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Abstract. To assess potential impacts of climate change for a

specific location, one typically employs climate model simu-

lations at the grid box corresponding to the same geographi-

cal location. For most of Europe, this choice is well justified.

But, based on regional climate simulations, we show that

simulated climate might be systematically displaced com-

pared to observations. In particular in the rain shadow of

mountain ranges, a local grid box is therefore often not

representative of observed climate: the simulated windward

weather does not flow far enough across the mountains; local

grid boxes experience the wrong air masses and atmospheric

circulation. In some cases, also the local climate change sig-

nal is deteriorated. Classical bias correction methods fail to

correct these location errors. Often, however, a distant simu-

lated time series is representative of the considered observed

precipitation, such that a non-local bias correction is possi-

ble. These findings also clarify limitations of bias correcting

global model errors, and of bias correction against station

data.

1 Introduction

Many impacts of climate change are expected to manifest

themselves at regional and local scales. To guide adaptation

to these impacts, high-resolution climate scenarios are often

desired that realistically simulate potential future regional

climate. These scenarios are usually generated by dynami-

cal or statistical downscaling of global climate model sim-

ulations (Rummukainen, 2010; Maraun et al., 2010). In the

following we will only consider dynamical downscaling by

regional climate models (RCMs), but later discuss our results

in a general context. For a regional climate change simula-

tion to be useful, it should in general accurately represent

the local marginal distribution (i.e. the unconditional prob-

ability density function), present-day variability at daily to

inter-annual scales, and the local response to climate change

(Maraun et al., 2010); in specific cases, of course, further as-

pects might be desired (Maraun et al., 2015).

Impact assessments for a specific location are typically

based on simulations at the grid box corresponding to the

same geographical location (or a combination of neighbour-

ing grid boxes). This at first thought very reasonable choice

is taken in several settings: when directly interpreting the lo-

cal climate model output; also when driving an impact model

representing a specific real-world area; and finally when bias

correcting local model simulations against observed data.

In many cases, this choice will be justified and the best

option. We argue, however, that it is not a priori clear

whether a geographical model location represents the same

real-world location. The orography even of high-resolution

RCMs is in general a coarse model of the true orography.

As a consequence, in particular in mountain ranges, the sim-

ulated mesoscale flow might considerably deviate from the

observed flow, resulting in systematically displaced local

events. In the following we will demonstrate that in such

cases, choosing local model output might result in a wrong

simulation of climate variability and long-term trends, and

thus in a wrong simulation of climate impacts. We refer to

the representation of a real-world geographical location as

location representativeness.

Testing the location representativeness is straightforward

in weather forecasting by means of forecast verification: a

high forecast skill indicates that the model indeed represents
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the correct geographical location. Furthermore, model out-

put statistics (MOS) in weather forecasting implicitly opti-

mises location representativeness by choosing extended and

weighted predictor fields (Glahn and Lowry, 1972). This

concept can in principle be transferred to assess the location

representativeness of RCMs: in a perfect boundary setting,

the sequence of large-scale weather events in reality and in

the model are in close synchrony. Except for the internal vari-

ability generated by the RCM, the simulated and observed

regional weather should also be synchronous. On sufficiently

long timescales, one should therefore be able to measure lo-

cation representativeness by the correlation between regional

simulated and observed time series.

Here we demonstrate the relevance of location represen-

tativeness for precipitation simulated by an RCM across Eu-

rope, in particular in complex terrain. We propose to measure

location representativeness by correlations between observa-

tions and simulations at the inter-annual scale. Often, in our

setting, a very simple non-local bias correction can substan-

tially improve location representativeness. Finally, we dis-

cuss consequences for correcting global climate model er-

rors.

2 Concept and data

Location representativeness of RCM-simulated climate can

in principle be measured by the temporal correlation between

simulated and observed climate in a perfect boundary setting.

However, internal climate variability hampers the estimation.

An RCM, even if driven with perfect boundary conditions, is

not designed to correctly simulate the observed day-to-day

variability at the grid-box scale (Weisse and Feser, 2003;

Wong et al., 2014); away from the boundary conditions,

complex weather dynamics will always result in consider-

able random deviations of simulated from observed weather

system trajectories. Although such mesoscale internal atmo-

spheric variability reduces the correlation between simula-

tion and observations, it does not reduce the location repre-

sentativeness. Yet, mesoscale internal atmospheric variability

generally occurs at short timescales and will be averaged out

at longer timescales.

