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Abstract. Information about rainfall–runoff processes is

essential for hydrological analyses, modelling and water-

management applications. A hydrological, or diagnostic, sig-

nature quantifies such information from observed data as an

index value. Signatures are widely used, e.g. for catchment

classification, model calibration and change detection. Un-

certainties in the observed data – including measurement in-

accuracy and representativeness as well as errors relating to

data management – propagate to the signature values and re-

duce their information content. Subjective choices in the cal-

culation method are a further source of uncertainty.

We review the uncertainties relevant to different signa-

tures based on rainfall and flow data. We propose a generally

applicable method to calculate these uncertainties based on

Monte Carlo sampling and demonstrate it in two catchments

for common signatures including rainfall–runoff thresholds,

recession analysis and basic descriptive signatures of flow

distribution and dynamics. Our intention is to contribute to

awareness and knowledge of signature uncertainty, including

typical sources, magnitude and methods for its assessment.

We found that the uncertainties were often large (i.e. typ-

ical intervals of ± 10–40 % relative uncertainty) and highly

variable between signatures. There was greater uncertainty

in signatures that use high-frequency responses, small data

subsets, or subsets prone to measurement errors. There was

lower uncertainty in signatures that use spatial or temporal

averages. Some signatures were sensitive to particular uncer-

tainty types such as rating-curve form. We found that sig-

natures can be designed to be robust to some uncertainty

sources. Signature uncertainties of the magnitudes we found

have the potential to change the conclusions of hydrological

and ecohydrological analyses, such as cross-catchment com-

parisons or inferences about dominant processes.

1 Introduction

1.1 Hydrological signatures and observational

uncertainty

Information about rainfall–runoff processes in a catchment

is essential for hydrological analyses, modelling and water-

management applications. Such information derived as an

index value from observed data series (rainfall, flow and/or

other variables) is known as a hydrological or diagnostic sig-

nature and is widely used in both hydrology (Hrachowitz et

al., 2013) and ecohydrology (Olden and Poff, 2003). The re-

liability of signature values depends on uncertainties in the

data and calculation method, and some signatures may be

particularly susceptible to uncertainty. Signature uncertain-

ties have so far received little attention in the literature; there-

fore, guidance on how to assess uncertainty and typical un-

certainty magnitudes would be valuable.

Signatures are used to identify dominant processes and to

determine the strength, speed and spatiotemporal variabil-

ity of the rainfall–runoff response. Common signatures de-

scribe the flow regime (e.g. flow duration curve, FDC, and

recession characteristics) and the water balance (e.g. runoff

ratio and catchment elasticity; Harman et al., 2011). Field

studies have identified drivers of catchment function, such

as a threshold response to antecedent wetness (Graham et

al., 2010b; Penna et al., 2011; Tromp-van Meerveld and Mc-

Donnell, 2006a), which have been captured as signatures

(McMillan et al., 2014). Signatures often incorporate mul-

tiple data types, including soft data (Seibert and McDonnell,

2002; Winsemius et al., 2009).

There is a long history of using flow signatures in eco-

hydrology to assess instream habitat including the seasonal
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streamflow pattern, and the timing, frequency and duration

of extreme flows (e.g. Jowett and Duncan, 1990). Signa-

tures are used to detect hydrological change, e.g. Archer and

Newson (2002) used flow signatures to assess the impacts

of upland afforestation and drainage. Signatures can define

hydrological similarity between catchments (McDonnell and

Woods, 2004; Sawicz et al., 2011; Wagener et al., 2007) and

assist prediction in ungauged basins (Blöschl et al., 2013).

Model calibration criteria using signatures are useful be-

cause they preserve information in measured data (Gupta et

al., 2008; Refsgaard and Knudsen, 1996; Sugawara, 1979).

Signatures used in calibration include the FDC (Westerberg

et al., 2011), flow entropy (Pechlivanidis et al., 2012), the

spectral density function (Montanari and Toth, 2007), and

combinations of multiple signatures (Pokhrel et al., 2012).

By using signatures that target individual modelling deci-

sions, model components can be tested for compatibility with

observed data (Clark et al., 2011; Coxon et al., 2013; Hra-

chowitz et al., 2014; Kavetski and Fenicia, 2011; Li and Siva-

palan, 2011; McMillan et al., 2011). Hydrological signatures

have been regionalised to ungauged basins and then used to

constrain a model for the ungauged basin (Kapangaziwiri et

al., 2012; Westerberg et al., 2014; Yadav et al., 2007).

Some authors have considered the effect of data uncer-

tainty on hydrological signatures (Kauffeldt et al., 2013), par-

ticularly in model calibration. Blazkova and Beven (2009) in-

corporate uncertainties in signatures used as limits of accept-

ability to constrain hydrological models. Juston et al. (2014)

investigate the impact of rating-curve uncertainty on FDCs

and change detection for a Kenyan basin. They show that

uncertainty in extrapolated high flows creates significant un-

certainty in the FDC and the total annual flow. Kennard et

al. (2010) discuss the uncertainties affecting ecohydrological

flow signatures from measurement error, data retrieval and

preprocessing, data quality, and the hydrologic metric esti-

mation.

1.2 Uncertainty considerations relevant for

hydrological signatures

We present a short description of data uncertainties relevant

to hydrological signatures (see McMillan et al., 2012, for

a longer review). In general, data uncertainties stem from

(1) measurement uncertainty (e.g. instrument inaccuracy or

malfunction), (2) measurement representativeness for the

variable under study (e.g. point rainfall compared to catch-

ment average rainfall), and (3) data management uncertainty

(e.g. data entry errors, filling of missing values or station co-

ordinate errors). Errors from data management, equipment

malfunction or human errors can often be detected and cor-

rected in quality control (Bengtsson and Milloti, 2010; Eis-

cheid et al., 1995; Viney and Bates, 2004; Westerberg et

al., 2010). But some data errors, e.g. poorly calibrated or off-

level rain gauges, are difficult to correct post hoc (Sieck et

al., 2007). The calculation of some signatures requires sub-

jective decisions that introduce extra uncertainty, for exam-

ple storm identification criteria, data time step, and whether

to split the data by month/season (e.g. Stoelzle et al., 2013).

