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Abstract. The Soil Water Assessment Tool (SWAT) was con-

figured for the Puarenga Stream catchment (77 km2), Ro-

torua, New Zealand. The catchment land use is mostly plan-

tation forest, some of which is spray-irrigated with treated

wastewater. A Sequential Uncertainty Fitting (SUFI-2) pro-

cedure was used to auto-calibrate unknown parameter val-

ues in the SWAT model. Model validation was performed us-

ing two data sets: (1) monthly instantaneous measurements

of suspended sediment (SS), total phosphorus (TP) and to-

tal nitrogen (TN) concentrations; and (2) high-frequency (1–

2 h) data measured during rainfall events. Monthly instan-

taneous TP and TN concentrations were generally not re-

produced well (24 % bias for TP, 27 % bias for TN, and

R2 < 0.1, NSE < 0 for both TP and TN), in contrast to SS

concentrations (< 1 % bias; R2 and NSE both > 0.75) dur-

ing model validation. Comparison of simulated daily mean

SS, TP and TN concentrations with daily mean discharge-

weighted high-frequency measurements during storm events

indicated that model predictions during the high rainfall pe-

riod considerably underestimated concentrations of SS (44 %

bias) and TP (70 % bias), while TN concentrations were com-

parable (< 1 % bias; R2 and NSE both∼ 0.5). This compari-

son highlighted the potential for model error associated with

quick flow fluxes in flashy lower-order streams to be under-

estimated compared with low-frequency (e.g. monthly) mea-

surements derived predominantly from base flow measure-

ments. To address this, we recommend that high-frequency,

event-based monitoring data are used to support calibra-

tion and validation. Simulated discharge, SS, TP and TN

loads were partitioned into two components (base flow and

quick flow) based on hydrograph separation. A manual pro-

cedure (one-at-a-time sensitivity analysis) was used to quan-

tify parameter sensitivity for the two hydrologically sepa-

rated regimes. Several SWAT parameters were found to have

different sensitivities between base flow and quick flow. Pa-

rameters relating to main channel processes were more sensi-

tive for the base flow estimates, while those relating to over-

land processes were more sensitive for the quick flow esti-

mates. This study has important implications for identifying

uncertainties in parameter sensitivity and performance of hy-

drological models applied to catchments with large fluctua-

tions in stream flow and in cases where models are used to

examine scenarios that involve substantial changes to the ex-

isting flow regime.

1 Introduction

Catchment models are valuable tools for understanding natu-

ral processes occurring at basin scales and for simulating the

effects of different management regimes on soil and water re-

sources (e.g. Cao et al., 2006). Model applications may have

uncertainties as a result of errors associated with the forcing

variables, measurements used for calibration, and conceptu-

alisation of the model itself (Lindenschmidt et al., 2007). The

ability of catchment models to simulate hydrological pro-

cesses and pollutant loads can be assessed through analy-

sis of uncertainty or errors during a calibration process that
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is specific to the application domain (White and Chaubey,

2005).

The Soil and Water Assessment Tool (SWAT) model is in-

creasingly used to predict discharge, sediment and nutrient

loads on a temporally resolved basis and to quantify material

fluxes from a catchment to the downstream receiving envi-

ronment such as a lake (e.g. Nielsen et al., 2013). The SWAT

model is physically based and provides distributed descrip-

tions of hydrologic processes at sub-basin scale (Arnold et

al., 1998; Neitsch et al., 2011). It has numerous parameters,

some of which can be fixed on the basis of pre-existing catch-

ment data (e.g. soil maps) or knowledge gained in other stud-

ies. However, values for other parameters need to be assigned

during a calibration process as a result of complex spatial

and temporal variations that are not readily captured either

through measurements or within the model algorithms them-

selves (Boyle et al., 2000). Such parameter values assigned

during calibration are therefore lumped, i.e. they integrate

variations in space and/or time and thus provide an approxi-

mation for real values which often vary widely within a study

catchment. Model calibration is an iterative process whereby

parameters are adjusted to the system of interest by refin-

ing model predictions to fit closely with observations under

a given set of conditions (Moriasi et al., 2007). Manual cal-

ibration depends on the system used for model application,

the experience of the modellers, and knowledge of the model

algorithms. It tends to be subjective and time-consuming.

By contrast, auto-calibration provides a less labour-intensive

approach by using optimisation algorithms (Eckhardt and

Arnold, 2001). The Sequential Uncertainty Fitting (SUFI-

2) procedure has previously been applied to auto-calibrate

discharge parameters in a SWAT application for the Thur

River, Switzerland (Abbaspour et al., 2007), as well as for

groundwater recharge, evapotranspiration and soil storage

water considerations in western Africa (Schuol et al., 2008).

Model validation is subsequently performed using measured

data that are independent of those used for calibration (Mo-

riasi et al., 2007).

Values for hydrological parameter values in the SWAT

model can vary temporally. Cibin et al. (2010) found that

the optimum calibrated values for hydrological parameters

varied with different flow regimes (low, medium and high),

thus suggesting that SWAT model performance can be op-

timised by assigning parameter values based on hydrolog-

ical characteristics. Other work has similarly demonstrated

benefits from assigning separate parameter values to low,

medium, and high discharge periods (Yilmaz et al., 2008),

or based on whether a catchment is in a dry, drying, wet

or wetting state (Choi and Beven, 2007). Such temporal

dependence of model parameterisation on hydrologic con-

ditions has implications for model performance. Krause et

al. (2005) compared different statistical metrics of hydro-

logical model performance separately for base flow periods

and storm events to evaluate the performance. The authors

found that the logarithmic form of the Nash–Sutcliffe effi-

ciency (NSE) value provided more information on the sensi-

tivity of model performance for discharge simulations during

storm events, while the relative form of NSE was better for

base flow periods. Similarly, Guse et al. (2014) investigated

temporal dynamics of sensitivity of hydrological parame-

ters and SWAT model performance using a Fourier ampli-

tude sensitivity test (Reusser et al., 2011) and cluster analysis

(Reusser et al., 2009). The authors found that three ground-

water parameters were highly sensitive during quick flow,

while one evaporation parameter was most sensitive during

base flow, and model performance was also found to vary

significantly for the two flow regimes. Zhang et al. (2011)

calibrated SWAT hydrological parameters for periods sepa-

rated on the basis of six climatic indexes. Model performance

improved when different values were assigned to parameters

based on six hydroclimatic periods. Similarly, Pfannerstill et

al. (2014) found that assessment of model performance was

improved by considering an additional performance statistic

for very low flow simulations amongst five hydrologically

separated regimes.

To date, analysis of temporal dynamics of SWAT parame-

ters has predominantly focussed on simulations of discharge

rather than water quality constituents. This partly reflects

the paucity of comprehensive water quality data for many

catchments; near-continuous discharge data can readily be

collected but this is not the case for water quality parame-

ters such as suspended sediment or nutrient concentrations.

Data collected in monitoring programmes that involve sam-

pling at regular time intervals (e.g. monthly) are often used

to calibrate water quality models, but these are unlikely to

fully represent the range of hydrologic conditions in a catch-

ment (Bieroza et al., 2014). In particular, water quality data

collected during storm flow periods are rarely available for

SWAT calibration, thus prohibiting opportunities to investi-

gate how parameter sensitivity varies under conditions which

can contribute disproportionately to nutrient or sediment

transport, particularly in lower-order catchments (Chiwa et

al., 2010; Abell et al., 2013). Failure to fully consider storm

flow processes could therefore result in overestimation of

model performance. Thus, further research is required to ex-

amine how water quality parameters vary during different

flow regimes and to understand how model uncertainty may

vary under future climatic conditions that affect discharge

regimes (Brigode et al., 2013).

