after correction. The 3B42RTADJ has significant im-

provement over 3B42RT in terms of long-term precipitation

bias. The bias in 3B42RT annual mean precipitation is re-

duced by 20.6 %, from −9.32 mm month−1 spatial average

in 3B42RT to −7.40 mm month−1 in 3B42RTADJ (shown

in Fig. 9, right panels). Frequency of rain days generally

increases significantly everywhere (Fig. 10). The NLDAS

data (Fig. 10, right panels) suggest an almost constant driz-

zling rainfall over parts of the western mountainous area

(Montana, Idaho, Wyoming and Colorado), while assimilat-

ing AMSR-E/LSMEM 1SM data sets do not have a signal

of higher rainfall frequency (Fig. 10, middle panels). This

is possibly due to deficiencies in satellite retrievals over the

mountainous areas and frequent presence of snow and ice

(3B42RT is not updated under such circumstances).

Figure 11 shows the assimilation results for the grids and

days with soil moisture observations, using the NLDAS pre-

cipitation as a reference. Overall, the method is successful

in correcting daily rainfall amount when 3B42RT overesti-

mates precipitation (3B42RT−NLDAS> 0). Mean standard

deviation (SD) of 3B42RTADJ−NLDAS is between 1 and

3 mm day−1 (statistics provided in Table 3). When 3B42RT

underestimates rainfall (3B42RT−NLDAS< 0), the assim-

ilation has limited improvement on 3B42RT. This is due to

the effect of surface saturation. In terms of adding rainfall,

effectiveness of the assimilation is limited under the follow-

ing two circumstances.

1. The presence of wet conditions or (near) saturation.

There is higher probability bringing the surface to sat-

uration (wetter condition) when the assimilation adds

rainfall into 3B42RT. However, soil moisture incre-

ments are less sensitive to incoming precipitation on

wetter soil. Therefore, an error in 1SM often translates

into 3B42RTADJ in a magnified manner.

2. The presence of very heavy precipitation, which typi-

cally brings the surface to saturation, hence not results

in an update of 3B42RT, is not updated. If, by a small

probability, the surface is wet (nearly saturated) but not

completely saturated after a heavy rainfall, the updated

3B42RT also suffers from large uncertainty (explained

in 1) above).

The effect of the assimilation conditioned on 3B42RT rain-

fall amount is further evaluated by skill scores. Figure 12

presents probability of detection (POD) and false alarm

rate (FAR) in 3B42RT and 3B42RTADJ, using NLDAS as

the reference data set. The rain event threshold is set to be

0.1 and 2 mm day−1. This is possibly due to lower soil mois-

ture variability in satellite retrievals over the dry, mountain-

ous areas and frequent presence of snow and ice (3B42RT is

not updated under such circumstances). For a 0.1 mm day−1

threshold, both FAR and POD increase in 3B42RTADJ ex-

cept for the mountainous region, whereas, for a 2 mm day−1

threshold, there is only a slight increase in FAR in most of

the eastern US region. The overestimation of rain days is

also absent when the 2 mm day−1 event threshold is applied,

which suggests that most of the excessive rainy days have

a less than 2 mm/day rain amount. Consistent with Wan-

ders et al. (2015), spatially, larger improvements are found
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Table 2. Error statistics of recovered NLDAS based on 1SM (with added errors) conditioned on first-layer soil wetness for the idealized

experiment (mm day−1).

[Recovered [VIC first-layer SM] <−30 −30 to −25 −25 to −20 −20 to −15 −15 to −12 −12 to −10 −10 to −9 −9 to −8 >−8

