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Abstract. This investigation aims to study the propagation

of meteorological uncertainty within a cascade modelling

approach to flood prediction. The methodology was com-

prised of a numerical weather prediction (NWP) model, a

distributed rainfall–runoff model and a 2-D hydrodynamic

model. The uncertainty evaluation was carried out at the

meteorological and hydrological levels of the model chain,

which enabled the investigation of how errors that originated

in the rainfall prediction interact at a catchment level and

propagate to an estimated inundation area and depth. For

this, a hindcast scenario is utilised removing non-behavioural

ensemble members at each stage, based on the fit with ob-

served data. At the hydrodynamic level, an uncertainty as-

sessment was not incorporated; instead, the model was setup

following guidelines for the best possible representation of

the case study. The selected extreme event corresponds to

a flood that took place in the southeast of Mexico during

November 2009, for which field data (e.g. rain gauges; dis-

charge) and satellite imagery were available. Uncertainty in

the meteorological model was estimated by means of a multi-

physics ensemble technique, which is designed to represent

errors from our limited knowledge of the processes generat-

ing precipitation. In the hydrological model, a multi-response

validation was implemented through the definition of six sets

of plausible parameters from past flood events. Precipitation

fields from the meteorological model were employed as input

in a distributed hydrological model, and resulting flood hy-

drographs were used as forcing conditions in the 2-D hydro-

dynamic model. The evolution of skill within the model cas-

cade shows a complex aggregation of errors between models,

suggesting that in valley-filling events hydro-meteorological

uncertainty has a larger effect on inundation depths than that

observed in estimated flood inundation extents.

1 Introduction

Hydro-meteorological hazards can have cascading effects

and far-reaching implications on water security, with politi-

cal, social, economic and environmental consequences. Mil-

lions of people worldwide are forcibly displaced as a result of

natural disasters, creating political tensions and social needs

to support them. These events, observed in developed and de-

veloping nations alike, highlight the necessity to generate a

better understanding on what causes them and how we can

better manage and reduce the risk.

The assessment of flood risk is an activity that has to be

carried out under a framework full of uncertainty. The source

of these uncertainties may be ascribed to the involvement of

different and often rather complex models and tools, in the

context of environmental conditions that are at best partially

understood (Hall, 2014). In addition to this, flooding events

are dynamic over a range of timescales, due to climate vari-

ability and socio-economic changes, among others, which

further increases the uncertainty in the projections. There-

fore, numerous types of uncertainties can arise when using

formal models in the analysis of risks.

Uncertainty is often categorised as aleatory or epistemic

(Hacking, 2006): aleatory is an essential, unavoidable unpre-

dictability, and epistemic uncertainty reflects lack of knowl-

edge or the inadequacy of the models to represent reality.

In the context of any modelling framework, epistemic uncer-

tainties may be ascribed to the definition of model parameters

and to the model structure itself (limited knowledge).

In a technological era characterised by the advent of com-

puters, there is an increased ability of more detailed hydro-

logical and hydraulic models. Their use and development

has been motivated as they are based on equations that have

(more or less) physical justification; and allow for a more de-
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tailed spatial representation of the processes, parameters and

predicted variables (Beven, 2014). However, there are also

disadvantages, these numerical tools take more computation

time and require the definition of initial conditions, boundary

conditions and parameter values in space and time, generally,

at a level of detail for which such information is not available

even in research studies. Moreover, these models may be sub-

jected to numerical problems such as numerical diffusion and

instability. All of these disadvantages can be interpreted as

sources of uncertainty in the modelling process.

Due to the wide range of uncertainty sources in the flood

risk assessment process, it is of great interest to investigate

the propagation and behaviour of these different uncertainties

from the start of the modelling framework to the result. The

size of registered damages and losses in recent events around

the world reveal the urgency of doing so even under a context

of limited predictability.

In September 2013, severe floods were registered in

Mexico as a result of the exceptional simultaneous inci-

dence of two tropical storms, culminating in serious dam-

age and widespread persistent flooding (Pedrozo-Acuña et

al., 2014a). This unprecedented event is part of a recent

set of extreme flood events over the last decade caused by

record-breaking precipitation amounts across central Europe

(Becker and Grünewald, 2003), the UK (Slingo et al., 2014),

Pakistan (Webster et al., 2011), Australia (Ven den Honert

and McAneney, 2011), the northeastern USA (WMO, 2011),

Japan (WMO, 2011) and Korea (WMO, 2011). In all cases,

the immediate action of governments through the implemen-

tation of emergency and action plans was required. The main

aim of these interventions was to reduce the duration and

impact of floods. In addition, risk reduction measures were

designed to ensure both a better flood management and an

increase in infrastructure resilience.

One key piece of information in preventing and reducing

losses is given by reliable flood inundation maps that enable

the dissemination of flood risk to the society and decision

makers (Pedrozo-Acuña et al., 2015). Traditionally, this task

requires the estimation of different return periods for dis-

charge (Ward et al., 2011) and their propagation to the flood-

plain by means of a hydrodynamic model. There is currently

a large range of models that can be used to develop flood

hazard maps (Horrit and Bates, 2002; Horrit et al., 2006).

The aforementioned accelerated progress of computers

has given way to the development of model cascades to

produce hydrological forecasts, which make use of rain-

fall predictions from regional climate models (RCMs)

with sufficient resolution to capture meteorological events

(Bartholmes and Todini, 2005; Demeritt et al., 2010). Within

this approach, the coupling of different operational numer-

ical models is carried out, using numerical weather predic-

tion (NWP) with radar data for hydrologic forecast purposes

(Liguori and Rico-Ramirez, 2012; Liguori et al., 2012) or

NWP with hydrological and hydrodynamic models to deter-

mine inundation extension (Pappenberger et al., 2012; Cloke

et al., 2013; Ushiyama et al., 2014).

The use of RCMs in climate impact studies on flooding has

been reported by Teutschbein and Seibert (2010) and Beven

(2011), noting that despite their usefulness, the spatial res-

olution of models (∼ 25 km) remains too coarse to capture

the spatial resolution of precipitation. This is particularly im-

portant, as higher resolution is needed to effectively model

the hydrological processes essential for determining flood

risk. To overcome this limitation, the utilisation of dynamic

downscaling in these models has been significantly growing

(Fowler et al., 2007; Leung and Qian, 2009; Lo et al., 2008).

Significant challenges remain in the foreseeable future;

among these, the inherent uncertainties in the predictive

models are likely to have an important role to play. For ex-

ample, it is well known that the performance skill of NWPs

deteriorates very rapidly with time (Lo et al., 2008). To over-

come this, the long-term continuous integration of the pre-

diction has been subdivided into short-simulations, involving

the re-initialisation of the model to mitigate the problem of

systematic error growth in long integrations (Giorgi, 1990,

2006; Qian et al., 2003). Moreover, the use of ensemble pre-

diction systems to obtain rainfall predictions for hydrological

forecasts at the catchment scale is becoming more common

among the hydrological community as they enable the eval-

uation and quantification of some uncertainties in the results

(Buizza, 2008; Cloke and Pappenberger, 2009; Bartholmes

et al., 2009). In these studies, an ensemble is a collection of

forecasts made from almost, but not quite, identical initial

conditions.

A key question that arises when using a cascade mod-

elling approach to flood prediction or mapping is how un-

certainties associated to meteorological predictions of pre-

cipitation propagate to a given flood inundation map? Pre-

vious work has been devoted to the examination of uncer-

tainties in the results derived from different ensemble meth-

ods, which address differences in the initial conditions in the

NWP or even differences in using a single-model ensemble

vs. multi-model ensemble (Pappenberger et al., 2008; Cloke

et al., 2013; Ye et al., 2014). However, less attention has been

paid to the behaviour of errors within a model chain that aims

to represent a flood event occurring at several spatial scales.