In this study, the SWAT model was configured to a rel-

atively small, mixed land use catchment in New Zealand

that has been the subject of an intensive water quality sam-

pling programme designed to target a wide range of hydro-

logic conditions. A catchment-wide set of parameters was

calibrated using the SUFI-2 procedure which is integrated

into the SWAT Calibration and Uncertainty Program (SWAT-

CUP). The objectives of this study were to (1) quantify the

performance of the model in simulating discharge and fluxes

of suspended sediments and nutrients at the catchment out-

let, (2) rigorously evaluate model performance by comparing
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Figure 1. (a) Location of Puarenga Stream surface catchment in New Zealand, Kaituna rain gauge, climate station and managed land areas

for which management schedules were prescribed in SWAT. (b) Location of the Puarenga Stream, major tributaries, monitoring stream

gauges, two cold-water springs and the Whakarewarewa geothermal contribution. Measurement data (Table 3) used to calibrate the SWAT

model were from the Forest Research Institute (FRI) stream gauge and were considered representative of the downstream/outlet conditions

of the Puarenga Stream.

daily simulation output with monitoring data collected under

a range of hydrologic conditions, and (3) quantify whether

parameter sensitivity varies between base flow and quick

flow conditions.

2 Methods

2.1 Study area

The Puarenga Stream is the second-largest surface inflow to

Lake Rotorua (Bay of Plenty, New Zealand) and drains a

catchment of 77 km2. The catchment is situated in the cen-

tral North Island of New Zealand, which has a warm tem-

perate climate. Annual mean temperature at Rotorua Airport

(Fig. 1a) is 15± 4 ◦C and annual mean evapotranspiration

is 714 mm yr−1 (1993–2012; National Climatic Data Centre;

available at http://cliflo.niwa.co.nz/). Annual mean precipi-

tation at the Kaituna rain gauge (Fig. 1a) is 1500 mm yr−1

(1993–2012; Bay of Plenty Regional Council). The catch-

ment is relatively steep (mean slope= 9 %; Bay of Plenty Re-

gional Council) with predominantly pumice soils that have

high macroporosity, resulting in high infiltration rates and

substantial subsurface lateral flow contributions to stream

channels. Two cold-water springs (Waipa Spring and Hemo

Spring) and one geothermal spring (Fig. 1b) are located

in the catchment area. Two cold-water springs have annual

mean discharge of ∼ 0.19 m3 s−1 (Rotorua District Coun-

cil) and one geothermal spring has annual mean discharge

of ∼ 0.12 m3 s−1 (White et al., 2004).

The predominant land use (47 %) is exotic forest (Pinus

radiata). Approximately 26 % is managed pastoral farm-

land, 11 % mixed scrub and 9 % indigenous forest. Since

1991, treated wastewater has been pumped from the Ro-

torua Wastewater Treatment Plant and spray-irrigated over

16 blocks of total area of 1.93 km2 in the Whakarewarewa

Forest (Fig. 1a). Following this, it took approximately 4

years before elevated nitrate concentrations were measured

in the receiving waters of the Puarenga Stream (Lowe et al.,

2007). Prior to 2002, the irrigation schedule entailed apply-

ing wastewater to two blocks per day so that each block was

irrigated approximately weekly. Since 2002, 10–14 blocks

have been irrigated simultaneously at daily frequency. Over

the entire period of irrigation, nutrient concentrations in the

irrigated water have gradually decreased as improvements in

treatment of the wastewater have been made (Lowe et al.,

2007).

Measurements from the Forest Research Institute (FRI)

stream gauge (1.7 km upstream of Lake Rotorua; Fig. 1b)

were considered representative of the downstream/outlet

conditions of the Puarenga Stream. The FRI stream gauge

was closed in mid 1997, then reopened late in 2004 (En-

vironment Bay of Plenty, 2007). Annual mean discharge at

this site is 2.0 m3 s−1 (1994–1997 and 2004–2008; Bay of

Plenty Regional Council). The Puarenga Stream receives a
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high proportion of flow from groundwater stores and has

only moderate seasonality in discharge. On average, the

lowest mean daily discharge is during summer (December–

February; 1.7 m3 s−1) and the highest mean daily discharge is

during winter (June–August; 2.4 m3 s−1). Discharge records

during 1998–2004 were intermittent and this precluded a de-

tailed comparison of measured and simulated discharge dur-

ing that period. In July 2010, the gauge was repositioned

720 m downstream to the State Highway 30 (SH 30) bridge

(Fig. 1b).

2.2 Model configuration

SWAT input data requirements included a digital elevation

model (DEM), meteorological records, records of springs

and water abstraction, soil characteristics, land use classifi-

cation, and management schedules for key land uses (pas-

toral farming, wastewater irrigation, and timber harvesting).

The SWAT model (version SWAT2009_rev488) was run on

an hourly time step, but daily mean simulation outputs were

used for this study.

The DEM was used to delineate boundaries of the whole

catchment and individual sub-catchments, with a stream

map used to “burn-in” channel locations to create accurate

flow routings. Hourly rainfall estimates were used as hydro-

logic forcing data. The Penman–Monteith method (Monteith,

1965) was used to calculate evapotranspiration (ET) and po-

tential ET. The Green and Ampt (1911) method was used

to calculate infiltration, rather than the SCS (Soil Conserva-

tion Service) curve number method. Therefore, the hourly

rainfall/Green and Ampt infiltration/hourly routing method

(Neitsch et al., 2011) was chosen to simulate upland and

in-stream processes. Ten sub-catchments were represented

in the Puarenga Stream catchment, each comprising nu-

merous hydrologic response units (HRUs). Each HRU ag-

gregates cells with the same combination of land cover,

soil, and slope. A total of 404 HRUs was defined in the

model. Runoff and nutrient transport were predicted sepa-

rately within SWAT for each HRU, with predictions summed

to obtain the total for each sub-catchment.

Descriptions and sources of the data used to configure the

SWAT model are given in Table 1. There were a total of

197 model parameters. Values of SWAT parameters were as-

signed based on (i) measured data (e.g. some of the soil pa-

rameters; Table 1), (ii) literature values from published stud-

ies of similar catchments (e.g. parameters for dominant land

uses; Table 2), or (iii) by calibration where parameters were

not otherwise prescribed.

SWAT simulates loads of “mineral phosphorus” (MINP)

and “organic phosphorus” (ORGP) of which the sum is to-

tal phosphorus (TP). The MINP fraction represents soluble P

either in mineral or in organic form, while ORGP refers to

particulate P bound either by algae or by sediment (White et

al., 2014). Soluble P may be taken up during algae growth,

or released from benthic sediment. This fraction can be trans-

formed to particulate P contained in algae or sediment.

SWAT simulates loads of nitrate–nitrogen (NO3–

N), ammonium–nitrogen (NH4–N) and organic nitro-

gen (ORGN), the sum of which is total nitrogen (TN).

Nitrogen parameters were auto-calibrated for each N frac-

tion. The SWAT model does not account for the initial nitrate

concentration in shallow aquifers, as also noted by Conan et

al. (2003). Ekanayake and Davie (2005) indicated that SWAT

underestimated N loading from groundwater and suggested

a modification by adding a background concentration of

nitrate in streamflow to represent groundwater nitrate con-

tributions. Over the period of the first 5 years of wastewater

irrigation, nitrate concentrations in shallow groundwater

draining the Waipa Stream sub-catchment were estimated

to have increased by ∼ 0.44 mg N L−1 (Paku, 2001). SWAT

has no capability to dynamically adjust the groundwater

concentration during a simulation run. Therefore, we added

0.44 mg N L−1 to all model simulations of TN concentration

assuming that groundwater concentrations had equilibrated

with the applied wastewater nitrogen.

2.3 Model calibration and validation

Daily mean discharge was firstly calibrated based on daily

mean values of 15 min measurements (Table 3). Water qual-

ity variables were then calibrated in the sequence: SS, TP

and TN. Modelled mean daily concentrations were compared

with concentrations measured during monthly grab sam-

pling, with monthly measurements assumed equal to daily

mean concentrations (Table 3). One year (1993) was used

for model warmup. The calibration period was from 2004

to 2008 and the validation period was from 1994 to 1997.

A validation period that pre-dated the calibration period was

chosen because discharge records were available for two sep-

arate periods (1994–1997 and post 2004). In addition, the

operational regime for the wastewater irrigation has varied

since operations began in 1991, with a marked change oc-

curring in 2002 when operations switched from applying

the wastewater load to 2 blocks (rotated daily for a total of

14 blocks in a week; i.e. each block irrigated weekly), to 10–

14 blocks each irrigated daily. This operational regime con-

tinues today and we therefore decided to assign the most re-

cent (post-2002) period (2004–2008) to calibration to ensure

that the model was configured to reflect current operations.