Each uncertainty component requires an error model that

specifies the error distribution and dependencies (e.g. errors

may be heteroscedastic and/or autocorrelated). It is essential

that the error model accurately reflects the uncertainty, rather

than simply adding random noise, as hydrological uncertain-

ties are typically highly structured. Some measurement un-

certainties can be estimated by repeated sampling, whereas

representativeness errors are difficult to estimate. The lat-

ter are often epistemic due to lack of knowledge at unmea-

sured locations/time periods (e.g. rainfall distant from rain

gauges). The most appropriate method to assess data uncer-

tainty depends on the information available and the hydrolo-

gist’s knowledge of the catchment. For example, the choice

of likelihood function may depend on characteristics of the

data errors and the measurement site. Uncertainty estimation

depends on the perceptual understanding of the uncertainty

sources as well as the studied system and there is potential

for a false sense of certainty about uncertainty where strong

error model assumptions are made (Brown, 2004). Juston et

al. (2014) refer to uncertainty2 and show how interpretation

of uncertainties as random vs. systematic affects hydrologic

change detection. This paper was focused on signature uncer-

tainty rather than data uncertainty; we stress that alternative

data uncertainty assessment methods could be used where the

perceptual understanding of the uncertainty sources is differ-

ent.

The objectives of this paper were (1) to contribute to

the community’s awareness and knowledge of observational

uncertainty in hydrologic signatures, (2) to propose a gen-

eral method for estimating signature uncertainty, and (3) to

demonstrate how typical uncertainty estimates translate to

magnitude and distribution of signature uncertainty in two

example catchments.

2 Catchments and data

We used two catchments: the Brue catchment in the UK, and

the Mahurangi catchment in New Zealand. This enabled us

to compare signature uncertainties in different locations and

with different uncertainty sources. Both catchments have ex-

cellent rain-gauge networks that allowed us to quantify un-

certainty in rainfall data, and there is some existing knowl-

edge of the dominant hydrological processes.

2.1 The Mahurangi catchment

The Mahurangi is a 50 km2 catchment in the North Island of

New Zealand. It has a warm and humid climate, with mean

annual rainfall of 1600 mmyr−1. The catchment has hills and

gently rolling lowlands, and land use is a mixture of pasture,

native forest and pine plantation. The soils are clay loams,
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Figure 1. The Mahurangi catchment in New Zealand and the loca-

tion of the rain gauges and the outlet flow gauge.

less than 1 m deep. Extensive data sets of rainfall and flow

were collected during the Mahurangi River Variability Ex-

periment 1997–2001 (Woods et al., 2001). We used hourly

data from the 13 tipping bucket rain gauges and the catch-

ment outlet flow gauge for 1 January 1998–31 December

2000 (Fig. 1). Missing rainfall values were available from a

previous study that had infilled them using linear correlation

with a nearby site. The flow gauge has a two-part triangu-

lar weir for low to medium flows, and a rated section with

confining wooded banks for high flows. During the study pe-

riod, the maximum recorded stage was 3.8 m, but the highest

gauged stage is 2.7 m.

2.2 The Brue catchment

The predominantly rural 135 km2 Brue catchment in south-

west England has low grassland hills of up to 300 m a.s.l.

(Fig. 2). Clay soils overlay alternating bands of permeable

and impermeable rocks. An extensive precipitation data set

consisting of 49 tipping-bucket rain gauges and radar data

with 15 min resolution was created by the HYREX (Hy-

drological Radar Experiment) project (Moore et al., 2000;

Wood et al., 2000). We used the data from 1 January 1994

to 31 December 1997, with a mean annual precipitation

of 820 mmyr−1. The extensive quality control described by

Wood et al. (2000) included analyses of monthly cumulative

rainfall totals and correlation analyses of timing errors. The

detected errors included those caused by instrument malfunc-

tions such as funnels blocked by debris and due to damage to

Figure 2. The Brue catchment in south-west England, and the lo-

cation of the precipitation and discharge stations. The percent of

missing values after quality control is given for each rain gauge.

electrical cables by mice. There were thus substantial peri-

ods of missing data resulting after quality control (Fig. 2),

even for these carefully maintained rain gauges. We interpo-

lated the missing precipitation values with inverse-distance

weighting to obtain a complete data set for subsampling anal-

ysis.

The Lovington discharge station has a crump profile weir

for low flows and a rated section above 0.6 m. The whole

stage range was gauged and the water was below bankfull

level for the chosen period. The stage–discharge relationship

is affected by downstream summer weed growth resulting in

scatter in the low-flow part of the rating curve.

3 Method: estimation of uncertainty in hydrological

signatures

Uncertainty sources and distributions are application spe-

cific, so a general analytic solution for the signature uncer-

tainty is not available. We suggest that Monte Carlo simu-

lation provides a generally applicable and flexible method,

by sampling equally likely possible realisations of the true

data values (e.g. rainfall or flow series), conditioned on the

observed data. Where multiple data sources are needed (e.g.

www.hydrol-earth-syst-sci.net/19/3951/2015/ Hydrol. Earth Syst. Sci., 19, 3951–3968, 2015
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Figure 3. Schematic description of the method used for estimation

of signature uncertainty.

calculation of runoff ratio), paired samples are used. Each

sampled data series is used to calculate the signature value,

and the values collated to give the signature distribution.

This technique has previously been used to determine un-

certainty in discharge (McMillan et al., 2010; Pappenberger

et al., 2006) and rainfall (Villarini and Krajewski, 2008).

We applied the Monte Carlo (MC) approach to estimate

uncertainty in signatures of different complexity. We used

signatures that require rainfall and/or streamflow data only.

Our method is described in Fig. 3 and has four steps: (1) iden-

tification of uncertainty sources in the data and from sub-

jective decisions in signature calculation, (2) specification of

uncertainty models for each uncertainty source either from

the literature or catchment-specific analyses, (3) Monte Carlo

sampling from the different uncertainty models and calcu-

lation of signature values for each sample, and (4) analy-

ses of the estimated signature distributions, their dependence

on individual uncertainty sources and comparisons between

catchments. We analysed both the absolute and relative un-

certainty distributions, where the relative uncertainties were

defined using the signature value from the best-estimate dis-

charge and precipitation.

