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Abstract. Downscaled rainfall projections from 21 climate

models from the CMIP5 (Coupled Model Intercomparison

Project Phase 5) archive are used to estimate future changes

in rainfall erosivity in the continental Unites States. To es-

timate erosivity from rainfall in the absence of sub-hourly

data, we have used both daily rainfall values and the modified

Fournier index – which is based on monthly rainfall accumu-

lation – and derived the scaling relationship between rainfall

and erosivity from observational estimates of both.

The expectation of overall increase in erosivity is con-

firmed by these calculations, but a quantitative assessment is

marred by large uncertainties. Specifically, the uncertainty in

the method of estimation of erosivity is more consequential

than that deriving from the spread in climate simulations and

leads to changes of uncertain sign in parts of the southwest

and Texas.

We suggest that progress can be made by establishing a

more reliable functional relationship between daily rainfall

and erosivity.

1 Introduction

Soil erosion has significant consequences for the productiv-

ity of land and the health of the riverine systems that receive

the erosion materials. In an eroded soil, nutrients are lost,

the effective root depth decreases, and runoff increases. In

rivers, suspended sediments increase turbidity and transport

pollutants, reducing the health of algae and fish and degrad-

ing the quality of drinking water, while excess sediments af-

fect spawning fish, lower reservoir storage, and interfere with

navigation. Erosion by water already causes about 55 % of

total global erosion (Bridges and Oldeman, 1999) threaten-

ing sustainability and the productive capacity of agriculture

(Yang et al., 2003) A knowledgeable forecast of how ero-

sion will change in the coming decades is thus necessary to

plan for land stewardship and ecosystem preservation and it

is made more urgent and complex by the general expecta-

tion that increases in rainfall intensity under global warm-

ing (Trenberth et al., 2003) will exacerbate erosion. There

is widespread agreement (Soil and Water Conservation Soci-

ety, 2003) on an increased risk of soil erosion under climate

change, but the potential damage needs to be assessed against

other drivers such as land cover (e.g., Nearing et al., 2005)

and with better understanding of the uncertainty due to cli-

mate scenarios, spread in the climate projections, and meth-

ods of translating large-scale climate anomalies into forcings

for erosion models (e.g., Mullan et al., 2012; Zhang, 2007;

Zhang et al., 2011).

The forces that affect erosion are summarized in a widely

used formula (the universal soil loss equation, USLE) and

its derivates (RUSLE1 and RUSLE2) that were developed by

the US Department of Agriculture. The USLE was developed

for cropland in the early 1960s (Wischmeier and Smith 1965)

and was later extended to other land uses (Wischmeier and

Smith 1978, Dissmeyer and Foster 1980). Between the mid

1990s and the early 2000s, RUSLE1 and RUSLE2 expanded

on the index-based, empirically derived USLE by use of hy-

brid models that add process-based equations, making these

rules land-use independent and able to compute deposition.

The empirical relationship at the basis of USLE describes

soil loss as proportional to an erosivity factor (R, which de-

scribes the compound effects of the rainfall events that cause

erosion), a soil erodibility factor (K, which takes into account

the soil composition), a topographic factor (LS, basically the

slope of the terrain), and two other quantities that describe

the effect of vegetation, land use, and land management (C,

the cover-management factor, and P, the support practices

factor) (Wischmeier and Smith, 1965, 1978; Dissmeyer and

Foster, 1980).
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While climate, vegetation, and soils can all be coupled in

complex ways (for example, excessive heat and drought can

kill the vegetation cover and induce more soil loss, even if

rainfall erosivity declines; see Nearing et al., 2004), we can

start to address the role of climate change on soil erosion by

first isolating the changes in the erosivity of rainfall while

setting aside the impacts of changes in vegetation, soil com-

position and topography, land use and management. That is,

while we address changes in the direct climatic driver of ero-

sion, namely erosive rainfall, future changes in erosion will

depend on local susceptibility and thus on geography, land

use and management, and the health of the vegetation cover.

Addressing erosion changes is beyond the scope of this work.