NLDAS] − − [maximum]∗

[NLDAS] mm

mm day−1

No error Median 0.04 0.03 0.02 0.02 0.02 0.03 0.03 0.04 0.16

IQR 0.14 0.08 0.07 0.07 0.08 0.12 0.21 0.29 1.71

1.0 Median 0.86 1.07 1.08 1.03 0.99 0.97 0.97 0.94 0.66

IQR 1.52 1.72 1.77 1.83 1.96 2.08 2.14 2.19 2.59

2.0 Median 0.68 1.07 1.40 1.56 1.52 1.44 1.51 1.64 1.54

IQR 1.76 2.09 2.88 3.45 3.63 3.73 3.73 3.73 3.91

3.0 Median 0.15 0.80 1.20 1.41 1.47 1.51 1.65 1.84 1.88

IQR 1.36 2.16 3.04 3.73 3.74 3.79 4.34 5.24 5.47

4.0 Median 0.22 0.56 0.83 1.15 1.30 1.40 1.63 1.88 1.97

IQR 0.99 2.36 2.48 3.99 4.05 4.70 5.53 5.52 5.63

5.0 Median 0.00 0.15 0.52 0.90 1.10 1.27 1.54 1.81 1.89

IQR 1.62 2.54 2.91 4.43 4.51 5.95 5.90 5.79 7.04

∗ First-layer soil depth is 100 mm with a SM capacity of ∼ 45 mm, depending on porosity.

[R
ec
ov
er
ed

	  N
LD

AS
]-‐[
N
LD

AS
]	  P

re
ci
pi
ta
6o

n	  
[m

m
/d
ay
]	  

[VIC	  1st	  layer	  SM]	  –	  [maximum	  1st	  	  layer	  moisture]	  [mm]	  	  

15	  

10	  

5	  

0	  

-‐5	  

-‐10	  -10

-5

0

5

10

15

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

7

8

9

10 Error=0.0
Error=0.5
Error=1.0
Error=1.5
Error=2.0
Error=2.5
Error=3.0
Error=3.5
Error=4.0
Error=4.5
Error=5.0

Error=N(0,1mm),
Error=N(0,2mm),
Error=N(0,3mm),
Error=N(0,4mm),
Error=N(0,5mm),

No,error,

!3
0$t
o$!
25
$

!2
5$t
o$!
20
$

!2
0$t
o$!
15
$

!1
5$t
o$!
12
$

!1
2$t
o$!
10
$

!1
0$t
o$!
9$

!9
$to
$!8
$

>!
8$

<!
30
$

Figure 7. Error in recovered NLDAS precipitation given surface moisture condition. Recovered NLDAS is based on using “truth” soil

moisture and soil moisture with normal error:N (0.1 mm),N (0.2 mm),N (0.3 mm),N (0.4 mm) andN (0.5 mm). Statistics provided in Table 2.

in the central US. The area coincides where higher AMSR-

E/LSMEM 1SM accuracy is found (non-mountainous re-

gions with little urbanization and light vegetation). Despite

the regional variability, these excessive rainy days are a result

of the high-frequency noise in AMSR-E/LSMEM soil mois-

ture retrievals identified by Pan et al. (2004) and Wanders et

al. (2015).

The applied method is ineffective for light rainfall<mm,

where the adjustment tends to over-correct precipitation

by adding excessive rainfall – mostly the result of the

high-frequency AMSR-E noise. The MAE of light rainfall

(< 2 mm day−1) increased from 0.65 mm day−1 in 3B42RT

to 0.99 mm day−1 in 3B42RTADJ. On the other hand, satel-

lite soil moisture assimilation is very effective in correct-

ing satellite precipitation higher than 2 mm day−1: the MAE

of medium to large rainfall (≥ 2 mm day−1) decreased from

7.07 mm day−1 in 3B42RT to 6.55 mm day−1 in 3B42RTADJ.

The effect of the assimilation is different over the western

mountainous region, the north-to-south central US band and

the eastern US.

The western mountainous region has a dry climatology

with more frequent rainfall in small amounts. The white

noise in 1SM, negatively impacting 3B42RTADJ, is com-

parable to the positive improvement brought by actual light

rainfall signals in 1SM. Therefore, the assimilation of 1SM

has no significant impact in these regions.

The north-to-south band over the central US experiences

more medium to high (≥ 2 mm day−1) rainfall. In addition,

the region is lightly vegetated (annual mean LAI< 1) with

low elevation (< 1500 m), where soil moisture retrievals are

of higher accuracy. Soil moisture climatology is wetter in the

west, causing larger variations in 3B42RTADJ error from the
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field (3B42RTADJ) by assimilating AMSR-E/LSMEM 1SM (c). Gray shading shows area without soil moisture retrievals.
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Figure 9. Pearson correlation coefficient between AMSR-E/LSMEM1SM and precipitation (from 1 January 2003 to 31 July 2007): (a) NL-

DAS, (b) 3B42RT and (c) 3B42RTADJ; annual mean precipitation in (d) NLDAS, (e) 3B42RT and (f) 3B42RTADJ of time steps with

AMSR-E/LSMEM 1SM retrievals.

white noise 1SM (as discussed in Sect. 3.2). Despite that,

satellite soil moisture is most effective correcting medium to

large rainfall under normal surface conditions.