3.1 Method: data uncertainty sources and their

estimation

We first describe the error models for uncertainties relating to

rainfall and flow. Further uncertainty sources that are specific

to a particular signature are described separately in Sect. 3.2.

Table 1 presents a summary of all uncertainty sources to-

gether with literature references for the uncertainty estima-

tion methods.

3.1.1 Catchment average rainfall

Identification of uncertainty sources

We considered catchment average rainfall estimated from a

network of rain gauges, with three main uncertainty sources:

point measurement uncertainty, spatial interpolation uncer-

tainty and equipment malfunction uncertainty (e.g. unrecog-

nised blocked gauges). Point uncertainty includes random er-

rors such as turbulent airflow around the gauge (Ciach, 2003)

and is usually assessed using co-located gauges. Systematic

point errors are also common (e.g. undercatch due to wind

loss, wetting loss, splash-in/out). In theory, systematic er-

rors can be corrected for, but this is difficult and the site-

specific information required is not always available (Sieck

et al., 2007). In this study, we considered random point un-

certainty but not systematic components. Interpolation errors

occur when estimating catchment average rainfall from the

point measurements at the gauges and depend on rainfall spa-

tial variability (affected by topography, rain rate and storm

type), density of gauges and network design.

Uncertainty estimation method

Point uncertainty was calculated using the formula derived

by Ciach (2003) from a study of 15 co-located tipping bucket

rain gauges over 12 weeks:

σ = 0.0035+ 0.2/r, (1)

where r is the rainfall rate (in mmh−1) and σ is the

standard deviation of the relative error in 1 h measure-

ments. No information about the distribution of the errors

was given; we assumed a Gaussian distribution with zero

mean. Interpolation uncertainty was estimated by subsam-

pling from the gauge network. We subsampled using 1–13

(1–49) gauges for Mahurangi (Brue) for the basic signatures.

For the combined rainfall–runoff signatures, three gauge

densities were used: 1 gauge 45km−2, 1 gauge 10km−2 and

1 gauge 5km−2, which equalled 1 (3), 5 (14) and 10 (28)

gauges in Mahurangi (Brue) respectively. We also used the

single-gauge case for Brue. Each subsampled data set was

used to estimate areal average rainfall at each time step using

Thiessen polygon interpolation. Equipment malfunction un-

certainty was investigated for Brue, where a quality-assured

set of reliable periods was available (Sect. 2.2). We repeated

our analyses using both the raw and quality-controlled data

sets.
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Table 1. Sources of uncertainty considered in this study and the methods used for estimation.

Variable/signature Uncertainty sources Estimation method Reference if applicable

Rainfall Point uncertainty Normal distribution with σ a function of rain rate Ciach (2003)

Interpolation uncertainty Subsampling from a dense network of rain gauges

Equipment malfunction Rainfall data with/without QC Wood et al. (2000)

Flow Discharge uncertainty in gaugings Analysis of stations with stable ratings Coxon et al. (2015)

Stage uncertainty in gaugings Uniform distribution ± 5 mm McMillan et al. (2012)

Rating-curve uncertainty Voting point likelihood method McMillan and Westerberg (2015)

Recession analysis Flow data time step Tested hourly vs. daily

Seasonality of response Tested using all data or split by season Shaw and Riha (2012)

Rainfall–runoff Effects of base flow Tested with/without base-flow separation Gustard et al. (1992)

threshold Rainfall event definition Tested with/without inclusion of smaller events

3.1.2 Discharge data

Identification of uncertainty sources

We considered discharge as estimated from a measured stage

series and a rating curve that relates stage to discharge. This

is the most common method and is used at both our case

study sites. The following are the main uncertainty sources.

1. Uncertainty in the gaugings (i.e. the measurements of

stage and discharge used to fit the rating curve). Dis-

charge uncertainty is typically larger; however, during

high-flow gaugings, stage can change rapidly and its av-

erage may be difficult to estimate.

2. Approximation of the true stage–discharge relation by

the rating curve. This is usually the dominant uncer-

tainty (McMillan et al., 2012), especially when the

stage–discharge relation changes over time. In both

catchments, low to medium flows are contained within

a weir, which constrains the uncertainty. However, for

Brue considerable low-flow uncertainty remains as a

consequence of seasonal vegetation growth.

Uncertainty in the stage time series was not assessed apart

from correcting obvious outliers. For Brue, occasional pe-

riods where stage data had been interpolated linearly from

lower-frequency measurements were excluded from the re-

cession analysis.

Uncertainty estimation method

We used the voting point likelihood method to estimate

discharge uncertainty by sampling multiple feasible rating

curves (McMillan and Westerberg, 2015). In brief, discharge

gauging uncertainty was approximated by logistic distribu-

tion functions based on an analysis of 26 UK flow gauging

stations with stable rating sections (Coxon et al., 2015). This

analysis gave 95 % relative error bounds of 13–14 % for high

flow and of 30–40 % for low flow (noting that the logistic dis-

tribution is heavy-tailed). Stage gauging uncertainty was ap-

proximated by a uniform distribution of± 5 mm, a mid-range

value based on previous studies (McMillan et al., 2012).

Rating-curve uncertainties, including extrapolation and

temporal variability, were jointly estimated using Markov

chain Monte Carlo (MCMC) sampling of the posterior dis-

tribution of rating curves consistent with the uncertain gaug-

ings. The voting point likelihood draws on previous meth-

ods that account for multiple sources of discharge uncer-

tainty (Juston et al., 2014; Krueger et al., 2010; McMillan et

al., 2010; Pappenberger et al., 2006). The rating-curve forms

were based on the official curves, where Mahurangi had

a three-segment power law curve and Brue a two-segment

power law curve (for the range of flows analysed here). The

power law parameters and the breakpoints were treated as

parameters for estimation.

3.2 Method: calculation of hydrological signatures with

uncertainty

3.2.1 Basic signatures

A set of signatures describing different aspects of the

rainfall–runoff behaviour were calculated (Table 2). We used

signatures describing flow distribution, event characteristics,

flow dynamics and rainfall; flow timing would be less af-

fected by the data uncertainties studied here. Only data un-

certainty (i.e. no subjective decisions) was considered for the

basic signatures.