In order to understand how errors propagate in a chain of

models, this investigation evaluates the transmission of un-

certainties from the meteorological model to a given flood

map. For this, we utilise a cascade modelling approach com-

prised by a NWP model, a rainfall–runoff model and a stan-

dard 2-D hydrodynamic model. This numerical framework

is applied to an observed extreme event registered in Mexico

in 2009 for which satellite imagery is available. The inves-

tigated uncertainty is limited to the model parameter defini-

tion in the NWP model, by means of a multi-physics ensem-

ble technique considering several multi-physics parameteri-

sation schemes for the precipitation (Bukovsky and Karoly,

2009). The resulting precipitation fields are used to generate
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spaghetti plots by means of a distributed hydrological model,

enabling the propagation of meteorological uncertainties to

the flood hydrograph. Hence, the resulting hydrographs rep-

resent the runoff associated to each precipitation field esti-

mated with the NWP. In order to complete the propagation

of the uncertainty through the cascade of models to the flood

map, the hydrographs are used as forcing in a standard 2-D

hydrodynamic model.

However, it is acknowledged that each of the other models

(hydrological and hydrodynamic) within the model cascade,

will introduce other epistemic and random uncertainties to

the result. In order to reduce their influence, the numerical

setup of both these models is constructed with the best avail-

able data (e.g. lidar for the topography) and following re-

cent guidelines for the assessment of uncertainty in flood risk

mapping (Beven et al., 2011). In this way, the uncertainty as-

sociated to the meteorological model outputs is propagated

through the model cascade from the atmosphere to the flood

plain. Thus, the aim of this investigation is to study the un-

certainty propagation from the meteorological model (due to

model parameters) to the determination of an affected area

impacted by a well-documented hydro-meteorological event.

This work is organised as follows: Sect. 2 provides a de-

scription of both, the study area and the extreme hydro-

meteorological event, which are employed to test our cas-

cade modelling approach; Sect. 3 introduces the methodol-

ogy, incorporating a brief description of the selected mod-

els setup. Additionally, we incorporate a description of the

multi-physics ensemble technique used to quantify and limit

the epistemic uncertainty in the NWP model. The resulting

precipitation fields, hydrographs and flood maps are com-

pared with available field data and satellite imagery for the

event. In Sect. 4, a discussion of errors along the model

cascade is also presented with some conclusions and future

work.

2 Case study

The selected study area is within the Mexican state of

Tabasco, which in recent years has been subjected to severe

flooding, as reported by Pedrozo-Acuña et al. (2011, 2012).

This region comprises the area of Mexico with the highest

precipitation rate (2000–3000 mmyear−1), which mostly oc-

curs during the wet season of the year between May and De-

cember. The rainfall climatology is also influenced by the

incidence of hurricanes and tropical storms arriving from the

north.

In this paper, the extreme hydro-meteorological event se-

lected for the analysis corresponds to that registered in the

early days of November 2009 in the Tonalá River. As it is

shown in Fig. 1, the river is located in the border of Tabasco

and Veracruz and during the event the substantial rainfall in-

tensity provoked its overflowing leaving extensive inundated

areas along its floodplain. The top panel of Fig. 1 shows

Figure 1. Top panel: location of the Tonalá River basin in Mexico;

the yellow line represents the boundary limits of the catchment; blue

dots: locations of weather stations; red dot: streamflow gauge. Bot-

tom panel: close up of the study area and photographs of observed

impacts; yellow, blue and red dots represent the locations at which

the photos were taken.

the geographical location of the catchment, with an area of

5021 km2, as well as the location of 18 weather stations in-

stalled within the region by the National Weather Service.

The event was the result of heavy rain induced by the cold

front number 9, which persisted for 4 days along Mexico’s

gulf coast, forcing more than 44 000 people to evacuate their

homes and affecting more than 90 communities. High inten-

sities in rainfall were recorded in rain gauges from 31 Oc-

tober to 03 November, with cumulative daily precipitation

values reporting more than 270 mm. The river is approxi-

mately 300 km long and before discharging into the Gulf of

Mexico, it receives additional streamflow from other smaller

rivers such as Agua Dulcita in Veracruz, and Chicozapote in

Tabasco. The bottom panel of the same figure illustrates the

lower Tonalá River, where severe flooding was registered, as

it is shown in the photographs on the right. The yellow, blue

and red dots on the panel represent the locations from which

the photographs were taken.

The hydrometric data, in combination with the satellite im-

agery for the characterisation of the affected areas, enabled
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an accurate investigation of the causes and consequences that

generated this flood event. The high quality of the available

information allowed for the application of a cascade mod-

elling approach comprised by state-of-the-art meteorologi-

cal, hydrological and hydrodynamic models. This numerical

approach is utilised with the intention to carry out an assess-

ment of the modelling framework, with particular emphasis

on the propagation of the epistemic uncertainty from the me-

teorological model to the spatial extent of an affected area.

Such investigation paves the road for a more honest trans-

fer of knowledge to decision-makers who will consider the

reliability of the model results.

3 Methodology and results

The methodology is comprised of a NWP model, a dis-

tributed rainfall–runoff model and a standard 2-D hydrody-

namic model. It is anticipated that the selected modelling

approach will support the advance of the understanding of

the connections among scales, intensities, causative factors,

and impacts of extremes. This model cascade with state-

of-the-art numerical tools representing a hydrological sys-

tem enables the development of a framework by which an

identification of the reliability of simulations can be un-

dertaken. It should be noted that the model cascade con-

tains several sources of uncertainty at every level of the nu-

merical framework (meteorological, hydrological and hydro-

dynamic). However, the uncertainty evaluation is only car-

ried out at the meteorological and hydrological levels of the

model chain. This enables the investigation of how errors

originated in the rainfall prediction interact at a catchment

level and propagate to determine a given inundation area and

depth. Therefore, the aim is not to reproduce an observed ex-

treme event but to use a state of the art numerical framework

to examine how errors aggregate in a hindcast scenario.

An uncertainty assessment is not carried out at the hydro-

dynamic level of the model cascade. Instead, the 2-D hydro-

dynamic model is setup following recommendations of pub-

lished guidelines for the best possible representation of the

case study and more specifically with regards to the selected

spatial resolution, boundary conditions and roughness values

(see Asselman et al., 2008).

The proposed investigation is important as uncertainties

are cascaded through the modelling framework, in order to

provide better understanding on how errors propagate within

models working at different temporal and spatial scales. It

is acknowledged that this information would enhance bet-

ter flood management strategies, which would be based on

the honest and transparent communication of the results pro-

duced by a modelling system constrained by intrinsic errors

and uncertainties.

3.1 Meteorological model

Simulated precipitation products from NWPs typically show

differences in their spatial and temporal distribution. These

differences can considerably influence the ability to pre-

dict hydrological responses. In this sense, in this study we

utilise the advanced research core of the Weather Research

and Forecasting (WRF) model Version 3.2. The WRF model

is a fully compressible non-hydrostatic, primitive-equation

model with multiple nesting capabilities (Skamarock et

al., 2008).

As it is shown in Fig. 2, the model setup is defined using an

interactive nested domain inside the parent domain. This do-

main is selected in order to simulate more realistic rainfall,

with the inner frame enclosing the Tonalá River catchment

within a 4 km resolution. The 4 km horizontal resolution is

considered good enough to compute a mesoscale cloud sys-

tem associated to a cold front. It is shown that this finer grid

covers the central region of Mexico, while in the vertical di-

mension, 28 unevenly spaced sigma levels were selected. The

initial and boundary conditions were created from the NCEP

global final analysis (FNL) with a time interval of 6 h for

the initial and boundary conditions. Each of the model sim-

ulations was reinitialised every 2 days at 12:00 UTC, con-

sidering a total simulation time from 27 October 2009 until

13 November 2009.

Epistemic uncertainty is considered in the WRF model

by means of the sensitivity of the results for precipitation

due to variations in the model setup. For this, we utilise

a multi-physics ensemble technique proposed by Bukovsky

and Karoly (2009), where the sensitivity of simulated pre-

cipitation in the model results is examined through variations

in the specific setup options by means of 23 different com-

binations. The comparison of computed precipitation fields

against real measurements from weather stations within the

catchment enabled the quantification of uncertainty in the

meteorological model for this event. Table 1 shows a sum-

mary of the different multi-physics parameters used in the

WRF model to generate the physics ensemble. As it is shown

in this table, there is a large discrepancy in the model skill

results for all 23 simulations. Error metrics reported in this

table are computed using information from all available sta-

tions within the numerical domain, which comprised stations

that are outside the area of the catchment. It is demonstrated

that only 13 of these model runs report a positive Nash–

Sutcliffe coefficient (NSC), which indicates a better accuracy

for those realisations. In contrast, model runs with negative

NSC were dismissed for the numerical reproduction of the

event, as this condition is a clear indicator that the observed

mean is a better predictor than the model.

