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Abstract. The similarity of the temporal variations of land

and atmospheric states during the onset (September) through

to the peak (February) of the wet season over northern Aus-

tralia is statistically diagnosed using ensembles of offline

land surface model simulations that produce a range of dif-

ferent background soil moisture states. We derive the tem-

poral correspondence between variations in the soil mois-

ture and the planetary boundary layer via a statistical mea-

sure of rank correlation. The simulated evaporative frac-

tion and the boundary layer are shown to be strongly cor-

related during both SON (September–October–November)

and DJF (December–January–February) despite the differ-

ing background soil moisture states between the two seasons

and among the ensemble members. The sign and magnitude

of the boundary layer–surface layer soil moisture association

during the onset of the wet season (SON) differs from the

correlation between the evaporative fraction and boundary

layer from the same season, and from the correlation between

the surface soil moisture and boundary layer association dur-

ing DJF. The patterns and magnitude of the surface flux–

boundary layer correspondence are not captured when the re-

lationship is diagnosed using the surface layer soil moisture

alone. The conflicting results arise because the surface layer

soil moisture lacks strong correlation with the atmosphere

during the monsoon onset because the evapotranspiration is

dominated by transpiration. Our results indicate that accu-

rately diagnosing the correspondence and therefore coupling

strength in seasonally dry regions, such as northern Australia,

requires root zone soil moisture to be included.

1 Introduction

The land surface influences the atmosphere at multiple spa-

tial and temporal scales (Pitman, 2003; Pielke et al., 2011;

Williams and Maxwell, 2011). Land–atmosphere coupling

strength is the degree to which land surface anomalies (e.g.,

soil moisture, vegetation characteristics, temperature, snow

cover) lead to changes in atmospheric states and fluxes (e.g.,

rainfall, cloud cover, moisture convergence) as well as how

anomalies in the atmosphere affect the land surface. The in-

fluence of land surface anomalies on atmospheric anomalies

(and vice versa) proceeds through a chain of non-linear pro-

cesses. The strength of these processes varies spatially and

temporally and depend, in part, on the background state of

the system (Betts, 2004; Betts et al., 1996; Koster and Suarez,

2003; Taylor and Ellis, 2006). The chain of mechanisms be-

tween soil moisture (SM) and precipitation (P ) anomalies

can be summarized following Santanello et al. (2011) as

1SM⇒1EFSM⇒1PBL⇒1EFATM⇒1CLD⇒1P, (1)

where the changes in soil moisture (1SM) lead to changes

in evaporative fraction (1EFSM), which alters the proper-

ties of the planetary boundary layer (1PBL) including the

state (temperature, humidity) and the entrainment rate. These

three near-surface coupling mechanisms (1SM,1EFSM, and

1PBL) precede changes away from the land surface that fur-

ther the change evaporative fraction (1EFATM), leading to

changes in cloud development and growth (1CLD), and ul-

timately forcing changes in precipitation (1P ). The chain

cycles with 1P driving 1SM to varying degrees depending

on the region and season (Zhang et al., 2008). Equation (1)
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is a conceptualization of complex and non-linear processes,

such that the sign of the 1CLD response to a 1SM forc-

ing can vary (Westra et al., 2012; Gentine et al., 2013b).

Equation (1) is a simplification of the short (less than a day)

timescale coupling mechanisms and neglects large-scale cir-

culation and moisture feedbacks (Lee et al., 2012; Lintner

and Neelin, 2009; Lintner et al., 2013). Additional feedbacks

that operate on short timescales not shown in Eq. (1), such as

1EFSM or 1EFATM leading to 1SM, may also be important

(Seneviratne et al., 2010; Meng et al., 2014a, b). Despite sim-

plifications, Eq. (1) highlights the primary control SM exerts

on EF (evaporative fraction) as compared to secondary fac-

tors such as entrainment (Gentine et al., 2011). In a convec-

tive regime, 1SM initiates a series of events that first alter

the atmosphere (1PBL) prior to changing P . The series of

events 1SM–1PBL comprises the terrestrial portion of the

coupling mechanisms and is the focus of this study. The sta-

tistical relationship between model-simulated 1SM or 1EF

and the observed1PBL is examined here. The1SM through

1PBL sequence is a necessary, but not sufficient, set of pro-

cesses that determine how P responds to changes in SM.

Therefore, by demonstrating the limitations of various sta-

tistical metrics in capturing the relationships between 1SM,

1EF, and 1PBL, this study highlights the periods and con-

ditions that coupling can be diagnosed using the aforemen-

tioned diagnostic metrics.

The sensitivity of atmospheric processes to1SM has been

quantified with observations (Koster et al., 2003; Taylor and

Ellis, 2006) and multiple model experiments (Dirmeyer et

al., 2006; Guo et al., 2006; Hirsch et al., 2014; Koster et

al., 2000, 2006, 2011; Lee et al., 2012). Ferguson et al. (2012)

combined multiple sources of reanalysis data with LCL (lift-

ing condensation level) and SM observations to examine

the relationship between early morning surface layer SM

(SM1) and both the LCL and the EF in the afternoon dur-

ing the convective season. The relationship was quantified

using the Kendall τ coefficient (Kτ ), a non-parametric rank

correlation coefficient that measures the association between

two time series. Ferguson et al. (2012) found strong cou-

pling (Kτ ) between SM1–EF, EF–LCL, and SM1–LCL over

many regions including monsoon regions such as northern

Australia. These three coupling mechanisms span the first

three components in Eq. (1) (1SM, 1EFSM, 1PBL). While

these represent only part of the processes involved in land–

atmosphere coupling, they comprise a fundamental pathway

by which SM anomalies drive an atmospheric response.

Several regional analyses have investigated the importance

of land–atmosphere coupling in northern Australia (Evans

et al., 2011). Koster et al. (2000) showed land–atmosphere

coupling increased the variance of P in both northern and

eastern Australia. In agreement, Ferguson et al. (2012) found

high correlations in SM1–EF, EF–LCL, and SM1–LCL dur-

ing the convective (monsoon) season over the northern savan-

nas. These studies were limited in scope and did not explic-

itly explore how the coupling behaves during periods with

different background climate states. Therefore, it is impor-

tant to evaluate whether the methods used to characterize

land–atmosphere behavior are valid during alternate periods

with varying background states.