Parameter values that were not derived from measure-

ments or the literature were assigned based on either auto-

mated or manual calibration (Table 4). Manual calibration

was undertaken for 11 parameters related to TP, while a Se-

quential Uncertainty Fitting (SUFI-2) procedure was applied

to auto-calibrate 21 parameters for discharge simulations, 9

parameters for SS simulations, and 17 parameters related

to TN. The SUFI-2 procedure has been integrated into the

SWAT Calibration and Uncertainty Program (SWAT-CUP).

SUFI-2 is a procedure that efficiently quantifies and con-
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Table 1. Description of data used to configure the SWAT model.

Data Application Data description and configuration details Source

Digital elevation Sub-basin 25 m resolution. Used to define five slope classes: Bay of Plenty Regional Council

model (DEM) and delineation 0–4, 4–10, 10–17, 17–26 and > 26 %. (BoPRC)

digitised stream (Fig. 1b)

network

Spring discharge Point source Constant daily discharge and nutrient concentrations White et al. (2004), Proffit (2009)

and nutrient loads (Fig. 1b) assigned to two cold-water springs (Waipa Spring and Paku (2001), Mahon (1985), Glover

Hemo Spring) and one geothermal spring. (1993), Rotorua District Council

(personal communication)

Water abstraction Water use Monthly water abstraction assigned to two cold-water Kusabs and Shaw (2008),

volumes springs. Jowett (2008)

Land use HRU definition 25 m resolution, 10 basic land-cover categories. Some New Zealand Land Cover Database

particular land-cover parameters were previously estimated Version 2; BoPRC

(Table 2).

Soil characteristics HRU definition 22 soil types. Properties were quantified based on New Zealand Land Resource

measurements (if available) or estimated using Inventory and digital soil map

regression analysis to estimate properties for (available at:

unmeasured functional horizons. http://smap.landcareresearch.co.nz)

Meteorological Meteorological Daily maximum and minimum temperature, daily Rotorua Airport Automatic

data forcing mean relative humidity, daily global solar radiation, Weather Station, National Climate

daily (09:00 LT) surface wind speed and hourly Database (available at:

precipitation. http://cliflo.niwa.co.nz/); Kaituna

rain gauge (Fig. 1a)

Agricultural Agricultural Stock density Statistics New Zealand (2006),

management management Ledgard and Thorrold (1998)

practices schedules Applications of urea and diammonium phosphate Statistics New Zealand (2006),

Fert Research (2009)

Applications of manure-associated nutrients Dairying Research Corporation

(1999)

Nutrient loading Nonpoint- Wastewater application rates and effluent composition Rotorua District Council (2006)

by wastewater source from land (i.e. concentrations of total nitrogen and total phosphorus)

application treatment for 16 spray blocks from 1996 to 2012. Each spray block

irrigation was assigned an individual management schedule specifying

daily application rates.

Forest stand map Forestry Planting and harvesting data for 472 ha forestry stands. Timberlands Limited, Rotorua,

and harvest dates planting and Prior to 2007 we assumed stands were cleared New Zealand (personal

harvesting 1 year prior to the establishment year. Post-2007, communication)

operations harvesting date was assigned to the first day of

harvesting month.

strains parameter uncertainties/ranges from default ranges

with the fewest number of iterations (Abbaspour et al., 2004),

and has been shown to provide optimal results relative to the

use of alternative algorithms (Wu and Chen, 2015). SUFI-2

involves Latin hypercube sampling (LHS), which is a method

that generates a sample of plausible parameter values from a

multidimensional distribution and ensures that samples cover

the entire parameter space, therefore ensuring that the opti-

mum solution is not a local minimum (Marino et al., 2008).

The SUFI-2 procedure analyses relative sensitivities of pa-

rameters by randomly generating combinations of values for

model parameters (Abbaspour, 2015). A sample size of 1000

was chosen for each iteration of LHS, resulting in 1000 com-

binations of parameters and 1000 simulations. Model per-

formance was quantified for each simulation based on the

Nash–Sutcliffe efficiency (NSE). An objective function was

defined as a linear regression of a combination of parameter

values generated by each LHS against the NSE value calcu-

lated from each simulation. Each compartment was not given

weight to formulate the objective function because only one

variable was specifically focused on at each time. A pa-

rameter sensitivity matrix was then computed based on the

changes in the objective function after 1000 simulations. Pa-

rameter sensitivity was quantified based on the p value from

www.hydrol-earth-syst-sci.net/19/4127/2015/ Hydrol. Earth Syst. Sci., 19, 4127–4147, 2015
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Table 2. Previously estimated parameter values for three dominant types of land cover in the Puarenga Stream catchment. Values of other

land use parameters were based on the default values in the SWAT database.

Land-cover type Parameter Definition Value Source

PINE HVSTI Percentage of biomass harvested 0.65 Ximenes et al. (2008)

(Pinus radiata) T_OPT (◦C) Optimal temperature for plant growth 15 Kirschbaum and Watt (2011)

T_BASE (◦C) Minimum temperature for plant growth 4 Kirschbaum and Watt (2011)

MAT_YRS Number of years to reach full development 30 Kirschbaum and Watt (2011)

BMX_TREES (t ha−1) Maximum biomass for a forest 400 Bi et al. (2010)

GSI (m s−1) Maximum stomatal conductance 0.00198 Whitehead et al. (1994)

BLAI (m2 m−2) Maximum leaf area index 5.2 Watt et al. (2008)

BP3 Proportion of phosphorus in biomass at maturity 0.000163 Hopmans and Elms (2009)

BN3 Proportion of nitrogen in biomass at maturity 0.00139 Hopmans and Elms (2009)

FRSE HVSTI Percentage of biomass harvested 0 –

(evergreen forest) BMX_TREES (t ha−1) Maximum biomass for a forest 372 Hall et al. (2001)

MAT_YRS (years) Number of years for tree to reach full development 100 –

PAST T_OPT (◦C) Optimal temperature for plant growth 25 McKenzie et al. (1999)

(pastoral farm) T_BASE (◦C) Minimum temperature for plant growth 5 McKenzie et al. (1999)

Table 3. Description of data used to calibrate the SWAT model. Data were measured at the Forest Research Institute (FRI) stream gauge and

were considered representative of the downstream/outlet conditions of the Puarenga Stream.

Data Application Measurement data details Source

Stream discharge Calibration 15 min stream discharge data were measured at FRI stream Bay of Plenty Regional Council

measurements (2004–2008) gauge (Fig. 1b) within the catchment and aggregated as daily (BoPRC); Abell et al. (2013)

Validation mean values (1994–1997; 2004–2008).

(1994–1997)

Stream water quality Calibration Monthly grab samples for determination of suspended BoPRC; Abell et al. (2013)

measurements (2004–2008) sediment (SS), total phosphorus (TP) and total nitrogen (TN)

Validation∗ concentrations (1994–1997; 2004–2008), and high-

(1994–1997; frequency event-based samples for concentrations of SS

2010–2012) (9 events), TP and TN (both 14 events) at 1–2 h frequency

(2010–2012), were also measured at FRI stream gauge

(Fig. 1b) within the catchment.

∗ Model validation was undertaken using two different data sets. The monthly measurements (1994–1997) were predominantly collected when base flow was the dominant

contributor to stream discharge. Data from high-frequency sampling during rain events (2010–2012) were also used to validate model performance during periods when quick flow

was high.

a Student t test, which was used to compare the mean of sim-

ulated values with the mean value of measurements (Rice,

2006). A parameter was deemed sensitive if p≤ 0.05 af-

ter 1000 simulations (one iteration). Numerous iterations of

LHS were conducted. Values of p from numerous iterations

were averaged for each parameter, and the frequency of itera-

tions where a parameter was deemed sensitive was summed.

Rankings of relative sensitivities of parameters were devel-

oped based on how frequently the sensitive parameter was

identified and the averaged value of p calculated from sev-

eral iterations. The most sensitive parameter was determined

based on the frequency that the parameter was deemed sen-

sitive and the smallest average p value from all iterations.

