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Abstract. This study applies quantile regression (QR) to pre-

dict exceedance probabilities of various water levels, includ-

ing flood stages, with combinations of deterministic fore-

casts, past forecast errors and rates of water level rise as

independent variables. A computationally cheap technique

to estimate forecast uncertainty is valuable, because many

national flood forecasting services, such as the National

Weather Service (NWS), only publish deterministic single-

valued forecasts. The study uses data from the 82 river

gauges, for which the NWS’ North Central River Forecast

Center issues forecasts daily. Archived forecasts for lead

times of up to 6 days from 2001 to 2013 were analyzed. Be-

sides the forecast itself, this study uses the rate of rise of

the river stage in the last 24 and 48 h and the forecast error

24 and 48 h ago as predictors in QR configurations. When

compared to just using the forecast as an independent vari-

able, adding the latter four predictors significantly improved

the forecasts, as measured by the Brier skill score and the

continuous ranked probability score. Mainly, the resolution

increases, as the forecast-only QR configuration already de-

livered high reliability. Combining the forecast with the other

four predictors results in a much less favorable performance.

Lastly, the forecast performance does not strongly depend

on the size of the training data set but on the year, the river

gauge, lead time and event threshold that are being forecast.

We find that each event threshold requires a separate config-

uration or at least calibration.

1 Introduction

River-stage forecasts are no crystal ball; the future remains

uncertain. The past has shown that unfortunate decisions

have been made, because of users’ unawareness of the mag-

nitude of potential forecast errors (Pielke, 1999; Morss,

2010). For many users, such as emergency managers, fore-

casts are most important in extreme situations, such as

droughts and floods. Unfortunately, it is exactly in those sit-

uations that forecasts are the most uncertain, i.e., forecast er-

rors are the largest, due to the infrequency and the subsequent

scarcity of data.

Currently, the National Weather Service (NWS) does not

routinely publish uncertainty information along with their

deterministic short-term river-stage forecast (Fig. 1). Given

the many sources and complexity of uncertainty and the lack-

ing user experience, it is easy to see how forecast users find

it difficult to estimate the forecast error. Additionally, users

might only experience such an event once or twice in their

lifetime, so that they have no experience as to what extent

they can rely on forecasts in such situations. Including un-

certainty in river forecasts would therefore be valuable, just

as has been recommended for weather forecasts in general

(e.g., National Research Council, 2006). Hopefully, decision-

makers would then consider the whole bandwidth of possible

future water levels, rather than focusing on the best estimate

that is currently being published.

There are two types of approaches to estimate forecast

uncertainty (e.g., Leahy, 2007; Demargne et al., 2013; Re-

gonda et al., 2013): those addressing major sources of un-

certainty individually, e.g., input uncertainty and hydrolog-

ical uncertainty, and those taking into account all sources
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Figure 1. Deterministic short-term weather forecast in 6 h intervals as published by the NWS for Hardin, IL, on 24 April 2014 (source:

http://water.weather.gov/ahps2/hydrograph.php?wfo=lsx&gage=hari2).

of uncertainty in a lumped fashion. Both approaches have

their advantages and disadvantages. When sources of uncer-

tainty are modeled separately, their different characteristics

can be taken into account (e.g., some sources of uncertainty

depend on lead time, while others do not). Consequently, the

approach addressing the major sources of output uncertainty

is likely to result in better performing, more parsimonious

model configurations. On the downside, this approach is ex-

pensive to develop, maintain and run. The alternative, i.e., the

lumped quantification of uncertainties, is a less demanding in

development and computation runtime but glosses over many

of the finer details of uncertainties (Regonda et al., 2013).

Most previously developed post-processors to generate

probabilistic forecasts share the overall setup but differ in

their implementation. Independent variables such as the fore-

casted and observed river stage, river flow or precipitation,

and previous forecast errors are used to predict the forecast

error, conditional probability distribution of the forecast er-

ror or other measures of uncertainty for various lead times

(e.g., Kelly and Krzysztofowicz, 1997; Montanari and Brath,

2004; Montanari and Grossi, 2008; Regonda et al., 2013; Seo

et al., 2006; Solomatine and Shrestha, 2009; Weerts et al.,

2011). These techniques differ in a number of ways, includ-

ing their sub-setting of data and the output metric. Please see

Regonda et al. (2013) and Solomatine and Shrestha (2009)

for a summary of each technique.

The National Weather Service has chosen to quantify the

most significant sources of uncertainty using ensemble tech-

niques (Demargne et al., 2013). The NWS has developed the

Hydrologic Ensemble Forecast Service (HEFS) to be able to

provide short-term and medium-term probabilistic forecasts

(Demargne et al., 2013). HEFS includes a post-processor,

the Hydrologic Ensemble Post-Processor (EnsPost). It mod-

els the hydrological uncertainty by estimating the probabil-

ity distribution for each of the ensemble members which

have been produced with varying input to account for input

uncertainty (NWS-OHD, 2013). The Experimental Ensem-

ble Forecast Service (XEFS) additionally features the more

parsimonious Hydrologic Model Output Statistics (HMOS)

streamflow ensemble processor, which estimates the total

uncertainty (input and hydrological uncertainty) of single-

valued streamflow forecasts based on conditional probability

distributions (US Department of Commerce/NOAA, 2012).

This paper further develops one of the techniques men-

tioned above: the quantile regression approach to post-

process river forecasts first introduced by Wood et al. (2009)

and further elaborated by Weerts et al. (2011) and López

López et al. (2014). In a comparative analysis of four dif-

ferent post-processing techniques to generate confidence in-

tervals, the quantile regression technique was one of the two

most reliable techniques (Solomatine and Shrestha, 2009),

while being the mathematically least complicated and requir-

ing few assumptions. After Wood et al. (2009) presented the

proof of concept for the Lewis River in Washington State at

a conference, Weerts et al. (2011) published a formal study

of quantile regression to compute confidence intervals for
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river-stage forecasts. Weerts et al. (2011) achieved impres-

sive results in estimating the 50 and 90 % confidence interval

of river-stage forecasts for three case studies in England and

Wales using QR (quantile regression) with calibration and

validation data sets spanning 2 years each. When applying

QR to river forecasts, Weerts et al. (2011) transformed the

deterministic forecasts and the corresponding forecast errors

into the Gaussian domain using normal quantile transforma-

tion (NQT) to account for heteroscedasticity. Building on the

Weerts et al. (2011) study, López López et al. (2014) com-

pare different configurations of QR with the forecast as the

only independent variable, including configurations without

NQT and preventing the crossing of quantiles. They found

that no configuration was consistently superior for a range of

forecast quality measures (López López et al., 2014).

This paper combines elements of the studies mentioned

above. In some aspects, our approach differs from those three

studies. We predict the exceedance probabilities of flood

stages rather than uncertainty bounds. Additionally, we are

fortunate to have a much larger data set than the three earlier

studies, consisting of archived forecasts for 82 river gauges

covering 11 years. Furthermore, we introduce additional pre-

dictors, as was suggested by López López et al. (2014). This

study does not add to the mathematical technique of quantile

regression itself.

The proposed QR approach is similar to the HMOS ap-

proach, but it differs in the following ways. First, HMOS

uses ordinary linear regression instead of quantile regres-

sion. Second, the QR method uses the single-valued forecast,

rates of rise and past forecast errors as independent variables,

while HMOS includes recently observed and current flows

and quantitative precipitation forecasts (QPFs) as predictors.

Third, in this paper, QR models are built for a number of

event thresholds, whereas HMOS develops models for sub-

sets of forecasted streamflows (Regonda et al., 2013).