To examine statistical measures of land–atmosphere cou-

pling strength we explore the correspondence between the

temporal variations in land-surface-model-derived soil mois-

ture and water flux estimates with the observation-based esti-

mates of the variations in the boundary layer state. The rela-

tionship between EF and shallow cumuli have been demon-

strated by Gentine et al. (2013a); however, here we exam-

ine the temporal co-evolution of SM as it relates to the esti-

mated LCL height during the onset through to the peak of

the monsoon season. Significant statistical association be-

tween soil moisture or surface fluxes and the atmosphere pro-

vides a necessary but not sufficient condition to demonstrate

significant land–atmosphere coupling. The lack of land–

atmosphere feedbacks in offline simulations means we can-

not assess cause and effect, but by examining the statistical

correspondence we can determine if the co-evolution of the

simulated states (SM and EF) are consistent with observed

LCL.

The statistical association is defined here such that the

land surface processes in Eq. (1) (1SM, 1EFSM) are sim-

ulated and evaluated in relation to the observationally es-

timated 1PBL. The dynamic progression represented in

Eq. (1) is simulated for 1SM and 1EFSM only. The

physical mechanisms that drive 1PBL from 1SM and

1EF are not simulated, while the sequence of events in

the atmosphere (1EFATM, 1CLD and 1P ) are neglected.

This terrestrial-derived statistical association captures how a

model-simulated 1SM relates to state changes in the after-

noon mixed layer (1PBL) by assuming that 1PBL can be

characterized using near-surface atmospheric states. Strong

association as defined here is a necessary but not sufficient

prerequisite for strong 1SM–1PBL or 1SM–1P coupling

because the full chain of events is not simulated. An ensem-

ble of offline simulations using two model configurations,

one of which neglects groundwater and therefore contains

greatly reduced deep soil moisture, are driven using four

forcing data sets. The simulations provide estimates of SM1

in addition to SM over the root zone (SMrz), total ET and the

ET components. Afternoon (14:00 LT) LCL is derived using

the near-surface atmospheric variables from the forcing data

sets, and the sensitivity of the ensemble medianKτ is exam-

ined for the onset and peak of the monsoon season.

We focus on northern Australia to examine whether the re-

lationship between soil moisture and the boundary layer can

be diagnosed from SM1 in regions with a pronounced dry

season, given the influence of groundwater on transpiration

and deep SM variability (Decker et al., 2013). Northern Aus-

tralia has a pronounced May to September dry season and a

monsoon-driven wet season from November through Febru-

ary (Fig. 1). The monsoonal climate allows us to examine the

SM1–LCL association as defined in Ferguson et al. (2012)
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Figure 1. Observations of the (18–11◦ S, 120–150◦ E) domain-

averaged mean annual cycle of precipitation (P in mmday−1).

in sharply contrasting seasons (Fig. 1) that exhibit contrast-

ing background soil moisture states. By examining the differ-

ences between correspondence during the onset (defined here

as SON, September-October-November, to coincide with the

initial increase in rainfall) of the wet season when soil mois-

ture will be low and then through to the peak (defined as

DJF, December-January-February, to coincide with the pre-

cipitation maximum) of the wet season, we aim to determine

the reliability of diagnosing the terrestrial and near-surface

stages of land–atmosphere correspondence usingKτ derived

from SM1 and LCL during periods where total ET fluxes are

dominated by either soil evaporation or transpiration.

This manuscript is organized as follows. The model sim-

ulations, the SM1 and ET observations used for model eval-

uation, and the near-surface atmospheric data sets are sum-

marized in Sect. 2. Section 3 outlines the statistical measure

used to define the association between the different states,

the derivation of LCL from the atmospheric data, and the

model experiments used to estimate the evaporative fraction

and soil moisture. The Results section consists of the SM1–

LCL- and EF–LCL-based association strength; the impacts

of defining association strength with SMrrz (the root zone

SM) are presented in Sect. 4. The results are explained in

terms of the governing physical processes and previous re-

search in Sect. 5.

2 Model simulations and data

2.1 Near-surface atmospheric and forcing data

The LCL (see Sect. 3.2) over the entire study region is com-

puted from combinations of near-surface atmospheric data

using two reanalysis products. The LCL is also calculated at

the two flux sites using the tower observations. The model

simulations (see Sect. 2.2) are driven using a combination

of atmospheric states and fluxes from reanalysis products,

a gauge-based daily precipitation data set, and a 3-hourly

satellite-based precipitation product. We follow Decker et

al. (2014) and utilize four forcing data sets to drive model

simulations.

The two gridded sources of temperature, humidity, wind

speed, pressure, and radiative fluxes are the Global Land

Data Assimilation System (GLDAS; http://disc.sci.gsfc.nasa.

gov/hydrology/data-holdings; Rodell et al., 2004) and the

Modern-Era Retrospective Analysis for Research and Appli-

cations (MERRA) product (Bosilovich et al., 2008). These

two data sets are utilized due to the high spatial resolu-

tion of GLDAS (0.25◦) and high temporal resolution of

MERRA (hourly). Two forcing data sets are comprised of

the uncorrected GLDAS and MERRA data interpolated to a

common 0.25◦× 0.25◦ grid. In addition, two precipitation-

corrected data sets developed in Decker et al. (2014) are

used. The uncorrected atmospheric states and radiative fluxes

from MERRA are combined with P corrected via two al-

gorithms. First, MERRA is corrected using the Australian

Water Availability Project (AWAP) daily gridded precipita-

tion data (Jones et al., 2009) to remove the monthly biases

(labeled MERRA.B). Second, the MERRA precipitation is

replaced with precipitation derived from disaggregating the

daily AWAP data with the 3-hourly Tropical Rainfall Mea-

suring Mission (TRMM) 3B42 (Huffman et al., 2007) data

(labeled MERRA.BT). These two corrected data sets have

identical monthly mean precipitation but different distribu-

tions of submonthly precipitation.

2.2 Simulated estimates of soil moisture and

evaporative fraction

We use the Community Land Model version 4 (CLM4; Ole-

son et al., 2010) to simulate the states and fluxes of water

and energy using configurations documented in Decker et

al. (2013, 2014). The land surface model simulations and re-

analysis products allow for the relationships within the ter-

restrial leg (SM-PBL in Eq. 1) to be diagnosed without fully

simulating the land surface–atmosphere dynamics and feed-

backs. A detailed description of the groundwater configura-

tions and modifications are given in Decker et al. (2014).

The suite of simulations is utilized to address forcing data

and model configuration uncertainties in addition to explor-

ing a large soil moisture state space. Two different configu-

rations of CLM4 are used. The first consists of the default

CLM4 (referred to as CTRL). The second (referred to as

DRY) uses a modified CLM4 that replaces the two-way soil

moisture coupling between the soil column and the aquifer

with a free drainage bottom boundary condition. The modifi-

cations significantly reduce the soil moisture at depths below

several centimeters and the ET flux during periods of low

rainfall while not imparting large differences on the changes

in total column water (Decker et al., 2014). The two model
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configurations thus enable the coupling between the atmo-

sphere and the land surface to be examined under two differ-

ing background soil moisture states.