Therefore, meteorological model runs that comply with a

criteria defined by a NSC> 0.3 and a correlation coefficient

(Cor)> 0.8 (for the whole numerical domain) are utilised

to investigate the propagation of meteorological uncertain-

ties through the modelling framework. This criteria narrows
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Table 1. Ensemble members defined for the multi-physics WRF ensemble (rows in bold indicate selected members; TDM – Thermal Diffu-

sion Land Surface Model).

Ensemble Micro- Surface Cumulus Feedback/ RMSE NSC Cor Bias NSC> 0.3,

member physics layer physics sst_update Cor> 0.8

1 WSM5 5-layer TDM Kain–Fritsch Eta off/off 445.233 −0.247 0.943 0.441 reject

2 WSM5 5-layer TDM Kain–Fritsch Eta off/on 262.730 0.436 0.969 0.978 select

3 WSM5 5-layer TDM Kain–Fritsch Eta on/off 250.510 0.487 0.968 1.013 select

4 WSM5 5-layer TDM Kain–Fritsch Eta on/on 257.346 0.432 0.972 1.046 select

5 WSM5 5-layer TDM Betts–Miller–Janjic off/on 502.474 −0.650 0.969 0.282 reject

6 WSM5 5-layer TDM Betts–Miller–Janjic on/on 520.576 −0.768 0.974 0.248 reject

7 WSM5 Noah Kain–Fritsch Eta off/off 233.042 0.416 0.959 1.177 select

8 WSM5 Noah Kain–Fritsch Eta off/on 236.142 0.328 0.961 1.236 select

9 WSM5 Noah Kain–Fritsch Eta on/off 359.111 0.174 0.900 0.560 reject

10 WSM5 Noah Kain–Fritsch Eta on/on 245.311 0.412 0.965 1.115 select

11 WSM5 Noah Betts–Miller–Janjic off/off 486.258 −0.489 0.977 0.333 reject

12 WSM5 Noah Betts–Miller–Janjic off/on 486.022 −0.485 0.969 0.336 reject

13 WSM5 Noah Betts–Miller–Janjic on/off 535.000 −0.823 0.965 0.234 reject

14 WSM5 Noah Betts–Miller–Janjic on/on 543.781 −0.872 0.964 0.231 reject

15 Thompson 5-layer TDM Kain–Fritsch Eta off/off 216.700 0.599 0.966 1.095 select

16 Thompson 5-layer TDM Kain–Fritsch Eta off/on 236.642 0.505 0.965 1.150 select

17 Thompson 5-layer TDM Kain–Fritsch Eta on/off 238.888 0.574 0.959 0.968 select

18 Thompson 5-layer TDM Kain–Fritsch Eta on/on 275.237 0.495 0.958 0.894 select

19 Thompson 5-layer TDM Betts–Miller–Janjic off/on 571.488 −1.152 0.962 0.158 reject

20 Thompson 5-layer TDM Betts–Miller–Janjic on/off 572.267 −1.136 0.952 0.163 reject

21 Thompson 5-layer TDM Betts–Miller–Janjic on/on 502.474 −0.650 0.969 0.282 reject

22 Thompson Noah Kain–Fritsch Eta off/off 238.059 0.382 0.962 1.253 select

23 Thompson Noah Kain–Fritsch Eta off/on 234.032 0.480 0.965 1.128 select

Figure 2. Numerical setup of the WRF with a nested domain cov-

ering Mexico. Domain 1: 25 km resolution; Domain 2: 4 km resolu-

tion; the orange region illustrates the Tonalá catchment.

down the meteorological model runs to 12, which will be cas-

caded to the hydrological model stage to attain streamflow

predictions. In this approach, the selected 12 multi-physics

ensemble runs of the model represent a plausible and equally

likely state of the system in the future.

Figure 3 illustrates the cumulative precipitation curves

computed for each of the 23 model runs of the multi-physics

ensemble at four different stations located within the catch-

ment. In this figure differences in the spatial distribution and

intensity of precipitation are evident. Moreover, the selected

12 members by the criteria (NSC> 0.3 and Cor> 0.8) are

illustrated by the blue solid lines, while the grey solid lines

show those members that were rejected by it. Notably, dis-

missed members tend to underestimate the amount of precip-

itation in all four locations that are presented in this figure.

For completeness, the rainfall measurements at each meteo-

rological station are also shown by the black solid line, while

the red dotted line depicts the mean value of the selected

model runs to be propagated through the model cascade. If

the 12 selected members are considered in the estimation of

ensemble metrics at each station, it is shown that at station

no. 27075 the spread of the estimated cumulative precipita-

tion curves is limited and quantified by a NSC= 0.917 and

a NRMSE= 10.7 % (normalised root mean square error), in-

dicating a good skill of the selected WRF precipitation esti-

mates at this point. In contrast, at station no. 27007 the spread

of the cumulative precipitation is large and characterised by

a NSC= 0.766 and a NRMSE= 19.4 %, showing less skill

in the model performance than that observed in the previous

case. The observed differences of estimated precipitation for

this event highlight the importance of incorporating ensem-
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ble techniques in the reproduction of precipitation with this

type of models.

Figure 4 illustrates the cumulative precipitation fields

computed for each of the 12 selected members of the multi-

physics ensemble, where differences in the spatial distribu-

tion and intensity of precipitation were evident. These results

suggest that for this event, the precipitation field estimated

with the WRF was highly sensitive to the selection of multi-

physics parameters. To revise in more detail the performance

of the WRF in reproducing this hydro-meteorological event,

the estimated cumulative precipitation by each of the se-

lected 12 members of the multi-physics ensemble was com-

pared against measurements at the 18 weather stations lo-

cated within and close to the Tonalá catchment.

Table 2 presents a summary of the most well-known error

metrics calculated at each weather station and for each mem-

ber of the ensemble. Among these are the NRMSE, Bias,

Nash–Sutcliffe coefficient (NSC), and the correlation coef-

ficient (Cor). The columns show the local value of each co-

efficient for a given member of the ensemble (M1, . . ., M12).

As shown in all columns (i.e. member runs), the error met-

rics have a great spatial variability, hence, indicating the re-

gions of the study area where the model performs better. To

illustrate the performance of this ensemble technique at each

weather station, the ensemble average of these error metrics

is introduced in the last column and is written within the sym-

bols < >. Again, the spatial variability of the metrics is ev-

ident. The two bottom rows in each sub-table correspond to

the average of the ensemble averages for the whole catch-

ment and for the all the stations. It is shown that when the av-

erage of all stations is taken into account the skill decreases.

However, in this investigation the error that is of interest is

the one corresponding to the average of those weather sta-

tions located within the catchment, as these will be used as

input in the hydrological model. This will enable the propa-

gation of errors in the meteorological model within the model

cascade. For clarity, in the same table the stations within the

catchment are highlighted in blue.

A question that has been seldom explored in the litera-

ture, is how the uncertainty in the prediction of the precip-

itation (i.e. errors described in this section) cascade into an

estimated flood hydrograph determined by a distributed hy-

drological model. In this sense, the next step in this work,

considers the non-linear transfer of rainfall to runoff using a

distributed rainfall–runoff model. For this, we employ each

one of the selected 12 precipitation fields derived from the

WRF as input to determine the associated river discharge

with the hydrological model.