The erosivity factor R is defined as the mean annual sum of

erosivity from individual storms with effective rainfall1, i.e.,

rainfall greater than 0.5 in. (about 12 mm). In turn storm ero-

sivity is computed (Angel et al., 2005) as the product of the

rainstorm energy (E, an empirically derived function of in-

tensity and depth of rainfall) and the maximum 30 min rain-

fall intensity for the storm (I30):

R =
∑

EI30. (1)

The unit land plot in the USLE erosion calculation is as-

sumed to be only about 20 m in length; accordingly, the for-

mula for erosivity assumes that point-wise measurements of

rainfall, i.e., rain gauge data, are used. The requirement that

we know the maximum 30 min rainfall intensity adds the

need for continuous (or at least very high frequency) mea-

surements. These are stringent requirements that have made

the calculation of erosivity a difficult task even in data-rich

regions such as the continental US (Angel et al., 2005). In

response, many approximations to the original formula have

been developed in the literature. Typically, point-wise erosiv-

ity calculated from the original definition is used to derive an

approximate formula that uses temporally averaged rainfall

data (from 30 min, to annual averages), and the approxima-

tion is used for locations with sparser data. A field of erosiv-

ity values is then extrapolated from the available data points

using other physical variables as added predictors (e.g., to-

pography, annual mean rainfall, average rainfall intensity, or

more derived quantities such as the modified Fournier index

and the burst factor that will be introduced below).

The erosivity map for the continental United States that

is in use at the Environmental Protection Agency was con-

structed in such a way (Hollinger et al., 2002; Daly and Tay-

lor, 2002; Angel et al., 2005). Annual erosivity could be

obtained from the original formula for 1505 stations with

15 min resolution. When aggregated via a cluster analysis

into nine climatic regions, this erosivity data set was used as

the basis for the storm characteristics and erosivity trends as-

sessment published by Palecki et al. (2005) and Angel et al.

(2005). Nevertheless, missing data and inhomogeneities in

the length of record made the original R-values unfit as the

1Snow is not considered an erosive event.

basis of a continental erosivity map. Instead, they were used

to statistically determine an approximation for erosivity that

used only daily data. The full daily precipitation time series

in stations collocated or nearby the high-frequency gauges

were then used to create consistent and complete time se-

ries of annual erosivity for the period 1971–2000. Finally,

the PRISM spatial distribution method of Daly and Tay-

lor (2002) was used to draw a complete erosivity map: the

method combines the available point values for estimated

R with the gridded mean annual precipitation at 2.5 arcmin

(4 km) resolution, under the assumption that additional in-

formation on the spatial field structure of R can be inferred

from the spatial structure of P . As explained below, the ero-

sivity map thus produced is used in this study to build our

model-based estimate of erosivity and erosivity changes.

Long and complete daily-resolved rainfall time series are

still not too common, and many approximate estimates of

erosivity that use rainfall records at much coarser tempo-

ral resolution have been pursued. Among the indices that

use monthly-averaged rainfall data, we focus on the modi-

fied Fournier index, F , introduced by Fournier (1960) and

Arnoldus (1980) as

F =

12∑
j=1

P 2
j

12∑
j=1

Pj

, (2)

where Pj is the monthly rainfall depth for the calendar month

j . In this formulation, a month of intense rainfall is seen

to create more erosion than the same rainfall spread over a

longer time. Quantitatively, though, the link between F and

erosivity is not well constrained by observations. Renard and

Freimund (1994) proposed a power law for the continental

US, but noticed that a quadratic formulation was a better

fit for high F values; moreover, more recent estimates of

the power-law exponent for the same region but using dif-

ferent data have found different values (USDA Agricultural

Research Service, 2013). Outside the US, other formulations

altogether have also been proposed (see for example Table 3

in Schönbrodt-Stitt et al., 2013).

Although less used for the US, we also present results us-

ing the burst factor (Smithen and Schulze, 1982), as it pro-

vides the example of an index that gives more weight to

the most intense, and erosive, events. This index, alongside

monthly rainfall accumulation, takes as input the maximum

daily rainfall for the month. In our formulation, it is calcu-

lated as

B =

12∑
j=1

MjP
e
j

12∑
j=1

Pj

, (3)
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where Mj is the maximum daily rainfall in month j and P e
j

approximates the effective rainfall as the sum of all daily

rainfall with accumulation larger than 12 mm.

The same requirements that make estimating erosivity

from observations a complex task make it impossible when

using climate models. Even the models with the finest res-

olution compute values for rainfall that are meant to repre-

sent averages over hundreds of square kilometers. Moreover,

even though models use time steps that are less than 30 min,

practical storage limitations restrict the temporal resolution

archived to 3-hourly at the finest and, more commonly, 6-

hourly or daily. Indeed, the volume of data involved in look-

ing at decades of climate simulated by dozens of climate

models makes even daily data a challenge to work with. How

can we then gain an estimate of the projected changes in ero-

sivity and potential soil loss for the US?