The CLM4 evapotranspiration is computed as the sum of

the soil evaporation, the canopy evaporation and the transpi-

ration. Transpiration is determined from the rate of photo-

synthesis and is, in part, a function of SM. The dependence

on SM is determined by the soil water potential in each soil

layer, the root distribution (prescribed by plant functional

type, PFT), and the PFT dependence on water stress. The

spatial distribution and phenology of PFTs are specified and

identical across all simulations. The C3 grass PFT sets ap-

proximately 99 % of the roots within 1m of the surface, while

approximately 90 % of the roots are within this depth for the

broadleaf evergreen forest PFT.

The experiment design follows the simulations outlined

in Decker et al. (2014) that have been shown to be in

good agreement with observations over parts of Australia.

One control (CTRL) simulation and one dry simulation are

equilibrated for the period 1948–1979 using the corrected

NCEP/NCAR data (Qian et al., 2006) after interpolating to

the same 0.25◦× 0.25◦ grid as the other forcing data sets.

The CTRL and DRY simulations ending in 1979 provide

initial conditions for the four CTRL and four DRY simula-

tions from 1979 to 2007. The model evaluation period spans

the 5 years coincident with the SM and ET data from 2003

to 2007. The associations are computed using the period

1990–2008. Both the CTRL and the DRY simulations are

forced with the four forcing data sets (see Sect. 2.1): GLDAS,

MERRA, MERRA.B, and MERRA.BT, generating a total of

eight model simulations. The SM (from all model layers) and

turbulent energy fluxes are output at 3-hourly intervals (co-

incident with the temporal resolution of the GLDAS forc-

ing), while the remaining CLM4 output is saved as monthly

means.

2.3 Validation data: soil moisture and

evapotranspiration

The spatiotemporal behavior of the simulated surface soil

moisture (SM1) and evapotranspiration (ET) are validated

against gridded observationally based estimates. SM1 is eval-

uated against the daily Advanced Microwave Scanning Ra-

diometer – Earth Observing System (AMSR-E) L3 sur-

face SM product. The data are derived from passive mi-

crowave measurements and available for the period 2002–

2011 (Njoku et al., 2003). AMSR-E-based SM compares fa-

vorably with in situ measurements over Australia (Draper et

al., 2009) and exhibits spatiotemporal variability consistent

with land model simulations (Liu et al., 2009). To simplify

the comparison with the simulated SM, the first model layer

(∼ 0.7 cm deep) SM is assumed comparable to SM from

AMSR-E despite the uncertain effective measurement depth

(approximately 1 cm) that varies with SM.

The simulated evapotranspiration is evaluated against

three ET products. Multiple ET data sets based on differ-

ent methodologies are included due to the uncertainty as-

sociated with deriving gridded moisture flux data (Jiménez

et al., 2011). The Global Land Evaporation Amsterdam

Methodology (GLEAM; Miralles et al., 2011a, b), the model-

tree ensemble-based data set from MPI-Jena (J2010 here-

after) (Jung et al., 2010), and the Moderate Resolution

Imaging Spectrometer (MODIS) MOD16 data set (Mu et

al., 2007, 2011) are used to estimate the observed mean sea-

sonal ET fluxes. The observed ET is estimated using the

arithmetic mean of the three data sets after the GLEAM

and MOD16 data are aggregated to the coarse resolution

(0.5◦× 0.5
◦

) of the J2010 data. The simulations are subse-

quently compared to the mean observed ET separately for

the wet season (December–February) and the end of the dry

season (September–November).

In addition to the gridded SM and ET data sets, the model

is evaluated against observations from two flux tower sites in-

cluded in the OZ Flux network (ozflux.org.au). The Adelaide

River site (Beringer, 2013a) spans November 2007 through

May 2009 and is located at 13.08◦ S, 131.12◦ E. The Howard

Springs site (Beringer, 2013b) spans from 2001 to present

and is located at 12.48◦ S, 131.15◦ E. Both sites provide air

temperature, water vapor, surface pressure, radiation, turbu-

lent fluxes (including ET), and soil moisture measurements

at 30 min intervals. The level 3 (L3) quality controlled data

were utilized in this study. Adelaide River provides SM data

at 5 cm depth while Howard Springs provides SM at a depth

from 10 cm. The simulations are validated against the ob-

served ET and SM at these two locations.

3 Methods

3.1 Kendall τ

We evaluate the relationships between variables involved

in land–atmosphere coupling processes using Kτ , a non-

parametric, rank correlation statistic (Press et al., 1992).

Following Ferguson et al. (2012), Kτ is used to indicate

the correspondence between two states important to land–

atmosphere coupling. Kτ does not assume linearity between

the variables being compared and tests for statistical signifi-

cance. Kτ ranges from −1 to 1 (positive values indicate the

temporal variations are synchronized), with statistical signif-

icance depending on the sample size (approximately 0.12 for

the simulation-based results in this study). Kτ is defined as

Kτ =
No−Nd

0.5n(n− 1)
, (2)

where No is the number of ordinate pairs, Nd is the num-

ber of disordinate pairs, and n is the number of observations.

Ordinate pairs are pairs of numbers for which the change be-

tween them have the same sign, i.e., both are either positive
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or negative. The strong seasonal cycle in northern Australia

(Figs. 2, 3) necessitates that the seasonality be removed from

the data or it will likely control the statistical relationship.

The least squares linear trend is removed from the data by

calculating the trend over each season individually. The data

are detrended instead of removing the monthly mean annual

cycle to ensure we do not create discontinuities within a sea-

son. Removing the mean annual cycle could possibly sub-

tract very different mean values from points that are contin-

uous in time, causing artificial discontinuities between the

data from the last day of a month and the first day of the sub-

sequent month. Detrending the data over a season ensures

the methods do not introduce artificial discontinuities be-

tween months within a given season. The spatially distributed

Kτ is calculated between the seasonally detrended 3-hourly

modeled SM1 during the morning and the estimated 3-hourly

LCL from the afternoon at each grid cell for each month dur-

ing both the wet and dry seasons. Kτ is additionally derived

with detrended data at two flux tower sites using measure-

ments of SM and LCL estimated from the tower data. The

morning SM1 is utilized because SM will be highest in the

morning prior to decreasing during the day due to ET. The

local time of SM and LCL varies because the simulations

and forcing data utilize Greenwich Mean Time (GMT). The

distributedKτ is found separately for each of the eight simu-

lated (see Sect. 2.2) estimates of SM1 and the four estimates

of LCL (Sect. 3.2), generating a total of 32 estimates of Kτ

for each month in both the wet and dry seasons. The median

Kτ is found separately for the wet and dry seasons for the

two different model configurations (Sect. 3.3) to give the fi-

nal estimation of the correspondence. The association is also

diagnosed using Kτ between the model-simulated afternoon

evaporative fraction and the afternoon LCL. A second defi-

nition of association is found by calculating Kτ between the

morning time root zone SM (SMrz) and the afternoon LCL

(SMrz–LCL). SMrz is defined as the vertically averaged SM

from the surface to a depth of 1 m.