3.2 Hydrological model

The hydrological model used in this study was applied

to the Tonalá River catchment in an early work presented

by Rodríguez-Rincón et al. (2012). This numerical tool

was developed by the Institute of Engineering – UNAM

(Domínguez et al., 2008), and comprises a simplified grid-

based distributed rainfall–runoff model. The model has been

previously applied with success in other catchments in Mex-

ico (e.g. Pedrozo-Acuña et al., 2014b).

The model is based on the method of the Soil Conservation

Service (SCS) with a modification that allows for the con-

sideration of soil moisture before and after rainfall events.

The parameters that are needed for the definition of a runoff

curve number within the catchment are the hydrological soil

group, land use, pedology and the river drainage network.

Figure 5 shows for the Tonalá River catchment, the spatial

definition of the river network (centre panels) and the runoff

curve (right panels). For the numerical setup of the hydro-

logical model, we employ topographic information from a

lidar data set, from which a 10 m resolution digital elevation

model (DEM) is constructed.

There are two main hypothesis that underpin the SCS

curve number method. Firstly, it is assumed that for a sin-

gle storm and after the start of the runoff, the ratio between

actual soil retention and its maximum retention potential is

equal to the ratio between direct runoff and available rain-

fall. Secondly, the initial infiltration is hypothesised to be a

fraction of the retention potential.

Thus, the water balance equation and corresponding as-

sumptions are expressed as follows:

P = Pe+ Ia+Fa, (1)

Pe

Pa− Ia

=
Fa

S
, (2)

Ia = λS, (3)

where P is rainfall, Pe effective rainfall, Ia is the initial ab-

straction, Fa is the cumulative abstraction, S is the potential

maximum soil moisture retention after the start of the runoff

and λ is the scale factor of initial loss. The value of λ is re-

lated to the maximum potential infiltration in the basin.

Through the combination of Eqs. (1)–(3) and expressing

the initial abstraction (Ia) by 0.2 · S we have

Pe =
(P − 0.2S)2

P + 0.8S
, (4)

where the value of S (cm) is determined by

S =
2450− (25.4CN)

CN
. (5)

CN is the runoff curve number, as defined by the United

States Department of Agriculture (USDA-SCS, 1985). Val-

ues for this parameter vary from 30 to 100, where small num-

bers indicate low runoff potential and larger numbers indi-

cate an increase in runoff potential. Thus, the permeability of

the soil is inversely proportional to the selected curve num-

ber. Another parameter that allows for the modification of the

curve number is the soil water potential given by Fs, follow-

ing S = S ·Fs.
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Table 2. Error metrics in the estimation of precipitation by members of the multi-physics ensemble (rows in bold indicate the stations located

within the Tonalá catchment).

Station no. Multi-physics ensemble member

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

Root mean square error (RMSE) and normalised RMSE per station considering ensemble average <Nor_RMSE> %

30167 210.26 96.56 144.62 104.42 106.84 76.31 160.48 129.88 101.03 210.95 164.85 86.80 13.96

27003 544.34 578.19 564.46 474.81 427.30 516.95 458.25 484.05 568.20 572.30 385.17 479.47 35.13

27007 234.90 246.00 198.01 135.27 129.43 207.93 126.51 197.32 246.90 328.28 132.09 191.81 19.44

27015 96.68 129.89 151.02 194.33 235.76 179.69 152.06 152.60 118.97 116.87 260.49 188.20 24.01

27074 173.37 211.87 191.22 197.46 78.94 148.88 174.92 247.65 187.98 207.39 123.09 157.21 17.19

27073 227.47 201.91 228.62 256.39 281.38 245.68 186.21 219.36 159.34 147.79 247.69 223.88 46.46

27075 87.04 119.26 104.10 100.82 151.17 64.92 76.45 147.30 85.75 105.68 52.14 68.67 10.72

27076 140.53 160.28 141.95 124.03 108.33 130.53 191.75 162.59 226.04 236.09 129.78 150.84 17.14

27077 89.10 113.42 83.60 225.48 252.24 207.73 254.20 282.40 110.77 83.93 203.01 192.86 30.57

27039 333.50 204.36 197.48 295.84 302.19 261.39 264.08 321.66 172.86 152.14 257.59 430.63 73.28

27054 123.18 30.77 45.28 113.16 119.18 77.41 106.84 112.68 118.83 127.43 110.06 106.67 34.75

27060 70.69 56.23 59.51 33.42 40.13 30.04 78.07 93.80 88.46 80.36 56.73 66.31 19.88

27024 160.33 137.81 140.76 120.58 127.54 73.57 148.27 136.47 145.12 167.79 153.26 151.87 85.04

27084 68.72 71.32 54.58 53.56 106.93 65.65 61.06 72.31 61.46 62.96 50.14 50.92 19.02

7365 172.91 117.44 103.02 252.03 139.79 163.49 301.52 216.38 179.67 129.71 271.88 210.11 24.52

27011 143.70 162.77 143.61 107.82 77.55 86.15 128.03 143.69 106.59 116.49 86.81 81.27 106.83

27036 81.46 60.69 27.36 61.69 19.14 35.64 23.58 45.89 22.13 40.23 39.22 55.55 12.04

27008 158.85 72.82 74.96 131.34 134.94 100.16 102.82 149.97 66.67 79.36 97.87 254.33 19.68

