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Abstract. Rainfall erosivity is the power of rainfall to cause

soil erosion by water. The rainfall erosivity index for a rain-

fall event (energy-intensity values – EI30) is calculated from

the total kinetic energy and maximum 30 min intensity of in-

dividual events. However, these data are often unavailable in

many areas of the world. The purpose of this study was to

develop models based on commonly available rainfall data

resolutions, such as daily or monthly totals, to calculate rain-

fall erosivity. Eleven stations with 1 min temporal resolution

rainfall data collected from 1961 through 2000 in the eastern

half of China were used to develop and calibrate 21 mod-

els. Seven independent stations, also with 1 min data, were

utilized to validate those models, together with 20 previously

published equations. The models in this study performed bet-

ter or similar to models from previous research to estimate

rainfall erosivity for these data. Using symmetric mean ab-

solute percentage errors and Nash–Sutcliffe model efficiency

coefficients, we can recommend 17 of the new models that

had model efficiencies ≥ 0.59. The best prediction capabili-

ties resulted from using the finest resolution rainfall data as

inputs at a given erosivity timescale and by summing results

from equations for finer erosivity timescales where possible.

Results from this study provide a number of options for de-

veloping erosivity maps using coarse resolution rainfall data.

1 Introduction

Soil erosion prediction models are effective tools for helping

to guide and inform soil conservation planning and practice.

The most widely used soil erosion models used for conserva-

tion planning are derived from the Universal Soil Loss Equa-

tion (USLE) (Wischmeier and Smith, 1965, 1978). These

models include the USLE, the Revised USLE (RUSLE) (Re-

nard et al., 1997), and RUSLE2 (Foster, 2004). Adaptations

of the USLE have also been developed for use in other parts

of the world, including, for example, Germany (Schwert-

mann et al., 1990), Russia (Larionov, 1993), and China (Liu

et al., 2002). For example, the Chinese Soil Loss Equation

(CSLE) was used in the first national water erosion sample

survey in China (Liu et al., 2013).

These models have in common a rainfall erosivity factor

(R), which reflects the potential capability of rainfall to cause

soil loss from hillslopes, and which is one of the most impor-

tant basic factors for estimating soil erosion. In its simplest

form, the R factor is an average annual value, calculated as a

summation of event-based energy-intensity values (EI30) for

a location divided by the number of years over which the data

were collected. EI30 is defined as the product of kinetic en-

ergy of rainfall and the maximum contiguous 30 min rainfall

intensity during the rainfall event. It is the basic rainfall ero-

sivity index that was developed by Wischmeier (1958) origi-

nally for the USLE, and is still widely used in other erosion

prediction models (e.g., RUSLE, RUSLE2), with some mod-

ifications and improvements. Wischmeier (1976) suggested

that more than 20 years’ rainfall data are needed to calculate

average annual erosivity to include relatively dry and wet pe-

riods.

Determination of the maximum contiguous 30 min rain-

fall intensity during the rainfall event is a relatively straight-

forward process, although it requires a temporally detailed
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rainfall record (e.g., 5 min) for a storm. Determination of the

kinetic energy of a storm is more complex.

Kinetic energy (KE) is generally suggested to indicate the

ability of a raindrop to detach soil particles from a soil mass

(e.g., Nearing and Bradford, 1985). Since the direct measure-

ment of KE requires sophisticated and costly instruments,

several different estimating methods have been developed

that estimate KE based on rainfall intensity (I) using loga-

rithmic, exponential, or power functions. The original 1978

release of the USLE utilized a logarithmic function (Wis-

chmeier and Smith, 1978) that was based on rainfall energy

data published by Laws and Parsons (1943). Brown and Fos-

ter (1987) re-evaluated this relationship and recommended

the use of an exponential relationship, which was subse-

quently used in RUSLE (Renard et al., 1997). For RUSLE2

Foster (2004) used the exponent value of−0.082, rather than

the −0.05 value used in RUSLE, as follows:

er = 0.29[1− 0.72exp(−0.082ir)], (1)

where er is the estimated unit rainfall kinetic energy

(MJ ha−1 mm−1) and ir is the rainfall intensity (mm h−1) at

any given time within a rainfall event (usually taken as 1 min

for computational purposes, with average-intensity represen-

tative of the time increment). This was based largely on

work of McGregor and Mutchler (1976) and McGregor et

al. (1995), who found that the RUSLE equation gave values

that were too low. The energy term used in RUSLE2 gives

results on the order of those from the original USLE method.

The temporal resolution of rainfall data available across

the world does not always allow for a direct computation

of rainfall kinetic energy (Sadeghi et al., 2011; Sadeghi and

Tavangar, 2015; Oliveira et al., 2012; Panagos et al., 2015;

Zhang and Fu, 2003), even within countries with extensive

rainfall monitoring programs. In the United States, for exam-

ple, intra-storm, temporally detailed data (historically taken

on pen recording charts, now taken as 1 min digital data)

are only available at limited stations, whereas daily data are

common (Nicks and Lane, 1995; Flanagan et al., 2001). Yet

there is a need for developing models for application in all

areas of the world in order to produce erosivity maps that

can be used for evaluating soil erosion rates (e.g., Sadeghi

et al., 2011, Sadeghi and Tavangar, 2015; Oliveira et al.,

2012; Panagos et al., 2015; Zhang and Fu, 2003). For that

reason many efforts have been undertaken to estimate rain-

fall erosivity by using daily (Richardson et al., 1983; Yu,

1998; Capolongo et al., 2008; Yin et al., 2007; Zhang et al.,

2002a, b; Xie et al., 2001, 2015), monthly (Arnoldus, 1977;

Renard and Freimund, 1994; Yu and Rosewell, 1996; Ferro

et al., 1999; Wu, 1994; Zhou et al., 1995), or annual rain-

fall data (Lo et al., 1985; Renard and Freimund, 1994; Yu

and Rosewell, 1996; Bonilla and Vidal, 2011; Zhang and Fu,

2003; Wang, 1987; Sun, 1990). Generally the technique has

been to develop a simple empirical relationship between ero-

sivity and coarse resolution rainfall based on limited finer

resolution data and then to extend the analyses to wider areas

and longer periods with coarser temporal resolution rainfall

data (Angulo-Martinez and Begueria, 2012; Ma et al., 2014;

Ramos and Duran, 2014; Sanchez-Moreno et al., 2014).