SUFI-2 considers two criteria to constrain uncertainty

in each iteration. One is the P factor, the percentage

of measured data bracketed by 95 % prediction uncer-

tainty (95PPU). Another is the R factor, the average thick-

ness of the 95PPU band divided by the standard deviation of

measured data. A range was first defined for each parameter

based on a synthesis of ranges from similar studies or from

the SWAT default range. Parameter ranges were updated after

each iteration based on the computation of upper and lower

95 % confidence limits. The 95 % confidence interval and the

standard deviation of a parameter value were derived from

the diagonal elements of the covariance matrix, which was

calculated from the sensitivity matrix and the variance of the

objective function. Steps and equations used in the SUFI-2

procedure to constrain parameter ranges are outlined by Ab-

baspour et al. (2004).
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Table 4. Summary of calibrated SWAT parameters. Discharge (Q), suspended sediment (SS) and total nitrogen (TN) parameter values

were assigned using auto-calibration, while total phosphorus (TP) parameters were manually calibrated. SWAT default ranges and input file

extensions are shown for each parameter.

Parameter Definition Unit Default Calibrated

range value

Q

EVRCH.bsn Reach evaporation adjustment factor 0.5–1 0.9

SURLAG.bsn Surface runoff lag coefficient 0.05–24 15

ALPHA_BF.gw Base flow alpha factor (0–1) 0.0071–0.0161 0.01

GW_DELAY.gw Groundwater delay day 0–500 500

GW_REVAP.gw Groundwater “revap” coefficient 0.02–0.2 0.08

GW_SPYLD.gw Special yield of the shallow aquifer m3 m−3 0–0.4 0.13

GWHT.gw Initial groundwater height m 0–25 14

GWQMN.gw Threshold depth of water in the shallow aquifer required for return mm 0–5000 372

flow to occur

RCHRG_DP.gw Deep aquifer percolation fraction 0–1 0.87

REVAPMN.gw Threshold depth of water in the shallow aquifer required for “revap” mm 0–500 260

to occur

CANMX.hru Maximum canopy storage mm 0–100 0.6

EPCO.hru Plant uptake compensation factor 0–1 0.34

ESCO.hru Soil evaporation compensation factor 0–1 0.9

HRU_SLP.hru Average slope steepness m m−1 0–0.6 0.5

LAT_TTIME.hru Lateral flow travel time day 0–180 3

RSDIN.hru Initial residue cover kg ha−1 0–10 000 1

SLSOIL.hru Slope length for lateral subsurface flow m 0–150 40

CH_K2.rte Effective hydraulic conductivity in the main channel alluvium mm h−1 0–500 20

CH_N2.rte Manning’s N value for the main channel 0–0.3 0.16

CH_K1.sub Effective hydraulic conductivity in the tributary channel alluvium mm h−1 0–300 100

CH_N1.sub Manning’s N value for the tributary channel 0.01–30 20

SS

USLE_P.mgt USLE equation support practice factor 0–1 0.5

PRF.bsn Peak rate adjustment factor for sediment routing in the main channel 0–2 1.9

SPCON.bsn Linear parameter for calculating the maximum amount of sediment 0.0001–0.01 0.001

that can be re-entrained during channel sediment routing

SPEXP.bsn Exponent parameter for calculating sediment re-entrained in channel 1–1.5 1.26

sediment routing

LAT_SED.hru Sediment concentration in lateral flow and groundwater flow mg L−1 0–5000 5.7

OV_N.hru Manning’s N value for overland flow 0.01–30 28

SLSUBBSN.hru Average slope length m 10–150 92

CH_COV1.rte Channel erodibility factor 0–0.6 0.17

CH_COV2.rte Channel cover factor 0–1 0.6

TP

P_UPDIS.bsn Phosphorus uptake distribution parameter 0–100 0.5

PHOSKD.bsn Phosphorus soil partitioning coefficient 100–200 174

PPERCO.bsn Phosphorus percolation coefficient 10–17.5 14

PSP.bsn Phosphorus sorption coefficient 0.01–0.7 0.5

GWSOLP.gw Soluble phosphorus concentration in groundwater loading mg P L−1 0–1000 0.063

LAT_ORGP.gw Organic phosphorus in the base flow mg P L−1 0–200 0.01

ERORGP.hru Organic phosphorus enrichment ratio 0–5 2.5

CH_OPCO.rte Organic phosphorus concentration in the channel mg P L−1 0–100 0.02

BC4.swq Rate constant for mineralisation of organic phosphorus to dissolved day−1 0.01–0.7 0.3

phosphorus in the reach at 20 ◦C

RS2.swq Benthic (sediment) source rate for dissolved phosphorus in the reach at 20 ◦C mg m−2 day−1 0.001–0.1 0.02

RS5.swq Organic phosphorus settling rate in the reach at 20 ◦C day−1 0.001–0.1 0.05
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Table 4. Continued.

Parameter Definition Unit Default Calibrated

range value

TN

RSDCO.bsn Residue decomposition coefficient 0.02–0.1 0.09

CDN.bsn Denitrification exponential rate coefficient 0–3 0.3

CMN.bsn Rate factor for humus mineralisation of active organic nitrogen 0.001–0.003 0.002

N_UPDIS.bsn Nitrogen uptake distribution parameter 0–100 0.5

NPERCO.bsn Nitrogen percolation coefficient 0–1 0.0003

RCN.bsn Concentration of nitrogen in rainfall mg N L−1 0–15 0.34

SDNCO.bsn Denitrification threshold water content 0–1 0.02

HLIFE_NGW.gw Half-life of nitrate–nitrogen in the shallow aquifer day 0–200 195

LAT_ORGN.gw Organic nitrogen in the base flow mg N L−1 0–200 0.055

SHALLST_N.gw Nitrate–nitrogen concentration in the shallow aquifer mg N L−1 0–1000 1

ERORGN.hru Organic nitrogen enrichment ratio 0–5 3

CH_ONCO.rte Organic nitrogen concentration in the channel mg N L−1 0–100 0.01

BC1.swq Rate constant for biological oxidation of ammonium–nitrogen to day−1 0.1–1 1

nitrite–nitrogen in the reach at 20 ◦C

BC2.swq Rate constant for biological oxidation of nitrite–nitrogen to day−1 0.2–2 0.7

nitrate–nitrogen in the reach at 20 ◦C

BC3.swq Rate constant for hydrolysis of organic nitrogen to day−1 0.2–0.4 0.4

ammonium–nitrogen in the reach at 20 ◦C

RS3.swq Benthic (sediment) source rate for ammonium–nitrogen in the reach mg m−2 day−1 0–1 0.2

at 20◦C

RS4.swq Rate coefficient for organic nitrogen settling in the reach at 20◦C day−1 0.001–0.1 0.05

The total number of iterations performed for each simu-

lated variable (Q, SS, MINP, ORGN, NH4–N and NO3–N)

reflected the numbers required to ensure that > 90 % of mea-

sured data were bracketed by simulated output and the R fac-

tor was close to one. The “optimal” parameter value was

obtained when the NSE criterion was satisfied (NSE > 0.5;

Moriasi et al., 2007). Auto-calibrated parameters for simu-

lations of Q, SS, and TN were changed by absolute values

within the given ranges. Some of those given ranges were

restricted based on the optimum values calibrated in simi-

lar studies. Parameter values for TP simulations were manu-

ally calibrated based on the relative percent deviation from

the predetermined values of those auto-calibrated parame-

ters for MINP simulations, given by the objective functions

(e.g. NSE). Parameters related to the physical characteristics

of the catchment were not changed because their values were

considered to be representative of the catchment characteris-

tics. In addition, high-frequency (1–2 h) water quality sam-

pling was undertaken at the FRI stream gauge during 2010–

2012 (Table 3) to derive estimates of daily mean contami-

nant loads during storm events. Samples were analysed for

SS (9 events), TP and TN (both 14 events) over sampling pe-

riods of 24–73 h. The sampling programme was designed to

encompass pre-event base flow, storm-generated quick flow

and post-event base flow (Abell et al., 2013). These data per-

mitted calculation of daily discharge-weighted (Q-weighted)

mean concentrations to compare with modelled daily mean

estimates. We did not use the high-frequency observations to

calibrate the model, because of the limited number of high-

frequency (1–2 h) samples (9 events for SS and 14 events for

TP and TN in 2010–2012). The use of the high-frequency

observations for model validation allowed examining how

the model performed during short (1–3 day) high flow peri-

ods. The Q-weighted mean concentrations CQWM were cal-

culated as

CQWM =

n∑
i=1

CiQi

n∑
i=1

Qi

, (1)

where n is number of samples, Ci is contaminant concen-

tration measured at time i, and Qi is discharge measured at

time i.