The decreased skill in 3B42RTADJ over the eastern US is

primarily attributed to both precipitation and soil moisture

climatology, a wet climate with more medium to high rain-

fall, neither of which is suitable for soil moisture assimila-

tion.

In summary, the high-frequency noise in soil moisture

product causes a major limitation. The noise impacts ad-

justed precipitation by introducing false alarm rain days. It

is difficult to distinguish the noise and retrieve the true rain-

fall signals. A remedy to prevent the excessive rain days

is applying a cutoff 1SM threshold when rain days are

added, at the expense of neglecting a part of the true rain-

fall signals. Figure 13 shows the probability of added rainy
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Figure 11. Distribution of 3B42RT and 3B42RTADJ precipitation

error compared to NLDAS. Statistics are provided in Table 3.

days being consistent with NLDAS (NLDAS> 0 mm day−1)

with respect to 1SM. When a new rainy day is added

(3B42RT= 0 mm day−1, 3B42RTADJ> 0 mm day−1) based

on AMSR-E/LSMEM 1SM of 2 mm day−1, there’s approx-

imately 78 % chance that the added rain day is a true

event (NLDAS> 0 mm day−1); That is, ∼ 22 % chance that

it is a false alarm (NLDAS= 0 mm day−1). When AMSR-

E/LSMEM 1SM is larger than 2 mm day−1, the probability

of added rainy days being true event is even higher, up to

90 % chance. Here we applied a threshold of 2 mm day−1

to AMSR-E/LSMEM 1SM. That is, when new rainy days

are introduced (3B42RT> 0, 3B42RTADJ> 0), we discard

the update and keep the no-rain day if AMSR-E/LSMEM

soil moisture increment is below 2 mm. Note that, the prob-

ability of the false alarms depends on soil moisture cli-

matology: the wetter soil moisture climatology, the larger

uncertainty in the signal. Therefore, this threshold should

vary in accordance with local soil moisture climatology,

i.e., a larger threshold over the wetter eastern US and a

smaller threshold over the drier western US. Nevertheless,

after the 2 mm day−1 1SM threshold is applied, expect-

edly, the statistics are largely improved: FAR is decreased

significantly from 0.519 (wo. 1SM threshold) to 0.066

(w. 1SM threshold). MAE of light rainfall (< 2 mm day−1)

in 3B42RTADJ decreased from 0.99 to 0.64 mm day−1, com-

pared to 0.65 mm day−1 in 3B42RT. For medium to large

3B42RT rainfall (≥ 2 mm day−1), it effectively increased

POD (0.362 in 3B42RT vs. 0.386 in 3B42RTADJ w. 1SM

threshold) and decreased FAR (0.037 in 3B42RT vs. 0.030

in 3B42RTADJ w. 1SM threshold). Further work is needed

to characterize, distinguish and decrease the high-frequency

noise in SM retrievals. Figure 13 gives an example of evalu-

ating the impact of SM uncertainties in assimilation as curves

derived over different topography can be quantitatively com-

pared.

5 Comparison to other studies

Many other studies have utilized satellite microwave bright-

ness temperatures or soil moisture retrievals to constrain

satellite precipitation estimates (Pellarin et al., 2008), esti-

mate precipitation (e.g., Brocca et al., 2013) or improve pre-

cipitation estimates through assimilation (Crow et al., 2009,

2011). Here, we review their approaches and findings in light

of the results of this study, and compare our results with some

of these studies to gain insight into their robustness and con-

sistency.

Pellarin et al. (2008) used the temporal variations of the

AMSR-E 6.7 GHz brightness temperature (TB) normalized

polarization difference, PR= (TBV−TBH)/(TBV+TBH),

to screen out anomalous precipitation events from a 4-

day cumulative satellite-estimated precipitation (EPSAT-SG:

Chopin et al., 2005) from 22 to 26 June 2004 over a
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thresholds to define a rain event.