Identifying the best-performing set of independent vari-

ables is central to this paper. All possible combinations of

the following predictors have been studied: forecast, the rate

of rise of water levels in past hours, and the past forecast er-

rors. Additionally, the robustness of the resulting QR config-

urations across different sizes of training data sets, locations,

lead times, water levels, and forecast year has been assessed.

The paper is structured as follows. The Data section de-

scribes the used data and reviews the overall forecast error for

the data set. The Method section introduces quantile regres-

sion and the performance measures, and discusses the per-

formed analyses. The Results describes the results of identi-

fying the best-performing set of independent variables. Addi-

tionally, it discusses the robustness of the studied QR config-

urations. The fourth and last section presents the conclusions

and proposes further research ideas.

Figure 2. River gauges for which the North Central River

Forecast Center publishes forecasts daily. Henry (HYNI2) and

Hardin (HARI2) are indicated with arrows. For gauges indicated

by black dots the basin size is missing. The color scale for basin

size in square miles is logarithmic.

2 Data

The NWS’s daily short-term river forecasts predict the stage

height in 6 h intervals for up to 6 days ahead (20 6 h inter-

vals). When floods occur and more information is needed,

the local river forecast center (RFC) can decide to publish

river-stage forecasts more frequently and for more locations.

Welles et al. (2007) provides a detailed description of the

forecasting process.

For this paper, all forecasts published by the North Central

River Forecast Center (NCRFC) between 1 May 2001 and

31 December 2013 were requested from the NCDC’s HDSS

Access System (National Climatic Data Center, 2014; Sta-

tion ID: KMSR, Bulletin ID: FGUS5). In total, the NCRFC

produces forecasts for 525 gauges. For 82 of those gauges,

forecasts have been published daily for at least 2 years, and

are not inflow forecasts. The latter have been excluded from

the forecast error analysis because they forecast discharge

rather than water level. About half of the analyzed gauges

are along the Mississippi River (Fig. 2). The Illinois River

and the Des Moines River are two other prominent rivers in

the region. The drainage areas of the 82 river gauges aver-

age 61 500 mi2 (minimum 200 mi2; maximum 708 600 mi2).

Figure 3 shows an empirical cumulative density function of

drainage areas sizes.

www.hydrol-earth-syst-sci.net/19/3969/2015/ Hydrol. Earth Syst. Sci., 19, 3969–3990, 2015



3972 F. Hoss and P. S. Fischbeck: Performance and robustness of probabilistic river forecasts in the USA

Figure 3. Empirical cumulative density function (ecdf) of sizes of

drainage area for the river gauges that are being forecasted daily by

the NCRFC.

Two river gauges serve as an illustration for the points

made throughout this paper. These two gauges were chosen

to capture different but representative conditions. Hardin, IL,

is just upstream of the confluence of the Illinois River and the

Mississippi River (Fig. 2). Therefore, it can experience back-

watering, when the high water levels in the Mississippi River

prevent the Illinois River from draining. Henry, IL, is located

∼ 200 mi upstream of Hardin, having a difference in eleva-

tion of ∼ 25 ft. The Illinois River is ∼ 330 mi long (Illinois

Department of Natural Resources, 2011), draining an area of

∼ 13 500 mi2 at Henry (USGS, 2015a) and ∼ 28 700 mi2 at

Hardin (USGS, 2015b). The number of case studies has been

limited to two because of computation time.

In general, the NCRFC’s forecasts are well calibrated

across the entire data set. The average error, defined as ob-

servation minus the forecast, is zero for most gauges (Fig. 4).

For lead times longer than 3 days, a slight underestimation by

the forecast is noticeable. By a lead time of 6 days this un-

derestimation averages 0.41 ft (Figs. 4a, 5). Extremely low

water levels, defined as below the 10th percentile of ob-

served water levels, are also well calibrated (Figs. 4b, 5).

However, when considering higher water levels the picture

changes. When only observations exceeding the 90th per-

centile of all observations are considered, the underestima-

tion becomes more pronounced, averaging 0.29 ft for 3 days

of lead time and 1.14 ft for 6 days of lead time (Figs. 4c, 5).

When only looking at observations that exceeded the minor

flood stages corresponding to each gauge, the underestima-

tion averages 0.45 ft for 3 days of lead time and 1.51 ft for

6 days of lead time (Figs. 4d, 5). However, some gauges,

such as Morris (MORI2), Marseilles Lock/Dam (MMOI2)

– both on the Illinois River – and Marshall Town on the

Iowa River (MIWI4) experience average errors of 5–12 ft for

water levels higher than the minor flood stage. The gauges

MORI2 and MMOI2 are upstream of a dam. It is possible

that the forecasts performed so poorly there because the dam

operators deviated from the schedules that they provide the

river forecast centers to base their calculations on. In sum,

predicting the forecast error distribution as is done in this

paper has much added value for forecast users, because the

forecast error can amount to several feet.

3 Method

QR is used to estimate the distribution of river-stage forecasts

for each forecast point in time and location. This information

can be published in a number of formats to suit the needs of

the forecast users. Wood et al. (2009) and Weerts et al. (2011)

chose to study confidence intervals. A confidence interval is

the range between two points on the estimated forecast distri-

bution, e.g., between the 10th and 90th percentiles. Our pa-

per differs in that our output is the probability of exceeding

a flood stage. A flood stage and the corresponding probabil-

ity of it being exceeded are represented by a single point on

the estimated forecast distribution. Assessing forecast per-

formance for a single point rather than for two points on the

estimated distribution allows for scrutinizing forecast perfor-

mance more closely, not least because the method is not nec-

essarily equally successful in both tails of the distribution.

In the following, quantile regression itself and the analysis

to identify the best-performing set of independent variables

are explained.

3.1 Quantile regression

In the context of river forecasts, linear quantile regression has

been used to estimate the distribution of forecast errors as a

function of the forecast itself. Weerts et al. (2011) summarize

this stochastic approach as follows: “[It] estimates effective

uncertainty due to all uncertainty sources. The approach is

implemented as a post-processor on a deterministic forecast.

[It] estimates the probability distribution of the forecast error

at different lead times, by conditioning the forecast error on

the predicted value itself. Once this distribution is known, it

can be efficiently imposed on forecast values.”

Quantile regression was first introduced by

Koenker (2005) and Koenker and Bassett (1978). It is

different from ordinary least square regression in that it

predicts percentiles rather than the mean of a data set.

Koenker and Machado (1999, p. 1305) and Alexander et

al. (2011) demonstrate that studying the coefficients and

their uncertainty for different percentiles generates new

insights, especially for non-normally distributed data.

López López et al. (2014) did not find that the quantile

regression method produces better forecasts if the variables

are subject to NQT beforehand, as was practiced by Weerts

et al. (2011). We chose not to apply NQT, because four of

five of our independent variables are already approximately

normally distributed, only the forecast itself is not.

A quantile regression is run for each lead time and desired

percentile with the forecast error as the dependent variable

and the forecast and other variables as independent variables.

To prevent the quantile regression lines from crossing each

Hydrol. Earth Syst. Sci., 19, 3969–3990, 2015 www.hydrol-earth-syst-sci.net/19/3969/2015/



F. Hoss and P. S. Fischbeck: Performance and robustness of probabilistic river forecasts in the USA 3973

Figure 4. Forecast error for 82 river gauges that the NCRFC publishes daily forecasts for. In counterclockwise direction starting at the top

left: (a) average error; (b) error on days that the water level did not exceed the 10th percentile of observations; (c) error on days that the water

level exceeded the 90th percentile of observations; (d) error on days that the water level exceeded minor flood stage.

other, a fixed-effects model is implemented below a certain

forecast value. Weerts et al. (2011) give a detailed mathe-

matical description for applying QR to river forecasts. De-

tailed instructions to perform NQT can be found in Bogner

et al. (2012). Mathematically, the approach is formulated as

follows (with and without NQT).