The physical meaning of a negative SM–LCLKτ associa-

tion is as follows. A high value of SM will cause a larger ET

flux, moistening the lower atmosphere, causing a lower LCL.

Thus, we hypothesize that in regions where the land and at-

mosphere are coupled the SM–LCL Kτ should be negative.

If SM has no association with LCL, then Kτ is expected to

be statistically insignificant. Similarly, if ET is negatively as-

sociated with LCL (Kτ < 0), it means that high ET may be

moistening the lower atmosphere again, leading to a lower

LCL.

3.2 Calculation of lifting condensation level

The state of the convective atmosphere is evaluated using

the LCL, defined as the height (in pressure) at which a par-

cel reaches saturation when ascending adiabatically from the

surface. While a lower LCL is favorable to convection, it is

not a sufficient constraint to guarantee it. For convection to

occur a parcel must reach the level of free convection (LFC),

which may not occur even if a parcel reaches the LCL. The

height (in pressure) of the LCL is derived using only near-

surface variables under the assumption that the boundary

layer is well developed and therefore well mixed. Estimating

the LCL from near-surface variables provides heights com-

parable to direct observations (Ferguson and Wood, 2009).

Under these assumptions, the pressure at the LCL is given by

LCL= Psrf−Psrf

(
Tair

Tdew

)−cp
R

, (3)

where Psrf is the surface pressure (Pa), Tair is the near-

surface air temperature (K), Tdew is the near-surface dew

point temperature (K), R is the specific gas constant of dry

air (JK−1 kg−1), and cp is the specific heat of dry air at con-

stant pressure (JK−1 kg−1). Four spatially explicit estimates

of LCL are found by applying Eq. (4) to several combinations

of near-surface forcing data, and two point-wise estimated

are derived from the flux tower data. The atmospheric states

Psrf and Tair are directly provided by both reanalysis products

and the tower measurements. The measure of atmospheric

moisture, Tdew, is calculated for GLDAS, MERRA, and the

tower sites separately using the respective near-surface hu-

midity, temperature, and pressure data from each data set.

The four distributed estimates of LCL are calculated with

Eq. (4) by (1) using GLDAS for pressure and both tem-

peratures, (2) using MERRA for pressure and both temper-

atures, (3) using pressure from MERRA and temperatures

from GLDAS, and (4) using pressure from GLDAS and tem-

peratures from MERRA. The LCL is quality controlled by

limiting LCL to be less than the surface pressure.

4 Results

4.1 Validation of simulated soil moisture and

evapotranspiration

The two model configurations are separately validated

against the observationally estimated soil moisture and evap-

otranspiration on monthly and seasonal timescales, respec-

tively. Figure 2a shows the time series of the area-averaged

(10–15◦ S, 120–150◦ E) normalized ensemble mean first

layer soil moisture from the CTRL and the DRY ensembles

and the AMSR-E observed data. The simulation dynamics

are evaluated using the normalized SM1 due to the difficulties

in direct comparison of simulated and observed soil moisture

(Koster et al., 2009). The strong seasonal cycle of soil mois-

ture owing to the monsoonal climate is evident in both the

observationally based estimates and the simulations. CTRL

and DRY are nearly identical, aside from the dry season in

2005 where the soil moisture in CTRL decreases more than

that from DRY. The observed moistening of the soil follow-

ing the dry seasons in Fig. 2a occurs within a month of that
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Figure 2. (a) The mean normalized (using the first two moments)

first layer soil moisture (SM1) from the CTRL and DRY simula-

tions and the AMSR-E observations. (b) The difference between

the mean SM1 (from all simulations over all months from 2004 to

2009) and the AMSR-E observations.

of the simulated moistening. The mean monthly soil mois-

ture closely follows the observationally based estimates and

exhibits dynamic behavior independent of the model config-

uration.

The bias of the ensemble-mean-time-averaged surface

layer soil moisture from the eight simulations against the

AMSR-E product is shown in Fig. 2b. Over large re-

gions of northern Australia, the simulated SM1 is within

0.025 mm3 mm−3 of AMSR-E. The difference in mean SM1

between the two model configurations is similarly small (fig-

ure not shown). Figure 2 demonstrates that the temporal evo-

lution (Fig. 2a) and mean state (Fig. 2b) of the simulated SM1

are similar to the AMSR-E estimates.

The seasonal mean ET is validated against the arithmetic

mean of the three gridded ET products for both DJF (Fig. 3a,

c, e) and SON (Fig. 3b, d, f). The observed DJF ET (Fig. 3e)

has a strong north–south gradient with a maxima centered

around 13◦ S, 130◦ E. The strong north–south gradient is

also present in the ensemble mean ET (Fig. 3a); however,

the simulations overestimate DJF ET over much of the do-

main. The observationally based estimates show an ET of

less than 50 Wm−2 south of 18◦ S while the simulations re-

main above 60 Wm−2 in this region. The mean SON ET is

markedly lower compared to DJF ET in both the gridded data

(Fig. 3f) and the simulations (Fig. 3b). Similar to DJF, both

the model and the ET product show a strong north–south

gradient. The simulations underestimate the ET in the York

Peninsula (east of 140◦ E and north of 17◦ S) during SON and

overestimate the ET in this region during DJF. The overesti-

mation of DJF ET compared to the gridded product is much

more pronounced for the CTRL simulations (Fig. 3a) than for

the DRY simulations (Fig. 3c). The underestimation of the

SON ET in the simulations is largely a result of including the

DRY model configuration. The CTRL simulations exhibit a

10–20 Wm−2 increase in SON ET over the DRY model runs

(Fig. 3b, d). Overall, the model exhibits spatiotemporal ET

in close agreement with this gridded ET product.