Some past studies have circumvented these restrictions by

applying idealized changes in precipitation amounts and in-

tensity (Dabney et al., 2012, for example), thus providing re-

sults more akin to a sensitivity assessment than a full projec-

tion (see also Pruski and Nearing, 2002). Others have looked

at changes in F , as estimated from monthly mean precip-

itation changes in a handful of GCMs (global circulation

models) (Nearing et al., 2004; Segura et al., 2014), and used

the published relationship between R and F to deduce the

change in erosivity. Others (e.g., Zhang et al., 2012) have

temporally downscaled the GCM monthly output (by linking

monthly rainfall totals to the transition probability between

dry and wet days and using a weather generator to create

daily time series) and used the downscaled precipitation in

an erosion model to directly provide estimates of runoff and

soil loss.

In contrast to the above studies, this study uses the daily

rainfall output from 21 CMIP5 (Coupled Model Intercom-

parison Project Phase 5; Taylor et al., 2012) models, bias-

corrected and downscaled to 1/8◦ resolution (the BCCDA

data set Maurer et al., 2007, 2014), to estimate changes in

erosivity in the continental US under the RCP8.5 (representa-

tive concentration pathway) emission scenario. Our approach

is to duplicate for the models what the literature has done

to estimate R where observations of high-frequency rainfall

were inadequate. Namely, we estimate the parameters of a

statistical relationship between erosivity and daily precipita-

tion from the available data, i.e., from observations of the

1980–2000 period, and we then use the same relationship to

relate the GCMs’ future projections of daily and monthly

rainfall to future projections of erosivity changes. Regret-

tably, the erosivity data available to us is limited to the clima-

tological values; we do not have access to the full time series

of erosivity. Ideally, we would estimate the relationship be-

tween daily rainfall and erosivity over a subset of the full

time series, and use the remaining independent data to vali-

date our results. We acknowledge that a lack of independent

validation is a serious drawback. Thus, to overcome this lim-

itation, we also estimate change in erosivity using the F and

BF predictors as established in the literature, and we present

the full range of uncertainty in our estimates.

The details of the methods used are summarized in Sect. 2.

Changes in the characteristics of rainfall and in other pre-

dictors for erosivity are presented in Sect. 3.1, followed by

changes in erosivity itself, estimated by different methods, in

Sect. 3.2. Section 4 summarizes and discusses the remaining

challenges.

2 Data and methods

2.1 Overview

This study uses observed rainfall (daily time series for 1980–

2000) and erosivity (mean for 1971–2000) from the PRISM

group (Daly and Taylor, 2002) on a 1/24◦grid (about 4 km).

The rainfall data set has been extensively documented and

used (see Daly et al., 2002, 2008, which have more than a

thousand combined citations), while the erosivity data set has

been only partially described in the peer-reviewed literature

and was obtained courtesy of C. Daly (Oregon State Univer-

sity). The station-based calculations of storm characteristics

and erosivity on which the map is based are described by An-

gel et al. (2005) and Palecki et al. (2005) as well as in a more

detailed report to the funding agency (Hollinger et al., 2002).

We summarize here the many steps involved.

First, 23 stations with continuous, breakpoint rainfall mea-

surements (which record the time of significant change in

rain rate, together with the value of the change) were used

to estimate a correction to the maximum 30 min intensity

I30 values obtained from discrete 15 min averages (I30)B =

1.034 · (I30)15. Second, for each storm the storm energy E

was computed as the sum over all time intervals (covering

the storm duration) of the product of rainfall depth and rain-

fall kinetic energy (an exponential function of intensity; see

McGregor et al., 1995). Third, a transfer function was devel-

oped for 1842 quality-controlled 15 min stations, linking the

storm erosivity values EI30 for each rainy day (calculated

as above) to the daily rainfall accumulation P . The trans-

fer function has the form EI30 = aP b and the coefficients a

and b were computed by least-squares fit using year-round

data (r2 values for the regression were reported to be “typ-

ically above 0.5”). Note that the regression is based on all

storms except those with a return period greater than 100

years – even though snow storms and storms with accumu-

lation of less then half an inch of rain are traditionally not

included in the calculation of annual erosivity R, but very

intense storms are. Finally, the 1971–2000 mean R was cal-

culated for daily-resolved gauge data for stations co-located

or nearby the 15 min stations, according to the formula

R =
∑

EI30 '
a

N

N∑
n=1

365∑
d=1

P b
d , (4)
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where N is the number of years (30 years) and Pd is daily

precipitation.

The creation of the gridded erosivity map based on the

1842 point values of R is described in an unpublished EPA

report (Daly and Taylor, 2002). In general it follows the

PRISM method outlined in Daly et al. (2002), but using mean

annual precipitation for the period 1961–1990 as guidance

in the interpolation in regions with significant topography

or near coastlines. In flat, homogeneous areas the interpo-

lation acts instead to smooth out differences which were not

deemed physical (but instead due to data issues, such as miss-

ing data, difference in measuring equipments or period of

records, and random noise). The final R field obtained by

this procedure has a spatial resolution of 1/24◦but, for com-

parison to model data, we regridded it to a resolution of

1/8◦(0.125◦). We refer to this observation-based estimate of

R as our “target R”.