We therefore propose to measure location representative-

ness in a perfect boundary setting by the correlation between

seasonally averaged observed and simulated time series. This

timescale is a compromise between a high signal-to-noise ra-

tio (boundary forced signal vs. random mesoscale weather

variability) and a sufficient number of time steps. Thus, given

an observed time series at seasonal scale, yijk in a grid box (i,

j ) for k = 1 . . . N time steps, and a corresponding simulated

time series xijk , we estimate the local location representa-

tiveness as

Rij = Ck

(
xijk,yijk

)
, (1)

where Ck denotes the Pearson sample correlation in time.

The choice of the Pearson correlation is justified, as the cen-

tral limit theorem ensures that our samples approximately

follow a normal distribution.

If the simulated local flow is systematically shifted com-

pared to observed flow, the observed local climate might not

be well represented by the simulated climate at the corre-

sponding model grid box, but rather by the simulation at a

distant grid box. To identify such cases of non-local repre-

sentativeness, we adapt the concept developed by Widmann

et al. (2003) to our context. We generalise Eq. (1) to assess

location representativeness of any model grid box (m, n) for

the real-world grid box (i, j ) as

Rmn
ij = Ck

(
xmnk,yijk

)
. (2)

A non-local representativeness measure can then be defined

as

R̃ij =maxmnR
mn
ij ; (3)

i.e. instead of representing local climate by the model

grid box (i, j ), one can chose that grid box that max-

imises the correlation between model and observation (m,

n)= arg maxmn Rmn
ij . To reduce computational cost and to

limit spurious correlations from very distant grid boxes, we

consider non-local correlations in an 11× 11 field centered

on the observational grid box of interest.

To eliminate artificial non-local skill, all non-local mea-

sures are calculated on a cross-validated series. The idea is to

remove cases where a neighbouring grid box is chosen that

just by chance has a higher correlation with local observa-

tions over the calibration period, but that would be less rep-

resentative under prediction. To this end, the data have been

divided into three blocks of 10- and one of 11-year length.

Each block is left out once and, for a chosen grid box in the

observations, an individual non-local representative grid box

(i.e. the location potentially varies from block to block) is

determined by maximising the correlation across the 11× 11

field in the remaining calibration blocks. The simulated data

of that grid box for the left-out validation block are then writ-

ten into the cross-validated series. Based on this series the

final cross-validated non-local correlation is calculated. As

marginal distributions might differ from grid box to grid box

(and correlations are invariant to scale), all time series are

transformed to zero mean and unit standard deviation prior

to the cross-validation. As this cross-validation makes sense

only for non-local representativeness, but not for the local

measure, it can in some cases result in non-local representa-

tiveness values that are slightly lower than the corresponding

– not cross-validated – local representativeness values.

To illustrate the concept, we consider precipitation sim-

ulated by the RCM RACMO2 from the KNMI (Konin-

klijk Nederlands Meteorologisch Instituut, Royal Nether-

lands Meteorological Institute) (van Meijgaard et al., 2008).

The RCM is forced by ERA40 reanalysis data at the lateral
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Figure 1. Local representativeness. Correlation between local (at the same grid box) simulated and observed seasonal mean time series. Left

panel: DJF; right panel: JJA. Under the assumption of independence, correlations Ck > 0.3 are pointwise statistically significant at the 95 %

level.

boundaries and operates at a 0.22◦× 0.22◦ horizontal resolu-

tion. The simulation spans the time period 1 January 1961–

31 December 2000 and is available from the ENSEMBLES

project (van der Linden and Mitchell, 2009). As observa-

tional reference we employ the E-OBS data set (Haylock

et al., 2008). Limitations of this data set have been high-

lighted, in particular at the daily scale (Hofstra et al., 2010;

Kysely and Plavcova, 2010; Maraun et al., 2012), but the

quality at the seasonal scale is generally high.

3 Results

Figure 1 shows local correlations between observed and sim-

ulated seasonal mean precipitation time series. For DJF (left

panel) correlations over most of Europe are significant and

high, in particular over western Europe and its elevated costal

regions. The overall decrease in correlations from west to

east reflects the growing influence of internal climate vari-

ability on the predominantly westerly flow away from the

western boundaries. Thus, the gradient does not imply a de-

creasing representativeness towards eastern Europe, but sim-

ply a decreasing signal-to-noise ratio. Along coastal regions

with pronounced orography, precipitation is very well repre-

sented by RCMs (Eden et al., 2014): the track of a weather

system is hardly diverted over the open ocean; orographic up-

lift then triggers precipitation across a large area. The overall

high correlations indicate that systematic errors in the large-

scale circulation play a minor role for RCMs driven with per-

fect boundary conditions.