Point measurements of SM and ET at two locations

show reasonable agreement with the model simulations. The

Howard Springs SM observations 10 cm depth (Fig. 4a) typ-

ically increases from 0.05 to 0.2 mm3 mm−3 from the dry to

the wet season. The observations are drier during the wet sea-

son and have a smaller (by a factor of 2) seasonal cycle than

both the DRY and CTRL simulations. DRY is much drier

(∼ 0.08 mm3 mm−3) than CTRL (∼ 0.18 mm3 mm−3) during

the dry season and in better agreement with the measure-

ments (∼ 0.05 mm3 mm−3). This contrasts with the agree-

ment at the Adelaide River site (Fig. 4b) where the mea-

surements and CTRL peak at around 0.30 mm3 mm−3 during

the 2008 wet season. DRY (0.02–0.07 mm3 mm−3) is again

much drier than CTRL (0.15 mm3 mm−3) during the 2008

dry season but CTRL is in better agreement with the data

(0.15 mm3 mm−3). The AMSR-E estimate, CTRL, and DRY

are similar in Fig. 4a and b (the y axis scale is the same in

both figures), while the SM observations at the two sites dif-

fer drastically. The disagreement in the mean as well as the

amplitude of the seasonal variability is likely due to both the

difference in scale between the measurements and simula-

tions and poor representation of soil properties in the model.

When the SM comparison is normalized using the first two

moments as in Fig. 2a (not shown) there is greater agreement

between the measurements, AMSR-E, and the simulations.

The ET data at Howard Springs (Fig. 4c) demonstrates that

the CTRL simulation always produces too little ET during

the dry season. While the gridded ET estimate in Fig. 4c falls

within 10 Wm−2of the CTRL simulation during the dry sea-

son, the tower data are nearly 20 Wm−2 greater than during

both the 2007 and 2008 dry seasons. The wet season peak

in ET is well simulated by both CTRL and DRY at Howard

Springs. The model performance is different at the Adelaide

River as both CTRL and DRY have a wet season peak ET

of around 120 Wm−2 while the measurements peak closer to

150 Wm−2. Figure 4d further demonstrates that DRY has too

little dry season ET.

The results from Figs. 2, 3, and 4 demonstrate that CLM4

simulates the monthly and seasonal first layer soil moisture

and evapotranspiration reasonably. While the details of the

model performance vary depending on which site, season,

and ensemble member are used for validation; overall, the
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Figure 3. The mean ET (Wm−2) from the wet season (DJF shown in the left hand column) and the transition between the dry and wet

seasons (SON shown in the right hand column). The ensemble mean ET from (a) CTRL over DJF, (b) CTRL over SON, (c) DRY for DJF,

(d) DRY from SON, (e) OBS (the mean of three gridded ET products) over DJF, and (f) OBS for SON.

Figure 4. The monthly soil moisture (SM in mm3 mm−3) from the ensemble mean from CTRL and DRY, AMSR-E, and flux tower mea-

surements (OBStower) from flux tower sites at (a) Howard Springs at 10 cm depth and (b) Adelaide River at 5 cm depth. The monthly

evapotranspiration (ET in Wm−2) from CTRL, DRY, the mean of three ET products (OBSgridded) and the measurements at the (c) Howard

Springs and (d) Adelaide River flux tower sites.

spatial and temporal patterns of ET and SM are generally

captured by the modeling system. The accuracy of the es-

timated land surface states and fluxes therefore enables the

use of the simulated variables in the diagnoses of the land–

atmosphere association strength during SON and DJF.

4.2 Background SM state

The sharp contrast in background SM state can be illus-

trated by taking a spatiotemporal average of SM as a func-

tion of depth for CTRL and DRY for DJF (Fig. 5a) and

SON (Fig. 5b). The soil moisture away from the surface

is markedly different between CTRL and DRY. During

DJF, CTRL shows a slight increase in soil moisture with

depth, reaching a peak of ∼ 0.35 mm3 mm−3 at depths near
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Figure 5. Spatiotemporal mean soil moisture (mm3 mm−3) SM as

a function of depth (m) for (a) DJF and (b) SON.

3 m. In contrast, DRY has a peak soil moisture of only

∼ 0.24 mm3 mm−3 at the surface and decreases with depth

to near zero at 3 m. Similar patterns of SM with depth are

seen over SON; however, SM1 is considerably lower for both

CTRL and DRY compared to DJF.

Despite the similar mean and temporal behavior of SM1

shown in Fig. 2, SM away from the surface differs substan-

tially between the two model configurations (Fig. 5). The

mean DJF ET is similar between CTRL and DRY, with dif-

ferences between the two of only 10–20 Wm−2, correspond-

ing to roughly 10–20 % of the mean value. The fractional

contribution of transpiration to the total ET during DJF is

roughly 10–30 % for both DRY and CTRL (Fig. 6), indi-

cating that the evaporation is the dominant ET mechanism.

The enhanced mean SM in CTRL causes the CTRL ET to be

greater than the DRY ET during DJF, yet both compare rea-

sonably well to the observationally based estimates (Fig. 3).

However, the lack of SM at depths below several centimeters

for DRY during SON causes the reduced ET as compared to

CTRL during this period. The mean ET during SON is sen-

sitive to the mean SM away from the surface, indicating that

transpiration significantly contributes to the total ET during

this period as can be seen in Fig. 6. The large contribution of

transpiration to the total ET in CTRL (Fig. 6b) is facilitated

by the moist subsurface soil moisture (Fig. 5b). The reduced

root zone SM in DRY leads to an increase in water stress and

reduced transpiration, causing both the lower mean ET and

transpiration fraction in DRY relative to CTRL. This reduc-

tion during SON is large relative to the mean ET during the

period (Fig. 3).

4.3 Correspondence: EF–LCL and SM1–LCL

The statistical association between the evaporative fraction

and the LCL is shown in Fig. 7, with the results from the two

flux towers shown in enclosed squares around 13◦ N, 131◦E.

The insignificant associations are greyed out while the sta-

tistically significant results are shown in color. During DJF,

CTRL (Fig. 7a) and DRY (Fig. 7c) exhibit strong surface

flux–atmosphere correspondence, with the strongest associa-

tion over the Cape York Peninsula (east of 140◦ E and north

of 17◦ S) and the southwestern part of the domain. Similarly,

the EF–LCL association is significant during SON (Figs. 7b,

d) over much of the domain, although the magnitude is re-

duced relative to DJF. Both ensembles show strong associa-

tions independent of the season; however, the differences be-

tween CTRL and DRY vary with season. The DJF EF–LCL

correspondence near 15◦ S, 132◦ E is statistically significant

in DRY (Fig. 7c) but not in CTRL (Fig. 7a), contrasting the

similar SON EF–LCL association in this region exhibited by

both DRY (Fig. 7d) and CTRL (Fig. 7b). The flux towers

(boxed squares in Fig.7a–c) show statistically significant as-

sociation between EF and the LCL during both seasons. The

EF–LCL correspondence from the tower observations agree

more closely with DRY in DJF as CTRL shows statistically

insignificant association in the region (13◦ S, 131◦ E). The re-

duced deep layer soil moisture resulting from the removal of

the groundwater module enhances the DJF correspondence

in agreement with the tower data.