Climate change is portrayed in this study as the differ-

ence from the historical period and the decades 2079–2099

simulated under a business-as-usual scenario (the representa-

tive concentration pathway RCP8.5). This signal is estimated

from a 21-model subset of the CMIP5 ensemble (Taylor

et al., 2012), which has been statistically bias corrected and

downscaled to a resolution of 1/8◦ according to the method

of Maurer et al. (2007, 2010, 2014). This data set, known as

the Bias-Correction Constructed Analog version 2 data (BC-

CAv2), provides the daily precipitation data that is used to

calculate present-day and future erosivity in the contiguous

United States in the historical and RCP8.5 simulations. The

steps that transform CMIP5 output into BCCAv2 are as fol-

lows: GCM output is first regridded to a 2◦ resolution and

then a quantile matching procedure adjusts the rainfall values

to match the observed climatology, then a constructed analog

technique2 is used to downscale from coarse to fine resolu-

tion. Finally, another step was necessary to correct a dry bias

that was reintroduced by the constructed analog downscaling

method: a ratio scaling factor was uniformly applied to cor-

rect the annual mean precipitation to again match observa-

tion. Note that this rescaling is not expected to correct biases

in higher moments of the rainfall distribution. Details can be

found in Maurer et al. (2007, 2010).

2.2 Rainfall characteristics

Figures 1 and 2 present, for observations and the model en-

semble, respectively, a quick overview of the rainfall charac-

teristics that are most likely to influence erosion: mean an-

nual accumulation (in mm day−1), mean daily intensity (de-

fined as the average rainfall accumulation on days when it

rains), the modified Fournier index, and the burst factor. The

observed characteristics are well known. The western coast

2An analog for a given daily weather pattern can be constructed

by combining patterns from a library of previously observed pat-

terns; using a companion library of high-resolution patterns creates

the high-resolution downscaled estimate.

ranges receive plenty of precipitation but otherwise the west-

ern states are quite dry; east of the Rockies precipitation

is generally more abundant, especially in the southeast and

in places along the Appalachian Range. The same pattern

is repeated and intensified in the intensity field, with espe-

cially high intensities in the southeast. Unsurprisingly, both

the burst factor B and the modified Fournier index F show a

mixture of the accumulation and intensity patterns.

The model ensemble reproduces the annual accumulation

and F very well, as expected from the fact that we are us-

ing bias-corrected data sets. Instead, the quantities that are

based on daily, rather than monthly, data are not at all well

captured. Maximum values in the intensity field are muted

compared to observations by a factor of at least 4 (changing

the threshold for a rainy day from 0 to 1 mm day−1 does not

solve the problem, not shown), and the low-intensity also af-

fects the burst factor, especially in the southeast. This can be

explained in part by the lower resolution of the model data,

but it seems that the bias correction does not fully address the

notorious drizzle bias that plagues GCMs (Dai, 2006).

Because of concern with the unresolved bias in daily rain-

fall intensities, we proceed by estimating erosivity and ero-

sivity changes using two predictors. One predictor is rain-

fall daily intensity and the method by which we estimate R

(method 1) is more closely related to the original erosivity

calculation (but is affected by the intensity bias). The sec-

ond predictor is F , which is unaffected by the bias. For F ,

the formulation of the erosivity calculation is less well moti-

vated and the relationship is more uncertain; thus, we try both

a linear (method 2) and a non-linear (method 3) relationship

between F and R.

2.3 Erosivity calculations using observed daily rainfall

(method 1)

Figure 3a shows the target (observed) 1970–2000 annual ero-

sivity. Values are maximum along the gulf coast and Florida,

and decline further to the north. Erosivity in the western US

is extremely low, aside from the mountain regions of the west

coast (note, though, that snow might be contaminating the

observational estimate in these areas). Unsurprisingly, the R

pattern is reminiscent of both annual mean P and intensity,

but some details are different, such as the very high values

of R in southern Florida. This pattern differs from that of

erosion itself, as steep topography favors erosion in most of

the western US (Judson and Ritter, 1964) and land-use prac-

tices enhance or mitigate the effect of erosive rainfall (Gys-

sels et al., 2005; Montgomery, 2007).