Equation (1): QR configuration with NQT, with per-

centiles of the forecast error as the dependent variable and

the one independent variable, both transformed into the nor-

mal domain.

Fτ (t)= fcst(t)+NQT−1

[
I∑
i

ai,τ ·VNQT,i(t)+ bτ

]
(1)

Equation (2): QR configuration without NQT, with per-

centiles of the forecast error as the dependent variable and

multiple independent variables.

Fτ (t)= fcst(t)+

I∑
i

ai,τ ·Vi(t)+ bτ , (2)

where Fτ (t) is the estimated forecast associated with per-

centile τ and time t , fcst(t) is the original forecast at time t ,

Vi(t) is the independent variable i (e.g., the original forecast)

at time t , Vi;NQT(t) is the independent variable I transformed

by NQT at time t and ai,τ and bτ are configuration coeffi-

cients.

The second part of the equations stands for the error esti-

mate based on the quantile regression configuration for each

error percentile τ and lead time. In Eq. (1), used by Weerts et

al. (2011), this estimation was executed in the Gaussian do-

main using only the forecast as independent variable. Our

study mainly uses Eq. (2), i.e., it does not transform the

predictors and the predictand. All quantile regressions were

done using the command rq() in the R package “quantreg”

(Koenker, 2013).

3.2 Verification measures

The QR configuration by Weerts et al. (2011) was evaluated

by determining the fraction of observations that fell into the

confidence intervals predicted by the QR configuration; i.e.,

ideally, 80 % of the observations should be larger than the

predicted 10th percentile for that day, and smaller than the

predicted 90th percentile. López López et al. (2014) used

www.hydrol-earth-syst-sci.net/19/3969/2015/ Hydrol. Earth Syst. Sci., 19, 3969–3990, 2015



3974 F. Hoss and P. S. Fischbeck: Performance and robustness of probabilistic river forecasts in the USA

Figure 5. Empirical cumulative distribution function (ecdf) of forecast error at 82 river gauges for six lead times. Vertical lines show the

median forecast error of the corresponding subset.

a number of measures to assess configuration performance,

e.g., the Brier skill score (BSS), the mean continuous ranked

probability (skill) score (CRPSS), the relative operating char-

acteristic (ROC), and reliability diagrams to compare QR

configurations.

We focus on the BSS – first introduced by Brier (1950) – to

assess QR configurations for three reasons. First, to be able

to determine the best set of predictors it is easiest to choose

a single measure. Second, the BSS allows us to study fore-

cast performance at individual event thresholds. Third, out of

the available measures, the Brier score is attractive because

it can be decomposed into two different measures of forecast

quality (see Eq. 3): reliability and resolution. The third com-

ponent is uncertainty. This type of uncertainty describes the

uncertainty inherent in an event caused by natural variabil-

ity. It is narrower than forecast uncertainty, because the latter

additionally includes the uncertainty that is caused by imper-

fections of the forecast model, i.e., the variables that could

explain some of the uncertainty have not been identified or

correctly parameterized yet. In sum, the BS’ uncertainty term

is not subject to the forecast quality. Equation 3 gives the

definition of the (decomposed) Brier score (e.g., Jolliffe and

Stephenson, 2012; Wikipedia, 2014; WWRP/WGNE, 2009).

Equation (3): Brier score decomposed into three terms: re-

liability, resolution and uncertainty.

BS=
1

N

K∑
k=1

nk(fk − ok)
2
−︸ ︷︷ ︸

Reliability

1

N

K∑
k=1

nk(ok − o)
2
+︸ ︷︷ ︸

Resolution

o(1− o)︸ ︷︷ ︸
Uncertainty

=
1

N

T∑
t=1

(ft − ot )
2, (3)

where BS is the Brier score, N is the number of forecasts,

K is the the number of bins for forecast probability of binary

event occurring on each day, nk is the the number of forecasts

falling into each bin, δk is the the frequency of binary event

occurring on days in which forecast falls into bin k, fk is

the forecast probability, δ is the frequency of binary event

occurring, ft is the forecast probability at time t , and ot is the

observed event at time t (binary: 0 – event did not happen, 1

– event happened).
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Figure 6. Theory behind Brier skill score illustrated for an imaginary forecast (red line): (a) reliability and resolution, (b) skill. In (a), the

area representing reliability should be as small as possible and for resolution as large as possible. The forecast has skill (BSS> 0), i.e.,

performs better than the reference forecast, if it is inside the shaded area in (b). Ideally, the forecast would follow the diagonal (BSS= 1)

(adapted from Hsu and Murphy, 1986; Wilson, 2014).

The Brier score pertains to binary events, e.g., the ex-

ceedance of a certain river stage or flood stage. Reliability

compares the estimated probability of such an event with

its actual frequency. For example, perfect reliability means

that on 60 % of all days for which it was predicted that the

water level would exceed flood stage with a 60 % probabil-

ity, it actually does so. The reliability curve for the forecast

representing perfect reliability would follow the diagonal in

Fig. 6, i.e., the area in Fig. 6a representing reliability would

equal zero (Jolliffe and Stephenson, 2012; Wikipedia, 2014;

WWRP/WGNE, 2009).

Resolution measures the difference between the predicted

probability of an event on a given day and the historically

observed average probability. For example, imagine a gauge

where flood stage has historically been exceeded on 5 % of

the days in a year. If every day at that gauge the probability

of exceeding flood stage is forecasted to be 5 %, the reso-

lution of those forecasts would be zero. After all, the dif-

ference between the predicted frequency and the historical

average is zero. So a forecast with higher resolution is bet-

ter (e.g., Jolliffe and Stephenson, 2012; Wikipedia, 2014;

WWRP/WGNE, 2009). In Fig. 6, the curve for a forecast

with good resolution would be steeper than the dashed line

that represents the historically observed frequency (clima-

tology). It follows that forecasters should strive to maxi-

mize the area in Fig. 6a representing resolution. In abso-

lute terms, the resolution can never exceed the uncertainty

inherent to the river gauge, as represented by the third term

in Eq. (3). (e.g., Jolliffe and Stephenson, 2012; Wikipedia,

2014; WWRP/WGNE, 2009).

A forecast performs better than the reference forecast (in

this case the historically observed frequency), if it (the red

line) is inside the shaded area in Fig. 6b. Then the forecast

is said to have “skill”. The BSS equals the Brier Score nor-

malized by the historically observed frequency, i.e., the res-

olution and reliability terms are being divided by the uncer-

tainty term (Eq. 4). In contrast to the Brier score, this makes

the Brier skill score comparable across gauges with differ-

ent frequencies of a binary event. The BSS can range from

minus infinity to one. A BSS below zero indicates no skill;

the perfect score is one (e.g., Jolliffe and Stephenson, 2012;

Wikipedia, 2014; WWRP/WGNE, 2009).

Equation (4) shows the decomposition of the Brier skill

score:

BSS= 1−
BS

o(1− o)
=

Res

o(1− o)
−

Rel

o(1− o)
, (4)

where BSS is the Brier skill score, BS is the Brier score, Res

is the resolution, Rel is the Reliability, δ is the frequency of

binary event occurring and δ(1− δ the climatological vari-

ance.

To verify that the results hold up for verification mea-

sures other than the BSS, we additionally use the Continuous

Ranked Probability Score (CRPS). The BSS assesses fore-

cast performance for one point on the forecast distribution,

i.e., one event threshold. In contrast, the CRPS, defined by

Eq. (5), measures the forecast performance for the forecast

distribution as the whole. Therefore, the CRPS cannot detect

whether the forecast does better or worse in the tails. Instead,

it is a measure of the forecast’s overall performance. The

CRPS’ perfect score equals zero (e.g., Jolliffe and Stephen-

son, 2012; WWRP/WGNE, 2009).