Average {Rel_RMSE} catch 23.14

Average {Rel_RMSE} all 33.87

Bias per station and ensemble average < Bias >

30167 0.71 0.90 0.81 1.07 1.12 0.99 0.80 0.85 0.91 0.71 1.23 1.06 0.93

27003 0.51 0.48 0.50 0.58 0.62 0.54 0.59 0.57 0.49 0.49 0.66 0.58 0.55

27007 0.72 0.71 0.79 0.91 0.91 0.78 1.13 1.26 0.73 0.61 0.90 0.80 0.85

27015 1.21 1.32 1.40 1.50 1.61 1.46 1.37 1.37 1.24 1.21 1.68 1.48 1.40

27074 0.82 0.76 0.79 0.78 1.08 0.86 0.81 0.71 0.80 0.77 0.88 0.83 0.82

27073 1.74 1.65 1.74 1.83 1.91 1.80 1.58 1.70 1.47 1.44 1.80 1.72 1.70

27075 0.92 0.85 0.88 0.88 1.20 0.96 0.90 0.80 0.89 0.86 0.98 0.93 0.92

27076 0.86 0.82 0.86 0.91 0.95 0.89 0.79 0.84 0.73 0.71 0.89 0.85 0.84

27077 1.12 1.17 1.10 1.48 1.54 1.44 1.54 1.60 1.20 1.14 1.42 1.40 1.35

27039 2.41 1.87 1.84 2.26 2.29 2.11 2.13 2.36 1.73 1.64 2.09 2.84 2.13

27054 1.89 1.08 1.24 1.82 1.87 1.54 1.76 1.81 1.84 1.91 1.79 1.77 1.69

27060 1.42 1.33 0.72 1.08 1.20 1.05 1.47 1.57 1.54 1.49 1.32 1.39 1.30

27024 3.34 2.96 3.03 2.76 2.88 2.07 3.16 2.98 3.11 3.45 3.17 3.17 3.01

27084 1.32 1.35 1.17 1.23 1.61 0.78 1.27 1.36 1.27 1.29 1.07 1.01 1.23

7365 1.43 1.20 1.09 1.63 1.32 0.72 1.78 1.55 1.43 1.26 1.68 1.51 1.38

27011 3.57 3.91 3.55 2.93 2.33 2.49 3.33 3.58 2.91 3.09 2.56 2.45 3.06

27036 1.36 1.25 1.09 1.28 0.97 1.15 0.95 1.20 1.06 1.16 1.15 1.24 1.15

27008 1.37 1.07 1.05 1.29 1.31 1.20 1.21 1.35 0.99 0.93 1.19 1.62 1.22

Average { Rel_RMSE } catch 0.94

Average { Rel_RMSE } all 1.42

Nash–Sutcliffe coefficient per station and ensemble average <NSC>

30167 0.72 0.94 0.87 0.93 0.93 0.96 0.84 0.89 0.94 0.72 0.83 0.95 0.88

27003 0.16 0.05 0.09 0.36 0.48 0.24 0.40 0.33 0.08 0.07 0.58 0.34 0.26

27007 0.70 0.67 0.78 0.90 0.91 0.76 0.91 0.79 0.66 0.41 0.90 0.80 0.77

27015 0.88 0.78 0.70 0.50 0.27 0.57 0.70 0.69 0.81 0.82 0.11 0.53 0.61

27074 0.84 0.76 0.80 0.79 0.97 0.88 0.84 0.67 0.81 0.77 0.92 0.87 0.83

27073 −0.27 0.00 −0.28 −0.61 −0.94 −0.48 0.15 −0.18 0.38 0.46 −0.50 −0.23 −0.21

27075 0.94 0.89 0.91 0.92 0.82 0.97 0.95 0.83 0.94 0.91 0.98 0.96 0.92

27076 0.87 0.83 0.86 0.90 0.92 0.88 0.75 0.82 0.65 0.62 0.89 0.85 0.82

27077 0.82 0.70 0.84 −0.17 −0.46 0.01 −0.48 −0.83 0.72 0.84 0.05 0.15 0.18

27039 −4.41 −1.03 −0.90 −3.26 −3.44 −2.32 −2.39 −4.03 −0.45 −0.13 −2.23 −8.02 −2.72

27054 −0.46 0.91 0.80 −0.23 −0.36 0.42 −0.10 −0.22 −0.36 −0.56 −0.16 −0.09 −0.03

27060 0.60 0.75 0.72 0.91 0.87 0.93 0.51 0.29 0.37 0.48 0.74 0.65 0.65

27024 −7.99 −5.64 −5.93 −4.08 −4.69 −0.89 −6.68 −5.51 −6.36 −8.84 −7.21 −7.06 −5.91

27084 0.67 0.64 0.79 0.80 0.20 0.70 0.74 0.63 0.73 0.72 0.82 0.82 0.69

7365 0.50 0.77 0.82 −0.07 0.67 0.55 −0.54 0.21 0.45 0.72 −0.25 0.25 0.34

27011 −16.74 −21.76 −16.72 −8.99 −4.17 −5.38 −13.08 −16.74 −8.76 −10.66 −5.47 −4.67 −11.09

27036 0.61 0.78 0.96 0.78 0.98 0.93 0.97 0.88 0.97 0.91 0.91 0.82 0.87

27008 0.60 0.92 0.91 0.72 0.71 0.84 0.83 0.64 0.93 0.90 0.85 −0.03 0.73

Average { Rel_RMSE } catch 0.63

Average { Rel_RMSE } all −0.63

Correlation coefficient per station and ensemble average <Cor>

30167 0.99 0.99 0.99 0.97 0.98 0.99 0.99 0.99 0.99 0.99 0.97 0.98 0.99

27003 0.95 0.96 0.97 0.97 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.98

27007 0.98 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.95 0.98 0.97 0.97

27015 0.97 0.96 0.97 0.94 0.93 0.95 0.95 0.95 0.94 0.94 0.93 0.94 0.95

27074 0.98 0.98 0.98 0.98 0.99 0.98 0.99 0.98 0.98 0.98 0.99 0.99 0.98

27073 0.95 0.96 0.95 0.94 0.94 0.94 0.92 0.92 0.91 0.92 0.94 0.94 0.94

27075 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

27076 0.98 0.98 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.96 0.97 0.97 0.97

27077 0.96 0.95 0.96 0.96 0.95 0.96 0.95 0.95 0.97 0.97 0.95 0.96 0.96

27039 0.95 0.95 0.94 0.93 0.94 0.94 0.94 0.94 0.95 0.95 0.94 0.93 0.94

27054 0.91 0.96 0.94 0.93 0.93 0.94 0.91 0.92 0.91 0.90 0.93 0.93 0.93

27060 0.96 0.97 0.97 0.96 0.97 0.97 0.95 0.95 0.96 0.96 0.97 0.96 0.96

27024 0.91 0.93 0.92 0.90 0.91 0.95 0.89 0.90 0.89 0.89 0.94 0.94 0.91

27084 0.91 0.91 0.92 0.94 0.92 0.95 0.92 0.91 0.92 0.92 0.93 0.93 0.92

7365 0.93 0.93 0.94 0.92 0.94 0.97 0.91 0.92 0.91 0.92 0.91 0.92 0.93

27011 0.94 0.94 0.95 0.93 0.95 0.96 0.89 0.93 0.91 0.92 0.91 0.91 0.93

27036 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

27008 0.97 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.96 0.96 0.96 0.96

Average { Rel_RMSE} catch 0.97

Average { Rel_RMSE} all 0.95
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Figure 3. Comparison of cumulative precipitation estimated by the 23 model runs of the WRF multi-physics ensemble. Blue solid line:

selected members with NSC> 0.3; grey solid line: disregarded members with NSC< 0.3; red dotted line: mean of the selected 12 members;

black solid line: measurements at each of the four weather stations from 27 October 2009 to 12 November 2009.

Figure 4. Cumulative precipitation fields estimated by the WRF model using the selected 12 members of the multi-physics ensemble (27 Oc-

tober 2009–12 November 2009).
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Figure 5. Input data parameters in the hydrological model; (a) land use; (b) pedology; (c) river network, curve number and grid.

The model includes a parameter to reproduce the effects

of evaporation on the ground saturation (Fo). This parameter

is useful when the event to be reproduced lasts for several

days; however, due to the duration of this event it is assumed

equal to 0.9 in all cases. The computation of the runoff in

the basin is carried out through the addition of the runoff es-

timated in each cell to then construct a general hydrograph

(see Rodríguez-Rincón et al., 2012). With regards to the def-

inition of values for the other two free parameters in the hy-

drological model (λ and Fs), a traditional calibration process

is implemented. For this, we utilise flood hydrographs from

past extreme events (2001, 2005, 2007, 2008, 2009 and 2011)

observed in this river. For these events, we employ as rainfall

input the registered precipitation at the same four weather

stations that are within the river catchment; their location is

shown in the top panel of Fig. 1. Therefore, we determine six

sets of free parameters that are good enough to represent the

rainfall–runoff relationship in this catchment. The selected

sets of values are illustrated in Table 3, where the correla-

tion coefficient and NSC are also reported for each of the

years. It is shown that in all the events, the selected set of

parameters ensures a good correlation against the observed

discharge which is given by Cor> 0.7, as well as a positive

NSC (accuracy).

It is well known that both the amount and distribution of

rainfall can significantly affect the final estimated river dis-

charge (Ferraris et al., 2002; de Roo et al., 2003; Cluckie et

al., 2004). In consequence, the propagation of meteorologi-

cal uncertainty to the rainfall–runoff model is carried out us-

ing the 12 WRF rainfall precipitation ensembles as an input

in the hydrological model, considering the six sets of free

parameters reported in Table 3. This procedure enabled the

generation of 72 hydrographs that could represent the 2009

event with different skill. Error metrics of all the computed

hydrographs are reported in Table 4.

For completeness, Fig. 6a illustrates the 72 computed hy-

drographs for the Tonalá River catchment in relation to the

Table 3. Flood events in the Tonalá River used in the calibration

process of free parameters in the hydrological model, along with

computed error metrics.

Event Max Q λ F s Fo Max Q NSC Cor Bias

obs. calc.