3.2.2 Recession analysis

Recession analysis is widely used to study the storage–

discharge relationship of a catchment (Hall, 1968; Tallak-

sen, 1995), which gives insights into the size, heterogeneity

and release characteristics of catchment water stores (Clark

et al., 2011; Staudinger et al., 2011). We used the established

method of characterising the relationship between flow and

its time derivative. In the theoretical case where flow Q is a

power function of storage, and evaporation is negligible, the

relationship is
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Table 2. Basic rainfall–runoff signatures included in the study. All signatures are calculated on hourly data unless otherwise specified.

Signature Name Description Unit
F

lo
w

d
is

tr
ib

u
ti

o
n QMEAN Mean flow Mean flow for the analysis period mmh−1

Q0.01, Q0.1, Q1, Flow percentiles Low- and high-flow exceedance mmh−1

Q5, Q50, Q85, percentiles from the FDC

Q95, Q99

E
v
en

t
fr

eq
u

en
cy

an
d

d
u

ra
ti

o
n

QHF High-flow event frequency Average number of daily high-flow events per year, yr−1

with a threshold of 9 times the median daily flow

(Clausen and Biggs, 2000)

QHD High-flow event duration Average duration of daily flow events higher days

than 9 times the median daily flow

(Clausen and Biggs, 2000)

QLF Low-flow event frequency Average number of daily low-flow events per year, yr−1

with a threshold of 0.2 times the mean daily flow

(Olden and Poff, 2003, they used a 5 % threshold)

QLD Low-flow event duration Average duration of daily flow events lower days

than 0.2 times the mean daily flow

(see QLF)

F
lo

w
d

y
n

am
ic

s

BFI Base-flow index Contribution of base flow to total streamflow, –

calculated from daily flows using

the Flood Estimation Handbook method

(Gustard et al., 1992)

SFDC Slope of the normalised FDC Slope of the FDC between the 33 and 66 % –

exceedance values of streamflow normalised

by its mean (Yadav et al., 2007)

QCV Overall flow variability Coefficient of variation in streamflow, –

i.e. standard deviation divided

by mean flow (Clausen and Biggs, 2000;

Jowett and Duncan, 1990)

QLV Low-flow variability Mean of annual minimum flow divided –

by the median flow

(Jowett and Duncan, 1990)

QHV High-flow variability Mean of annual maximum flow divided –

by the median flow

(Jowett and Duncan, 1990)

QAC Flow autocorrelation Autocorrelation for 1 day (24 h) –

Used by Euser et al. (2013)

and Winsemius et al. (2009)

R
ai

n
fa

ll
–

ru
n

o
ff

RR Total runoff ratio Total runoff divided –

by total precipitation

R
ai

n
fa

ll PMA Mean annual precipitation Mean annual catchment average precipitation mmyr−1

PSD Standard deviation of hourly Standard deviation of catchment mmh−1

precipitation average precipitation

dQ̂/dQ̂dt =−Q̂b/T0, (2)

where Q̂=Q/Q0 is flow scaled by the median flow Q0. T0

and b are found by plotting −dQ/dt against Q on logarith-

mic axes; b is the slope and T0 is derived from the intercept.

T0 is the characteristic recession time at the median flow.

b indicates nonlinearity of response: b = 1 implies a linear

reservoir, b > 1 implies greater nonlinearity or multiple wa-
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ter stores with different drainage rates (Clark et al., 2009;

Harman et al., 2009).

Subjective decisions in recession analysis include how re-

cession periods are defined, the delay after rainfall used to

eliminate quickflow, the data time step, and whether to ex-

tend time steps during low flows to improve flow derivative

accuracy (Rupp and Selker, 2006). A moving average can

be used to smooth diurnal flow fluctuations. Options to es-

timate T0 and b include linear regression, total least squares

regression to allow for errors in both variables (Brutsaert and

Lopez, 1998), or regression on binned data values (Kirchner,

2009). If water distributions vary seasonally, the results are

sensitive to whether recessions are fitted using all data com-

bined or split by season, month or event (Shaw and Riha,

2012).

We assessed subjective uncertainty in recession analysis

by comparing the distributions of recession parameters b and

T0 in the following cases, which in our experience have the

most potential to affect recession parameter values: (1) using

hourly vs. daily flow data, and (2) calculating recession pa-

rameters using all data combined vs. calculating parameters

by season and taking the mean.

3.2.3 Thresholds in rainfall–runoff response

Threshold behaviour in the relationship between rainfall

depth and flow contributes to hydrological complexity (Ali et

al., 2013) and exerts a strong control on model predictions.

Threshold identification depends on both rainfall and flow

data, making it a good candidate to test the effect of multi-

ple uncertainty sources. Rainfall–runoff thresholds have been

found in many catchments (Graham et al., 2010b; Tromp-van

Meerveld and McDonnell, 2006a, b), including the Mahu-

rangi (McMillan et al., 2011, 2014). We only studied thresh-

old signatures in Mahurangi, as Brue did not display any

rainfall–runoff threshold.

The signatures that we used were threshold location (in

millimetres of rain per event) and threshold strength. We

quantified threshold strength based on the method of McMil-

lan et al. (2014). Storm events were identified and event rain-

fall was plotted against event runoff. Strong threshold be-

haviour was defined as an abrupt increase in slope of the

event rainfall–runoff relationship. This attribute was tested

by fitting each data set with two intersecting lines (a “broken-

stick” fit), using total least squares to optimise the slopes and

intersect. The corresponding null hypothesis was that the two

lines have equal slopes. This test returns a z statistic which

quantifies the strength of evidence for the alternative hypoth-

esis: where the absolute value exceeds 1.96, the null hypoth-

esis can be rejected at the 5 % level.

We defined events based on McMillan et al. (2011), such

that events require at least 2 mmh−1 or 10 mmday−1 of pre-

cipitation, and are deemed to end either when a new event

begins, or 5 days after the last rainfall. Events are distinct if

they are separated by 12 dry hours. We assessed uncertainty
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Figure 4. Standard deviation of the relative rainfall error as a func-

tion of rain rate for different numbers of subsampled stations for

1000 Monte Carlo realisations for the Brue catchment, with and

without point uncertainty.

due to subjective decisions by using or not using base-flow

separation and by changing the event definition to include

smaller events, where at least 1 mmh−1 or 5 mmday−1 of

precipitation fell. We used the base-flow separation method

of Gustard et al. (1992), which interpolates linearly between

5-day flow minima to create the base-flow series.