All measures of forecast quality were computed using the

R package “verification” (NCAR, 2014).

CRPS=
1

N

N∑
n=1

∞∫
−∞

(
F f
n(x)−F

o
n (x)

)2

dx (5)
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where CRPS is the continuous ranked probability score, F f
n is

the forecast probability distribution (cdf) for the nth forecast

case, F o
n is the observation for nth forecast case (cdf) and N

is the number of forecast cases, i.e., length of time series.

3.3 Choice of independent variables

The challenge is to identify a well-performing QR model

with a set of predictors that is both parsimonious and compre-

hensive. Wood et al. (2009) found rate of rise and lead time

to be informative independent variables. Weerts et al. (2011)

achieved good results using only the forecast itself as pre-

dictor. Besides these variables, the most obvious predictors

to include are the current water levels and those observed

24 and 48 h ago, and the forecast error 24 and 48 h ago (i.e.,

the difference between the current water level at issue time

of the forecast that the error distribution is being predicted

for and the forecasts that were produced 24 and 48 h earlier

to predict the current water level). Additional potential inde-

pendent variables are the water levels observed at gauges up-

and downstream at various times, the precipitation upstream

of the catchment area, and the precipitation forecast.

Rates of rise and forecast errors were chosen to comple-

ment the forecast as independent variables. Therefore, in-

stead of using it as an independent variable, separate QR

models have been built for each lead time. After all, the best

choice of independent variables might depend on lead time.

Precipitation and precipitation forecast were not available for

this study, because without direct access to the database at the

NCDC requesting that data is a very lengthy effort.

Forecasts and observed water levels were readily acces-

sible from NCDC databases. Rates of rise and forecast er-

rors can be derived from those two. As will be shown in

Sect. 4.3, it is mathematically challenging to combine in-

dependent variables with different distributions into a joint

predictor. Forecast and observed water levels have a skewed

distribution, because low water levels occur more frequently

than extremely high water levels, while rates of rise and fore-

cast errors are approximately normally distributed. Accord-

ingly, either forecasts and observations can easily be com-

bined into a joint predictor or rates of rise and forecast errors.

For this study the latter option was chosen for the following

reasons. Observed water levels are systematically included

in the NWS forecast model. Assuming a well-defined NWS

forecast model, there should be no statistical relationship be-

tween forecast error and observed water levels. In compari-

son, rates of rise and forecast error are only included in the

NWS model at the discretion of the individual forecaster.

Therefore, the latter two variables are likely to contribute

more information to predicting the distribution of forecast

errors than the forecasts and observed water levels. Nonethe-

less, forecasts were included as the predictor in this study

to demonstrate the difficulty of combining variables with a

skewed distribution with normally distributed variables into

a joint predictor, and because it served as the only indepen-

dent variable in previous studies (Weerts et al., 2011; López

López et al., 2014).

To determine which set of predictors performs best at gen-

erating probabilistic forecasts, all 31 possible combinations

of the forecast (fcst), the rate of rise in the last 24 and 48 h

(rr24, rr48), and the forecast error 24 and 48 h ago (err24,

err48) – see Eq. (5) – were tested for 82 gauges that the

NCRFC issues forecasts for every morning (Table 1). Based

on the Bier skill score, it was determined which joint predic-

tor delivers on average the best out-of-sample forecast per-

formance for various lead times and water levels.

Equation (6) shows the QR configuration without NQT,

with percentiles of the forecast error as the dependent vari-

able and varying combinations of the five independent vari-

ables. This equation was used to predict the water level dis-

tribution for each day at 82 gauges with different lead times.

Fτ (t)= fcst(t)+ afcst,τ · fcst(t)+ arr24,τ · rr24(t)+ arr48,τ

·rr48(t)+ aerr24,τ · err24(t)+ aerr48,τ · err48(t)+ bτ (6)

where Fτ (t) is the estimated forecast associated with per-

centile τ and time t , fcst(t) is the original forecast at time t ,

rr24(t) and rr48(t) are the rates of rise in the last 24 and 48 h

at time t , err24(t) and err48(t) are the forecast errors 24 and

48 h ago (e.g., the original forecast) at time t , and axx,τ and

bτ are the configuration coefficients, forced to be zero if the

predictor is excluded from the joint predictor that is being

studied.

3.4 Computational process

The final output of the computational process is the proba-

bility that a certain water level in the river or flood stage is

exceeded on a given day, e.g., “on the day after tomorrow, the

probability that the river exceeds 15 ft at location X is 60 %.”

This is done in two steps. First, a training data set (first half

of the data) is used to define one quantile regression configu-

ration for each percentile of the error distribution π = [0.05,

0.1, 0.15, . . . , 0.85, 0.90, 0.95] and each lead time. The de-

pendent variable is the forecast error, i.e., the difference be-

tween forecast and observed water level. To recap, depending

on configuration (Table 1), the forecast itself, the rates of rise

and forecast errors serve as independent variables.

In the second step, these QR configurations are used to

predict percentile by percentile the distribution of forecast

errors for each day in the verification data set (the second half

of the data set). Effectively, for each day in the verification

data set, a discrete probability distribution of forecast errors

is predicted. Adding the single-valued forecast to the forecast

error distribution results in a distribution of predicted water

levels. Each estimated percentile π contributes one point to

that distribution.

Then, we calculate the probability with which various wa-

ter levels (called event thresholds hereafter) will be exceeded.

The probability of exceeding each water level is computed by
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Table 1. Joint predictors.

Combination fcst err24 err48 rr24 rr48 Combination fcst err24 err48 rr24 rr48

1
√

16
√ √ √

2
√

17
√ √ √

3
√

18
√ √ √

4
√

19
√ √ √

5
√

20
√ √ √

6
√ √

21
√ √ √

7
√ √

22
√ √ √

8
√ √

23
√ √ √

9
√ √

24
√ √ √

10
√ √

25
√ √ √

11
√ √

26
√ √ √ √

12
√ √

27
√ √ √ √

13
√ √

28
√ √ √ √

14
√ √

29
√ √ √ √

15
√ √

30
√ √ √ √

31
√ √ √ √ √

fcst= forecast; rr24 and rr48= rise rate in the past 24 and 48 h; err24 and err48= forecast error 24 and 48 h ago.

linearly interpolating between the points of the discrete prob-

ability distribution that was computed in the previous step.

Next, the Brier skill score is determined based on predicted

exceedance probability for all days in the verification data

set.

To study whether the various combinations of predictors

perform equally well for high and low thresholds, these last

computational steps (i.e., interpolating to determine the ex-

ceedance probability for a certain water level and calculat-

ing the BSS) were repeated for eight event thresholds: the

10th, 25th , 75th, and 90th percentiles of observed water lev-

els and the four decision-relevant flood stages (action stage,

and minor, moderate, and major flood stage) of each gauge.

Flood stages indicated when material damage or substantial

hinder is caused by high water levels. Therefore, the flood

stages correspond with different percentiles at different river

gauges.

To determine the best-performing set of independent vari-

ables, the entire procedure is repeated for each of the 31 joint

predictors in Table 1, thus using a different set of indepen-

dent variables each time. The robustness of the technique

was tested by analyzing its performance for 82 gauge loca-

tions using different lengths of data sets for five different lead

times.

4 Results

In total, the BSS for 31 joint predictors (Table 1) across var-

ious lead times and event threshold have been compared.

Across 82 river gauges, it has been analyzed which joint pre-

dictor delivers the best BSSs on average. When informative,

the CRPS has been used as an additional measure of forecast

performance.