(m3 s−1) (m3 s−1)

2001 577.98 0.2 0.1 0.9 584.79 0.529 0.764 1.112

2005 589.25 0.4 0.6 0.9 609.87 0.812 0.907 1.043

2007 538.50 0.2 1.8 0.9 543.87 0.483 0.780 0.902

2008 597.35 0.4 1.8 0.9 823.04 0.155 0.861 0.983

2009 1262.57 0.8 1.8 0.9 1424.56 0.910 0.962 0.942

2011 545.40 0.9 1.6 0.9 597.08 0.413 0.721 1.051

measured river discharge for the 2009 event (blue dashed

line). It is shown that if all 72 hydrographs are taken into ac-

count, uncertainty bounds are significant. Indeed, this illus-

trates the interaction of the meteorological uncertainty with

that coming from the setup of the hydrological model (defini-

tion of free parameters). However, the purpose of this study

is to investigate in a model cascade framework how errors in

the meteorological prediction stage propagate down to a pre-

dicted inundation. In this sense, we narrow down the num-

ber of hydrographs shown in Fig. 6a by selecting only those

with a Cor> 0.7 and NSC> 0.6, and as reported in Table 4

only 31 out of 72 (shown in bold) follow this condition. Fig-

ure 6b displays the 31 selected hydrographs along with the

measured discharge for the 2009 event. Although there is a

reduction in the uncertainty bounds, it is shown that errors in

the predicted rainfall are indeed propagated to the hydrolog-

ical model, which employs a finer spatial resolution (1 km).

It has been established that, in some cases, an error in the

meteorological model can be compensated by an error in the

hydrological model and vice versa. To illustrate this in more

detail, average values of the calculated error metrics for the

31 selected hydrographs are estimated and reported in Ta-

ble 4, with NSC= 0.79, Cor= 0.96 and Bias= 1.11. Values
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Table 4. Error metrics in the estimation of river discharge by the

rainfall–runoff model using six parameter sets and 12 members of

the multi-physics ensemble (those selected are shown in bold with

NSC> 0.6 and Cor> 0.7).

Member no. WRF member Hydrological parameters NSC Cor Bias

1 M1 2001 0.733 0.884 0.852

2 M2 2001 0.074 0.973 1.529

3 M3 2001 −0.035 0.974 1.564

4 M4 2001 −0.511 0.975 1.686

5 M5 2001 −0.638 0.441 1.485

6 M6 2001 −0.223 0.961 1.593

7 M7 2001 −0.192 0.961 1.579

8 M8 2001 −0.043 0.959 1.537

9 M9 2001 0.064 0.958 1.504

10 M10 2001 0.245 0.971 0.525

11 M11 2001 −1.503 0.944 1.832

12 M12 2001 −0.752 0.954 1.710

13 M1 2005 0.639 0.901 0.742

14 M2 2005 0.404 0.977 1.414

15 M3 2005 0.318 0.978 1.449

16 M4 2005 −0.077 0.977 1.569

17 M5 2005 −0.545 0.366 1.368

18 M6 2005 0.181 0.968 1.478

19 M7 2005 0.200 0.968 1.465

20 M8 2005 0.321 0.966 1.422

21 M9 2005 0.408 0.966 1.389

22 M10 2005 −0.081 0.960 0.426

23 M11 2005 −0.909 0.951 1.717

24 M12 2005 −0.264 0.961 1.595

25 M1 2007 0.376 0.914 0.601

26 M2 2007 0.761 0.978 1.244

27 M3 2007 0.711 0.979 1.278

28 M4 2007 0.444 0.976 1.395

29 M5 2007 −0.440 0.261 1.191

30 M6 2007 0.633 0.974 1.306

31 M7 2007 0.647 0.974 1.293

32 M8 2007 0.722 0.973 1.251

33 M9 2007 0.771 0.972 1.219

34 M10 2007 −0.508 0.952 0.322

35 M11 2007 −0.129 0.959 1.539

36 M12 2007 0.340 0.969 1.420

37 M1 2008 0.240 0.922 0.547

38 M2 2008 0.837 0.978 1.186

39 M3 2008 0.797 0.978 1.220

40 M4 2008 0.570 0.974 1.337

41 M5 2008 −0.479 0.209 1.132

42 M6 2008 0.741 0.976 1.248

43 M7 2008 0.753 0.976 1.235

44 M8 2008 0.813 0.975 1.194

45 M9 2008 0.851 0.975 1.161

46 M10 2008 −0.720 0.945 0.276

47 M11 2008 0.079 0.962 1.481

48 M12 2008 0.495 0.972 1.361

49 M1 2009 −0.036 0.838 0.494

50 M2 2009 0.819 0.978 0.882

51 M3 2009 0.899 0.977 0.907

52 M4 2009 0.649 0.963 1.286

53 M5 2009 0.060 0.811 0.580

54 M6 2009 0.839 0.959 0.849

55 M7 2009 0.883 0.959 0.890

56 M8 2009 0.896 0.954 0.929

57 M9 2009 0.890 0.950 0.928

58 M10 2009 −1.233 0.972 0.209

59 M11 2009 0.638 0.938 1.236

60 M12 2009 0.885 0.946 1.042

61 M1 2011 −0.247 0.949 0.396

62 M2 2011 0.938 0.970 1.019

63 M3 2011 0.930 0.971 1.052

64 M4 2011 0.819 0.964 1.168

65 M5 2011 −0.662 0.055 0.955

66 M6 2011 0.890 0.978 1.133

67 M7 2011 0.899 0.979 1.120

68 M8 2011 0.931 0.979 1.079

69 M9 2011 0.945 0.978 1.047

70 M10 2011 −1.136 0.931 0.195

71 M11 2011 0.433 0.967 1.364

72 M12 2011 0.738 0.976 1.246

Ensemble average of selected members 0.793 0.965 1.113

Figure 6. (a) 72 hydrographs computed using the rainfall–runoff

model with six sets of parameters and 12 WRF ensemble precipi-

tation fields as input data; (b) 31 selected hydrographs to serve as

input in the hydrodynamic model; grey lines illustrate the ensemble

members and the blue dashed line shows the measured river dis-

charge for the event.

of the NSC for selected hydrographs in Table 4 illustrate the

resulting differences in skill resulting from the combination

of different setups in the hydrological model with the multi-

physics ensemble. For instance, in the rows corresponding

to the parameters determined for the 2011 event, member

M12 indicates a NSC= 0.738 showing a poorer skill at re-

producing the river discharge with the precipitation derived

from this member, in comparison to that registered for mem-

ber M2 with NSC= 0.938. The change in the values of the

NSC indicates that results from the regional weather model

can be enhanced or weakened by the performance of the hy-

drological model.

The utilisation of the 31 selected hydrographs in a 2-D hy-

drodynamic model enables the study of the propagation of

errors within the cascade of models. In particular, for esti-

mating the flood extent during this extreme event.

3.3 Flood inundation model

Several 2-D hydrodynamic models have been developed for

simulating extreme flood events. However, any model is only

as good as the data used to parameterise, calibrate and vali-

date the model. In general, 2-D models have been regarded

as suitable for simulating problems where inundation extent

changes dynamically through time, as they can easily repre-
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sent moving boundary effects (e.g. Bates and Horritt, 2005).

The use of these numerical tools has become commonplace

when flows produce a large areal extent, compared to their

depth, and where there are large lateral variations in the ve-

locity field (Hunter et al., 2008).

In this study, given the size of the study area the modelling

system utilised is comprised of the flow model MIKE 21

with flexible mesh (FM). This numerical model solves the 2-

D Reynolds-averaged Navier–Stokes equations invoking the

approximations of Boussinesq and hydrostatic pressure (for

details see DHI, 2014). The equations are solved at the centre

of each element in the model domain.

The numerical setup is based on a previous work on the

study area (Pedrozo-Acuña et al., 2012), with selected res-

olutions for the elements of the mesh with a size that guar-

antees the proper assimilation of a 10 m DEM to characterise

the elevation in the floodplain. The topographic data has been

regarded as the most important factor in determining wa-

ter surface elevations, base flood elevation, and the extent

of flooding and, thus, the accuracy of flood maps in river-

ine areas (NRC, 2009). Therefore, the elevation data used in

this study correspond to a lidar data set provided by INEGI

(2008). The choice of a 10 m DEM is based on recommen-

dations put forward by the Committee on Floodplain Map-

ping Technologies, NRC (2007) and Prinos et al. (2008).