4 Results

4.1 Estimated uncertainty in rainfall and discharge

data

4.1.1 Rainfall data

The standard deviation of the error in catchment average

rainfall resulting from different numbers of subsampled sta-

tions was calculated. It was plotted as a function of hourly

rain rate using the moving-average window method of Vil-

larini and Krajewski (2008), with a bandwidth equal to

0.7 times the rain rate at the centre of the window (results

for Brue in Fig. 4). The errors decreased with rain rate and

there was a large initial decrease in the error when the num-

ber of subsampled stations increased from 1 to around 5. The

point uncertainty only had a small effect on the error standard

deviation.

The number of gauges had a large effect on the estimated

mean annual precipitation; if only one rain gauge was used,

there was a range of 200–300 mmyr−1 that would clearly

affect catchment water balance analyses (Fig. 5). One rain

gauge in a catchment of this size is still well above the

WMO-recommended station density of 1 gauge 575km−2 in

hilly terrain (WMO, 2008). Here there was also a large ini-

tial decrease in the range when the number of gauges in-

creased to around five. But, even when three or four gauges
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Figure 5. (a and c) standard deviation of hourly precipitation and, (b and d) mean annual precipitation for different numbers of subsampled

stations. For Mahurangi, results are shown for the period without missing discharge values. Point measurement uncertainty was included and

we used 4000 Monte Carlo realisations.

were used (1 gauge 12–16 km−2) for Mahurangi, there was

a 1430–1660 mmyr−1 range in mean annual precipitation.

When the non-quality-controlled data set was used for Brue

(Fig. 5a and b), there was a decrease in both mean annual

values and standard deviation. At the same time, the range

in standard deviation increased because stations with erro-

neously high or missing precipitation values were retained

(blocked rain gauges were a particular problem in this catch-

ment; Wood et al., 2000). The estimated precipitation stan-

dard deviation was uncertain for one subsampled gauge in

Mahurangi (Fig. 5c), where gauges were located in both the

wettest and driest parts of the catchment.

4.1.2 Discharge data

The estimated rating-curve uncertainty is shown in Fig. 6,

with the corresponding flow percentile uncertainty sum-

marised using boxplots. The 5–95 percentile uncertainty

bounds enclose almost all of the uncertain gaugings, apart

from a small number of outliers. Low-flow uncertainty is

larger in Brue where vegetation growth affects the stability of

the stage–discharge relation. High-flow uncertainty is larger

in Mahurangi where fewer, more scattered high-flow gaug-

ings cause a wider range in the extrapolated flows. Mahu-

rangi has a fast rainfall–runoff response with little base flow

and peak-flow events that are infrequent but have large mag-

nitudes (up to 11 mmh−1; Fig. 7a, right inset plot). Brue, by

contrast, has a higher base flow and more peak-flow events

of longer duration and lower magnitudes (up to 1 mmh−1;

Fig. 7b, right inset plot). Large high-flow uncertainty is likely

in catchments such as Mahurangi where peak flows occur

seldom and last only a few hours – this makes reliable high-

flow gauging practically difficult and rating-curve extrapola-

tion likely necessary. The larger high-flow rating-curve un-

certainty in Mahurangi (Fig. 6a) is reflected in a wider peak-

flow uncertainty distribution (Fig. 7a, left inset plot). In Brue,

the whole flow range is gauged and the high-flow rating-

curve uncertainty is smaller (Fig. 6c), the peak-flow distribu-

tion has higher kurtosis with heavier tails (Fig. 7b, left inset

plot).
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Figure 6. Estimated rating-curve uncertainty and uncertainty in flow percentiles for the Mahurangi (a and b) and Brue (c and d) catchments.

Uncertainties are calculated relative to the optimal rating curve from the MCMC. For Brue the official rating curve is dissimilar to the optimal

MCMC rating curve because it was calculated for a longer gauging data set starting in the 1960s, with considerably more variability. The

rating curve is shown in linear space, with an inset plot in log space for the low-flow range. The flow percentiles for the optimal rating are

given as hourly averages (in mmh−1) at the bottom of the (b and d) figures. The boxplot whiskers extend to the 5 and 95 percentiles, and the

box covers the interquartile range.

4.2 Estimated uncertainty in the hydrological

signatures

4.2.1 Basic signatures

Flow percentile uncertainties mirrored those of the rating

curves, with larger uncertainties in high-flow percentiles for

Mahurangi and larger uncertainties in low-flow percentiles

for Brue (Fig. 6). Uncertainty in mean discharge was around

± 10 % for both catchments; this is the 5–95 percentile in-

terval, while the distributions are shown in Fig. 8. Signatures

describing the flow variability (SFDC, QCV, and QAC) had

much higher uncertainties in Mahurangi (± 20–50 %), where

there was a fast rainfall–runoff response and greater high-

flow rating uncertainty. The uncertainty in the SFDC was par-

ticularly large for Mahurangi because the rating curve had a

breakpoint in the 33–66 percentile interval used to calculate

the slope. Signatures describing the frequency and duration

of high- and low-flow events (QHF, QHD, QLF, and QLD)

had large uncertainties in both catchments (± 10–35 %). This

arises because the event threshold is defined as a multiplier

of the mean or median flow, and so the (uncertain) gradi-

ent of the rating curve greatly impacts on the flow percentile

equivalent to the threshold value. Frequency and duration

signatures have alternatively had the event threshold defined

directly as a flow percentile (Kennard et al., 2010; Olden

and Poff, 2003); we suggest this is preferable as those sig-

natures were insensitive to the uncertainties analysed here,

apart from sometimes small effects when using daily aver-

ages.