To compare climate models to observations, we would ide-

ally calculate the model erosivity using the same formula that

was used in the making of the observational data set. Unfor-

tunately, this is not strictly possible. The main reason is that

the observed coefficients a and b were not reported in the

literature. A secondary reason is that we use gridded values

of precipitation and, even though the grid of the downscaled
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Figure 1. Observed rainfall characteristics for 1980–2000 in the PRISM data set (mm day−1). (a) Mean annual accumulation. (b) Mean daily

intensity (i.e., accumulation on rainy days, where a rainy day is any day with rain above 0 mm day−1). (c) Modified Fournier index, the sum

of the squared monthly rainfall, divided by the annual rainfall. (d) Burst factor, the sum of the product of monthly rainfall accumulation with

the maximum daily rainfall for the month, divided by the annual rainfall.

Figure 2. As in Fig. 1, but for the average of 21 downscaled CMIP5 models (the BCCAv2 data set).

data set is quite fine, coefficients estimated from gauge val-

ues may not necessarily be appropriate for a gridded data set.

Still, we want to calculate R from daily rainfall using the

same functional form and, in order to do that, we need an al-

ternative way to estimate the coefficients a and b that do not

require temporally resolved values of R. Our choice was to

exploit the fine spatial resolution of the gridded R data set,

and use that in place of the missing temporal resolution.

For every 1◦× 1◦ square, we take the mean 1970–2000

erosivity and daily time series for the period 1980–2000

(PRISM daily rainfall is not available prior to 1980) and use

the 625 vertex points of the 4 km resolution data sets that are

included in this subdomain to determine the coefficients a

and b in the formula R ' a
N

∑N
n=1

∑365
d=1P

b
d . This provides us

with a 1◦× 1◦ gridded map of a and b, which we then inter-

polate linearly to the same resolution as the PRISM data and

www.hydrol-earth-syst-sci.net/19/2945/2015/ Hydrol. Earth Syst. Sci., 19, 2945–2961, 2015
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Figure 3. Overview of observational estimates of R. (a) Target ero-

sivity field. (b) Erosivity calculated by regression from daily precip-

itation, using the formula R = a
N

∑N
n

∑365
d P b

d
(details in the text).

(c) Erosivity calculated from annual modified Fournier index F , us-

ing the published formula of Reinard and Freimund. (d) Erosivity

calculated by regression from annual modified Fournier index F

using the formula R = a ·F + b (details in the text). (e) Same as in

(d) but using the formula R = a ·F b.

smooth to the 1/8◦ resolution of the models. In the fitting rou-

tine we require that a be positive and b be greater or equal to

1 (a choice consistent with the parameter values reported in

Hollinger et al., 2002). We want the formula linking rainfall

and erosivity to be sufficiently robust to produce a good fit

to the target R when applied to rainfall at somewhat different

resolution, so we check its performance on the same obser-

vational rainfall data, but regridded at the coarser resolution

of the downscaled data, 1/8◦. Although this check is not us-

ing fully independent data, using data at coarser resolution as

input does introduce some degree of separation from the data

used in the fit. In the eastern domain, grid points for which

the fitting routine selected outlier values (very different from

nearby points, but without a clear physical feature to justify

the sharp gradient) yielded large errors when the regression

was applied to the coarser data. To partially avoid this, we

imposed as a search criterion in the least-square fitting pro-

cedure that the regression coefficients were bound to be close

to the large-scale values over homogeneous areas, and outlier

values of the regression coefficients were discarded. This is

consistent with the choice made by the PRISM team to use a

smooth interpolation in the eastern US.

Figure 3b compares to the target map the erosivity ob-

tained by regression on the 1980–2000 1/8◦ daily PRISM

rainfall. Figure 4 shows maps for the a and b coefficients.

The exponent b is close to 1 over the eastern part of the US,

but it rises above 1.5 in the west. The multiplicative constant

a is most reminiscent of the R and P fields, with values close

to 0 in the west (which offsets for the quadratic term in pre-

cipitation) and maximum values in the southeast. Figure 4

also shows the absolute and relative error between the two

R estimates (between Fig. 3a and b). Overall, the regression

produces a good match to the original field, but a close look

reveals that there are some regional biases. In particular, the

west coast has much lower erosivity in the target field than

that calculated by the regression; in fact, when looking at the

relative error, most of the west appears to be problematic: the

errors are small scale and patchy, so the regional bias is not

as strong as the local bias, but there is an overall tendency for

the regression model to overpredict erosivity.