Several studies evaluated different timescales of erosivity

using different temporal resolutions of rainfall data. In Eu-

rope, Panagos et al. (2015) undertook the task to develop an

erosivity map for Europe based on data from 1541 precipita-

tion stations with temporal resolutions of 5 to 60 min. To use

data that had been reported at the different time resolutions

they had to apply adjustment factors to the data, which they

reported to have introduced some uncertainty into the estima-

tions. Sadeghi and Tavangar (2015) evaluated various erosiv-

ity estimation indices, including Fournier (Fournier, 1960),

modified Fournier (Arnoldus, 1977), Roose (1977) and Lo

et al. (1985), using data from 14 stations in Iran. They eval-

uated annual, seasonal, and monthly information. Similarly,

the work in Brazil summarized by Oliveira et al. (2012) high-

lighted several studies that used various estimations of ero-

sivity based on various types of data and interpolations. Other

innovative ways have been advanced to produce better map-

pings of erosivity, including the use of daily (Fan et al., 2013)

or 3 h (Vrieling et al., 2010, 2014) data from the Tropical

Rainfall Measuring Mission (TRMM) Multi-satellite Precip-

itation Analysis (TMPA) precipitation data.

In China the specifications for surface meteorological

observations by the China Meteorological Administration

(China Meteorological Administration, 2003) have required

since the 1950s that the maximum 60 and 10 min rainfall

amounts, (P60)day and (P10)day, be compiled; hence, these

data are readily available in China. The measurements were

made using siphon-method, self-recording rain gauges. Be-

cause of this, there is an interest in China to utilize the max-

imum daily 10 and 60 min rainfall intensities, (I10)day and

(I60)day, to calculate erosivity.

The objectives of this study were threefold: (1) calibrate

methods of estimating erosivity for timescales ranging from

daily to average annual based on different temporal resolu-

tions of rainfall data from 11 calibration stations with 1 min

resolution data; (2) compare models in this study with those

published in previous research, based on seven independent

validation stations using the same data types; and (3) deter-

mine the most accurate methods, based on these data, for cal-

culating different timescales of erosivity when different tem-

poral resolutions of rainfall data are available. Note that, in

this paper, we use the term timescales when discussing the

erosivity values (equation outputs) and resolution (equation

inputs) when referring to the rainfall input data, for clarity.

Although several studies have been conducted on this topic

in the past, no study used as comprehensive a data set col-

lected over this wide geographic area of China to evaluate the

wide range of erosivity timescales needed for erosion work,

and utilizing such a wide range of temporal resolution rain-

fall data as the independent variable.
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2 Data and methods

2.1 Data

Data collected at 18 stations by the Meteorological Bu-

reaus of Heilongjiang, Shanxi, Shaanxi, Sichuan, Hubei, Fu-

jian, and Yunnan provinces and the municipality of Beijing

were used (Fig. 1, Table 1). These stations were distributed

over the eastern half of China; 1 min resolution rainfall data

(Data M) were obtained by using a siphon, self-recording

rain gauge. The data collection period began in 1971 for

Wuzhai (53663) and Yangcheng (53975) in Shanxi Province

and from 1961 for the remaining 16 stations; the data records

ended in 2000 for all stations. Quality control of Data M was

done to select the best observation years using the more com-

plete data sets of daily rainfall totals, Data D, which were

observed by simple rain gauges at the same stations. Data

M was compared with Data D on a day-by-day basis, and

those days with deviation exceeding a certain criterion were

marked as questionable and were not used in this analysis

(Wang et al., 2004). The criterion used was that the data were

considered good when the absolute deviation between Data

M and Data D was less than 0.5 mm when the daily rainfall

amount was less than 5 mm and no more than 10 % when

the daily rainfall amount was greater than or equal to 5 mm.

Data M in the earlier years of record tended to have more

days with missing or suspicious observations. These totals of

Data M and Data D were compared year-by-year to deter-

mine which years could be designated as common years for

use in this study, with an effective year having a relative devi-

ation for yearly rainfall amount of no more than 15 %. There

were at least 29 common years for all 18 stations, and seven

stations had common years of at least 38 years (Table 1).

Note that though there were missing data in the information

used, Data D was only used for quality control purposes and

the data used in the analysis, Data M, were internally consis-

tent in that only the data from common years were used in all

comparisons and evaluations reported.

Data M was used to calculate the event-based EI30 values

as a function of the calculated kinetic energy and maximum

30 min rainfall intensity (Foster, 2004). These were treated as

observed values and summed to obtain the erosivity factors,

R, for daily, month (individual month totals), year (individ-

ual year totals), average monthly (one value for each month

at each station), and average annual (one value for each sta-

tion) timescales. Total rainfall event depth values were also

compiled into the other temporal resolutions of rainfall data,

including correspondent daily, month, year, average monthly,

and average annual resolutions. For the eight stations in the

northern part of China (including stations in Heilongjiang,

Shanxi, Shaanxi provinces and Beijing municipality), only

the periods from May through September were used because

the siphon, self-recording rain gauges were not utilized in the

winter to avoid freeze damage. Percentages of precipitation

during May through September to total annual precipitation

varied from 75.6 to 89.2 % for these eight northern stations.

Data M for the full 12 month year was used from the remain-

ing 10 stations located in the southern parts of China.