2.4 Hydrograph and contaminant load separation

The Web-based Hydrograph Analysis Tool (Lim et al., 2005)

was applied to partition both measured and simulated dis-

charges into base flow (Qb) and quick flow (Qq). An Eck-

hardt filter parameter of 0.98 and ratio of base flow to total

discharge of 0.8 were assumed (cf. Lim et al., 2005). There

was a total of 60 days without quick flow during the cali-

bration period (2004–2008) and 1379 days for which hydro-

graph separation defined both base flow and quick flow.

Contaminant (SS, TP and TN) concentrations (Csep) were

partitioned into base flow (C′b) and quick flow components

(C′q; cf. Rimmer and Hartmann, 2014) to separately examine
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Figure 2. Flow chart of methods used to separate hydrograph and contaminant loads and to quantify parameter sensitivities for Q (discharge),

SS (suspended sediment), MINP (mineral phosphorus), ORGN (organic nitrogen), NH4–N (ammonium–nitrogen), and NO3–N (nitrate–

nitrogen). NSE: Nash–Sutcliffe efficiency.

the sensitivity of water quality parameters during base flow

and quick flow:

Csep =
Qq×C′q+Qb×C′b

Qq+Qb

. (2)

C′b for each contaminant was estimated as the average con-

centration for the 60 days with no quick flow. C′q for each

contaminant was calculated by rearranging Eq. (2).

To ensure that C′q is positive, C′b is constrained to be the

minimum of Csep and Csep. Measured and simulated base

flow and quick flow contaminant loads were then calculated.

A one-at-a-time (OAT) routine proposed by Morris (1991)

was applied to investigate how parameter sensitivity varied

between the two flow regimes (base flow and quick flow),

based on the ranking of relative sensitivities of parameters

that were identified by randomly generating combinations

of values for model parameters for each individual variable

using the SUFI-2 procedure. OAT sensitivity analysis was

then employed by varying the parameter of interest among

10 equidistant values within the default range. The natural

logarithm was used by Krause et al. (2005) and therefore the

standard deviation (SD) of the ln-transformed NSE was used

to indicate parameter sensitivity for the two flow regimes.

Parameters were ranked from most to least sensitive on the

basis of the sensitivity metric (SD of ln-transformed NSE),

using a value of 0.2 as a threshold above which parameters

were deemed particularly “sensitive”. The threshold value

of 0.2 was chosen in this study, based on the median value

derived from the calculations of the SD of ln-transformed

NSE. Methods used to separate the two flow constituents and

to quantify parameter sensitivity are illustrated in Fig. 2.

2.5 Model evaluation

Model goodness of fit was assessed graphically and quanti-

fied using coefficient of determination (R2), NSE and per-

cent bias (PBIAS; Table 5). R2 (range from 0 to 1) and NSE

(range from −∞ to 1) values are commonly used to evalu-

ate SWAT model performance (Gassman et al., 2007). The

PBIAS value indicates the average tendency of simulated

outputs to be larger or smaller than observations (Gupta et

al., 1999).

Model uncertainty was evaluated by two criteria: R factor

and P factor (see Sect. 2.3). These were used to constrain pa-

rameter ranges during the calibration using measured Q and

loads of SS, MINP, ORGN, NH4–N and NO3–N in the SUFI-

2 procedure. The R software (R Development Core Team)

was used to graphically show the 95 % confidence and pre-

diction intervals for measurement data (Neyman, 1937) and

model prediction intervals (Geisser, 1993) for Q and con-

centrations of SS, TP and TN during the calibration period

(2004–2008).

3 Results

3.1 Model performance and uncertainty

Numerous rounds (each comprising 1000 iterations) of LHS

were conducted for each simulated variable until the perfor-
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Table 5. Criteria for model performance. Note: on is the nth-observed datum, sn is the nth-simulated datum, o is the observed mean value, s

is the simulated daily mean value, and N is the total number of observed data. Performance rating criteria are based on Moriasi et al. (2007)

for Q: discharge, SS: suspended sediment, TP: total phosphorus and TN: total nitrogen. Moriasi et al. (2007) derived these criteria based on

extensive literature review and analysing the reported performance ratings for recommended model evaluation statistics.

Statistic equation Constituent Performance ratings

Unsatisfactory Satisfactory Good Very good

R2
=

{
N∑

n=1

[(sn−s)(on−o)]

}2

N∑
n=1

(on−o)2
×

N∑
n=1

(sn−s)2

(3) All < 0.5 0.5–0.6 0.6–0.7 0.7–1

NSE= 1−

N∑
n=1

(on−sn)i

N∑
n=1

(on−o)i
i= 2 (4) All < 0.5 0.5–0.65 0.65–0.75 0.75–1

±PBIAS%=

N∑
n=1

(on−sn)

N∑
n=1

on

× 100 (5) Q > 25 15–25 10–15 < 10

SS > 55 30–55 15–30 < 15

TP, TN > 70 40–70 25–40 < 25

R2: coefficient of determination; NSE: Nash–Sutcliffe efficiency; PBIAS: percent bias.

mance criteria were satisfied. The total number of rounds

of LHS for each simulated variable was as follows (num-

ber in parentheses): Q (7), SS (7), MINP (11), ORGN (10),

NH4–N (4) and NO3–N (4). The parameters that provided

the best statistical outcomes (i.e. best match to observed

data) are given in Table 4. Two criteria (R factor and P fac-

tor) were used to show model uncertainties for simulations

of discharge and contaminant loads, with values as fol-

lows: Q (0.97, 0.43), SS (0.48, 0.19), MINP (2.64, 0.14),

ORGN (0.47, 0.17), NH4–N (1.16, 0.56) and NO3–N (1.2,

0.29). Model uncertainties for simulations of Q and SS, TP

and TN concentrations are shown in Fig. 6.

Modelled and measured base flow showed high correspon-

dence, although measured daily mean discharge during storm

peaks was often underestimated (Fig. 3a, e). Annual mean

percentages of lateral flow recharge, shallow aquifer recharge

and deep aquifer recharge to total water yield were pre-

dicted by SWAT as 30, 10 and 58 %, respectively. Modelled

SS concentrations overestimated measurements of monthly

grab samples by an average of 18.3 % during calibration and

0.32 % during validation (Fig. 3b, f). Measured TP concen-

trations in monthly grab samples were underestimated by

23.8 % during calibration (Fig. 3c) and 24.5 % during vali-

dation (Fig. 3g). Similarly, measured TP loads were under-

estimated by 34.5 and 38.4 % during calibration and vali-

dation, respectively. Modelled and measured TN concentra-

tions were generally better aligned during base flow (Fig. 3d),

apart from a mismatch prior to 1996 when monthly mea-

sured TN concentrations were substantially lower than model

predictions, although the concentrations gradually increased

(Fig. 3h) during the validation period (1994–1997). The aver-

age measured TN load increased from 134 kg N day−1 prior

to 1996 to 190 kg N day−1 post-1996, and the comparable in-

crease in modelled TN load was from 167 to 205 kg N day−1,

respectively.

Statistical evaluations of goodness of fit are shown in Ta-

ble 6. The R2 values for discharge were 0.77 for calibra-

tion and 0.68 for validation, corresponding to model perfor-

mance ratings (cf. Moriasi et al., 2007) of “very good” and

“good” (Table 5). Similarly, the NSE values for discharge

were 0.73 (good) for calibration and 0.62 (satisfactory) for

validation. Positive PBIAS (7.8 % for calibration and 8.8 %

for validation) indicated a tendency for underestimation of

daily mean discharge; however, the low magnitude of PBIAS

values corresponded to a performance rating of “very good”.