2.4 Erosivity calculations using the observed modified

Fournier index F (methods 2 and 3)

An increase in the intensity of rainfall, especially in the

frequency of the most extreme events, is a robust expecta-

tion for future climate change, supported by theory (e.g.,

Trenberth, 1999; O’Gorman and Schneider, 2009), model-

ing (e.g., O’Gorman, 2012; Tebaldi et al., 2006; Sillmann

et al., 2013), and observations (e.g., Alexander et al., 2006;

Lenderink et al., 2011; Asadieh and Krakauer, 2015). The

effect of such changes on erosivity can only be assessed by

using daily rainfall data. For this reason, we have calculated

erosivity from daily precipitation, as shown above. Neverthe-

less, the biases in daily intensity that persist even in this bias-

corrected data set shed doubt on the ability of this method to

accurately capture changes in erosivity and, therefore, we in-

clude estimates of erosivity obtained from monthly-averaged

rainfall data – which is brought close to observations by the

bias correction.

Specifically, we calculate R from the modified Fournier

index F , which is one of the most widely used indices, with

an established literature for the US. Renard and Freimund

(1994) used high-frequency gauge data from 132 stations to

derive a relationship between F and R for the continental

US; the relationship is described by two equations:

Hydrol. Earth Syst. Sci., 19, 2945–2961, 2015 www.hydrol-earth-syst-sci.net/19/2945/2015/
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Figure 4. Evaluation of observational estimates of R. Method 1: erosivity calculated from daily precipitation, using the formula R =
a
N

∑N
n

∑365
d P b

d
(details in the text). (a) The multiplicative coefficient “a” in the above formula, calculated by regression on the grid points

in each 1◦× 1◦ box (b), as in (a), but for the exponent coefficient “b”. (c) Absolute error between the estimate of R in Fig. 3b and the target

field in Fig. 3a. (d) Relative error in percent.

R = 0.7397F 1.847, (5)

and

R = 95.77− 6.081F + 0.4770F 2, (6)

where Eq. (5) holds for F < 55 mm and Eq. (6) holds for

F > 55 mm and F is defined as in Eq. (2)3. Reinard and

Freimund found that neither relationship could be applied to

the stations of Washington, Oregon, and California because

winter snow was coming into the calculation of F , but should

not contribute to R. Their criterion to exclude such stations

was that no month between October and April should con-

tribute more than 15 % to the annual accumulation. We have

followed the same, quite arbitrary, criterion.

Other scholars have found different relationships for other

locations (see the many examples reported in Schönbrodt-

Stitt et al., 2013), both linear and of the form R = aF b, and

the literature repeats Arnoldus’ (1980) recommendation that

relations obtained using the modified Fournier index should

be applied only to locations within homogeneous climatic re-

gions. Therefore, we also apply the same method described

above for daily precipitation and estimate local R to F rela-

tionships for points in each 1◦× 1◦ square, allowing for both

a linear and a power law relationship. Thus, we have three

ways of estimating R from F .

3Note that these are the equations reported in the figures. The

main text in Reinard and Freimund contains a graphical error in

Eq. (5), and subsequent citations in Nearing (2001) and Segura et al.

(2014) contain a typo in Eq. (6).

Applying Eqs. (5) and (6) to the gridded PRISM data leads

to overestimating the erosivity everywhere in the US, with

the only exceptions of eastern Texas and Florida (Fig. 3c).

The fact that the error is of the same order of magnitude as R

itself is not inconsistent with the errors shown by Reinard and

Freimund (see their Fig. 3b), but the positive bias in the es-

timate is harder to explain. Nonetheless, we note that the re-

lationship between F and R in the literature for many world

regions is often linear and, as will be shown below, the local-

regression methods suggest a much weaker dependence on

F than the Reinard and Freimund formulas in all but a few

mountainous regions of the US.

To determine the F to R relationship from local regres-

sions, we have tried several functional forms: a linear rela-

tionship, a power law, the sum of the two, with and with-

out subjective bounds on the coefficients. Here, we present

results from the linear and power law functional forms.

Nonetheless, we imposed an additional regional constraint

to avoid small-scale noise in the coefficient fields: the noise

was deemed unphysical and it gave rise to large local errors

when the fit was applied to the 1/8◦ PRISM data. In particu-

lar, we have imposed that the relationship between F and R

stays close to linear in the southeast. This trial-and-error fit

without a posteriori verification would be problematic if we

were to claim that it proves a physical connection between F

and R. But our goal is much more modest: we assume that

a relationship between F and R exists, as established in the

literature, and simply obtain a scaling between the two quan-

tities that performs better than the Reinard and Freimund for-

mulas.
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Figure 5. Evaluation of observational estimates of R. Method 2: erosivity calculated from annual modified Fournier index F , using the

formula R = a ·F + b (details in the text). (a) The multiplicative coefficient “a” in the above formula, calculated by regression on the grid-

points in each 1◦× 1◦ box (b), as in (a), but for the coefficient “b”. (c) Absolute error between the estimate of R in Fig. 3d and the target

field in Fig. 3a. (d) Relative error in percent.