Eleven stations, including Nenjiang, Wuzhai, Suide,

Yan’an, Guangxiangtai, Chengdu, Suining, Neijiang, Fangx-

ian, Kunming, and Fuzhou, marked with dots in Fig. 1,

were used to calibrate the models (Table 1). The other seven

stations, including Tonghe, Yangcheng, Miyun, Xichang,

Huangshi, Tengchong, and Changting, marked with triangles

in Fig. 1, were used to validate the models.

2.2 Calculation of the R factor at different timescales

Different timescales for RUSLE2 erosivity, R, including

event, daily, month, year, average monthly, and average an-

nual, were calculated based on the 1 min resolution data

(Data M). Recall that month and year refer to individual

months and years, and not averages.EI 30 (MJ mm ha−1 h−1)

is the rainfall erosivity index for a rainfall event, where E is

the total rainfall kinetic energy during an event and I30 is

the maximum contiguous 30 min intensity during an event

(Wischmeier and Smith, 1978). An individual rainfall event

was defined as a period of rainfall with at least six preceding

and six succeeding non-precipitation hours (Wischmeier and

Smith, 1978). An erosive rainfall event was defined as one

with rainfall amounts greater than or equal to 12 mm, follow-

ing Xie et al. (2002). We used the equation recommended by

Foster 2004) for RUSLE2 to calculate the kinetic energy of

the storms, which used Eq. (1) combined with

E =

n∑
r=1

(er ·Pr) , (2)

where er is the estimated unit rainfall kinetic energy (from

Eq. 1) for the rth minute (MJ ha−1 mm−1); Pr is the 1 min

rainfall amount for the rth minute (mm); r = 1, 2, . . ., n rep-

resents each 1 min interval in the storm; and ir is the rain-

fall intensity for the rth minute (mm h−1). The Foster (2004)

equations were chosen because they are currently used for

erosion assessment for RUSLE2 in the United States and for

the CSLE in China, and it appears to give results similar to

the original USLE, as was discussed in the Introduction.

Our evaluation included four models for events and one for

daily erosivities. Event models were simply models to pre-

dict individual event erosivities, regardless of whether they

occurred in 1 or more days, and regardless of whether more

than one event occurred in a day. For the daily model, rain-

fall erosivity for each day, Rday, was calculated following the

method by Xie et al. (2015). When a day had only one ero-

sive event and this event began and finished during the same

day, then

Rday = EI30. (3)
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Figure 1. Locations of the 18 stations with 1 min resolution rainfall data. Eleven stations marked with dots were used to calibrate 21 models.

The other seven stations marked with triangles were used to validate models and conduct comparisons with previous research.

When more than one full rainfall event happened during 1

day, then

Rday =

n∑
i=1

Eevent_i · (I30)event_i, (4)

where n is the number of rainfall events during the day, and

Eevent_i and (I30)event_i are the total rainfall energy and the

maximum contiguous 30 min intensity, respectively, for the

ith event. When only one part of a rainfall event occurred

during 1 day, then

Rday = Eday_d · (I30, )event, (5)

where Eday_d is the rainfall energy generated by the part of

rainfall occurred during the dth day and (I30)event is the max-

imum contiguous 30 min intensity for the entire event. The

remaining situations were calculated by combining Eqs. (4)

and (5).

Month, year, average monthly, and average annual R val-

ues were summed from the event EI30 index by erosive

storms that occurred during the corresponding period. They

were calculated by using Eqs. (6)–(9).

Rmonth, y,m =

J∑
j=0

(EI30)y,m, j , (6)

Rave_month,m =
1

Y

Y∑
y=1

Rmonth, y,m, (7)

Ryear, y =

12∑
m=1

Rmonth, y,m, (8)

Rave_annual =

Y∑
y=1

Ryear, y, (9)

where y is the number of years of record; (EI30)y,m, j is the

EI30 value for the j th event in the mth month of the yth

year; Rmonth, y,m is the R value for the mth month of the

yth year; Rave_month, m is the average R value for the mth

month over the years of record; Ryear, y is R value in the

yth year; and Rave_annual represents average annual erosivity,

correspondent to the annual average R factor in USLE-type

models (MJ mm ha−1 h−1 a−1).
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Table 1. Information for the 18 rainfall stations.

Province Station Lat. Long. Elevation Effective No. of Annual R4

name (◦ N) (◦ E) (m) years erosive rainfall3 (MJmmha−1

events (mm) h−1 a−1)

Heilongjiang1 Nenjiang 49.17 125.23 243.0 30 343 485.8 1368.7

Tonghe2 45.97 128.73 110.0 38 471 596.2 1632.5

Shanxi1 Wuzhai 38.92 111.82 1402.0 30 289 464.0 781.9

Yangcheng2 35.48 112.4 658.8 30 340 605.9 1503.3

Shaanxi1 Suide 37.5 110.22 928.5 29 256 449.7 992.8

Yan’an 36.6 109.5 958.8 39 411 534.6 1233.7

Beijing1 Guanxiangtai 39.93 116.28 54.7 40 434 575.0 3188.1

Miyun2 40.38 116.87 73.1 37 476 648.1 3575.0

Sichuan Chengdu 30.67 104.02 506.1 39 717 891.8 3977.0

Xichang2 27.9 102.27 1590.9 40 998 1007.5 3021.0

Suining 30.5 105.58 279.5 33 654 932.7 4091.3

Neijiang 29.58 105.05 352.4 39 826 1034.1 5097.9

Hubei Fangxian 32.03 110.77 427.1 31 563 829.5 2298.4

Huangshi2 30.25 115.05 20.6 32 898 1438.5 6049.4

Yunnan Tengchong2 25.02 98.5 1648.7 36 1205 1495.7 3648.9

Kunming 25.02 102.68 1896.8 33 747 1018.8 3479.0

Fujian Fuzhou 26.08 119.28 84.0 39 1136 1365.4 5871.1

Changting2 25.85 116.37 311.2 31 1037 1728.1 8258.5

1 The eight stations in these provinces are located in the northern part of China and had 1 min resolution data collected from May through September. The

remaining ten stations were based on data collected during the entire year. 2 Seven validation stations (the other 11 stations were calibration stations.) 3

Based on daily rainfall data sets collected during 1961–2000. 4R in this case is the average annual erosivity.