As such, a DEM ensures both accuracy and detail of the

ground surface. The model domain is illustrated in Fig. 7,

along with the numerical mesh and elevation data; it com-

prises the lower basin of the Tonalá River and additional

main water bodies. The colours represent the magnitude of

the elevation and bathymetric data assimilated in the nu-

merical mesh, where warm colours identify high ground ar-

eas and light blues represent bathymetric data. The integra-

tion of high-quality topographic information in a 2-D model

with enough spatial resolution enables the investigation of

the propagation of the meteorological uncertainty to the de-

termination of the flood extent. Moreover, as it is illustrated

in Fig. 7, the numerical mesh considers three boundary con-

ditions. These are the input flow boundary where the hy-

drograph from the rainfall–runoff model is set (red dot); the

Tonalá’s river mouth, where the astronomical tide occurs for

the period of the event (27 October–12 November 2009) (yel-

low dot), and the Agua Dulcita River set, where a constant

discharge of 100 m3 s−1 is introduced (blue dot). The astro-

nomical tide (microtidal in nature with tidal range < 1 m)

is determined using the monthly tidal forecast at a nearby

point, which is published by CICESE (Centro de Investi-

gación Científica y de Educación Superior de Ensenada) and

is available at http://predmar.cicese.mx/calmen.php.

On the other hand, hydraulic roughness is a lumped term

known as Manning’s coefficient that represents the sum of a

number of effects, among which are skin friction, form drag

and the impact of acceleration and deceleration of the flow.

The precise effects represented by the friction coefficient for

a particular model depend on the model’s dimensionality,

Figure 7. Model domain along with the numerical mesh and eleva-

tion data in the study area. Boundary conditions are represented by

the blue dot: Agua Dulcita river; red dot: input hydrograph; yellow

dot: river mouth.

as the parameterisation compensates for energy losses due

to unrepresented processes and the grid resolution (Bates et

al., 2014). The lack of a comprehensive theory of “effective

roughness” has determined the need for calibration of fric-

tion parameters in hydraulic models. Furthermore, the deter-

mination of realistic spatial distributions of friction across a

floodplain in other studies, have shown that only one or two

floodplain roughness classes are required to match current

data sources (Werner et al., 2005). Indeed, this suggests that

application of complex formulae to establish roughness val-

ues for changed floodplain land use are inappropriate until

model validation data are improved significantly. Therefore,

in this study hydraulic roughness in the floodplain is assumed

to be uniform and different from the main river channel; in

this sense two values for the Manning number are used, one

for the main river channel (M = 32 m1/2 s−1) and another for

the floodplain (M = 28 m1/2 s−1).

It should be noted that several investigations confirm that

there is significant uncertainty associated with flood extent

predictions using hydraulic models (e.g. Aronica et al., 1998,

2002; Bates et al., 2004; Pappenberger et al., 2005, 2006,

2007; Romanowicz and Beven, 2003). These uncertainties

may be ascribed to differences in spatio-temporal resolu-

tions or the hydraulic roughness that is used in the hydraulic

model. In this investigation, however, a more detailed anal-

ysis of the different sources of uncertainty in the hydraulic

model is not implemented. The numerical setup of the hy-

draulic model is built following published guidelines for an

accurate representation of the case study (see Asselman et

al., 2008), which enables us to build the discussion on how

www.hydrol-earth-syst-sci.net/19/2981/2015/ Hydrol. Earth Syst. Sci., 19, 2981–2998, 2015

http://predmar.cicese.mx/calmen.php


2992 J. P. Rodríguez-Rincón et al.: Uncertainty propagation in a model cascade framework

an uncertainty generated at the meteorological stage of the

model chain propagates and influences a resulting flooded

area and depth.

In order to assess whether the 2-D model is able to re-

produce the flood extent observed in 2009, numerical results

of flood extent are compared against the affected area deter-

mined from a SPOT image (resolution of 124 m). This prac-

tice is widely used in the literature to evaluate the results

from inundation models and to compare its performance (Di

Baldassarre et al., 2010b; Wright et al., 2008).

Figure 8a introduces the result of the hydrodynamic simu-

lation for each of the 31 selected hydrographs, which resulted

from the utilisation of the rainfall–runoff model using as in-

put the WRF multi-physics ensemble output. The illustrated

flood map summarises the 31 different scenarios of the in-

undation area that could result from the characterisation of

precipitation with the WRF model. Each of these flood maps

can also be associated to a probability enabling the represen-

tation of a probabilistic flood map, shown in the figure. This

allows for the identification of the areas highly vulnerable to

flooding from this event. Additionally, Fig. 8b introduces the

infrared SPOT satellite image of 12 November 2009, which

is used for comparison against the produced flood maps de-

rived from running the 31 hydrographs as inputs in the 2-D

model. Notably, in the numerical results, the blue area identi-

fies the region of the domain that is most likely to be flooded

(90 %), the comparison of this area with the observed inun-

dation in the satellite image shows a good skill of the model

chain for reproducing the registered flood in the study area.

Despite the variability in the estimated peak discharge

utilised as input in the different hydrodynamic runs, inun-

dation results show similar affected areas in all realisations

(only with small differences in its size). This is verified in

the results shown in Fig. 9a, where the relationship between

peak discharge of the 31 hydrographs, is plotted against the

size of the maximum-flooded area. The distribution of points

in this graph clearly indicates that although there are differ-

ences in the estimated peak flow (see histogram in Fig. 9b),

in most cases the resulting size of the inundated area is sim-

ilar. The histogram plot shown in Fig. 9c indicates a clear

concentration of numerically derived flooded areas with a

size larger than 130 km2. Indeed, the mean value of the

maximum-flooded estimated area is 138.94 km2, while the

standard deviation is 16.09 km2.

These results support that the hydraulic behaviour in all

hydrodynamic simulations was indeed very similar, regard-

less of the peak discharge of the hydrograph. It is reflected

that this may be the result of induced hydrodynamics by a

valley-filling flood event, which is identified with the rela-

tively high floodplain-area-to-channel-depth ratios in all sim-

ulations. Hence, all possible hydrographs generated with the

hydrological model show similar levels of lateral momentum

exchange between the main channel and floodplain. For this

reason, the predictive performance of all hydrodynamic sim-

Figure 8. Data vs. model comparison of flood extent; (a) prob-

abilistic flood map derived from the ensemble runs with the hy-

drodynamic model; (b) infrared SPOT image corresponding to

15 November 2009.

Figure 9. (a) Maximum-flooded area vs. peak discharge estimated

for all 31 hydrodynamic simulations of the 2009 flood event;

(b) histogram of peak discharges; (c) histogram of estimated size

of the maximum-flooded area.

ulations used to reproduce the inundation extent appears to

be good (see Table 5).

The estimation of several error metrics in these results was

performed using binary flood extent maps, where the com-

parison is based on the generation of a contingency table,

which reports the number of pixels correctly predicted as wet

or dry. From this, measures of fit such as Bias, false alarm

ratio (FAR), probability of detection (POD), probability of

false detection (POFD), critical success index (CSI) and the

true skill statistics (TSS) are estimated. Table 5 introduces

the results for all 31 members and error metrics. Clearly,

there is little variability in the performance of the model for

each of the runs, showing that there has been a small prop-

agation of the error to the flood map. The ensemble average

of these quantities is also illustrated in the last column of
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Figure 10. Estimated maximum inundation depths at different lo-

cations within the floodplain. Red line represents the median. Bars

correspond to the standard deviation. Upper and lower limits of the

box are the values of the 25th and 75th percentiles, respectively.

Crosses depict outliers.

the table, where Bias= 1.013, FAR= 0.189, POD= 0.819,

POFD= 0.180; CSI= 0.686 and TSS= 0.639. As noted be-

fore, these results indicate an apparent good skill of the

model chain for reproducing the flood extent, due to the inci-

dence of this extreme event. It should be borne in mind, how-

ever, that some misclassification errors may also be included

in the observed flooded area due to specular reflections that

may classify some wet vegetation as water or open water as

dry land. In consequence, flood extent maps should be used

with caution in assessing model performance (Di Baldassare,

2012). This is particularly true during high-magnitude events

where the valley is entirely inundated, such as the case study

of this investigation where small changes in lateral flood ex-

tent may produce large changes in water levels.