The R2 values for SS were 0.42 (unsatisfactory) for cali-

bration and 0.80 for validation (very good). Similarly, the

NSE values for SS were −0.08 (unsatisfactory) for calibra-

tion and 0.76 (very good) for validation. The model did not

simulate trends well for monthly measured TP and TN con-

centrations. The R2 values for TP and TN were both < 0.1

(unsatisfactory) during calibration and validation and NSE

values were both < 0 (unsatisfactory). Values of PBIAS cor-

responded to “good” or “very good” performance ratings for

TP and TN.

Observed Q-weighted daily mean concentrations derived

from hourly measurements and simulated daily mean con-

centrations of SS, TP and TN during an example 2-day

storm event are shown in Fig. 4a–c. The simulations of

SS and TN concentrations were somewhat better than for
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Figure 3. Measurements and daily mean simulated values of discharge, suspended sediment (SS), total phosphorus (TP) and total nitro-

gen (TN) during calibration (a–d) and validation (e–h). Measured daily mean discharge was calculated from 15 min observations and mea-

sured concentrations of SS, TP and TN correspond to monthly grab samples.

TP. Comparisons of Q-weighted daily mean concentrations

(CQWM) during storm events from 2010 to 2012 are shown in

Fig. 4d–f for SS (9 events), TP and TN (both 14 events). The

CQWM of TP exceeded the simulated daily mean by between

0.02 and 0.2 mg P L−1 and, on average, the model underesti-

mated measurements by 69.4 % (Fig. 4e). Although R2 and

NSE values for CQWM of TN were unsatisfactory (Table 6),

they were both close to the threshold for satisfactory per-

formance (0.5). For CQWM of SS and TP, R2 and NSE val-

ues indicated that the model performance was unsatisfactory.

The PBIAS value of−0.87 for CQWM of TN corresponded to

model performance ratings of “very good”, while the PBIAS

values for CQWM of SS and TP were 43.9 and 69.4, respec-

tively, indicating satisfactory model performance.

Measured and simulated discharge and contaminant loads

separated for the two flow regimes (base flow and quick flow)

are shown in Fig. 5. Model performance statistics differed

between the two flow regimes (Table 7). Simulations of dis-

charge and constituent loads under quick flow were more

closely related to the measurements (i.e. higher values of R2

and NSE) than simulations under base flow. Base flow TN

load simulations during the validation period showed bet-

ter model performance than simulations under quick flow.

Additionally, measurements under quick flow were better
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Figure 4. Example of a storm event showing derivation of discharge (Q)-weighted daily mean concentrations (dashed horizontal line) based

on hourly measured concentrations (black dots) of suspended sediment (SS), total phosphorus (TP) and total nitrogen (TN) over 2 days (a–

c). Comparisons of Q-weighted daily mean concentrations with simulated daily mean estimates of SS, TP and TN (scatter plot, d–f). The

horizontal bars show the ranges in hourly measurements during each storm event in 2010–2012.

reproduced by the model than the measurements for the

whole simulation period. Simulations of contaminant loads

matched measurements much better than for contaminant

concentrations, as indicated by statistical values for model

performance given in Tables 6 and 7.

3.2 Separated parameter sensitivity

Based on the ranking of relative sensitivities of hydrological

and water quality parameters derived from the SUFI-2 pro-

cedure (see Table 8), the OAT sensitivity analysis undertaken

separately for base flow and quick flow identified three pa-

rameters that most influenced the quick flow estimates, and
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Figure 5. Measurements and simulations derived using the calibrated set of parameter values. Data are shown separately for base flow and

quick flow. (a) Daily mean base flow and quick flow; (b) suspended sediment (SS) load; (c) total phosphorus (TP) load; (d) total nitrogen (TN)

load. Vertical lines in (b)–(d) show the contaminant load in quick flow. Time series relate to calibration (2004–2008) and validation (1994–

1997) periods (note time discontinuity). Measured instantaneous loads of SS, TP, and TN correspond to monthly grab samples.

five parameters that most influenced the base flow estimates

(parameters above the dashed line in Fig. 7a). Channel hy-

draulic conductivity (CH_K2) is used to estimate the peak

runoff rate (Lane, 1983). Lateral flow slope length (SLSOIL)

and lateral flow travel time (LAT_TIME) have an important

controlling effect on the amount of lateral flow entering the

stream reach during quick flow. Both slope (HRU_SLP) and

soil available water content (SOL_AWC) were particularly

sensitive for the base flow simulation because they affect

lateral flow within the kinematic storage model in SWAT

(Sloan and Moore, 1984). The aquifer percolation coefficient

(RCHRG_DP) and the base flow alpha factor (ALPHA_BF)

strongly influenced base flow calculations (Sangrey et al.,

1984), as did the channel’s Manning N value (CH_N2),

which is used to estimate channel flow (Chow, 2008).

For SS loads, 12 and four parameters, respectively, were

identified as sensitive in relation to the simulations of base

flow and quick flow (parameters above the dashed line in

Fig. 7b). Parameters that control main channel processes

(e.g. CH_K2 and CH_N2) and subsurface water transport

processes (e.g. LAT_TIME and SLSOIL) were found to be

much more sensitive for base flow SS load estimations. Ex-

clusive parameters for SS estimations, such as SPCON (lin-

ear parameter), PRF (peak rate adjustment factor), SPEXP

(exponent parameter), CH_COV1 (channel erodibility fac-

tor), and CH_COV2 (channel cover factor) were found to be

much more sensitive in base flow SS load, while LAT_SED

(SS concentration in lateral flow and groundwater flow) was

more sensitive in quick flow SS load. Parameters that con-

trol overland processes, e.g. CN2 (the curve number), OV_N

(overland flow of Manning’s N value) and SLSUBBSN (sub-

basin slope length), were found to be much more sensitive for

quick flow SS load estimations.

Of the sensitive parameters, BC4 (ORGP mineralisation

rate) was particularly sensitive for the simulation of base

flow MINP load (Fig. 7c). RCN (nitrogen concentration in

rainfall) related specifically to the dynamics of the base flow

NO3–N load and NPERCO (nitrogen percolation coefficient)

significantly affected the quick flow NO3–N load (Fig. 7d).

Parameter CH_ONCO (channel ORGN concentration) simi-

larly affected both flow components of ORGN load (Fig. 7e)

and SOL_CBN (organic carbon content) was most sensitive

for the simulations of quick flow ORGN and NH4–N loads.

Parameter BC1 (nitrification rate in reach) was particularly

sensitive for the simulation of the base flow NH4–N load

(Fig. 7f).
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Figure 6. Regression of measured and simulated (a) discharge (Q), concentrations of (b) suspended sediment (SS), (c) total phosphorus (TP),

and (d) total nitrogen (TN) including lower and upper 95 % confidence limits (LCL and UCL) and lower and upper 95 % prediction limits

(LPL and UPL). Note that the “indistict” shape of confidence limits shown in (b)–(d) resulted from the few data points (< 50) in the

regressions of measured and simulated SS, TP and TN concentrations.

4 Discussion

This study examined temporal dynamics of model perfor-

mance and parameter sensitivity in a SWAT model appli-

cation that was configured for a small, relatively steep and

lower-order stream catchment in New Zealand. This country

faces increasing pressures on freshwater resources (Parlia-

mentary Commissioner for the Environment, 2013) and mod-

els such as SWAT potentially offer valuable tools to inform

management of water resources although, to date, the SWAT

model has received limited consideration in New Zealand

(Cao et al., 2006). Model evaluation on the basis of the data

collected during an extended monitoring programme enabled

a detailed examination of how model performance varied

during different flow regimes. It also permitted the error in

daily mean estimates of contaminant loads to be quantified

with relative precision, which allows assessing the ability of

the SWAT model to simulate contaminant loads during storm

events when lower-order streams typically exhibit consider-

able sub-daily variability in both discharge and contaminant

concentrations (Zhang et al., 2010). Separating discharge and

loads of sediments and nutrients into those associated with

base flow and quick flow for separate OAT sensitivity analy-

ses provided important insights into the varying dependency

of parameter sensitivity on hydrologic conditions.

4.1 Temporal dynamics of model performance

The modelled estimates of deep aquifer recharge (58 %) and

combined lateral flow and shallow aquifer recharge (40 %)

were comparable with estimates derived by Rutherford et

al. (2011), who used an alternative catchment model to de-

rive respective estimates of 30 and 70 % for these two fluxes.