2.3 Model calibration using different resolutions of

rainfall data

A total of 21 models were calibrated for different timescales

of R, based on varying resolutions of rainfall data (Table 2).

Event amount Pevent and peak-intensity indices were derived

based on the 1 min resolution data, including I10, I30, and

I60, which were the maximum contiguous 10, 30, and 60 min

intensities, respectively, within an event. I10 and I60 were

used because of their close correlation with the daily (I10)day

and (I60)day values commonly reported by the Chinese Me-

teorological Administration (2003). Four event-based mod-

els were developed relating measured EI30 to estimated

EI30 (Table 2). Similar models for the other timescales were

also calibrated (Table 2). Data were organized in various

ways. Pday, Pmonth, Pyear, Pave_month, and Pannual were the

daily, (individual) month, (individual) year, average monthly,

and average annual rainfall amounts, respectively, for a

given station. (P60)month and (P60)year represented maxi-

mum contiguous 60 min rainfall amount observed within a

specific month or year, respectively. (P60)month_max repre-

sented the maximum of (P60)month values for each month

of the year over the entire period of record. The average of

(P60)month values was(P60)month. Each station had 12 values

of (P60)month_max and (P60)month, one for each month of the

year. (P60)year_max was the maximum value of (P60)year and

(P60)annual was the average of (P60)year values. Each station

had only one value for these two parameters. P1440 was daily

rainfall amount and its related index, including (P1440)month,

(P1440)year, (P1440)month_max, (P1440)month, (P1440)year_max,

and (P1440)annual, which were defined in an analogous way

as were correspondent values for P60.

The parameters were obtained station-by-station for cali-

bration stations first and parameters for linear relationships

were compared to determine if data from all stations could

be pooled together to conduct the regressions (Snedecor and

Cochran, 1989). Parameters for power-law models, including

Month I, Year I, Average Monthly I, and Annual I (Table 2),

were obtained by using the Levenberg–Marquardt algorithm

(Seber and Wild, 2003). Note that models coded as Annual

refer to annual averages.

2.4 Models published in previous research for

comparison

In addition to the 21 new models presented here, 20 repre-

sentative models developed using data from China in previ-

ous research were also compared (Table 3). For these models

other variables were needed. Pd12 was average daily erosive

rainfall total and Py12 was average annual erosive rainfall to-

tal. P5−10 represented the rainy season rainfall amount from

May through October for a specific year. P≥10 year was the

summation of daily rainfall no less than 10 mm in a year and

P≥10 annual was the annual average for P≥10 year.
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Table 2. Models calibrated.

Model codes Models Model codes Models

Event I EI30 = λ1PeventI10 Average Monthly I Rave_month = α3P
β3

ave_month

Event II EI30 = λ2PeventI30 Average Monthly II Rave_month = λ11Pave_month(P60)month_max

Event III EI30 = λ3PeventI60 Average Monthly III Rave_month = λ12Pave_month(P1440)month_max

Event IV EI30 = λ4PeventI30 I30 < 15mmh−1 Average Monthly IV Rave_month = λ13Pave_month(P60)month

EI30 = λ5PeventI30 I30 ≥ 15mmh−1

Daily I Rday = λ6Pday(I10)day Average Monthly V Rave_month = λ14Pave_month(P1440)month

Monthly I Rmonth = α1P
β1
month

Annual I∗ Rannual = α4P
β4

annual
Monthly II Rmonth = λ7Pmonth(P60)month Annual II Rannual = λ15Pannual(P60)year_max

Monthly III Rmonth = λ8Pmonth(P1440)month Annual III Rannual = λ16Pannual(P1440)year_max

Yearly I Ryear = α2P
β2
year Annual IV Rannual = λ17Pannual(P60)annual

Yearly II Ryear = λ9Pyear(P60)year Annual V Rannual = λ18Pannual(P1440)annual

Yearly III Ryear = λ10Pyear(P1440)year

∗ Annual refers to Average Annual values of erosivity.

Table 3. Models published in previous research and their prediction capabilities determined using the validation stations – the symmetric

mean absolute percentage errors, MAPEsym, and Nash–Sutcliffe model efficiencies, ME.