100× 125 km box centered over Niger in West Africa. This

was extended in Pellarin et al. (2013), where an API-based

water balance model was used to correct three different satel-

lite precipitation products (CMORPH, TRMM-3B42 and

PERSIANN) over a 4-year period in West Africa at three

0.25◦ grids in Niger, Benin and Mali). The new algorithm

was evaluated by comparing the corrected precipitation to es-

timates over the 0.25◦ grids from ground-based precipitation

measurements. A sequential assimilation approach was ap-

plied where AMSR-E C-band TB measurements were used

to estimate a simple multiplicative factor to the precipitation

estimates in order to minimize the difference between ob-

served (AMSR-E) and simulated TBs in terms of root mean

square error (RMSE). The results show improvements over

those found in Pellarin et al. (2009). Specifically, the Pellarin

et al. (2013) study shows that the proposed methodology pro-

duces an improvement of the RMSE at daily, decadal and

monthly timescales and at the three locations. For instance,

the RMS mean error decreases from 7.7 to 3.5 mm day−1 at

the daily timescale in Niger and from 18.3 to 7.7 mm day−1

at the decadal timescale in Mali.

Crow et al. (2003, 2009, 2011) demonstrated the effec-

tiveness of the assimilation of remotely sensed microwave

brightness temperatures or retrieved soil moisture in esti-
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Figure 13. Probability that the added rainy days

(3B42RT= 0 mm day−1, 3B42RTADJ> 0 mm day−1) are true

rain events (NLDAS> 0 mm day−1) given corresponding AMSR-

E/LSMEM 1SM.

mating precipitation based on airborne measurements over

the Southern Great Plains (USA) region (Crow et al., 2003);

2- to 10-day accumulated precipitation within a simple API

water budget model and assimilation scheme over CONUS

(Crow et al., 2009); and 3-day, 1◦ precipitation accumula-

tion over three African Monsoon Multidisciplinary Analy-

sis (AMMA) sites in West Africa with an enhanced assimila-

tion scheme and an API moisture model (Crow et al., 2011).

Crow et al. (2009) recommend against estimating precipi-

tation at a larger scale than 3 days based on assimilating

AMSR-E/LSMEM soil moisture.

Brocca et al. (2013) estimated precipitation by invert-

ing the water budget equation such that precipitation could

be estimated from changes in soil moisture. The inverted

equation was calibrated using in situ, 4-day averaged ob-

servations at two sites in Spain and Italy. In Brocca et

al. (2014), the same approach was used globally to estimate

daily precipitation at 1◦ spatially. Five-day cumulated rain-

fall estimates are derived from three satellite-derived soil

moisture data sets (AMSR-E LPRM, ASCAT and SMOS),

and linearly interpolated to daily values, for their precipita-

tion estimation algorithm. No formal data assimilation was

carried out. The newly created precipitation data set was

compared to two satellite precipitation products (TRMM-

3B42RT, GPCC) and two gauge-based precipitation prod-

ucts (GPCP, ERA-Interim). Five-day accumulated rainfall

data, aggregated to a 1◦ spatial resolution, are considered in

their assessment analyses with promising results. But, they

do note that their approach has “poor scores in reproduc-

ing daily rainfall data”. Ciabatta et al. (2015) derived daily

rainfall product using ASCAT over Italy and integrated it

with TMPA 3B42RT precipitation. The merged product also

shows promising results.

In the study reported here, four advances have been made

over these earlier studies: (i) we adopted a state-of-the-art dy-

namic land surface model that has demonstrated high skill in

simulating soil moisture when driven by high-quality precip-

itation data (Schaake et al., 2004); (ii) we applied a state-of-

the-art data assimilation procedure based on particle filtering
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so as to extract (and hopefully maximize) the information

content from the satellite most effectively; (iii) we increased

the resolution of the precipitation estimation window down

to 1 day, exceeding the conclusions in these earlier studies

that the finest temporal resolution is 3 to 5 days. Addition-

ally we increased (or matched) the spatial resolution to 0.25◦,

limited primarily by the satellite soil moisture product reso-

lution; and (iv) previous studies are based on the assumption

that the SM retrievals are 100 % accurate and contain no er-

rors. We evaluated this assumption by analyzing the impact

of uncertainties associated with the soil moisture retrievals.