4.1 Identifying best-performing joint predictors on

average

For each river gauge, the combinations have been ranked by

BSSs. The best-performing combination was ranked as first,

the worst-performing as 31st. It was found that the more

independent variables are included in a joint predictor, the

higher that set of predictors will rank on average (Fig. 7,

Table 2a). Apparently, every additional independent variable

does add information. In other words, the future forecast er-

ror is a function of rates of rise and past forecast errors.

Rising water levels are difficult to anticipate and therefore

a common source of forecast error, because precipitation is

a major source of input uncertainty. For example, it is never

completely certain into which river basin the rain will fall.

Additionally, only the expected precipitation for the com-

ing 12 h is currently included in forecasts, regardless of lead

time. The past forecast errors are a measure of the magni-

tude of impact those unanticipated developments are likely

to have.

For extremely high water levels, this trend favoring larger

joint predictors gradually reverses (Fig. 8). The trend re-

mains statistically significant, but its coefficient decreases for

higher event thresholds (Table 2a) until it changes signs for

major flood stages (Table 2b). A possible explanation is that

combinations with more variables suffer from overfitting for

extreme event thresholds characterized by data scarcity.
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Figure 7. Average rank for each joint predictor for 1–4 days of lead time and two percentiles of observed water levels. Vertical gray lines

correspond to the configurations that include the forecast as one of the predictors. The y axis is reversed so that an increasing trend indicates

increasing performance.

Figure 8. Average rank for each joint predictor for 1–4 days of lead time and the two highest flood stages. Vertical gray lines correspond to

the configurations that include the forecast as one of the predictors. The y axis is reversed so that an increasing trend indicates increasing

performance.

The results hold up when CRPS instead of BSS is used as

a measure of forecast performance. The average rank of joint

predictors based on CRPS is proportional to the average rank

as measured by the BSS previously (Fig. 9). However, scores

themselves are not proportional (Fig. 10), because the BSS

assesses one point on the estimated distribution, while the

CRPS measures the forecast performance for the distribution

as a whole. Figure 10 shows that BSS and CRPs correspond

well for event thresholds Q25 and Q75. However, the BSS

indicates that in the tails (Q10, Q90) the forecast does not

perform as well, i.e., despite equally good CRPS scores the

BSS varies widely.

4.2 Combining differently distributed variables into a

joint predictor

The combinations including the forecast (indicated by gray

vertical lines in Figs. 7 and 8) perform significantly better

than those that exclude it (Table 2). This disadvantageous

impact of the forecast as an independent variable is less pro-

nounced for very high or low event thresholds (Table 2a).

Including the forecast into the joint predictor is even benefi-

cial for major flood stages (Table 2b), when joint predictors

with less rather than more variables perform better.

The forecast is difficult to combine with the other four

predictors (err24/48, rr24/48) because their statistical distri-
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Table 2. Results of regression analyses to determine the impact of including more variables and the forecast into the joint predictor.

(a) Percentiles of observed water levels

Independent variable: Q10 Q25 Q50 Q75

Rank (1–31) Coef. (St. Err.) Coef. (St. Err.) Coef. (St. Err.) Coef. (St. Err.)

Intercept 26.49 (.21)∗∗∗ 27.54 (.19)∗∗∗ 24.47 (.19)∗∗∗ 20.09 (.22)∗∗∗

Number of variables −4.47 (.08)∗∗∗ −5.59 (.08)∗∗∗ −4.98 (.08)∗∗∗ −3.02 (.09)∗∗∗

Forecast included? (binary) 2.01 (.17)∗∗∗ 5.15 (.16)∗∗∗ 8.51 (.16)∗∗∗ 7.18 (.18)∗∗∗

R2 0.23 0.34 0.33 0.17

Adjusted R2 0.23 0.34 0.33 0.17

(b) Flood stages

Independent variable Action FS Minor FS Moderate FS Major FS

Rank (1–31) Coef. (St. Err.) Coef. (St. Err.) Coef. (St. Err.) Coef. (St. Err.)

Intercept 20.92 (.22)∗∗∗ 18.76 (.23)∗∗∗ 15.49 (.27)∗∗∗ 12.58 (.29)∗∗∗

Number of variables −3.33 (.09)∗∗∗ −2.40 (.09)∗∗∗ −0.22 (.11)∗ 1.59 (−12)∗∗∗

Forecast included? (binary) 7.11 (.18)∗∗∗ 6.68 (.19)∗∗∗ 2.02 (.22)∗∗∗ −1.30 (.24)∗∗∗

R2 0.18 0.13 0.01 0.03

Adjusted R2 0.18 0.13 0.01 0.03

p values: ∗∗∗: < 0.001; ∗∗: 0.01; ∗: 0.05; (.): 0.1.

Figure 9. Comparing average rank across 82 gauges based on Brier skill score and CRPS.
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Figure 10. Comparing the performance of combination 30 (err24, err48, rr24, rr48) as measured by Brier skill score and as measured by the

continuous ranked probability score. Each data point corresponds with a gauge at a certain lead time. Since the CRPS’ perfect score equals

zero, the y axis has been reversed.

butions are different. Unlike the dependent variable (fore-

cast error), the forecasts are highly skewed towards the left,

because low water levels occur more frequently. Due to its

skewed distribution, the forecast becomes a better predictor

in a quantile regression predicting a normally distributed de-

pendent variable after a NQT transformation, as successfully

used by Weerts et al. (2011). Without a transformation into

the normal domain, the scatterplot of forecast and forecast

error does not show obvious quantile trends (Fig. 11a). After

NQT, the percentiles show distinct quantile trends laid out

like a fan (Fig. 12a).

In contrast, errors and rise rates are already approximately

normally distributed. No quantile trends can be visually de-

tected after the other four predictors have been subjected to

NQT (Fig. 11b–e). In sum, forecast performance in this study

is better without NQT, because four of the five independent

variables were approximately normally distributed already.

Further research is necessary to reconcile predictors with dif-

ferent distributions. Possible solutions could be to define QR

configurations for subsets of the transformed dependent and

independent variables or to experiment with subjecting only

some but not all predictors to NQT.

4.3 Improvement in forecast performance

Using the best-performing joint predictor at each river gauge

gives an upper bound of the BSSs that can be achieved at

best. Confirming the Wood et al. (2009) findings, addition-

ally including the rates of rise and forecasts errors as in-

dependent variables into the QR configuration improves the

BSS significantly. Figure 13 illustrates the BSS when using

the forecast as the only predictor, as studied by Weerts et

al. (2011), while Fig. 14 shows the performance for the best

joint predictor at each gauge.

Figures 13–15 indicate that the QR method performs bet-

ter for higher than for lower water levels. Due to the skewed

distribution of water levels, the ranges between percentiles

in the left tail (lower water levels) correspond with much

smaller ranges of water levels (in feet) than in the right tail.

Therefore, achieving a good performance in forecasting ex-
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Figure 11. Independent variables plotted against the forecast error for Hardin, IL, with 3 days of lead time. First row: forecast; second row:

past forecast errors; third row: rates of rise.

ceedance probabilities of low event thresholds requires much

better prediction of the forecast error in feet than for higher

event thresholds.

Additionally, Figs. 13–15 show that forecast performance

also decreases with increasing lead time, because variables

such as rates of rise and past forecast error become propor-

tionally less representative with lead time.