4.2.2 Total runoff ratio

For the total runoff ratio, we tested the contribution of

each uncertainty source by including or excluding different

sources. We calculated total uncertainty (Fig. 8c, d, black

bars) using different rain-gauge densities. Total uncertainty

was approximately ± 15 % using a single rain gauge, de-

creasing slowly with more gauges. The distributions were

largely unbiased when using quality-controlled data. The

contribution of point precipitation uncertainty was minimal:

excluding this source made no difference to the uncertainty

distribution (Fig. 8, green bars). Precipitation uncertainty is

therefore due to interpolation and was evaluated by excluding

flow uncertainty and calculating the remaining uncertainty

(Fig. 8, blue bars). This uncertainty was noticeable (approx-
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Figure 7. Discharge calculated using the optimal rating curve for 1998 for Mahurangi (a) and for 1994–1995 for Brue (b). The left inset

plots show the discharge time series uncertainty distribution at an hourly scale for a peak-flow event in each catchment. The right inset plots

show the flow duration curves for the full time series for each catchment. The y axis variable and unit is discharge (in mmh−1) in all plots.

imately ± 10 % Mahurangi, ± 9 % Brue) for one gauge, but

decreased quickly with more gauges and was negligible at a

density of 1 gauge 5 km−2. Total uncertainty was dominated

by discharge uncertainty (dark blue bars) which was greater

than precipitation uncertainty (blue bars). In the Brue catch-

ment the effect of using non-quality-controlled data was as-

sessed (red and purple bars) which increased and biased the

uncertainty, particularly at low gauging densities.

4.2.3 Recession analysis

We tested the effect of data uncertainty on recession analysis

results by plotting histograms of the recession parameters b

(nonlinearity of recession shape) and T0 (recession slope at

median flow). We considered subjective uncertainty by using

data at daily or hourly time steps and by calculating param-

eters using all data together or splitting by season and then

taking parameter averages (Fig. 9).

Uncertainty in the recession descriptors was typically

(1) greater for Brue than for Mahurangi, in particular for

hourly flow data, and (2) greater for hourly flow data than for

daily flow data. Recessions are calculated from flow deriva-

tives and are therefore affected by relative changes in flow

(e.g. channel shape). The linear regression used to calculate

the recession parameters is particularly sensitive to uncer-

tainties in extreme low or high flows. The low-flow uncer-

tainty at Brue resulting from summer weed growth creates

higher uncertainties at that site. Daily flow values are based

on an aggregation of measured values and are therefore more

robust to data uncertainty. However, using daily data in small

catchments can mask details of the recession shape, as the

slope can change markedly during a single day. In our case,

this difference caused shifts in the parameter distributions be-

tween hourly and daily data and would therefore affect our

ability to compare parameter values between catchments. For

example, b values were similar in the two catchments when

using daily data, but different when using hourly data; and

the converse is true for T0. This was caused by differences
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Figure 8. Relative uncertainty in basic signatures as a percentage of the signature values calculated with the optimal rating curve from the

MCMC. The boxplot whiskers extend to the 5 and 95 percentiles, and the box covers the interquartile range. The signature values for the

optimal rating curves are given at the bottom of the (a and b) panels.

in the hydrograph such as low-flow fluctuations in Brue and

flashy peak-flow events in Mahurangi.

Recession parameters calculated per season were highly

uncertain in Brue for the T0 parameter. This was due to some

seasons having very few recession data points and therefore

the fitted regression relationships being sensitive to changes

in these points. Recession parameters were highly sensitive

to subjective decisions in defining recession periods, as also

found by Stoelzle et al. (2013). Such definitions could result

in particular recession periods being included or excluded

from the analysis depending on the sampled rating curve.

When the excluded periods included extreme high- or low-

flow values, this could significantly skew the fitted param-

eters and therefore give multimodal parameter distributions

according to the particular set of valid recession periods. For

the daily timescale, the starting hour used in calculating the

daily averages could also have a large effect on the resulting

recession parameters.

4.2.4 Thresholds in rainfall–runoff response

We tested for uncertainty in the estimated threshold in the

event rainfall–runoff relationship in Mahurangi using box-

plots of the threshold location and strength under different

uncertainty scenarios (Fig. 10). The threshold broken-stick

fit is illustrated in Fig. 10a for the best-estimate data (in blue)

and for an example realisation with uncertainty (in grey).

The threshold was 65 mm when using best-estimate rain-

fall and flow data. Total uncertainty was a largely unbiased

distribution with a range of ∼ 20 mm. Total uncertainty was

a combination of flow uncertainty (slight low bias) with rain-

fall interpolation uncertainty (slight high bias). Point rainfall

uncertainty was not important when using multiple gauges.

Threshold location was highly sensitive to the number of rain

gauges used: using only one gauge created a very wide uncer-

tainty distribution. As with the rainfall uncertainty analysis,

there was a large decrease in the uncertainty when increasing

to five gauges (Sect. 4.1.1). The use of base-flow separation

did not greatly change the median threshold but did increase

the range. Event definition parameters had little effect on the

threshold uncertainty.

Threshold strength was defined using a change-in-slope

statistic where higher values indicate a stronger threshold.

Considering flow or rainfall uncertainty weakened the calcu-

lated threshold. For flow uncertainty this was due to the op-
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timal rating curve having its first breakpoint and mid-section

slope above the median values of the sampled rating-curve

distribution; both of which were associated with a stronger

threshold. As with the SFDC, this shows the strong impact

of the rating-curve breakpoint locations on signature un-

certainty. For rainfall, uncertainty adds noise to the event

rainfall depth and therefore corrupts the estimated rainfall–

runoff relationship, weakening the threshold. Consequently,

the number of rain gauges is an important control on esti-

mated threshold strength, with fewer gauges causing a weak-

ened threshold. As the underlying threshold was strong, the

case of one rain gauge was the only scenario that could

cause the threshold statistic not to be significant at the 5 %

level. However, in other catchments with weaker thresholds,

lack of good rainfall data is likely to result in thresholds

being missed. Using base-flow separation increased the de-

rived threshold strength, as it typically reduced runoff depths

for smaller events below the threshold. Event definition had

only a small effect on derived threshold strength; when

smaller events were included the threshold strength statistic

increased, as the fit was based on a greater number of points.