Figure 6. Evaluation of observational estimates of R. Method 3: erosivity calculated from annual modified Fournier index F , using the

formula R = a ·F b (a) The multiplicative coefficient “a” in the above formula, calculated by regression on the grid-points in each 1◦× 1◦

box (b), as in (a), but for the coefficient “b”. (c) Absolute error between the estimate of R in Fig. 3e and the target field in Fig. 3a. (d) Relative

error in percent.

The end result of the local regressions are presented in

Figs. 3d, e, 5, and 6. The case of a linear fit provides the

best fit (Fig. 5): the errors are small and very patchy, indicat-

ing that there are weak regional biases in the estimate of the

erosivity field. The power law produces errors of larger mag-

nitude, and their severity is worst in the western US. Here, the

power law coefficient sets a stronger-than-linear relationship

between F and R, and the end result is a regression that over-

estimates erosivity. In both the linear and non-linear cases,

the local regression allows us to calculate erosivity for the

entire domain, including the west coast, but errors there are

larger. Moreover, the issue of including snow in the erosivity

Hydrol. Earth Syst. Sci., 19, 2945–2961, 2015 www.hydrol-earth-syst-sci.net/19/2945/2015/



M. Biasutti and R. Seager: Erosivity projections 2953

Figure 7. Evaluation of climate model estimates of R. Method 1 (the method of Fig. 4). (a) Ensemble mean erosivity. (b) Intra-ensemble stan-

dard deviation, divided by the ensemble mean erosivity (%). (c) Absolute error of the ensemble mean, compared to the target R. (d) Relative

error of the ensemble mean.

calculation is not properly addressed by any of these meth-

ods, although changes from snow to rain might indeed be an

important factor in determining future changes in erosivity.

R is better approximated using F than with the daily pre-

cipitation. This is somewhat surprising, given that it is the

daily precipitation that goes into the original R calculation.

On the other hand, it might be that the use of annual mean

rainfall in the interpolation of R from point measurements

to the gridded field introduces a bias in R, making the field

more similar to rainfall accumulation than it would otherwise

be.

Another possible choice for building the regression be-

tween rainfall (either at daily frequency or aggregated into

F ) and erosivity would be to base it on larger regions that

encompass broader variations in the relevant fields than what

is seen in a 1◦× 1◦ square. Taking inspiration from the re-

gional clusters of Palecki et al. (2005) – which select regions

with fairly homogeneous mean storm characteristics – we

have defined eight regions and regressed rainfall and rainfall

characteristics across the grid points within each region. The

regressions are more biased in this case than in the case of

the local regressions, independently of the choice of rainfall

variable. This is as expected, given that we use much fewer

parameters, and again underscores the uncertainty in the esti-

mates or erosivity that are based on rainfall accumulation. In

the rest of the study, we proceed using the estimates obtained

by local regressions, mindful that these regressions should be

interpreted more as a simple scaling than as a robust physical

relationship.

2.5 Erosivity calculations using historical model data

In this subsection, we describe the performance of the cli-

mate models in reproducing the observational estimates of

rainfall erosivity R. All three methods of estimating R are

evaluated.

When applied to the model ensemble daily rainfall data for

the 1980–2000 period in the historical simulations, Eq. (4)

with the coefficients of Fig. 4 yields a very reasonable pattern

of erosivity (Fig. 7a), but with obvious biases. The absolute

error (Fig. 7c) is large along the west coast, but comparable

to what is obtained by using observed daily rainfall for the

fit (see Fig. 4), and also large in the southeast, where ero-

sivity is overestimated by the regression by 10–40 %. This is

somewhat surprising, given that in the same region the mod-

els underestimate rainfall intensity; yet, in this region the re-

lationship between rainfall and R is very close to linear, so it

is possible that the positive bias in the number of rainy days

(given that the mean has been corrected, low intensity must

go together with high frequency) translates to the overesti-

mation of erosivity. While the relative error (Fig. 7d) in the

eastern US is only prominent in Florida and coastal regions,

it is large everywhere in the west. Nonetheless, here the error

pattern is as patchy as was seen for observations in Fig. 4,

so that the overall regional bias is not as severe. The western

US is also the region for which there is more scatter across

the model ensemble, as signified by the intra-ensemble coef-

ficient of variation (the standard deviation of the inter-model

spread, divided by the multi-model mean erosivity, Fig. 7b).
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Figure 8. Evaluation of climate model estimates of R. Method 2 (the method of Fig. 5). (a) Ensemble mean erosivity. (b) Intra-ensemble stan-

dard deviation, divided by the ensemble mean erosivity (%). (c) Absolute error of the ensemble mean, compared to the target R. (d) Relative

error of the ensemble mean.