Paired t tests for each combination of lead time and

event threshold indicate that using the best joint predictor at

each gauge increased average BSS across all gauges statisti-

cally significantly (Table 3). The performance improves most

where forecasts tend to perform worse. The average increase

in BSS is largest for extreme water levels, most notably for

moderate and major flood stages and for the 10th percentile

of water levels (Table 3). The average increase of BSS for a

major flood stage is even larger than one, meaning that fre-

quently the method did not have skill before, i.e., negative

BSSs. Additionally, predictions with longer lead times ex-

perience larger increases in BSS. Compared to using only

the forecast as an independent variable, using the best com-

binations of forecast, rates of rise and past forecast errors

as predictors at each gauge not only increases the mean

BSS but also decreases the standard deviation of skill scores

across gauges, i.e., performance becomes more consistent

(Figs. 13, 14).

As expected, the CRPS improves as well when using the

best joint predictor at each gauge instead of the forecast

as the only predictor. The average CRPS and its standard
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Figure 12. Independent variables after transforming into the Gaussian domain plotted against the forecast error for Hardin, IL, with 3 days

of lead time. First row: forecast; second row: past forecast errors; third row: rates of rise.

deviation decrease. The improvement is more pronounced

for longer lead times (Fig. 16). Moving away from aver-

age CRPS, Table 4 reveals that the best joint predictors for

high event thresholds (Q75, Q90) do not benefit the average

CRPS. The fact that the average CRPS does not improve im-

plies that the best joint predictors for high event thresholds

increase forecast performance less for high event thresholds

than it worsens performance for low event thresholds. The

best joint predictors for low event thresholds (Q10, Q25) do

improve average CRPS, so they must be improving the fore-

cast so substantially that the average CRPS increases, even

though those best predictors might not perform well for high

event thresholds. This is congruent with the finding that av-

erage BSS increases much more for percentilesQ10 andQ25

than for Q75 and Q90, as shown in Table 3. This reinforces

the finding that separate QR models should be configured for

individual event thresholds based on the BSS, rather than for

the whole distribution based on the CRPS.

The fact that the Brier score can be decomposed into reli-

ability, resolution and uncertainty allows for a closer look at

which improvements are being achieved by including more

predictors than just the forecast. Table 4 summarizes the re-

sults of paired t tests comparing the forecast-only and the

best-performing joint predictor for each gauge for the com-

ponents of the BSS as well as the CRPS.

The Brier score and the Brier skill score mainly im-

prove, because the resolution increases when using the best-

performing set of independent variables at each gauge (Ta-

Hydrol. Earth Syst. Sci., 19, 3969–3990, 2015 www.hydrol-earth-syst-sci.net/19/3969/2015/



F. Hoss and P. S. Fischbeck: Performance and robustness of probabilistic river forecasts in the USA 3983

Table 3. Results of paired t tests comparing the QR method’s performance with only forecast as predictor and the best-performing combina-

tion of five predictors for each river gauge.

1 day 2 days 3 days 4 days

Diff. T stat. Df∗ p val. Diff. T stat. Df∗ p val. Diff. T stat. Df∗ p val. Diff. T stat. Df∗ p val.

Q10 0.20 8.68 80 .000 0.25 8.98 79 .000 0.28 8.53 79 .000 0.27 10.08 79 .000

Q25 0.13 6.06 81 .000 0.15 7.10 81 .000 0.18 9.00 80 .000 0.20 11.35 80 .000

Q75 0.03 10.19 81 .000 0.05 9.58 81 .000 0.08 11.00 81 .000 0.12 10.80 81 .000

Q90 0.03 8.38 81 .000 0.06 9.33 81 .000 0.10 10.54 81 .000 0.15 11.95 81 .000

Action 0.05 7.76 72 .000 0.14 2.37 73 .010 0.14 5.39 73 .000 0.18 7.30 73 .000

Minor 0.40 2.98 60 .002 0.35 3.37 60 .001 0.37 3.70 60 .000 0.51 4.35 62 .000

Moderate 0.44 2.93 41 .003 0.52 2.94 42 .003 0.81 3.97 45 .000 0.74 5.08 47 .000

Major 1.36 3.00 19 .004 1.84 4.27 22 .000 2.14 4.85 26 .000 1.80 6.01 34 .000

∗ Df means degrees of freedom.

Figure 13. BSS for the forecast-only configuration for different lead

times and event thresholds. The BSS’ perfect score equals one. A

BSS of zero indicates a forecast without skill.

ble 4). Visualizing the improvement in forecast performance

for a lead time of 3 days and the 75th percentile threshold

(Q75), Fig. 17 illustrates that the forecast-only QR configu-

ration as studied by Weerts et al. (2011) has high reliability

(i.e., the reliability is close to zero). So reliability improves

statistically significantly for lower water levels (Q10, Q25),

but the magnitude of improvement in reliability is 1 order of

magnitude smaller than the improvement in resolution (Ta-

ble 4).

4.4 One-size-fits-all approach – Brier skill score

Combing these findings, the configurations for the various

river gauges can generally be based on the same joint predic-

tor of the four independent variables excluding the forecast

itself (combination 30). But for extremely high water levels,

a configuration specific to each river gauge has to be built in

order to achieve high BSSs.

Figure 14. BSS for the best-performing joint predictor at each

gauge for different lead times and event thresholds. The BSS’ per-

fect score equals one. A BSS of zero indicates a forecast without

skill.

Verifying this finding, a one-size-fits-all approach was

tested to investigate whether customizing the QR configu-

ration to each river gauge would be worth it. The rates of rise

in the past 24 and 48 h and the forecast errors 24 and 48 h

ago (combination 30 in Table 1) serve as independent vari-

ables for this approach. This combination of predictors has

been chosen, because it performed well for most gauges (see

Sect. 4.1). Furthermore, less important predictors in the com-

bination will get small coefficients in the quantile regression.

So additional variables are unlikely to do harm but can im-

prove the estimates at various stages. The price of opting for

a joint predictor with more variables is an increase of the risk

of overfitting.

Paired t tests have been executed to investigate whether

this one-size-fits all approach performs statistically signif-

icantly worse than using the best combination of predic-

tors for each gauge. It was found that this approach on av-
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Table 4. Results of paired t tests comparing the QR method’s performance with only forecast as predictor and the best-performing combina-

tion of five predictors for each river gauge for the Brier score.

Event Lead Brier Brier Reliability Resolution CRPS

threshold time score skill score

Q10

1 day −.012∗∗∗ .20∗∗∗ −.002∗∗∗ .008∗∗∗ −.026*∗∗

2 days −.014∗∗∗ .25∗∗∗ −.002∗∗∗ .010∗∗∗ −.082∗∗

3 days −.016∗∗∗ .28∗∗∗ −.002∗∗∗ .012∗∗∗ −.121∗∗∗

4 days −0.17∗∗∗ .27∗∗∗ −.001∗ .013∗∗∗ −.054

Q25

1 day −.018∗∗∗ .13∗∗∗ −.003∗∗∗ .013∗∗∗ −.028∗∗

2 days −.023∗∗∗ .16∗∗∗ −.002∗∗∗ .018∗∗∗ −.088∗∗

3 days −.027∗∗∗ .18∗∗∗ −.003∗∗∗ .021∗∗∗ −.097∗∗

4 days −.031∗∗∗ .20∗∗∗ −.002∗∗∗ .025∗∗∗ −.475.

Q75

1 day −.005∗∗∗ .03∗∗∗ .000 .011∗∗∗ .342

2 days −.011∗∗∗ .05∗∗∗ −.000. .015∗∗∗ .009

3 days −.016∗∗∗ .08∗∗∗ −.000 .021∗∗∗ .188

4 days −.025∗∗∗ .12∗∗∗ −.000 .028∗∗∗ −.064

Q90

1 day −.003∗∗∗ .03∗∗∗ −.000∗∗ .013∗∗∗ .159

2 days −.005∗∗∗ .06∗∗∗ −.000∗ .015∗∗∗ −.086∗∗

3 days −.010∗∗∗ .10∗∗∗ −.000 .019∗∗∗ .163

4 days −.015∗∗∗ .15∗∗∗ −.000∗ .025∗∗∗ −.075

p values: ∗∗∗: < 0.001; ∗∗: 0.01; ∗: 0.05; . : 0.1.