4.3 Summary of the signature uncertainties

To summarise our results, we tabulated examples of each sig-

nature type together with their dominant uncertainty sources

and summary statistics of the total uncertainty distribution,

for each catchment (Table 3). Our aim is to allow for an easy

comparison of the signature uncertainties in our study with

those of other studies. We therefore chose commonly used

distribution statistics, i.e. the first three distribution moments

(mean, standard deviation, skewness) and the half-width of

the 5–95 percentile range, which is commonly quoted in un-

certainty studies (e.g. McMillan et al., 2012). We hope that

authors of future studies will consider using similar statis-

tics, to enable the community to compile a generalised un-

derstanding of signature uncertainties across different catch-

ments, scales and landscapes.

5 Discussion

5.1 Uncertainty in different types of signatures

Uncertainty distributions were highly variable between sig-

natures and therefore the impact of the uncertainty depends

on which signatures are used (Table 3). There was greater

uncertainty in signatures that use high-frequency responses

(e.g. variations over short timescales, thresholds based on

event precipitation totals), subsets of data more prone to

measurement errors (e.g. extreme high and low flows, QHV

and Q99), and signatures based on small numbers of val-

ues (e.g. seasonal recession characteristics in the Brue catch-

ment). Signatures describing flow variability were uncertain

in the Mahurangi catchment, which has a flashy rainfall–

runoff response and where stage significantly exceeded the

highest gaugings leading to large discharge uncertainty at

high flows. This is likely to be a common situation in small,
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Figure 10. (a) Example of the threshold fitting procedure without (blue) and with (grey, one-rain-gauge scenario) uncertainty (u). Boxplots

of (b) threshold location and (c) threshold strength in the Mahurangi catchment, under different data and subjective uncertainty scenarios.

Horizontal grey lines show baseline signature values from the optimal rating-curve and precipitation data. The orange line in Fig. 9c shows the

value above which the change in slope of the rainfall–runoff relationship is significant at the 5 % level. Boxplot whiskers for the uncertainty

distribution in the one-rain-gauge scenario are truncated for clarity. The total uncertainty scenario used 1 raingauge 10km−2.

fast-responding catchments with few high-flow events, due

to the practical difficulties of gauging during such short time

windows. There was lower uncertainty in signatures that use

spatial or temporal averages (e.g. total runoff ratio and BFI).

Uncertainty in signatures calculated from averages depends

on the type of data uncertainty, e.g. random errors are re-

duced by averaging, but some systematic errors such as rain-

fall undercatch are not. Rating-curve uncertainty is an in-

termediate case as it depends on error magnitudes that vary

across the flow range. Some signatures are sensitive to par-

ticular types of data uncertainty. For example, in Mahurangi

high uncertainty in SFDC relates to uncertainty in rating-curve

shape, and in Brue high uncertainty in QLD relates to uncer-

tainty of the low-flow rating in combination with the shape of

the hydrograph. Signatures that describe the rainfall–runoff

relationship for individual events (e.g. threshold location and

strength) were particularly sensitive to precipitation uncer-

tainties for low gauging densities.

Signatures can be designed to be robust to some data un-

certainty sources. A clear example is for signatures describ-

ing the frequency and duration of high and low-flow events.

If these events are defined using a threshold defined as a

multiplier of the mean or median flow, they are highly sen-

sitive to rating-curve uncertainty. If, instead, the events are
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Table 3. Dominant uncertainty sources and uncertainty characteristics.

Signature type Catchmenta Dominant uncertainty Uncertainty characteristics

source

Half-width Mean SD Skewness

of 5–95 (bias) (%) (–)

percentile (%)

range (%)

F
lo

w
d
is

tr
ib

u
ti

o
n

Average flow conditions (QMEAN)
M Rating-curve uncertainty 11.1 −0.4 6.8 0.32

B Rating-curve uncertainty 12.7 −2.4 7.7 −0.03

Low-flow percentiles (Q95)
M Discharge gauging uncertainty 23.8 −1.2 14.6 0.47

B Rating-curve uncertainty 39.5 −1.1 23.8 0.45

High-flow percentiles (Q0.1)
M Rating-curve uncertainty 22.8 −8.3 16.6 1.54

B Rating-curve uncertainty 19.6 0.0 12.0 0.13

E
v
en

ts

Event frequency and duration (QHD)

M Threshold value, which depends 6.9 2.3 3.3 1.30

on rating-curve uncertainty

B Threshold value, which depends 21.6 −5.1 13.1 0.57

on rating-curve uncertainty

F
lo

w
d
y
n
am

ic
s

Base-flow index (BFI)
M Rating-curve uncertainty 11.6 3.4 7.1 −0.11

B Rating-curve uncertainty 8.5 −2.3 5.1 −0.19

Slope of flow duration curve (SFDC)
M Rating-curve breakpoint location 28.8 16.9 17.4 0.46

B Rating-curve uncertainty 6.0 −3.2 3.7 −0.18

Variability of extreme flows (QHV)
M Rating-curve uncertainty 41.9 −1.0 30.4 2.30

B Rating-curve uncertainty 37.0 6.5 23.0 0.75

Recession analysis (b hourly)
M Calculation time step 9.9 −3.1 6.3 0.38

B Rating-curve uncertainty 14.9 5.1 8.9 0.72

R
ai

n
fa

ll
–
ru

n
o
ff Total runoff ratio (RRb) M Rating-curve uncertainty 14.6 −0.3 9.0 0.26

B Rating-curve uncertainty 13.3 −2.0 8.1 0.02

Rainfall–runoff threshold M Rainfall interpolation uncertainty 15.3 2.9 15.2 5.88

(threshold locationc) B – – – – –

R
ai

n
fa

ll Mean annual precipitation (PMA
b)

M Interpolation uncertainty 10.0 0.3 5.7 0.22

B Interpolation uncertainty 4.6 −0.4 2.7 0.34

(equipment malfunction)

Standard deviation of M Interpolation uncertainty 8.0 9.5 4.4 1.55

precipitation (PSD
b) B Interpolation uncertainty 4.9 4.6 2.9 0.67

(equipment malfunction)

a M: Mahurangi, B: Brue.
b These signatures were calculated using 1 gauge 45 km−2 and including point error.
c This signature was calculated for the total uncertainty scenario in Fig. 10.

directly defined using a flow percentile threshold, they were

little affected by rating-curve uncertainty (see Sect. 4.2.1).