Our decision to deliberately select a validation period (1994–

1997) during which the boundary conditions of the system

(specifically anthropogenic nutrient loading) differed consid-

erably from the calibration period allowed us to rigorously

assess the capability of SWAT to accurately predict water

quality under an altered management scenario (i.e. the pur-

pose of most SWAT applications).

Overestimation of TN concentrations prior to 1996 reflects

higher NO3–N concentrations in groundwater during the cal-
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Figure 7. The standard deviation (SD) of the ln-transformed Nash–Sutcliffe efficiency (NSE) used to indicate parameter sensitivity based on

one-at-a-time (OAT) sensitivity analysis for separate base flow and quick flow components: (a) Q (discharge); (b) SS (suspended sediment);

(c) MINP (mineral phosphorus); (d) NO3–N (nitrate–nitrogen); (e) ORGN (organic nitrogen); (f) NH4–N (ammonium–nitrogen). A median

value (0.2) derived from the SD of ln-transformed NSE was chosen as a threshold above which parameters were deemed to be “sensitive”.

Definitions of each parameter are shown in Table 4.

ibration period (2004–2008) due to the wastewater irrigation

operation. Nitrate concentrations appeared to reach a new

quasi-steady state as wastewater loads and in-stream attenua-

tion came into balance. SWAT may not adequately represent

the dynamics of groundwater nutrient concentrations (Bain

et al., 2012) particularly in the presence of changes in catch-

ment inputs (e.g. with start-up of wastewater irrigation). The

groundwater delay parameter was set to 5 years (cf. Rotorua

District Council, 2006), but this did not appear to capture

adequately the lag in response to increases in stream nitrate

concentrations following wastewater irrigation from 1991.

The poor fit between simulated daily mean TP concentra-

tions and monthly instantaneous measurements may partly

reflect a mismatch between the dominant processes affect-

ing phosphorus cycling in the stream and those represented

in SWAT. The ORGP fraction that is simulated in SWAT

includes both organic and inorganic forms of particulate

phosphorus; however, the representation of particulate phos-

phorus cycling only focusses on organic phosphorus cy-

cling, with limited consideration of interactions between in-

organic streambed sediments and dissolved reactive phos-

phorus in the overlying water (White et al., 2014). This con-

trasts with phosphorus cycling in the study stream where it

has been shown that dynamic sorption processes between the

dissolved and particulate inorganic phosphorus pools exert

major control on phosphorus cycling (Abell and Hamilton,

2013).

Our finding that measured Q-weighted mean concentra-

tions (CQWM) of TP and SS during storm events (2010–

2012) were greatly underestimated relative to simulated daily

mean TP and SS concentrations has important implications

for studies that examine effects of altered flow regimes on
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Table 6. Model performance ratings for simulations of discharge (Q), concentrations of suspended sediment (SS), total phosphorus (TP) and

total nitrogen (TN). n indicates the number of measurements. Q-weighted mean concentrations were calculated using Eq. (1).

Model performance Statistics Q SS TP TN

Calibration with n= 1439 n= 43 n= 45 n= 39

instantaneous measurements R2 0.77 0.42 0.02 0.08

(2004–2008) (very good) (unsatisfactory) (unsatisfactory) (unsatisfactory)

NSE 0.73 −0.08 −1.31 −0.30

(good) (unsatisfactory) (unsatisfactory) (unsatisfactory)

±PBIAS% 7.8 −18.3 23.8 −0.05

(very good) (very good) (very good) (very good)

Validation with n= 1294 n= 37 n= 37 n= 36

instantaneous measurements R2 0.68 0.80 0.01 0.01

(1994–1997) (good) (very good) (unsatisfactory) (unsatisfactory)

NSE 0.62 0.76 −0.97 −2.67

(satisfactory) (very good) (unsatisfactory) (unsatisfactory)

±PBIAS% 8.8 −0.32 24.5 −26.7

(very good) (very good) (very good) (good)

Validation with – n= 12 n= 18 n= 18

Q-weighted mean concentrations R2 – 0.38 0.06 0.46

(unsatisfactory) (unsatisfactory) (unsatisfactory)

(2010–2012) NSE – −0.03 −4.88 0.42

(unsatisfactory) (unsatisfactory) (unsatisfactory)

±PBIAS% – 43.9 69.4 −0.87

(satisfactory) (satisfactory) (very good)

Table 7. Model performance statistics for simulations of discharge (Q), and loads of suspended sediment (SS), total phosphorus (TP) and

total nitrogen (TN). Statistics were calculated for both overall and separated simulations. Qall and Lall indicate the overall simulations; Qb

and Lb indicate the base flow simulations; Qq and Lq indicate the quick flow simulations.

Model performance Statistics Q SS TP TN

Qb Qq Qall Lb Lq Lall Lb Lq Lall Lb Lq Lall

Calibration (2004–2008) R2 0.84 0.84 0.77 0.66 0.68 0.61 0.24 0.65 0.39 0.72 0.97 0.95

NSE 0.6 0.71 0.73 0.33 0.33 0.27 −6.2 0.09 −0.17 0.5 0.89 0.85

±PBIAS% 7.5 8.7 7.8 7.57 −23.4 −3.6 45.4 40.1 43.6 0.8 6.6 2.7

Validation (1994–1997) R2 0.87 0.81 0.68 0.36 0.98 0.95 0.27 0.27 0.06 0.79 0.33 0.58

NSE 0.56 0.62 0.62 −0.03 0.43 0.85 −1.9 0.04 −0.64 0.58 −0.07 0.33

±PBIAS% 11.3 −1.2 8.8 34.5 −79.7 11.1 45.8 −9.3 37 −7.6 14.3 −2.5

R2: coefficient of determination; NSE: Nash–Sutcliffe efficiency; PBIAS: percent bias.

contaminant transport. For example, studies which simulate

scenarios comprising more frequent large rainfall events (as-

sociated with climate change predictions for many regions;

IPCC, 2013) may considerably underestimate projected fu-

ture loads of SS and associated particulate nutrients if only

base flow water quality measurements (i.e. those predomi-

nantly collected during “state of environment” monitoring)

are used for calibration/validation (see Radcliffe et al. (2009)

for a discussion of this issue in relation to phosphorus).

This is also reflected by the two model performance statis-

tics relating to validation of modelled SS concentrations us-

ing monthly grab samples (predominantly base flow; “very

good”) and CQWM estimated during storm sampling (“unsat-

isfactory”) based on R2 and NSE values.

4.2 Key uncertainties

Model uncertainty in this study may arise from four main

factors: (1) model parameters, (2) forcing data, (3) in mea-

surements used for evaluation of model fit, and (4) model

structure or algorithms (Lindenschmidt et al., 2007). The

values of most parameters assigned for model calibration,

although specific to different soil types (e.g. soil parame-

ters), were lumped across land uses and slopes in this study.

They integrated spatial and temporal variations, thus neglect-
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Table 8. Rankings of relative sensitivities of parameters (from most to least) for variables (header row) of Q (discharge), SS (suspended

sediment), MINP (mineral phosphorus), ORGN (organic nitrogen), NH4–N (ammonium–nitrogen), and NO3–N (nitrate–nitrogen). Relative

sensitivities were identified by randomly generating combinations of values for model parameters and comparing modelled and measured

data with a Student t test (p≤ 0.05). Bold text denotes that a parameter was deemed sensitive relative to more than one simulated variable.

Italic text denotes that parameter was deemed insensitive to any of the two flow components (base flow and quick flow; see Fig. 7) using

one-at-a-time sensitivity analysis. Definitions and units for each parameter are shown in Table 4.