These advances offer important benefits when satellite pre-

cipitation products are used for applications such as flood

forecasting. Admittedly, by aggregating in space and time,

the improvement is more robust since some errors are aver-

aged out.

Wanders et al. (2015) performed a comprehensive inter-

comparison study using multiple satellite soil moisture and

land surface temperature (LST) data at fine temporal scale

(3-hourly). Compared to their study, ours focuses on using

soil moisture exclusively from one satellite and retrieval al-

gorithm, and in improvements to the assimilation algorithm,

specifically, (i) the longer temporal period (2010–2011 in

Wanders et al. (2015) vs. 2002–2007 in this study), (ii) the

temporal resolution (3-hourly vs. daily), and (iii) the par-

ticle generation and bias-correction method. We present in

the paper improvements in the generation of rain particles

and the bias-correction of the satellite soil moisture observa-

tions, as well as enhancements to the assimilation algorithm

to maximize the information that can be gained from using

soil moisture alone in adjusting precipitation. Due to the very

strong and complicated spatial structure of precipitation, that

is non-Gaussian and non-stationary in both time and space,

a more advanced method is applied to generate possible pre-

cipitation fields than used or presented in earlier studies or in

Wanders et al. (2015). Furthermore, a more advanced bias-

correction method is also applied to account for the reported

problems (Wanders et al., 2015) in the second-order statistics

of the soil moisture retrievals, and (iv) SM retrieval products

(and overpasses) used in assimilation. Our improved results

are based on soil moisture retrievals from ascending over-

passes only (vs. both descending and ascending overpasses

from multiple data sets, i.e., AMSR-E/LSMEM, ASCAT and

SMOS). Our exclusive focus on the usefulness of soil mois-

ture product promises more applicability especially for im-

proving satellite precipitation from the Global Precipitation

Mission products. The descending overpasses have generally

better performance than the ascending, suggesting the poten-

tials of further improvements.

A quantitative comparison of Wanders et al. (2015) and

our results is provided below. Despite the different time peri-

ods between Wanders et al. (2015, 2010–2011) and in our

study (2002–2007), Wanders et al. (2015) show decreas-

ing POD (−15.0 to −46.4 %, depending on the different

products used) and FAR (−47.2 to −89.1 %, depending on

the different products used) for all rainfall after assimila-

tion using either (single or multiple) SM products alone or

SM+LST data combined (see Table 4 of Wanders et al.,

2015). While in our study, after applying 1SM threshold,

medium to large 3B42RTADJ rainfall (≥ 2 mm day−1) has an

increase in POD (+6.6 %) and decrease in FAR (−18.9 %).

Furthermore, the significant dry bias in adjusted precipita-

tion (see Fig. 6 of Wanders et al., 2015) is not present in our

results (Fig. 9). This is due to improvements in our precipita-

tion ensemble generation and bias correction scheme. Wan-

ders et al. (2015) applied an additional step generating pre-

cipitation particles sampling from a 3× 3 window that over-

eliminates most of the excessive rainfall along with some real

signal. We suggest loosening this constraint to a larger win-

dow size or to sample from adjusted precipitation instead of

original 3B42RT precipitation. However, sampling from ad-

justed precipitation at each time step would significantly in-

crease the computational demand, limiting the potential for a

global application at high temporal/spatial resolution.

Furthermore, the outcome is quite different for the distri-

bution of soil moisture retrievals after pre-processing (Fig. 9

of Wanders et al. (2015) vs. Fig. 4 in our study) due to the

different methods used. After pre-processing, distributions of

soil moisture retrievals are more similar to that of NLDAS

precipitation forced, VIC modeled first-layer soil moisture.

CDF-matching used by Wanders et al. (2015) is based on

the assumption that satellite soil moisture and modeled soil

moisture respond to heavy rainfall in the same way – essen-

tially having a rank correlation of 1. However, that is not ob-

served because of the shallower detection depth of the satel-

lite soil moisture. On the other hand, using the pre-processing

method presented in this study, the signal of near-saturation

in AMSR-E/LSMEM 1SM tends to be overestimated after

pre-processing, which indicates a heavy rain event that is of-

ten accompanied with surface saturation and thus does not

provide effective information for the assimilation. The other

benefit of the second-order polynomial regression lies in its

non-linearity. An error in the soil moisture product impacts

the precipitation adjustment in a predictable way, allowing

for a more systematic post-processing treatment. Based on

the known error characteristics, we demonstrate a potential

remedy to deal with the error by applying a 2 mm day−1 cut-

off1SM threshold. Meanwhile, it is also highlighted that the

cutoff threshold should be variable and positively correlated

with local soil moisture climatology. We acknowledge that

the soil moisture product used in Wanders et al. (2015) is a

blended product of multiple satellite soil moisture data sets.