Figure 8 shows the medianKτ between SM1 and the LCL

(see Sect. 3.3) for CTRL and DRY separately during DJF

(Fig. 8a, c) and SON (Fig. 8b, d). Several important features

are present in Fig. 8. The SM1–LCL association during DJF

and SON is largely similar between the two model config-

urations. CTRL (Fig. 8a) and DRY (Fig. 8c) exhibit similar

spatial patterns and magnitudes of Kτ . Some regions (17◦ S,

126◦ E) exhibit increases in the magnitude of Kτ in CTRL

relative to DRY in DJF (Fig. 8a, c) although the differences

are statistically insignificant over most of the domain. Re-

gardless of these slight variations in Kτ , CTRL and DRY

exhibit a strong association between SM1 and the boundary

layer during the peak of the wet season over coincident parts

of the domain. Both model configurations also show areas

(15◦ S, 131◦ E) with insignificant correspondence adjacent to

the strongly associated regions. In contrast, CTRL and DRY

both contain regions of significant positive Kτ demonstrat-

ing a negative correspondence during SON, in disagreement

with the results from the Adelaide River tower site. The tower

sites show statistically significant negative SM–LCL associ-

ation during DJF adjacent to a region (15◦ S, 131◦ E) of in-

significant correspondence in both simulations. The similar-

ity in SM1–LCL correspondence between CTRL and DRY

during both DJF and SON implies a similar temporal vari-

ability of SM1 as related to the LCL. From Fig. 3, the mean

ET fluxes are considerably different during SON. The simi-

lar temporal behavior relative to the LCL for both DRY and

CTRL indicates that the SM1 variability is physically inde-

pendent of the season’s mean ET fluxes.

Contrasting Figs. 7 and 8 reveals that the surface fluxes

(Fig. 7b, d) are associated with the LCL despite the simu-

lated surface layer soil moisture (Fig. 8b, d) lacking similar

correspondence. The regions of positiveKτ in Fig. 8 contra-

dict the strongly negative Kτ in Fig. 7 during SON. The flux

towers show negative association for both EF–LCL and SM–
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Figure 6. The mean transpiration fraction (fraction of total ET from transpiration defined as the ratio of transpiration over total ET) from the

wet season (DJF shown in the left hand column) and the transition between the dry and wet seasons (SON shown in the right hand column).

The ensemble mean transpiration fraction to total ET from (a) CTRL over DJF, (b) CTRL over SON, (c) DRY over DJF, and (d) DRY over

SON.

Figure 7. The ensemble median Kτ correlation metric between the afternoon time (local) EF and the afternoon computed LCL from

(a) CTRL over DJF, (b) CTRL over SON, (c) DRY over DJF, and (d) DRY over SON. The black outlined squares in (a–d) denote the values

from the flux tower sites. Only statistically significant (95 % confidence level) results are shown in (a–d).

LCL during DJF and SON in Figs. 7 and 8. The EF–LCL

correspondence during DJF is much stronger than the corre-

lation from SM1, and DRY exhibits regions of stronger EF–

LCL correspondence than CTRL; however, the differences

are not statistically significant over much of the domain. A

key difference between the flux tower and model simulation

estimatedKτ is the depth of the SM. The measurement depth

at the tower sites are 5 and 10 cm for Adelaide River and

Howard Springs respectively, while the model surface layer

soil moisture is taken from a depth of 0.7 cm. The change

in sign of SM1–LCL Kτ from SON (Fig. 8b, d) to DJF

(Fig. 8a, c) demonstrates that applying Eq. (4) to SM1 and

the LCL does not always capture the co-evolution of the land

surface and the atmosphere during periods where deep SM

and transpiration dominate the ET flux.

In short, our results demonstrate that the simulated surface

layer soil moisture cannot adequately capture the SM–LCL

association during both DJF and SON. The significant con-

tributions of transpiration to the total ET fluxes (especially

during SON) are responsive to perturbations in SMrz and not

SM1.

4.4 Proposed Association strength definition:

SMrz–LCL

The definition of a statistical metric that captures the re-

lationship between land surface moisture states and fluxes

must encompass the relevant physical mechanisms. Previ-

ously, observationally derived values of Kτ were limited to

using SM1 because the AMSR-E (or other microwave) SM

measurements typically measure to depths of less than a few

centimeters beneath the soil surface (Ferguson et al., 2012).

Computing Kτ between SM1 and the LCL incorporates the

surface layer soil moisture that is important for surface evap-
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Figure 8. The ensemble medianKτ correlation metric between the morning first layer soil moisture (SM1) and the afternoon computed LCL

from (a) CTRL over DJF, (b) CTRL over SON, (c) DRY over DJF, and (d) DRY over SON. The black outlined squares in (a–d) denote the

values from the flux tower sites. Only statistically significant (95 % confidence level) results are shown in (a–d).

Figure 9. The ensemble median Kτ correlation metric between the morning root zone soil moisture (SMrz) and the afternoon computed

LCL from (a) CTRL over DJF, (b) CTRL over SON, (c) DRY over DJF, and (d) DRY over SON. The black outlined squares in (a–d) denote

the values from the Howard Springs flux tower site. Only statistically significant (95 % confidence level) results are shown in (a–d).

oration from the soil. Therefore, the relationship between the

temporal variations in SM and the LCL in DJF (or other pe-

riods where the ET is largely comprised of soil evaporation)

can be adequately defined using SM1. Kτ computed from

SM1 neglects SMrz variations that drive transpiration during

the initial increase in precipitation following the dry season

and therefore may not fully encompass the extent of land–

atmosphere associations. Acknowledging the importance of

transpiration during the northern Australian wet season, we

further evaluate the land–atmosphere association by comput-

ing Kτ between the vertically averaged SMrz and the LCL.

As opposed to remotely sensed SM from AMSR-E (or other

satellite products), the use of simulated SM facilitates the es-

timation of SMrz. Applying Eq. (4) using SMrz imposes a dif-

ferent set of problems, as the rooting depth is model depen-

dent and generally only approximately known. There is sub-

stantial evidence that eucalypts have rooting depths exceed-

ing 20 m (Schenk and Jackson 2002), however neither CLM4

nor the direct observations in this study extend that deep. Due

to these limitations, SMrz is computed as the weighted mean

of the SM observations at 10, 40, and 100 cm for the Howard

Springs site. We assume that the SMrz consists of the soil

layers between the surface and a depth of 1m, as more than

90 % of the prescribed roots in CLM4 are within 1m of the

surface (Oleson et al., 2010). This assumed rooting depth is

consistent with the model formulation but not realistic given

the rooting depths of eucalypts.