To discuss location representativeness, the white areas in

mountainous regions are of interest, in particular the Alps,

the Bohemian Massif and the eastern slopes of the Sierra

Nevada in Spain. Here, the local model–observation corre-

lation is insignificant, suggesting the presence of systematic

orography-caused errors at the regional scale.

For summer (right panel), the correlations are lower across

Europe; in large regions, insignificant. Patterns are patchy,

and the orographic structure that is visible in winter mostly

disappears. Insignificant correlations occur predominantly

over eastern Europe and are readily explained by the conti-

nental climate: a large fraction of precipitation stems from

local convective precipitation, which is controlled by lo-

cal radiative heating rather than by large-scale atmospheric

flow, making the resulting process almost independent of the

boundary forcing even at the seasonal scale. During summer,

the westerly flow is also much less pronounced (Greatbatch

and Rong, 2006; Folland et al., 2009), furthermore decreas-

ing the signal-to-noise ratio for identifying orography-caused

errors. To summarise: during summer, internal climate vari-

ability limits the assessment of RCM location representative-

ness. Results for spring and autumn are in between those for

winter and summer, with much less pronounced local effects

but a systematic west–east gradient with less visible effects in

more continental climates (see supplementary information).

To investigate whether the vanishing correlations in moun-

tainous areas are really caused by systematic local orographic

effects, we estimate non-local correlations (Eq. 2). Figure 2,

left panel, illustrates the approach for a grid box in the lee-

ward foothills of the Alps (close to Domodossola in northern

Italy). Each grid box shows the correlation between simu-

lated precipitation in that grid box and observed precipita-

tion in the central grid box against the real-world topography.

Correlations are high along the main ridge of the Alps and

towards the north-west, but low in the Po Valley. In fact, ob-

served precipitation in the central grid box is not represented

by the corresponding RCM simulation, but rather by simu-

lated precipitation on the windward side of the Alps. Other

studies have found precipitation biases in the rain shadows of

mountain ranges, often towards too little rain (e.g. Caldwell

et al., 2009; Heikkilä et al., 2011); here we additionally show

that not only the intensity is reduced because too much pre-
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Figure 2. Location representativeness illustrated with a grid box in the Alps (around 46◦07′ N, 8◦15′ E) for winter (DJF). Left panel:

correlation of observed grid-box series with surrounding simulated series; red square: position of observational grid box; blue squares: cross

section considered in (b); grey shading: real-world topography (Amante and Eakins, 2009). Right panel: seasonal mean time series along

the cross section from (a). Blue: observed; red: model at the same grid box; grey: model at the grid box showing the highest correlation at

inter-annual scale. The saturation of the red series indicates the correlation between model and observed series at the same grid box. Series

are transformed to common mean and unit standard deviation.

cipitation occurs on the windward side of the mountains, but

also that the whole weather (in terms of precipitation vari-

ability) does not cross the mountains. In other words: in real-

ity, the Alpine foothills in the rain shadow of the main ridge

are substantially influenced by the windward weather north-

west of the Alps; in the RCM, the rain shadow is basically

cut off from the north-western influence and resembles more

the weather of the Po Valley. A closer look at the tempo-

ral variability in a cross section through the two mountain

ranges confirms the above line of argument. The right panel

of Fig. 2 shows observed and simulated precipitation time

series for nine grid boxes from north-west to south-east, cen-

tered on the central grid box shown in the left panel. In the

observations (blue lines), the transition from the windward

side to the rain shadow of the Alps is rather smooth, whereas

an abrupt change occurs in the RCM simulation (red lines)

from the fourth to the fifth grid box (which is the location of

the Bernese Alps with peaks ranging up to 4274 m; Finster-

aarhorn)1. For all nine grid boxes, at least one RCM simu-

lated time series from a (potentially) distant grid box (grey

lines) correlates well with the local observed precipitation

time series.

The fact that in some regions non-local correlations are

substantially higher than local correlations suggests repre-

senting local observed precipitation by precipitation simu-

lated for a distant grid box according to Eq. (3). The cor-

1In principle, the change in correlation could be caused by prob-

lems in the E-OBS data set rather than in the RCM. It is conceivable

that at the given location, no observed stations were present, and all

information in E-OBS is taken from the windward side of the Alps.