This simple change in signature definition reduces sensitiv-

ity to data uncertainty. We found that any cut-offs imposed

in signature calculation, such as event or recession defini-

tion criteria, could have a strong and unpredictable effect

on signature uncertainty. For example, rainfall–runoff thresh-

old strength calculations were particularly sensitive to large

storm events, which control the gradient of the second line

in the “broken stick”. If such events were conditionally ex-

cluded (e.g. classified as disinformative and removed when

runoff exceeded rainfall; which depends on the rating curve

and rain gauge(s) selected), the resulting uncertainty could

overwhelm any other uncertainty sources. We suggest that

signatures including cut-off type definitions should be care-

fully evaluated and the cut-offs removed if possible.
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5.2 Method limitations and future developments

The quality of signature uncertainty estimates relies on ac-

curate assessment of data uncertainty and therefore on suffi-

cient information. An example of insufficient uncertainty in-

formation would be for a gauge where out-of-bank flows oc-

cur, but there is no information on the out-of-bank rating. As

discussed by Juston et al. (2014) for rating-curve uncertainty,

it is essential to understand whether data errors are random

or systematic, aleatory or epistemic. In our study, point rain-

fall errors were not important in signature uncertainty, but

there is scope to improve their representation as systematic or

random (e.g. systematic wind-related undercatch, or random

turbulence effects). However, quantification of these errors is

not straightforward (Sieck et al., 2007).

We recognise that the inferred distributions of signature

uncertainty will be sensitive to the assumptions and methods

used to estimate distributions of data uncertainty. This intro-

duces some subjectivity into the uncertainty estimation and it

is therefore important to make the assumptions explicit and

motivate method choices by the perceptual understanding of

the uncertainty sources. For example, the optimal methods

for estimating rating-curve uncertainty under typical time-

varying, poorly specified errors remain an active debate in

the hydrological community. Using an informal likelihood,

as we did, rather than a formal statistical likelihood can be

more robust to multiple epistemic error sources but can also

be criticised for not obeying a formal statistical framework

(as discussed by McMillan and Westerberg, 2015, and Smith

et al., 2008). Future progress in understanding how percep-

tual models and data jointly contribute to system identifica-

tion may help to resolve this dichotomy (Gupta and Nearing,

2014). At present, we recognise that uncertainty distributions

are more subjective in signatures that emphasise poorly de-

scribed aspects of data uncertainty such as out-of-bank flows.

For signatures calculated over a long time period, it may

be appropriate to incorporate nonstationary error character-

istics, such as rating-curve shifts or the example explored by

Hamilton and Moore (2012) where the best-practice method

for infilling discharge values under ice changed over time.

The time period used is important if signatures are used for

catchment classification: an unusual event such as a large

flood may shift the signature values (Casper et al., 2012). Ad-

ditional uncertainty sources can be important in other catch-

ments, such as catchment boundary uncertainty and flow by-

passing the gauge (Graham et al., 2010a).

5.3 Implications for use of signatures in hydrological

analyses

Our results are pertinent to any hydrological analysis that

uses signatures to assess catchment behaviour. Examples of

applications whose reliability could be affected by signature

uncertainty include testing bias correction of a climate model

using signatures in a coupled hydrological model (Casper

et al., 2012), predicting signatures in ungauged catchments

(Zhang et al., 2014), classifying catchments using flow com-

plexity signatures (Sivakumar et al., 2013), and assessing

spatial variability of hydrological processes (McMillan et

al., 2014). In some cases, absolute signature values are not

used, rather it is the pattern or gradient over the landscape,

or trend over time that is important. Data uncertainties may

obscure such patterns depending on the magnitude of the

uncertainty in relation to the strength of the measured pat-

tern. The range of signature values found by McMillan et

al. (2014) across Mahurangi was large compared to the un-

certainty magnitudes found in this study. This suggests that

the conclusions regarding the signature patterns would still

hold, assuming that the uncertainty at the catchment outlet

is representative for the internal subcatchments. Some sub-

jective uncertainty sources may not be relevant in catchment

comparisons, as choices such as how to define recession peri-

ods or whether to do base-flow separation can be chosen con-

sistently. However, subjective uncertainties can still change

the conclusions drawn such as the cut-offs described above,

and as discussed in Sect. 4.2.3 where daily data suggested

similar recession b parameters in Mahurangi and Brue but

hourly data showed strong differences.

When signatures are used as a performance measure in

model calibration (e.g. Blazkova and Beven, 2009) reliable

uncertainty estimates are crucial so that the model is not over-

fitted. Previous studies have quantified data and signature

uncertainty using upper and lower bounds (e.g. fuzzy esti-

mates used by Coxon et al., 2013; Hrachowitz et al., 2014;

Westerberg et al., 2011). However, this does not allow for

the straightforward estimation of uncertainty in all types of

signatures that is made possible by our method of generating

multiple feasible realisations of rainfall and discharge time

series.

6 Conclusions

This study investigated the effect of uncertainties in data and

calculation methods on hydrological signatures. We present

a widely applicable method to evaluate signature uncertainty,

and show results for two example catchments. The uncertain-

ties were often large (i.e. typical intervals of± 10–40 % rela-

tive uncertainty) and highly variable between signatures. It is

therefore important to consider uncertainty when signatures

are used for hydrological and ecohydrological analyses and

modelling. Uncertainties of these magnitudes could change

the conclusions of analyses such as cross-catchment compar-

isons or inferences about dominant processes.

Although we show that significant uncertainty can exist in

hydrological signatures, we do not intend that this paper has

a negative message. Consideration of uncertainty is equiva-

lent to extracting the signal from noisy data and not overes-

timating the information content in the data. As argued by

Pappenberger and Beven (2006) and Juston et al. (2013), ig-

www.hydrol-earth-syst-sci.net/19/3951/2015/ Hydrol. Earth Syst. Sci., 19, 3951–3968, 2015
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norance is not bliss when it comes to hydrological uncer-

tainty; incorporation of uncertainty analysis leads to many

advantages including more reliable and robust conclusions,

reduction in predictive bias, and improved understanding. In

particular, we hope that this paper encourages others to esti-

mate data uncertainty in their catchments, either individually

or by reference to typical uncertainty magnitudes, to design

diagnostic signatures and hypothesis testing techniques that

are robust to data uncertainty and to evaluate analysis results

in the context of signature uncertainty.
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