Erosivity time Models Sources MAPEsym ME2

scales (%)1

Event Revent = 9.8 · (0.0247PeventI30− 0.17) Wang (1987) 27.8 0.98

Revent = 9.8 · (0.025PeventI30− 0.32) Wang (1987) 26.1 0.98

Revent = 9.8 · (1.70
PeventI30

100
− 0.136) I30 < 10mmh−1

Revent = 9.8 · (2.35
PeventI30

100
− 0.523) I30 ≥ 10mmh−1

Wang et al. (1995) 13.8 0.98

Revent = 0.1773PeventI10 Zhang et al. (2002a) 44.7 0.89

Daily Rday = 0.184Pday(I10)day Xie et al. (2001) 44.9 0.91

Rday = αP
β
day

Zhang et al. (2002b) 74.6 0.69

β = 0.8363+ 18.144
Pd12

+
24.455
Py12

, α = 21.586β−7.1891

Rday = 0.2686[1+ 0.5412cos(π
6
j − 7π

6
)]P 1.7265

day
Xie et al. (2015) 63.7 0.71

Rday = 0.3522Pday(P60)day Xie et al. (2015) 38.2 0.95

Month Rmonth = 10 · 0.0125P 1.6295
month

Wu (1994) 60.2 0.57

Rmonth = 10 · (0.3046Pmonth− 2.6398) Zhou et al. (1995) 67.3 0.35

Year Ryear = 1.77P5−10− 133.03 Sun et al. (1990) 86.7 −0.63

Ryear = 9.8 · 0.272(Pyear(P60)year/100)1.205 Wang et al. (1995) 33.9 0.79

Ryear = 9.8 · 1.67(P≥10 year(P60)year/100)0.953 Wang et al. (1995) 20.3 0.86

Ryear = 0.0534P 1.6548
year Zhang and Fu (2003) 44.4 0.10

Average Rannual = 9.8 · 0.009P0.564
annual

· (P60)annual
1.155
· (P1440)annual

0.560
Wang et al. (1995) 21.2 0.78

annual

Rannual = 9.8 · 0.0244P0.551
≥10 annual

· (P60)annual
1.175
· (P1440)annual

0.376
Wang et al. (1995) 15.8 0.82

Rannual = 9.8 · 2.135(P≥10 annual · (P60)annual/100)0.919 Wang et al. (1995) 13.2 0.91

Rannual = 0.1833F 1.9957
F

,FF =
1
N

N∑
i=1

12∑
j=1

P 2
i,j

12∑
j=1

Pi,j

Zhang and Fu (2003) 55.9 −1.21

Rannual = 0.3589F 1.9462, F = (
12∑
j=1

P 2
ave_month_j

)/Pannual Zhang and Fu (2003) 60.8 −2.11

Rannual = 0.0668P 1.6266
annual

Zhang and Fu (2003) 34.6 −0.03

1 MAPEsym (%) is the symmetric mean absolute percentage error values for all the data across validation stations for R with timescales intended for the model. 2 ME is the

Nash–Sutcliffe model efficiency coefficient for all the data across validation stations for R with timescales intended for the model.
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Models by Wang (1987) and Wang et al. (1995) uti-

lized (m t m ha−1 h−1 a−1) as the units of R for compari-

son. A conversion factor of 9.8 was multiplied to convert R

to (MJ mm ha−1 h−1 a−1). Later, models by Wu (1994) and

Zhou et al. (1995) utilized (J m m−2 h−1 a−1). Their conver-

sion factor, 10, was multiplied to convert (J m m−2 h−1 a−1)

to (MJ mm ha−1 h−1 a−1).

2.5 Assessment of the models

After the 21 models in Table 2 were calibrated with the data

from the 11 calibration stations, the performance for these

models was assessed and compared with the performance

of the previously published models listed in Table 3 using

data from the seven validation stations. Symmetric mean ab-

solute percentage error (MAPEsym) and the Nash–Sutcliffe

model efficiency coefficient (ME) were utilized to reflect the

deviation of the calculated values from the observation data.

MAPEsym is considered to be superior to MAPE, since it cor-

rects the problem of MAPE’s asymmetry and the possible in-

fluence by outliers (Makridakis and Hibon, 1995). MAPEsym

was calculated as follows (Armstrong, 1985):

MAPEsym =
100

m

m∑
k=1

∣∣∣∣ Rsim(k)−Robs(k)

(Rsim(k)+Robs(k))/2

∣∣∣∣ , (10)

where Robs is the measured rainfall erosivity for the kth pe-

riod of time, such as month, year, or annual, based on 1 min

resolution rainfall data. Rsim is the estimated value for the

same period using equations in Tables 2 or 3.

ME was calculated as follows (Nash and Sutcliffe, 1970):

ME= 1−

m∑
k

[Rsim(k)−Robs(k)]
2

m∑
k

[Robs(k)−Robs(k)]2
. (11)

ME compares the measured values to a perfect fit (1:1 line).

Hence, ME is a combined measure of linearity, bias, and rela-

tive differences between the measured and predicted values.

The maximum possible value for ME is 1. The greater the

value the better the model fit. An efficiency of ME< 0 in-

dicates the single value (the mean) for the measured data’s

mean is a better predictor of the data than the model.

MAPEsym and ME were calculated based on all the data

for the seven validation stations. Individual values for all sta-

tions were also determined.

3 Results and discussion

3.1 Basic data results

Average annual rainfall ranged from 449.7 to 1728.1 mm,

and average annual erosivity varied from 781.9 to

8258.5 MJ mm ha−1 h−1 yr−1 (Table 1). A total of 11 801

erosive events were used in the study. The eleven stations

had 6376 erosive events, which were used to calibrate the

models, and the seven validation stations had 5425 erosive

events.

3.2 Validation and calibration for the new models

Parameters, MAPEsym, ME, and coefficients of determina-

tion, R2, for calibration models are shown in Table 4. The

model Event IV, with a combination of event rainfall amount

Pevent and I30, when I30 was divided into two categories, with

a threshold of 15 mm h−1, performed slightly better in terms

of the MAPEsym value than did Event II, which used the same

variables but did not separate the rainfall events by intensity.

The performance of Daily I with daily rainfall amount and

(I10)daily was similar to that for Event I with event rainfall

amount and I10.

Using only total rainfall amount as input, the models for

month, year, and average monthly scales were statistically

significant, with determination coefficients R2 greater than

0.66 (Table 4 and Fig. 2). However, their capabilities in pre-

dicting erosivity were limited based on the ME values (Ta-

ble 4). Data from Tengchong and Xichang, located in the

southwestern part of China, were in part responsible for

these low ME values. Table 5 shows the individual values of

MAPEsym and ME for the seven validation stations, with the

average of each using all the stations and using only the five

without Tengchong and Xichang. Results were much better

without those two stations. The model Annual I, which use

only average annual precipitation values, performed reason-

ably well, considering that the only input required was an-

nual average precipitation (Table 4). If other information is

available, other models performed better, but Annual I may

be used if only average annual precipitation is available at a

location.