In this sense, it has been argued that flood extent maps are

not useful for model assessment (Hunter et al., 2005) and

high water marks are more useful to evaluate model perfor-

mance. Unfortunately, for the case study, information of in-

undation depths was not available. Despite this fact, a fur-

ther revision of simulated inundation depths is also carried

out. For this, 10 points distributed within the numerical do-

main are selected. These are illustrated by the coloured dots

in Fig. 10, along with the values of mean water depth in all

31 simulations (red solid line). In all cases, a high variabil-

ity in the estimated inundation depth on the floodplain is de-

picted (with values varying between 1.5 and 3 m). This result

supports that in the case of valley-filling flood events, there

is a higher sensitivity to errors in the vertical dimension of

the flood.

On the one hand, this demonstrates that the geomorpho-

logical characteristics of the site (e.g. low-lying area, smooth
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slopes in the river channel and floodplain) are dominant in

the accurate determination of the magnitude of an inundated

area, regardless of the peak discharge. This implies that for

this type of rivers and when predicting inundation extent, it

may be more important to have a good characterisation of the

river and floodplain (e.g. high quality field data and a lidar-

derived DEM), than a good characterisation of the rainfall–

runoff relationship.

Current approaches to flood mapping have pointed out that

in order to produce a scientifically justifiable flood map, the

most physically realistic model should be utilised (Di Bal-

dassarre et al., 2010). Nevertheless, even with these models

the amount of uncertainty involved in the determination of

an affected area is important and should be quantified.

4 Discussion and conclusions

Flood risk mapping and assessment are highly difficult tasks

due to the inherent complexity of the relevant processes,

which occur in several spatial and temporal scales. As

pointed out by Aronica et al. (2013), the processes are subject

to substantial uncertainties (epistemic and random), which

emerge from different sources and assumptions, from the sta-

tistical analysis of extreme events, and from the resolution

and accuracy of the DEM used in a flood inundation model.

By acknowledging that all models are an imperfect represen-

tation of the reality, it is important to quantify the impact of

epistemic uncertainties on a given result.

The utilised methodology was comprised of a NWP

model, a distributed rainfall–runoff model and a 2-D hy-

drodynamic model. Thus, the numerical framework contains

several sources of uncertainty at every level of the model

cascade (meteorological, hydrological and hydrodynamic).

The quantification of uncertainty was only carried out at the

meteorological and hydrological levels of the model chain;

from which non-behavioural ensemble members were re-

moved based on the fit with observed data. In contrast, at

the hydrodynamic level, the numerical model was setup in a

deterministic way following recommendations of published

guidelines for a good representation of the case study, more

specifically with regards to the selected spatial resolution,

boundary conditions and roughness values (see Asselman et

al., 2008). This was done as uncertainties at this level have

been mainly ascribed to issues with model implementations

and definition of free parameters (Beven et al., 2011). This

enabled the assessment of uncertainty and its propagation,

from a modelled rainfall event to a predicted flooded area

and depth.

At the meteorological level, a multi-physics ensemble

technique was utilised to evaluate the generation of epistemic

uncertainties (designed to represent our limited knowledge

of the processes generating precipitation in the lower tropo-

sphere). While in the hydrological model a multi-response

validation was implemented by means of the definition of six

sets of plausible parameters from past flood events. This was

done in order to reduce the dimensionality of the parameter

calibration problem (see Gupta et al., 2009). This procedure

was preferred over a GLUE (generalised likelihood uncer-

tainty estimation) analysis (e.g. Pedrozo-Acuña et al., 2015),

as the investigation was aimed to understand the propagation

of uncertainty along the model chain.

It should be borne in mind that it is not easy to disaggre-

gate the many sources of uncertainty within the model cas-

cade. Thus, it is necessary to make assumptions about how

to represent uncertainty. Therefore, the assessment of hydro-

meteorological model performance at the three levels is car-

ried out through the estimation of skill scores.

Figure 11 presents a summary of the propagation of two

well-known error metrics, Bias (top panel) and NSC/TSS

(bottom panel). These metrics were selected as they enable a

direct comparison of their values at each of the stages within

the model cascade. In both metrics, the evolution of the con-

fidence limits is illustrated by the size of the bars. Their

evolution from the meteorological model to the hydrological

model show an aggregation of meteorological uncertainties

with those originated from the rainfall–runoff model. How-

ever, the skill is considerably improved from a mean value of

0.65 in the meteorological model to 0.793 in the hydrologi-

cal model. In the last stage of the model chain (hydrodynamic

model), the confidence limits of the results show an apparent

improvement in model skill. However, it should be noted that

this may be ascribed to the complex aggregation of errors in

valley-filling events, which is verified in the observed sen-

sitivity of the simulated inundation depths. The mean value

of the skill is reduced to TSS= 0.639. The results provide a

useful way to evaluate the hydro-meteorological uncertainty

propagation within the modelling cascade system.

Bias and NSC/TSS error metrics (Fig. 11) revealed dis-

crepancies between observations and simulations throughout

the model cascade. For instance, an increase in the NSC from

the rainfall to the flood hydrograph implies that the hydro-

logical model is more sensitive (wider uncertainty bars) to its

main input (precipitation) than the WRF model is to the set of

micro-physics parameterisations. However, the uncertainty

bounds in the hydrological model imply a high sensitivity

of hydrographs to both errors from the meteorological model

and its numerical setup with free parameters (amplifying the

uncertainty). This is observed in the spaghetti plot shown in

Fig. 6a, where large uncertainty bounds were identified. In

order to reduce errors from the interaction of uncertainties

coming from both models, these bounds were reduced with

the selection of 31 hydrographs that comply with Cor> 0.7

and NSC> 0.6 (see Fig. 6b). It is reflected that the estimated

error in the meteorological model may reflect a spatial scal-

ing issue (comparing observations from rain gauges to simu-

lations at the mesoscale).

Results concerning predictions of inundation extent indi-

cate an apparent good skill of the model chain at reproduc-

ing the flood extension. The propagation of uncertainty and
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Figure 11. (a) Bias and (b) skill propagation within the model

cascade (meteorological–hydrological–hydrodynamic); diamonds:

corresponding ensemble mean value.

error from the hydrological model to the inundation area re-

vealed that it is necessary to assess model performance not

only for flood extension purposes but also to estimate inun-

dation depths, where results indicate a higher variability (e.g.

increase in the error). This last modelling step is quite impor-

tant given the consequences for issuing warning alerts to the

population at risk.

The similar magnitude in inundation extents of all numer-

ical results indicated the predominance of a valley-filling

flood event, which was characterised by a flooded area

strongly insensitive to the input flood hydrograph. While this

can be explained by the limited effect that the volume over-

flowing the riverbanks and reaching the floodplain will have

on the maximum inundation area, the difference between the

observed and the simulated flooded area remains important

(TSS= 0.639).

It should be pointed out that this methodology contains

more uncertainties that were not considered or quantified in

the generation of flood extent maps for this event. Results

showed that a large amount of uncertainty exists in the NWP

model, and such uncertainty can propagated and aggregated

at the catchment level. Members of the ensemble were shown

to differ significantly in terms of their cumulative precipita-

tion, spatial distribution, river discharge, inundation depths

and areas. The evolution of skill within the model cascade

shows a complex aggregation of errors between models, sug-

gesting that in valley-filling events hydro-meteorological un-

certainty has a larger effect on inundation depths than that

observed in estimated flood inundation extents.

It is advised that in the future, attention should be given

to the assessment of hydro-meteorological uncertainty in a

similar numerical framework applied to catchments with dif-

ferent morphological settings. The assessment of the error

propagation within the model cascade is seen as a good step

forward in the communication of uncertain results to society.

However, as shown in this work, an improvement in model

prediction during the first cascade step (rainfall to runoff) can

be reverted during the second cascade step (runoff to inun-

dation area) with important consequences for early warning

systems and operational forecasting purposes. Finally, the

proposed numerical framework could be utilised as a robust

alternative for the characterisation of extreme events in un-

gauged basins.
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