Given that the phenomenon occurs systematically along the whole

main ridge of the Alps (and other ridges as well), such an artefact

is very unlikely. For the region considered in Fig. 2, several stations

south of the main Alpine ridge entered the E-OBS data set.

responding non-local correlation maps are shown in Fig. 3

for winter (top) and summer (bottom). For almost the en-

tire Europe, at least one non-local grid box has been identi-

fied that well represents local observed precipitation variabil-

ity during winter. In particular in winter, the areas affected

by orography errors with insignificant correlations have al-

most completely disappeared. For summer, the result is again

dominated by internal weather variability. The middle panels

show the improvement in correlations by the non-local ap-

proach: in particular over those mountainous areas, where the

local RCM simulation did not well represent observed pre-

cipitation, correlations have greatly improved during winter.

The right panels indicate the direction of the non-local RCM

grid box relative to the considered grid box that maximises

the correlation between model and observations (only where

the correlation improves by at least 0.2). During winter, the

representative grid boxes lie in general towards the west or

northwest of the considered grid box, demonstrating that

the two examples really represent a general behaviour. Dur-

ing summer, no clear directional pattern emerges, illustrat-

ing again the influence of internal climate variability. Again,

spring and summer show a large west–east gradient and re-

semble winter in western Europe, but show much less sys-

tematic effects further to the east (Supplement).

The previous analysis has shown that, in particular in

mountain areas, RCM-simulated precipitation at a specific

location does not necessarily represent the observed precipi-

tation variability on inter-annual scales. Therefore the ques-

tion arises whether the climate change signal at such loca-

tions might be wrongly represented by the RCM. We thus

compare the linear trends (in percent per decade) in observed

seasonal precipitation with the local simulated trend as well

as the simulated trend for the grid box with highest location

representativeness. Note that we are not interested in separat-

Hydrol. Earth Syst. Sci., 19, 3449–3456, 2015 www.hydrol-earth-syst-sci.net/19/3449/2015/



D. Maraun and M. Widmann: Location representativeness 3453

Figure 3. Non-local representativeness. Top panels: DJF; bottom panels: JJA. Left panels: correlation between observed seasonal mean

time series and modelled time series at a non-local grid box that maximises correlation with observations; centre panels: improvement in

correlation by using non-local series; right panels: direction of a model grid box that maximises correlation relative to the local grid box.

Areas where correlation does not improve by at least 0.2 are shown in white.

Figure 4. Reduction in absolute trend bias by the non-local approach. Trends measured in percent per decade. Left panel: DJF; right panel:

JJA. Green: improvement (bias reduced); brown: deterioration (bias increased). Areas where correlation does not improve by at least 0.2 are

shown in grey. As the cross-validation would cause inhomogeneities, trends are calculated without cross-validation.

ing externally forced trends, but just in overall linear trends

as they manifest in both observed and simulated time series.

As both are synchronised on inter-annual timescales, their

trends are also comparable.

Figure 4 depicts the improvement in simulated trends com-

pared to observed trends (reduction in absolute trend bias)

when considering non-local representativeness. We show

only results for grid boxes where the non-local approach im-

proves correlations by at least 0.2. Green indicates an im-

provement, brown a deterioration. During winter (left), al-

most no grid boxes show a deterioration in the representa-

tion of trends by the non-local approach; many grid boxes

indicate no change. A large fraction, however, shows an im-

provement in the simulated trends when considering non-

local representativeness. For summer (right), the picture is

again erratic, with about as many improvements as deteriora-
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tions. For spring and autumn, trend improvements are less

clear than during winter, but more systematic than during

summer (supplementary information).

4 Discussion and conclusions

To illustrate the concept of location representativeness and to

investigate its practical relevance, we have assessed the skill

of the KNMI RACMO RCM, driven with perfect boundary

conditions, to correctly represent local simulated precipita-

tion. As a measure of location representativeness we consider

the correlation between simulated and observed seasonally

aggregated precipitation separately for winter and summer.