It is not clear how its error characteristics impact the adjusted

precipitation.
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6 Conclusion and discussion

Based on the retrieved soil moisture from AMSR-E using

the LSMEM retrieval algorithm, we propose an assimila-

tion procedure to integrate soil moisture information into the

VIC land surface model so as to improve real-time, satel-

lite precipitation estimates. The ability to estimate rainfall

amount is now enhanced with the above improvements, es-

pecially for correcting medium rainfall amounts. However,

constrained by the noise in AMSR-E TBs and thus soil mois-

ture retrievals, the assimilation is not effective in detecting

missed rainfall events. The improved precipitation estimates,

referred to as 3B42RTADJ estimates, are overall consistent in

reproducing the spatial pattern and time series of daily rain-

fall from NLDAS precipitation. The results illustrate the po-

tential benefits of using data assimilation to merge satellite

retrievals of surface soil moisture into a land surface model

forced with real-time precipitation. Potentially the method

can be applied globally for areas meeting vegetation cover

and surface condition constraints that allows for soil mois-

ture retrievals. Under these conditions, the approach can pro-

vide a supplementary source of information for enhancing

the quality of satellite rainfall estimation, especially over

poorly gauged areas like Africa.

Nonetheless, some caution is required. The results of this

study show that the adjusted real-time precipitation tends to

add additional rain (frequency) resulting in more time steps

with rain but lower regional average in the western US and

slightly higher regional average in the eastern US. It is also

noticed that the precipitation adjustments are insensitive un-

der saturated soil moisture conditions. A wetter surface mag-

nifies any error associated with satellite observation by incor-

rectly adjusting precipitation. These errors, mixed with the

“real” signal, generally add approximately ∼ 2 mm of pre-

cipitation (or higher), depending on the soil moisture clima-

tology. It is important to consider these circumstances when

observations are used so as to avoid introducing additional

error. With these identified limitations, continued research is

needed to assess the biases in the real-time precipitation re-

trievals on a local to regional basis so the assimilation system

can be modified accordingly.

The assimilation scheme used here assumed that the er-

rors were attributed to the real-time precipitation retrievals,

but the precipitation estimates after adjustment includes er-

rors from additional sources. The two primary sources are

errors in soil moisture retrievals and errors in the land surface

model that include model parameterizations (poorly or insuf-

ficiently represented processes as well as scale issues) and

parameter errors (insufficient calibration). There are also er-

rors in other model forcing fields besides precipitation. Fur-

ther studies are needed to assess the attribution of these error

sources to the total error. Such research will further improve

the use of real-time satellite-based precipitation for global

flood monitoring.

Besides the clear, heavy dependency of the assimilation ef-

fectiveness on the accuracy of satellite soil moisture product,

it is also important to acquire adequate knowledge on the er-

ror characteristics of satellite soil moisture retrievals. Knowl-

edge of the soil moisture errors could be important and the

assimilation methods (including precipitation ensemble gen-

eration and pre-/post-processing method) should be chosen

accordingly. On the other hand, the presence of data gaps

between overpasses could be a large source of uncertainty

with data assimilation. Further effort towards reliable spatial-

temporal continuous (gap-filled) satellite soil moisture data

sets is needed.

While it has been illustrated in this study that the en-

hancement of real-time satellite precipitation estimates can

be realized through an assimilation approach using satellite

soil moisture data products and a particle filter, additional

satellite-based observations (e.g., multi-sensor soil moisture

products) or variables (e.g., land surface temperatures as

shown in Wanders et al. (2015), inundated areas) could be

added/replaced in the assimilation process with different lev-

els of complexity, e.g., by applying constraints on the particle

generation. This opens up a great number of opportunities in

using space-borne observations for supplementing direct re-

trievals of precipitation.
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