Q SS MINP ORGN NH4–N NO3–N

SLSOIL LAT_SED CH_OPCO CH_ONCO CH_ONCO NPERCO

CH_K2 CH_N2 BC4 BC3 BC1 CDN

HRU_SLP SLSUBBSN RS5 SOL_CBN(1) CDN ERORGN

LAT_TTIME SPCON ERORGP RS4 RS3 CMN

SOL_AWC(1) ESCO PPERCO RCN RCN RCN

RCHRG_DP OV_N RS2 N_UPDIS RSDCO

GWQMN SLSOIL PHOSKD USLE_P

GW_REVAP LAT_TTIME GWSOLP SDNCO

GW_DELAY SOL_AWC(1) LAT_ORGP SOL_NO3(1)

CH_COV1 EPCO CMN

CH_COV2 CANMX HLIFE_NGW

EPCO CH_K2 RSDCO

SPEXP GW_DELAY USLE_K(1)

CANMX ALPHA_BF

CH_N1 GW_REVAP

PRF CH_COV1

SURLAG

ing any variability throughout the study catchment. In terms

of forcing data, the assumption of constant values of spring

discharge rate and nutrient concentrations may inadequately

reflect the temporal variability and therefore increase model

uncertainty, although this should contribute little to the model

error term. Most water quality data used for model calibra-

tion comprised monthly instantaneous samples taken during

base flow conditions. The use of those measurements for

model calibration would likely lead to considerable underes-

timation of constituent concentrations (notably SS and TP)

due to failure to account for short-term high flow events.

Inadequate representation of groundwater processes in the

model structure is another key factor that is likely to affect

model uncertainty, particularly for nitrogen simulations. The

analysis of model performance based on data sets separated

into base flow and quick flow constituents enabled uncertain-

ties in the structure of hydrological models to be identified,

denoted by different model performance between these two

flow constituents. Furthermore, the disparity in goodness-of-

fit statistics between discharge (typically “good” or “very

good”) and nutrient variables (often “unsatisfactory”) high-

lights the potential for catchment models which inadequately

represent contaminant cycling processes (manifest in unsatis-

factory concentration estimates) to nevertheless produce sat-

isfactorily load predictions (e.g. compare model performance

statistics for prediction of nutrient concentrations in Table 6

with statistics for prediction of loads in Table 7). This high-

lights the potential for model uncertainty to be underesti-

mated in studies which aim to predict the effects of scenarios

associated with changes in contaminant cycling, such as in-

creases in fertiliser application rates.

4.3 Temporal dynamics of parameter sensitivity

To date, studies of temporal variability of parameters have

focused on hydrological parameters, rather than on water

quality parameters. The characteristics of concentration–

discharge relationships for SS and TP are different to that for

TN (Abell et al., 2013). In quick flow, there is a positive rela-

tionship between Q and concentrations of SS and TP, reflect-

ing mobilisation of sediments and associated particulate P.

Total nitrogen concentrations declined slightly in quick flow,

reflecting the dilution of nitrate from groundwater. Defining

separate contaminant concentrations in base flow and quick

flow enabled us to examine how the sensitivity of water qual-

ity parameters varied depending on hydrologic conditions.

In a study of a lowland catchment (481 km2), Guse

et al. (2014) found that three groundwater parameters,

RCHRG_DP (aquifer percolation coefficient), GW_DELAY

(groundwater delay) and ALPHA_BF (base flow alpha fac-

tor) were highly sensitive in relation to simulating discharge

during quick flow, while ESCO (soil evaporation compen-

sation factor) was most sensitive during base flow. This is

counter to the findings of this study for which the base flow

discharge simulation was sensitive to RCHRG_DP and AL-

PHA_BF. This result may reflect that, relative to our study

catchment, the catchment studied by Guse et al. (2014) had

moderate precipitation (884 mm yr−1) with less forest cover
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and flatter topography. Although the GW_DELAY parame-

ter reflects the time lag that it takes water in the soil wa-

ter to enter the shallow aquifers, its lack of sensitivity un-

der both base flow and quick flow conditions in this study

is a reflection of higher water infiltration rates and steeper

slopes. The ESCO parameter controls the upwards move-

ment of water from lower soil layers to meet evaporative

demand (Neitsch et al., 2011). Its lack of sensitivity in our

study may reflect relatively high and seasonally consistent

rainfall (1500 mm yr−1), in addition to extensive forest cover

in the Puarenga Stream catchment, which reduces soil evap-

orative demand by shading. Soil texture is also likely a con-

tributor to this result. The predominant soil horizon type

in the Puarenga Stream catchment was A, indicating high

macroporosity which promotes high water infiltration rate

and inhibits upward transport of water by capillary action

(Neitsch et al., 2011). The variability in the sensitivity of

the parameter SURLAG (surface runoff lag coefficient) be-

tween this study (relatively insensitive) and that of Cibin et

al. (2010; relatively sensitive) likely reflects differences in

catchment size. The Puarenga Stream catchment (77 km2)

is much smaller than the study catchment (St Joseph River;

2800 km2) of Cibin et al. (2010) and, consequently, distances

to the main channel are much shorter, with less potential for

attenuation of surface runoff in off-channel storage sites. The

curve number (CN2) parameter was found to be insensitive

in both this study and Shen et al. (2012), because surface

runoff was simulated based on the Green and Ampt (1911)

method requiring the hourly rainfall inputs, rather than the

curve number equation which is an empirical model. By con-

trast, the most sensitive parameters in our study are those that

determine the extent of lateral flow, an important contribu-

tor to streamflow in the catchment, due to a general lack of

ground cover under plantation trees and formation of gully

networks on steep terrain.

Parameters that control surface water transport processes

(e.g. LAT_TIME and SLSOIL) were found to be much more

sensitive for base flow SS load estimation than parameters

that control groundwater processes (e.g. ALPHA_BF and

RCHRG_DP), reflecting the importance of surface flow pro-

cesses for sediment transport. Sensitive parameters for quick

flow SS load estimation related to overland flow processes

(e.g. OV_N and SLSUBBSN), thus reflecting the fact that

sediment transport is largely dependent on rainfall-driven

processes, as is typical of steep and lower-order catchments.

Modelled base flow NO3–N loads were most sensitive to

the RCN because of rainfall as a predominant contributor to

recharging base flow. The NPERCO was more influential for

quick flow NO3–N load estimation, probably indicating that

the quick flow NO3–N load is more influenced by the mo-

bilisation of concentrated nitrogen sources associated with

agriculture or treated wastewater distribution. High sensitiv-

ity of the organic carbon content (SOL_CBN) for quick flow

ORGN load estimates likely reflects mobilisation of N asso-

ciated with organic material following rainfall. The finding

that base flow NH4–N load was more sensitive to nitrifica-

tion rate in reach (BC1) likely reflects that base flow pro-

vides more favourable conditions to complete this oxidation

reaction, as NH4–N is less readily leached and transported.

Similarly, the ORGP mineralisation rate (BC4) strongly in-

fluenced base flow MINP load estimation, reflecting that base

flow phosphorus transport is relatively more influenced by

cycling from channel bed stores, whereas quick flow phos-

phorus transport predominantly reflects the transport of phos-

phorus that originated from sources distant from the channel.

5 Conclusions

The performance of a SWAT model was quantified for differ-

ent hydrologic conditions in a small catchment with mixed

land use. Discharge-weighted mean concentrations of TP

and SS measured during storm events were greatly under-

estimated by SWAT, highlighting the potential for uncer-

tainty to be greatly underestimated in catchment model ap-

plications that are validated using a sample of contaminant

load measurements that is over-represented by measurements

made during base flow conditions. Monitoring programmes

which collect high-frequency and event-based data should

be considered further to support more robust calibration and

validation of SWAT model applications. Accurate simula-

tion of nitrogen concentrations was constrained by the non-

steady state of groundwater nitrogen concentrations due to

historic variability in anthropogenic nitrogen applications to

land. Improved representation of groundwater processes in

the model structure would reduce this aspect of model uncer-

tainty. The sensitivity of many parameters varied depending

on the relative dominance of base flow and quick flow, while

curve number, soil evaporation compensation factor, surface

runoff lag coefficient, and groundwater delay were largely in-

variant to the two flow regimes. Parameters relating to main

channel processes were more sensitive when estimating vari-

ables (particularly Q and SS) during base flow, while those

relating to overland processes were more sensitive for sim-

ulating variables associated with quick flow. Temporal dy-

namics of both parameter sensitivity and model performance

due to dependence on hydrologic conditions should be con-

sidered in further model applications. This study has impor-

tant implications for modelling studies of similar catchments

that exhibit short-term temporal fluctuations in stream flow.

In particular these include small catchments with relatively

steep terrain and lower-order streams with moderate to high

rainfall.
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