Figure 9 shows the ensemble median Kτ diagnosed be-

tween SMrz and the LCL. Comparing Figures 8 and 9 it is

clear that including the portion of SM that partially controls

transpiration increases the magnitude of the DJF SM–LCL

associations and eliminates the region near 14◦ S, 131◦ E

with statistically insignificant correspondence (Fig. 8a, c) de-

spite soil evaporation contributing significantly to the simu-

lated ET. Large differences between the SON SMrz–LCL and

SM1–LCL Kτ are seen south of 15◦ S and east of 130◦ E.

Despite large regions of statistically significant SON SMrz–

LCL, Kτ for CTRL (Fig. 9b) and DRY (Fig. 9d) regions
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Figure 10. The standard deviation of the Kτ correlation metric among the ensemble members between the afternoon computed LCL and

either the morning root zone soil moisture (SMrz) over (a) DJF and (b) SON or the morning first layer soil moisture (SM1) over (c) DJF and

(d) SON.

of insignificant association are prevalent near 13◦ S, 131◦ E.

The flux-tower-derived SON SMrz–LCL correspondence is

insignificant in agreement with the DRY and CTRL results

near 13◦ S, 131◦ E. The similarity between the DRY and

CTRL SMrz–LCL Kτ highlights the negligible groundwa-

ter impact (Fig. 9b, d). Comparing Fig. 9b and d with Fig. 3b

and d reveals that despite the impact of groundwater on the

mean ET flux over SON, the mean state of the deep SM im-

parts little influence on the temporal dynamics of SMrz in

relation to the LCL. Neglecting the SM beneath the surface

layer in the calculation of Kτ results in a weak diagnosis

of SM–LCL association during SON because transpiration is

partly governed by the water availability within the root zone.

By defining the association using SMrz, it is clear that the

land is strongly linked to the LCL during both DJF and SON.

The DJF SM–LCL association in CTRL near flux tower sites

is stronger when defined in this manner, although both sets

of simulations still show SMrz to be statistically associated

to the LCL.

The SM1–LCL and SMrz–LCLKτ shown in Figs. 8 and 9

are the median from ensembles with 32 estimates. The en-

sembles explicitly use multiple constructions of LCL to sam-

ple the possible range of atmospheric states given the near-

surface MERRA and GLDAS estimates and may lead to un-

certain estimates of Kτ . The inter-ensemble uncertainty of

the Kτ metric is examined to demonstrate the robustness of

the results. The standard deviation of the association between

SMrz and the LCL and between SM1 and the LCL among the

ensemble members is generally less than 0.15 (Fig. 10a–d).

The variation among the ensemble members is smaller than

the median Kτ shown in Figs. 8 and 9. The low standard

deviation relative to the median demonstrates that the associ-

ation shown in Figs. 8 and 9 is robust, since more than 83 %

of theKτ estimates (assuming they are normally distributed)

have a correspondence of the same sign reported in the fig-

ures. The correspondence using SM1 (Fig. 10c) shows larger

ensemble uncertainty near the coast centered around 135◦ E

compared to the SMrz association in DJF (Fig. 10a) and over

the Cape York Peninsula in SON (Fig. 10b, a). Aside from

the region near 15◦ S, 130◦ E during SON, the larger ensem-

ble uncertainty is found when using SM1 to define the corre-

spondence.

5 Discussion

The seasonal ET from CTRL, DRY, and the gridded ET prod-

ucts from DJF through SON provide insight into the mecha-

nisms that limit the SON DRY ET. The ET from CTRL and

DRY are similar (within±10 %) during the large DJF precip-

itation forcing. The dry season commences between MAM

(March-April-May) and JJA (June-July-August; Fig. 1) re-

sulting in increased vapor pressure deficit (VPD) between the

vegetation and the atmosphere and increased photosyntheti-

cally active radiation (PAR). The changes in VPD and PAR

promote increased transpiration from DJF through MAM,

although the actual transpiration is also governed by SMrz.

Comparing Figs. 3, 5, and 6 indicates that the DRY ET is

relatively SM limited and unable to maintain ET similar in

magnitude to CTRL and the observationally based estimates

during SON. The SM limitation causes a reduction in the

total ET by limiting the amount of transpiration (Fig. 6d).

Within the model, the soil column–groundwater interactions

parameterized in CTRL inhibit the large, ET limiting SMrz

reduction present in DRY. In reality, the inability of DRY

to maintain ET during SON may result from the shallow

rooting depths assumed in CLM4. The depths are substan-

tially shallower than the rooting depths of eucalypts. Re-

alistic rooting depth profiles reaching nearly 20 m in Aus-

tralia (Schenk and Jackson, 2002) and corresponding soil

layer depths may negate the impact of the parameterized soil

column–groundwater impacts current in CLM4.
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The EF–LCL association (Fig. 7) is similar for both model

configurations despite the mean ET (Fig. 3), SM (Fig. 5)

and transpiration fraction (Fig. 6) differing considerably be-

tween CTRL and DRY. The EF–LCL similarity holds for

both DJF and SON despite the differing background soil

moisture states between the two periods and differing con-

tributions of transpiration to the total ET (Fig. 6). The results

indicate that while the mean ET and transpiration fraction

is a strong function of mean soil moisture, the SM–LCL as-

sociation diagnosed using offline simulations of SM and EF

with an observationally estimated LCL is insensitive to the

background state. The coincidence of the temporal variations

in SM, EF, and LCL are demonstrated by the large values

of Kτ . These seemingly counterintuitive results may be an

artifact of using a rank correlation coefficient to determine

the strength of the correspondence. Kτ only measures the

temporal coincidence of the two time series while neglecting

the magnitude of these variations. Therefore, Kτ cannot dis-

tinguish between a dry SM state with the small evaporative

fluxes and a wet state with large fluxes if the timing of the

SM and flux variations are identical. Although Kτ is largely

independent to the background soil moisture state, alternative

definitions of association may not remain as invariant.

While association in Fig. 7 is largely unaffected by the

mean SM state, the mean ET flux is largely derived from

deeper SM through transpiration during the onset of the

wet season prior to DJF. The statistical relationship between

soil moisture and the boundary layer under these conditions

is poorly defined using SM1. The consistent EF–LCL co-

evolution during SON and DJF highlights the inadequacy of

characterizing land–atmosphere processes using only SM1.