Figure 15. Empirical cumulative density functions of three QR configurations predicting exceedance probabilities of the action, minor,

moderate, and major flood stages: the configuration using the transformed forecast as the only independent variable (NQT fcst), and the

best-performing combination for each river gauge (upper performance limit; best combis).
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Table 5. Results of paired t test comparing best combinations of predictors with the one-size-fits-all approach.

1 day 2 day 3 days 4 days

Diff. T stat. Df p val. Diff. T stat. Df p val. Diff. T stat. Df p val. Diff. T stat. Df p val.

Q10 .054 4.61 79 .000 .071 5.56 79 .000 .075 6.36 79 .000 .071 7.54 79 .000

Q25 .010 5.73 80 .000 .016 4.17 80 .000 .016 5.11 80 .000 .019 3.76 80 .000

Q75 .003 6.56 81 .000 .004 7.25 81 .000 .005 4.63 81 .000 .004 6.42 81 .000

Q90 .008 7.10 81 .000 .015 4.37 81 .000 .012 5.16 81 .000 .021 1.84 81 .035

Action .024 1.94 72 .028 .031 1.97 73 .026 .039 1.96 73 .027 .022 2.20 73 .016

Minor .023 3.14 60 .001 .028 3.52 60 .000 .021 4.89 60 .000 .023 3.89 62 .000

Moderate .039 4.79 41 .000 .052 6.18 42 .000 .063 4.98 45 .000 .060 4.40 47 .000

Major .245 2.09 19 .025 .212 2.34 22 .014 .234 2.66 26 .007 .375 3.25 34 .001

Figure 16. CRPS for the forecast-only configuration and for the

best-performing joint predictor at each gauge for different lead

times and event thresholds. The CRPS’ perfect score equals zero.

erage performs statistically significantly not as well as us-

ing the best-performing combination of predictors. But the

difference in average BSS is small, ranging between 0.003

and 0.075 (Table 5).

However, using the best joint predictors results in a much

better performance for major flood stages than the one-size-

fits-all approach. The average difference between average

BSSs amounts to 0.21–0.38 (Table 5). Given that a BSS for a

forecast with skill ranges between one and zero, this is a sub-

stantial difference. In sum, the same joint predictor can be

used for all river gauges without much loss in performance,

except for extremely high water levels.

4.5 Robustness

4.5.1 Minimum length of training data set

Stationarity cannot always be assumed (Milly et al., 2008).

River regimes can change through natural processes like sed-

Figure 17. Comparison of the forecast-only QR configuration

(i.e., only transformed forecast as independent variables) and us-

ing the best-performing joint predictor at each gauge along vari-

ous measures of forecast quality: BS, BSS, reliability (Rel), resolu-

tion (Res), and CRPS. Lead time of 3 days and 75th percentile of

observation levels as threshold.

imentation or human intervention. Those changes can occur

gradually or as step changes. This analysis of robustness is

meant to determine the minimum length of the training data

set to be able to produce skillful forecasts again after a step

change using the QR method. Additionally, the analysis is

meant to find out to which length the forecaster should limit

the training data set when gradual change is occurring. After

all, in such a case, each year further in the past is less repre-

sentative of the year ahead, so the training data set should be

as short as possible.

The impact of the length of the training data set on the

configuration’s performance measured by the BSS was as-

sessed for the best joint predictor (i.e., rates of rise and fore-

cast errors as independent variables for all gauges) for Hardin

and Henry on the Illinois River. Each year between 2003 and

2013 was forecast by QR configurations trained on however

many years of archived forecasts were available in that year,
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Figure 18. Brier skill score for various forecast years and various sizes of the training data set across different lead times (colors) and event

thresholds (plots) for Hardin, IL (HARI2). The filled-in end point of each line indicates the BSS for the forecast year on the x axis with 1

year in the training data set. Each point to the left stands for 1 additional training year for that same forecast year.

i.e., the forecasts for 2005 are produced by a model trained

on less data than those for 2013. Then, the BSS for that year

(e.g., 2005 or 2013) was computed.

Figures 18 and 19 show that at Henry and Hardin it barely

matters for the BSS how many years are included in the

training data set. This finding is congruent with the fact that

Weerts et al. (2011) were able to achieve outstanding results

with the QR method using training data sets that were only 2

years long. Only needing short time series to define a skillful

QR configuration implies (i) skillful forecasts can be pro-

duced not long after a step change and that (ii) the configu-

ration parameters can be updated regularly so that gradually

changing relationships between predictors, for example, can

be taken into account.

4.5.2 Sensitivity analysis

Furthermore, we aim at identifying the factors that impact

forecast skill as quantified by the BSS and at generalizing

the result regarding training data length described for Hardin

and Henry above. To do so, the same analysis as for Hardin

and Henry was repeated for all 82 gauges. Following that, a

regression analysis was executed with the BSS as the depen-

dent variable and event thresholds (Q10,Q25,Q75,Q90), the

river gauges and forecast years as independent nominal vari-

ables, and the lead time (1–4 days) and number of training

years as independent ratio variables. This regression is meant

to identify the factors to which the forecast performance as

measured by the BSS is sensitive to, i.e., which factors sta-

tistically significantly impact forecast performance.

The forecast performance was found to vary statistically

significantly across all tested dimensions, except the number

of training years (Table 6). This results in a very wide range

of BSSs (Figs. 13, 14). Accordingly, for the user, it is par-

ticularly difficult to know how much to trust a forecast if the

performance depends so much on context. Likewise, this is

the case for the QR configuration based on the forecast only

(not shown).

A closer look at the regression coefficients (Table 6) pro-

vides interesting insights. For low event thresholds, the BSSs

are much worse than for high thresholds. As mentioned

above, for such low event thresholds the forecast has to pre-
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Figure 19. Brier skill score for various forecast years and various sizes of the training data set across different lead times (colors) and event

thresholds (plots) for Henry, IL (HNYI2). The filled-in end point of each line indicates the BSS for the forecast year on the x axis with 1 year

in the training data set. Each point to the left stands for 1 additional training year for that same forecast year.

dict the water levels much more accurately to achieve a sim-

ilar forecast performance than for higher water levels, due

to the skewed distribution of water levels. In the lower tail,

each percentile corresponds with a much shorter span of wa-

ter levels than in the upper tail. Using a higher resolution in

the lower tail is therefore advisable.

As expected, the BSSs slightly decrease with lead time,

because independent variables such as rates of rise and past

forecast error gradually become less representative of the

days to be forecasted.

Regarding the forecast quality for each forecast year, the

regression is slightly biased. The earlier years are included

less often in the data set, having on average less years of

data in their training data set because, for example, unlike

for the year 2013, 10 years of training data were not available

for the year 2006. Nonetheless, the regression indicates that

2008 was particularly difficult to forecast and 2012 relatively

easy, i.e., they are associated with relatively low and high

coefficients respectively (Table 6).

The performance of the forecast additionally depends on

the river gauge. The coefficients of the river gauges, included

as factors in the regression, have been excluded from Table 6

for the sake of brevity. Instead, Fig. 20 maps the geographic

position of the river gauges with the color code indicating

each gauge’s regression coefficient. The coefficient indicates

the method’s performance at the particular gauge as com-

pared to the average performance. The coefficients are lower

and therefore the Brier skill scores are lower for gauges far

upstream a river, off the main stream, and those close to con-

fluences.