In general, we found that the finer the temporal resolution

of the rainfall input data, the better the models performed for

a given erosivity timescale. Models that used some expres-

sion of maximum daily rainfall amount (Month III, Year III,

Average Monthly III, Average Monthly V, Annual III, and

Annual Model V) predicted the R factor better than those

models with only total rainfall amount as input (Table 4),

for a specific timescale. Models based on rainfall amount

and maximum contiguous 60 min rainfall amounts (Month

II, Year II, Average Monthly II, Average Monthly IV, An-

nual II, and Annual IV) generally performed better than cor-

responding models with rainfall amount and maximum daily

rainfall amount (Month III, Year III, Average Monthly III,

Average Monthly V, Annual III), except for Annual Model

V, which performed well. The reason for that may be due to

the fact that maximum contiguous 60 min rainfall amounts

may have been more highly correlated with maximum con-

tiguous 30 min intensity in an event as compared to just the

maximum daily rainfall amount. The only annual average

model that did not perform well was Annual III, which uti-
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Table 4. Models calibrated in this study and their prediction capabilities determined using the validation stations – the symmetric mean

absolute percentage errors, MAPEsym, and Nash–Sutcliffe model efficiencies, ME.

Model codes Models 1 R2 MAPEsym (%) ME

Event I EI30 = 0.1547PeventI10 0.92 34.5 0.91

Event II EI30 = 0.2372PeventI30 0.98 29.3 0.98

Event III EI30 = 0.3320PeventI60 0.94 35.8 0.96

Event IV
Revent = 0.1592PeventI30 I30 < 15mm/h

Revent = 0.2394PeventI30 I30 ≥ 15mm/h
0.97 13.9 0.98

Daily I Rday = 0.1661Pday(I10)day 0.92 38.4 0.91

Month I Rmonth = 0.1575P 1.6670
month

0.66 69.5 0.48

Month II Rmonth = 0.1862Pmonth(P60)month 0.85 36.0 0.88

Month III Rmonth = 0.0770Pmonth(P1440)month 0.65 55.2 0.69

Year I Ryear = 0.5115P 1.3163
year 0.70 38.1 0.48

Year II Ryear = 0.1101Pyear(P60)year 0.80 20.9 0.84

Year III Ryear = 0.0502Pyear(P1440)year 0.54 28.9 0.59

Average

Monthly

I

Rave_month = 0.0755P 1.8430
ave_month

0.89 44.7 0.17

Average

Monthly

II

Rave_month = 0.0877Pave_month(P60)month_max 0.94 23.5 0.88

Average

Monthly

III

Rave_month = 0.0410Pave_month(P1440)month_max 0.87 30.1 0.73

Average

Monthly

IV

Rave_month = 0.2240Pave_month(P60)month 0.98 22.9 0.88

Average

Monthly

V

Rave_month = 0.1082Pave_month(P1440)month 0.94 31.4 0.79

Annual I Rannual = 1.2718P 1.1801
annual

0.89 25.6 0.63

Annual II Rannual = 0.0584Pannual(P60)year_max 0.92 15.4 0.91

Annual III Rannual = 0.0253Pannual(P1440)year_max 0.92 22.5 −0.44

Annual IV Rannual = 0.1058Pannual(P60)annual 0.94 17.0 0.88

Annual V Rannual = 0.0492Pannual(P1440)annual 0.92 18.2 0.91

1 Parameters of models for power-law models, including α1, β1, α2, β2, α3, β3, α4, β4, α5, β5, were solved by pooling data from 11

stations together. Parameters for average annual-scale models, including λ15, λ16, λ17, λ18, were calculated by fitting data from all

calibration stations and for the remainder they were the average values of parameters for the 11 calibration stations. 2 R2 is the coefficient

of determination.

lized (P1440)year_max, the maximum of (P1440)year values for

each year over the entire period of record.

Tables 3 and 4 show the models only evaluated for the ero-

sivity temporal scale that corresponds to the input data res-

olution. For example, the event-based models are only eval-

uated on the basis of events modeled. We also evaluated the

models at the aggregate scale. For example, EI30 estimated

from event-based models were summed up to month and year

values, in order to evaluate if fine temporal resolution data

also improve the accuracy of aggregate erosivity measures

(Table 6). Two important facts emerge. First, when the mod-

els are applied at the aggregated scale their predictions get

better. Secondly, the models that use fine resolution of input

data predict better for the same erosivity timescale compared

to models using coarser resolution input data. This has im-

portant implications for model applications.

3.3 Seasonal variations of erosivity

Taking Tonghe and Tengchong as examples, it was found that

Month II generated better results than Month III, which per-

formed better than Month I, in estimating seasonal and yearly

variations (Figs. 3a, b and 4a, b). Correspondingly, seasonal

variations by Average Monthly II were closer to observations

as compared to those by Average Monthly III and Average

Monthly I (Fig. 3c and d). Year II and Year III produced bet-

ter simulations of yearly variations compared with Year I,

especially for the Tengchong station (Fig. 4c, d).
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Figure 2. Scatterplots for power-law models using rainfall amount: (a) Month I, (b) Year I, (c) Average Monthly I, and (d) Annual I, based

on the 11 calibration stations.

Table 5. Validation station-averaged symmetric mean absolute percentage errors (MAPEsym) and Nash–Sutcliffe model efficiency coeffi-

cients (ME) for Rmonth by Month I, Ryear by Year I and Rave_month by Average Monthly I models for seven validation stations and statistics

on event rainfall amount and event EI30.