Attempting to define the SM–LCL relationship with SM1 re-

sults in a physically improbable conclusion where Kτ tran-

sitions from positive (Fig. 7b) to negative (Fig. 7a) as the

wet season is established (Fig. 1) and directly contradicts

the EF–LCL results. Despite the domain’s mean precipita-

tion increasing from roughly zero to several millimeters per

day during SON, Kτ from SM1–LCL is both positive (i.e.,

15◦ S, 126◦ E) and negative (i.e., 15◦ S, 134◦ E) over this pe-

riod. The transition from negligible (or positive) to strong

statistical rank correlation between the soil moisture and the

atmosphere during the wet season is an artifact resulting from

the use of SM1. More consistent correspondence in general

agreement with the EF–LCL dynamics throughout the wet

season exists between SMrz and LCL because transpiration

is incorporated into the diagnostic. During SON, the dry sur-

face layer SM is responsible for little ET, so variations in ET

are not associated with variations in SM1. The SMrz–LCL

Kτ eliminates the insignificant association around 17◦ S,

128◦ E exhibited in the SM1–LCL metric. Despite regions

of significant SMrz–LCL association in DRY and CTRL, the

Howard Springs data show insignificant SMrz–LCL corre-

spondence during SON. The lack of observed association is

possibly related to the inability to sample SM at depths that

correspond to the physically relevant rooting depths. The ne-

cessity of using SMRZ agrees with Lee et al. (2012), where

transpiration was found to limit precipitation variability over

tropical regions. The importance of transpiration among the

various ET components is not limited to northern Australia or

monsoon regions (Coenders-Gerrits et al., 2014; Schlesinger

and Jasechko, 2014), highlighting the need to characterize

land–atmosphere dynamics using SM well beneath the sur-

face.

Statistically determing the association using only near-

surface variables from land surface model simulations and

atmospheric data as done in this study (i.e. Ferguson et al.,

2012; Betts, 2009) is limited due to only examining a part

of the full land–atmosphere coupling processes. While the

LCL is an important determinant in the formation of precipi-

tation, moisture convergence, upper level inversions, convec-

tive available potential energy, wind shear, and many other

factors play important roles in the formation of convection.

The correspondence diagnosed in this study with Eq. (4) is by

definition limited in scope to only part of the coupling contin-

uum described in Eq. (1). Therefore, an association defined

using these methods provides a necessary but not sufficient

condition for strong land–atmosphere interactions between

soil moisture and precipitation.

Our results likely extend to monsoonal regions beyond

northern Australia. GLACE (Global Land–Atmosphere Cou-

pling Experiment; Koster et al., 2006) revealed multiple ar-

eas of strong land–atmosphere coupling coincide with ma-

jor monsoon systems. The strong co-evolution during the

wet season (September–February) diagnosed using SMrz and

Kτ in our results qualitatively agrees with the strong cou-

pling in monsoon regions from GLACE. The dry season an-

tecedent to the large precipitation fluxes induces low evap-

oration while allowing deeply rooted plants to transpire de-

spite the prolonged dry period. These conditions over north-

ern Australia (Figs. 3, 4) lead to transpiration dominating the

ET flux during the onset of the wet season. The behavior of

the land–atmosphere system as diagnosed using Kτ under

these conditions must be defined using SMrz rather than SM1

to ensure the relevant pathways of the moisture fluxes are not

neglected.

Our results demonstrate the necessity of capturing the rel-

evant physical processes when designing a metric to evaluate

the relationship between the land and the atmosphere. The

contradiction between the SON SM1–LCL and the EF–LCL

relationships in our study suggests that the methods of Fer-

guson et al. (2012) will fail to find coupling during periods

when the land surface fluxes respond to SMrz but not SM1.

Future research that investigates SM–LCL using Kτ within

a fully coupled land–atmosphere system should not neglect

SMrz in favor of SM1. Failure to incorporate the relevant SM

information would directly limit the situations for which the

diagnosed coupling is valid.
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6 Conclusions

The feasibility of diagnosing the land–atmosphere relation-

ship using a rank correlation coefficient is analyzed utilizing

ensembles of land surface simulations and near-surface at-

mospheric data. Using four forcing data sets, ensembles of

CLM simulations over northern Australia are performed, us-

ing configurations that intentionally span a range of mean

SM states by either including or neglecting soil column–

groundwater interactions. The seasonal dynamics of the sim-

ulated SM1 is insensitive to the mean soil moisture state and

all simulations compare favorably with the AMSR-E soil

moisture product. Furthermore, the simulated ET from De-

cember to February is similar between the CTRL and DRY

runs, with both configurations largely consistent with the

DJF ET estimated from three gridded ET products.

The strength of the temporal co-evolution of land and at-

mosphere states is diagnosed between both SM1 and EF from

the simulations and the LCL as calculated from the near-

surface atmospheric data. In line with the coupling strength

found in previous studies, during the peak wet season strong

SM1–LCL and EF–LCL associations are shown. The wet

season onset (SON) shows large rank correlation coefficients

between EF and LCL that contrasts the lack of correlation

between SM1 and LCL. The contradicting correlations be-

tween EF–LCL and SM1–LCL demonstrate that the SON

land–atmosphere relationship is not properly characterized

with SM1. The land–atmosphere interactions during periods

with non-negligible transpiration necessitates the use of root

zone soil moisture instead of the surface soil moisture to

properly capture the physical processes. The correlation be-

tween SMrz and LCL differs considerably from that between

SM1 and LCL. The co-evolution of SMrz and LCL is shown

by strong statistical correspondence throughout the wet sea-

son and is consistent with the co-evolution between EF and

LCL. During the peak of the wet season, SM1 is sufficient to

explain the SM–LCL association while during the monsoon

season onset SMrz is necessary. The results demonstrate that

the root zone soil moisture must be considered when diag-

nosing the relationship between SM and the LCL.

Our results show that the statistically diagnosed land–

atmosphere correspondence in offline simulations is insen-

sitive to the mean vertical profile of soil moisture. It is,

however, sensitive to the depth of the soil moisture con-

sidered. While the strong soil moisture-atmosphere associ-

ations shown here are a necessary but not sufficient con-

dition to diagnose full land–atmosphere coupling, the re-

sults demonstrate the need to describe SM–LCL coupling

using the physically relevant soil moisture. Studies that ex-

plore the behavior of the land–atmosphere system should

use a statistical measure which encapsulates the SM that is

physically relevant to the dominant processes. Future stud-

ies that evaluate land–atmosphere coupling using a full land–

atmosphere model environment risk not capturing regions of

land–atmosphere coupling if only SM1 is considered. In or-

der to evaluate coupling during periods when ET is domi-

nated by transpiration, SMrz should be considered. We rec-

ommend that future studies of land–atmosphere coupling fo-

cus on root zone soil moisture rather than surface layer soil

moisture.
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