For most of Europe, location representativeness is high;

the chosen RCM well represents the corresponding local cli-

mate. But, in particular in the rain shadow of major moun-

tain ranges such as the Alps, RCM precipitation might not

be representative of the actually observed precipitation at a

chosen grid box. Earlier studies (e.g. Caldwell et al., 2009;

Heikkilä et al., 2011) have shown that precipitation is often

biased towards too low values in the rain shadows of moun-

tain ranges. Here we demonstrate that not only the marginal

distributions are biased, but also that the simulated climate is

not representative of the observed climate. In fact, the sim-

ulated windward weather does not cross the mountain range

to the extent it does in reality. Thus, the local grid box ex-

periences the wrong air masses and the wrong atmospheric

circulation, which both make up inter-annual variability. In

some cases, also the local climate change signal is deterio-

rated. These results could be clearly demonstrated for win-

ter. In summer, the assessment of location representativeness

is complicated because mesoscale internal climate variability

dominates boundary forcings even on inter-annual scales.

Our findings have some immediate implications for bias

correction. Classical local bias correction methods – in the

sense of mapping a local simulated surface variable onto

the observed one at the corresponding geographical location

(Déqué et al., 2007; Maraun et al., 2010; Teutschbein and

Seibert, 2012) – will fail to correct these location errors. Such

bias correction methods adjust marginal distributions: they

are an ad hoc post processing of e.g. the magnitude of tem-

perature values or precipitation intensities, but they do not

shift air masses or change the atmospheric circulation. We

therefore argue that for mountain regions it is essential to test

for location representativeness prior to any bias correction.

If a distant simulated time series is found to be representa-

tive of the considered observed precipitation, a non-local bias

correction is in general possible. As a first simple approach,

one could adapt the idea of Widmann et al. (2003) and map

the best representative distant simulated time series onto lo-

cal observations. Such a correction would not only adjust

marginal distributions, but additionally “shift the weather

across the mountains”: the corrected simulation would ex-

perience the right air masses and atmospheric circulation.

As demonstrated, such a non-local bias correction can also

improve the representation of climate change trends. These

improvements are still minor for observed trends but might

prove crucial as soon as strong trends start to emerge.

As the identified location biases are caused by the interac-

tion between the mesoscale flow and the RCM topography,

they should in general depend on the flow direction. That is,

the most representative grid box might depend on the actual

synoptic weather type. A possible improvement of our sim-

ple non-local approach could therefore be to condition the

location correction on weather types.

In many situations, biases are not corrected against grid-

ded observations, but rather against station data. In this set-

ting, situations are conceivable where no grid box correctly

represents the point location. If the local weather is mainly

determined by local orographic phenomena (e.g. a mountain

breeze, valley fog), the simulated grid box average (in fact,

even gridded observational data) might only contain little rel-

evant information about the local climate (Maraun, 2014). In

such a situation a meaningful bias correction would be im-

possible. Thus, also here it is crucial to test for location rep-

resentativeness, in particular in complex terrain.

Often, it is desired to correct the combined RCM and

global climate model errors, or even to directly bias correct

global climate models against observations. In such a setting

it is difficult to test location representativeness as simulations

and observations are not temporally aligned. Here, a location

correction conditional on weather types (which have to be

jointly defined in observations and the global model) might

provide a way forward. In fact, as such a correction would di-

rectly include information about the relevant physical causes

of the biases – the displacement should mainly depend on

the mesoscale flow – it should in principle be very robust in

terms of stationarity of location biases under climate change.

Additionally to mesoscale errors induced by orography,

global climate models typically suffer from large-scale circu-

lation errors such as a displacement of the storm tracks (e.g.

Randall et al., 2007). In other words: in general, simulated

climate at a particular geographical location is not represen-

tative of the corresponding local observed climate. Thus, in

line with the argument of Eden et al. (2012) and Eden and

Widmann (2014), at a given location it is not a priori clear

whether a bias correction of global climate models is justi-

fied. Prior to any bias correction one should therefore assess

whether the relevant dynamical processes governing a local

climate of interest are well simulated and well located.

The preceding discussion broadens the concept of repre-

sentativeness. In addition to the location aspect discussed

here, representativeness has a well-known scale aspect: cli-

mate models simulate area average values and thus do not

represent point data of station observations (Klein Tank et al.,

2009). Also here, the root of the problem is not the difference

in marginal distributions, but the fact that area averages do

not contain all information about local-scale variations (Ma-

raun, 2013). Again, a classical deterministic bias correction
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would fail; a stochastic bias correction, however, could in

principle add the required small-scale variability (Maraun,

2013; Wong et al., 2014).

The Supplement related to this article is available online

at doi:10.5194/hess-19-3449-2015-supplement.
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