Station name Rmonth by Month I Ryear by Year I Rave_month by Average Percent of EI30/P

Monthly I erosive

amount (%)

MAPEsym ME MAPEsym ME MAPEsym ME

Tonghe 70.2 0.73 30.9 0.47 29.5 0.93 71.2 4.8

Yangcheng 65.5 0.31 27.1 0.55 16.4 0.96 81.7 4.2

Miyun 52.0 0.71 45.1 −0.06 37.6 0.88 82.8 7.8

Xichang 77.5 0.47 45.4 −0.15 57.2 0.09 76.9 4.1

Huangshi 70.1 0.65 24.5 0.63 46.1 0.73 86.5 5.7

Tengchong 83.4 −2.01 66.6 −7.51 68.3 −6.98 71.9 3.6

Changting 52.0 0.54 20.9 0.26 35.2 0.30 88.4 6.1

Mean1 67.2 0.20 37.2 −0.83 41.5 −0.44 79.9 5.2

Mean2 62.0 0.59 29.7 0.37 38.7 0.60 82.1 5.7

1 Averaged value for seven validation stations. 2 Averaged value for five validation stations except Xichang and Tengchong.

Seasonal variations by monthly and average monthly mod-

els (Fig. 3) and yearly variations by month and year models

(Fig. 4) were demonstrated using Tonghe and Tengchong sta-

tions. Month I and Average Monthly I captured the general

seasonal pattern for the Tonghe station (Fig. 3a and c), but the

simulated peak value of monthly R was in July for the Teng-

chong station, which was not consistent with observation.

Month I and Year I captured the general year-to-year pattern

for the Tonghe station (Fig. 4a and c), but they overestimated

yearly erosivity for the Tengchong station (Fig. 4b and d).

Month I and Year I also overestimated the yearly erosivity

for the Xichang station. The reason for the overestimation for

the Tengchong and Xichang stations was mainly due to two

aspects: (1) the percentages of erosive rainfall amount to to-
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Table 6. MAPEsym for the models when used to estimate longer timescales of erosivity.

Model Models Event and Month Avg. Year Annual

codes Daily monthly

Event I EI30 = 0.1547PeventI10 34.5 29.0 20.4 16.4 12.0

Event II EI30 = 0.2372PeventI30 29.3 24.2 16.0 11.4 9.1

Event III EI30 = 0.3320PeventI60 35.8 28.5 15.1 10.8 6.2

Event IV
Revent = 0.1592PeventI30 I30 < 15mmh−1

Revent = 0.2394PeventI30 I30 ≥ 15mmh−1 13.9 11.0 7.0 6.4 4.7

Daily I Rday = 0.1661Pday(I10)day 38.4 29.2 19.6 16.2 11.7

Month I Rmonth = 0.1575P 1.6670
month

69.5 46.7 39.4 28.7

Month II Rmonth = 0.1862Pmonth(P60)month 36.0 19.9 18.6 13.1

Month III Rmonth = 0.0770Pmonth(P1440)month 55.2 26.7 24.8 12.3

Year I Ryear = 0.5115P 1.3163
year 38.1 23.5

Year II Ryear = 0.1101Pyear(P60)year 20.9 14.3

Year III Ryear = 0.0502Pyear(P1440)year 28.8 17.3
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Figure 3. Comparisons of average monthly R values between observation values calculated using 1 min resolution rainfall data and estimated

values using month models (a, b) and average monthly models (c, d) for the Tonghe and Tengchong stations.

tal rainfall at those stations were lower (71.9 and 76.9 %, re-

spectively), suggesting that more events occurred with small

amount totals that do not generate soil loss (Table 5); and (2)

the ratio for event EI30 to event rainfall amount P was lower

(3.6 and 4.1, respectively), inferring that rainfall intensity

and erosivity generated by per amount of rainfall were both

less than that of the other stations (Table 5). This result was

consistent with that of Nel et al. (2013), which demonstrated

that two models using annual average rainfall and average

monthly rainfall substantially overestimated annual erosiv-

ity on the west coast and the central plateau of Mauritius,

which also have a large amount of non-erosive rainfall. Rain-

fall erosivity reflected a combined effect of rainfall amount

and rainfall intensity. Therefore, it was reasonable that rain-

fall amount only explained part of rainfall erosivity variation

at these stations.
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Figure 4. Comparison of yearly R values between observation values calculated using 1 min resolution rainfall data and estimated values

using month models (a, b) and year models (c, d) for the Tonghe and Tengchong stations. The years without marks were ineffective years.

3.4 Evaluation of models from previous research with

current models

Generally speaking, the finer the resolution of input data for

models, the better was the performance of the model for es-

timating at the same temporal erosivity scale. For example,

the models with daily rainfall amount and daily maximum

60 or 10 min amount as inputs performed better than mod-

els with only daily rainfall amount as input. Similarly, results

from models with maximum 60 min rainfall amount (Month

II, Year II, Average Monthly IV, and Annual IV) were gener-

ally better than those with maximum daily rainfall amount

(Month III, Year III, Average Monthly V, and Annual V;

Fig. 5).

Wang et al. (1995) used a combination of event rainfall

amount Pevent and I10 for event-scale models. The model

using the I10 data was divided into two categories, with

a threshold of 10 mm h−1, performed best among the four

models compared (Table 3). That model had similar perfor-

mance with Event IV in this study (Table 4), which also di-

vided the data by a rainfall-intensity threshold.

There were three kinds of daily-scale models, according

to the number and type of inputs required. Two models used

daily rainfall amount (Zhang et al., 2002b; Xie et al., 2015),

two models used daily rainfall amount and daily maximum

10 min intensity (Xie et al., 2001 and Daily I), and one model

used daily rainfall amount and daily maximum 60 min inten-

sity (Xie et al., 2015). The model with daily rainfall amount

as input in Xie et al. (2015) performed better than that of

Zhang et al. (2002b) (Table 3). Daily I, which used daily

rainfall amount and daily maximum 10 min intensity as in-

puts in this study, performed better than the model in Xie et

al. (2001). Models with an additional daily 10 or 60 min in-

tensity index performed better than those with only a total

rainfall amount (Tables 3 and 4).