Precipitation is one of the major sources of uncertainty in

river forecasting. For example, if rainfall shifts by a few miles

it might be raining down in a different river basin. This makes

rises in water level difficult to anticipate, making rates of rise

such a successful predictor of the distribution of forecast er-

rors. However, upstream and close to confluences, rates of

rise and past forecast errors perform less well as predictors

than elsewhere. This suggests that uncertain expected rainfall

constitutes a smaller part of the overall uncertainty.

Close to confluences, the joining second river adds a major

part of that additional uncertainty. The interaction between

the rivers increases uncertainty, in addition to the uncertainty
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Figure 20. Geographical position of rivers. Colors indicate the re-

gression coefficient of each station with the Brier skill score as de-

pendent variable.

associated with the joining river itself, e.g., the uncertain

expected rainfall along its course. At upstream gauges, the

rates of rise possibly provide less information, because due

to smaller basin sizes concentration times are shorter, i.e.,

water levels rise quicker. In this case, the rise in water level

of the past 24 and 48 h may not sufficiently capture rises oc-

curring with shorter notice. The argument holds for forecast

errors as well. If concentration times are short, the forecast

error of 48 h ago is not representative of those in the near

future.

5 Conclusions

In this study, QR has been applied to estimate the probabil-

ity of the river water level exceeding various event thresh-

olds (i.e., 10th, 25th, 75th, and 90th percentiles of observed

water levels as well as the four flood stages of each river

gauge). It further develops the application of QR for estimat-

ing river forecast uncertainty (a) comparing different sets of

independent variables and (b) testing the technique’s robust-

ness across locations, lead times, event thresholds, forecast

years and sizes of the training data set.

When compared to the configuration using only the fore-

cast, it was found that including rates of rise in the past

24 and 48 h and the forecast errors of 24 and 48 h ago as

independent variables improves the performance of the QR

configuration, as measured by the Brier skill score. This con-

Table 6. Regression results of sensitivity analysis.

Coefficient SD

Intercept −0.111 0.029 ∗∗∗

Event thresholds ∗∗∗

Q25 0.584 0.006 ∗∗∗

Q75 0.852 0.006 ∗∗∗

Q90 0.805 0.007 ∗∗∗

Forecast years ∗∗∗

2004 −0.259 0.019 ∗∗∗

2005 −0.083 0.017 ∗∗∗

2006 −0.136 0.017 ∗∗∗

2007 −0.123 0.016 ∗∗∗

2008 −0.205 0.016 ∗∗∗

2009 −0.128 0.016 ∗∗∗

2010 −0.141 0.016 ∗∗∗

2011 −0.127 0.016 ∗∗∗

2012 0.048 0.016 ∗∗∗

2013 −0.042 0.016 ∗∗∗

Numbers of years in training data set 0.001 0.001

River gauges ∗∗∗

For the sake of brevity,

the 82 river gauges included

in the regression as nominal

variables have been omitted here.

R2 0.32

Adjusted R2 0.31

p values: ∗∗∗: < 0.001; ∗∗: 0.01; ∗: 0.05; (.): 0.1.

firms Wood et al.’s (2009) finding that rate of rise is a valu-

able predictor for QR error models. The configuration with

the forecast as the only independent variable, as studied by

Weerts et al. (2011), produced estimates with high reliability.

Including the other four predictors mentioned above mainly

increases the resolution.

For extremely high water levels, the combinations of in-

dependent variables that perform best vary across stations.

On those days, combinations of fewer independent variables

perform better than those that include more. The most likely

explanation is that QR configurations based on large joint

predictors result in overfitting the data. In contrast to these

extremely high event thresholds, larger sets of predictors

work better than smaller ones for non-extreme and low event

thresholds. Additionally, customizing the set of predictors to

the event thresholds does not improve the BSS much, except

for extremely high event thresholds, i.e., major flood stage.

When forming a joint predictor, the independent variables,

rates of rise and forecast errors, do not combine well with the

forecast itself, because the forecast has a skewed distribution

while the other predictors are approximately normally dis-

tributed. The forecast becomes an excellent predictor for lin-

ear quantile regression after NQT. However, the other four

variables lose their value as predictors when subjected to
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NQT, because their original distribution is already approxi-

mately normal. Therefore, it is difficult to combine predictors

with different distributions. A possible solution could be to

define QR configurations for subsets of the transformed data

or to experiment with only subjecting some of the predictors

to NQT.

This study shows the importance of configuring QR mod-

els for individual event thresholds rather than using one con-

figuration to estimate the whole forecast distribution. The

tails are too different to use the same joint predictors and

parametrization.

The studied QR configurations are relatively robust to the

size of training data set, which is convenient if stationarity

cannot be assumed (Milly et al., 2008), a step change in

the river regime has occurred or – as is the case for most

river forecast centers – only recent forecast data have been

archived. However, the performance of the technique de-

pends heavily on the river gauge, the lead time, event thresh-

old and year that are being forecast. This results in a very

wide range of Brier skill scores. This means that the dan-

ger remains that forecast users make good experiences with

a forecast one year or at one location and assume it is equally

reliable in other locations and every year. As is the case with

most other forecasts, an indication of forecast uncertainty

needs to be communicated alongside the exceedance prob-

abilities generated by our approach.

As is the case for many forecasting methods, the stud-

ied QR configurations perform less well for longer lead

times, extreme event thresholds that are characterized by data

scarcity, and for gauges far upstream a river, off the main

stream or close to confluences where different factors interact

with each other. Additionally, QR configurations underper-

form for low event thresholds. Due to the skewed distribution

of water levels, forecasts have to perform better in estimating

low water levels to achieve the same BSSs as for high event

thresholds, because in the lower tail each percentile spans a

smaller range of water levels. Using a higher resolution in the

lower tail would probably improve the forecast performance

for low event thresholds.

6 Future work

This technique can be further developed in several ways to

achieve higher Brier skill scores and more robustness. First,

more independent variables can be added. Observed precip-

itation, the precipitation forecast (i.e., POP – probability of

precipitation) and the upstream water levels are promising

candidates, because the forecast used in this study includes

the precipitation forecast for only the next 12 h. However,

currently, the precipitation data and forecasts can only be re-

quested in chunks of a month, three chunks per day, from the

NCDC’s HDSS Access System. For a period of 12 years, re-

questing such data for several weather stations is obviously

time consuming, not least because the geographical units of

the weather forecasts bulletins do not correspond with those

of the river forecast bulletins. Upstream water levels can

easily be included after manually determining the upstream

gauge(s) for each of the 82 NCRFC gauges. To improve per-

formance at gauges close to river confluences, off the main

stream and upstream water levels of the gauges on the joining

river should be included as well.

However, note that many hydrological variables have a

skewed distribution, so that they cannot readily be combined

into a joint predictor with normally distributed variables such

as rates of rise and past forecast errors, as used in this study.

Future work should focus on reconciling predictors with dif-

ferent distributions.

Different approaches of sub-setting the data to improve

performance also warrant consideration in boosting the per-

formance of the QR method. Particularly, clustering the data

by variability seems promising.

Additionally, the studied technique would need to be ver-

ified for gauges for which the NCRFC does not publish

daily forecasts. Ignorance of the uncertainty inherent in river

forecasts has had some of the most unfortunate impacts on

decision-making in Grand Forks, ND, and Fargo, ND (Pielke,

1999; Morss, 2010). Both of those stages are discontinuously

forecasted NCRFC gauges.

Finally, this paper uses a brute force approach by simply

calculating and comparing all possible combinations of inde-

pendent variables. A mathematically more challenging step-

wise quantile regression would not only be more elegant but

would also provide better safeguards against overfitting the

data.
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