There were generally four groups of models for month,

year, average monthly, and annual-scale models. The first

group used linear regression (Sun et al., 1990; Wu, 1994;

Zhou et al., 1995) or a power-law function (Zhang and Fu,

2003; Month I, Year I, Average Monthly I, and Annual I)

with only rainfall amount as input, so that the data required

were relatively easy to collect. Models by Sun et al. (1990),

Wu (1994) and Zhou et al. (1995), when they were used to

estimate the monthly scale of R, had MAPEsym values of

86.7, 60.2 and 67.3 % and ME of −0.63, 0.57 and 0.35, re-

spectively (Table 3). When they were used to estimate an-

nual scale of R, there was a tendency of underestimation,

especially for the stations with larger erosivity (Fig. 5a, b).

Four models by Zhang and Fu (2003) overestimated the R

factor, with MAPEsym varying between 34.6 and 60.8 % and

ME varying between−2.11 and 0.10 (Table 3, Fig. 5), which

suggested the models’ abilities were limited. Two models by

Zhang and Fu (2003) using the modified Fournier index gen-

erated poorer results than the model by Zhang and Fu (2003)
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Figure 5. Comparisons of the estimated R factor value calculated based on (a) month, (b) year, (c) average monthly, and (d) average annual

models using 1 min resolution data for the seven independent validation stations. Month models included models in Wu (1994), Zhou et

al. (1995), and Month I, II, and III from this study. Year models included models from Sun et al. (1990), Wang et al. (1995; the one with

MAPEsym of 20.3 %), Zhang and Fu (2003), and Year I, II, and III from this study. Average monthly models included models from Average

Monthly I, II, and III from this study. Average annual models included models from Wang et al. (1995; the one with MAPEsym of 13.2 %),

Zhang and Fu (2003; the one with MAPEsym of 34.6 %), and Annual I, II, and III from this study.

using average annual rainfall as input (Table 3), which was

consistent with the findings of Yu and Rosewell (1996). The

power-law models in this study, including Month I, Year I,

Average Monthly I, and Annual I, tended to overestimate the

R factor for the stations with larger erosivity (Fig. 5).

The second group of models (Wang et al., 1995; Month

II, Year II, Average Monthly IV, Annual IV) used linear re-

gression with rainfall amount (total rainfall or total rainfall

with daily rainfall no less than 10 mm) and maximum 60 min

rainfall as inputs. All these seven models generated statisti-

cally significant results, with MAPEsym for R with timescale

intended for the model ranging from 13.2 to 36.0 % and ME

from 0.79 to 0.91 (Tables 3 and 4; Fig. 5).

The third group used linear regression with rainfall amount

and maximum daily rainfall as inputs (Month III, Year III,

Average Monthly V, Annual V), which generated reason-

able results (Table 4) and a slightly overestimated annual R

(Fig. 5). Overall they did not perform as well as did the mod-

els in the second group (Table 4).

The fourth group (Wang et al., 1995) used a combina-

tion of three indices, including rainfall amount, maximum

60 min rainfall amount, and maximum daily rainfall amount

as inputs and generated good simulation results; however,

there was no improvement compared with the two models

by Wang et al. (1995) in the second group (Table 3).

3.5 Applications and recommendations

The results of this study provide a multitude of options for

dealing with the problem of variations in available tempo-

ral resolutions of rainfall data from across the world for de-

veloping erosivity maps and databases. We present a series

of 21 potential equations for use in estimating erosivity at

timescales from event to average annual using input data res-

olution ranging from maximum 10 min rainfall intensity to

average annual rainfall amount. Of the 21 equations we can

recommend the use of 17. Equations Month I, Year I, and

Average Monthly I, which use only total rainfall amounts for

the respective timescales, all had low ME values and poor

prediction capability (Table 4). Annual III, which is a lin-

ear function of average annual rainfall and the maximum

daily precipitation over the recording period, performed very

poorly, with a negative ME value (Table 4).

We found that using finer resolution data input produced

better predictions of erosivity at a given output timescale. An

exception was for the event-based models, where using I30
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gave slightly better results than using I60 or I10. However,

we also found that using equations with the finest data reso-

lution possible, and aggregating or summing results for finer

erosivity timescales, gave the best results (Table 6). In other

words, if one were interested in average annual erosivity, but

had rainfall data available for using the Daily I model, then

results are better using the Daily I model and summing re-

sults over the period of data record rather than using Annual

I–V models. It is also evident that predictions of erosivity

using Daily I improve as the timescale increases. In other

words, the predictions of average annual erosivity calculated

by summing the daily values from Daily I give a higher level

of fit than when using Daily I to estimate daily erosivity (Ta-

ble 6).

Models in this study performed better or similar to mod-

els from previous research given the same rainfall data in-

puts based on these independent validation data (Tables 4

and 5). Models from previous research had higher symmet-

ric mean absolute percentage errors, MAPEsym, and lower

Nash–Sutcliffe model efficiencies, ME, with the exception

of models for event, year, and average annual timescales by

Wang et al. (1995), which had similar MAPEsym and ME

compared to the models in this study.

Much attention has been given to monitoring the erosion

process and its controlling factors at various spatiotempo-

ral scales (Poesen et al., 2003). Characteristics of topogra-

phy and soils are usually relatively constant in the timescales

of interest, whereas rainfall erosivity and vegetation vary

greatly. Therefore, soil erosion monitoring work is often

mainly focused on the dynamics of rainfall erosivity and veg-

etation rather than soil and topography (Vrieling et al, 2014).

Different timescales of erosivity are required in areas with

different resolutions of rainfall data availability. Models pro-

vided in this study have potential to play important roles in

the soil erosion monitoring framework in terms of quantify-

ing the temporal dynamics and changes in rainfall erosivity.
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