Figure 9. Evaluation of climate model estimates of R. Method 3 (the method of Fig. 6). (a) Ensemble mean erosivity. (b) Intra-ensemble

standard deviation, divided by the ensemble mean erosivity (%). (c) Absolute error of the ensemble mean, compared to the target R. (d)

Relative error of the ensemble mean.

When we calculate erosivity from the models’ F , we ob-

tain somewhat better results (compare Fig. 8a to Figs. 3d and

Fig. 9a to Fig. 3e). Similar to what is seen for the observa-

tions, the linear relationship captures R with the least bias

(Fig. 8c, d), while the non-linear relationship (Fig. 9c, d) in-

duces a worst overestimation of erosivity in coastal regions

of the gulf and the southeast and in the western US. Erosivity

in the Great Plains tends instead to be underestimated by the

models. The biases in model-estimated erosivity are all qual-

itatively quite independent of the formula used to calculate

the estimates, but they are smallest when R is linked linearly

to F , as one would expect from the fact that monthly rainfall

(and thus F ) was the target of the bias correction.
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Figure 10. Projections of changes in rainfall characteristics: difference between 2079–2099 and 1980–2000, where the future period is

simulated under the RCP8.5 scenario and the past is from the historical simulation. Shown are ensemble mean differences, with stippling

indicating that more than two-thirds of the models agree on the sign of the change (stippling is plotted at coarser spatial resolution, for

clarity). (a) Annual mean rainfall accumulation. (b) Rainfall mean daily intensity. (c) Modified Fournier index. (d) Burst factor.

3 Projections

3.1 Rainfall

Figure 10 shows the end-of-century projections for annual

rainfall accumulation, mean daily intensity, the burst factor,

and the modified Fournier index. All four fields show overall

future increases over most of the North American continent.

The annual precipitation signal in the northern part of the

domain (Canada and US) is clearly positive, with anomalies

replicated across the ensemble (stippling indicates at least

two thirds of the models agreeing on the sign of the anoma-

lies), but in the southern part of the domain the anomalies are

weak and not very robust. Although barely significant (see

the limited extent of the stippling), there is general drying

in Mexico and Texas, extending into the southwest US, and

more positive anomalies in the eastern gulf and Florida. The

pattern of yearly anomalies shown here is consistent with the

expectations reported in the literature for both CMIP3 and

CMIP5 models (see for example Seager et al., 2007, 2014;

Biasutti et al., 2011; Christensen et al., 2013; Maloney et al.,

2014). It can be interpreted as the sum of a weak US-wide

summertime drying and the wintertime pattern of increase

in rainfall north of 40◦ N and decrease in precipitation in

the southwest and Texas. Areas close to the wintertime zero-

anomaly line are areas where the climate signal is projected

to be small compared to natural variability, and model dis-

agreement is not problematic. But in other areas, such as

northern California and Texas, model disagreement is indica-

tive of true uncertainty in the response (Maloney et al., 2014).

The positive weak anomalies in Arizona and central Mex-

ico are not expected from the literature. They are a conse-

quence of the bias-correction method: the projections for the

same 21 runs in the original CMIP5 ensemble show that the

negative rainfall anomalies do extend farther north than their

downscaled counterparts. In general, the downscaling seems

to dampen the negative anomalies. This is visible for both

accumulation and the Fournier index when we compare the

downscaled anomalies in Fig. 10 with the anomalies for the

corresponding CMIP5 models at the native resolution (see

Fig. 11).

The intensity signal (see also Wuebbles et al., 2014)

presents a similar pattern of stronger positive signal in the

north and along the coasts, but in this case the region of

consistency across models is more expansive across the US,

with only the Colorado Plateau and the southern Great Plains

not showing a robust increase in intensity (anomalies are

nonetheless positive). The pattern can be interpreted as the

superposition of the general (thermodynamic) tendency for

more intense rainfall in a moister atmosphere (O’Gorman

and Schneider, 2009), dampened in the middle of the con-

tinent by circulation-driven dry anomalies in summertime

(Maloney et al., 2014). Where these two effects are of com-

parable magnitude in the multi-model mean, the changes in

intensity are less robust.

The modified Fournier index is more robustly positive than

the annual accumulation, from the east coast to the Missis-

sippi and from the west coast across the Rockies. The south-

ern Great Plains show negative change in F , but the anoma-

lies are inconsistent across the ensemble. Also, F increases
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Figure 11. Projections of changes in mean accumulated rainfall (top) and modified Fournier index (bottom): difference between 2079–2099

and 1980–2000, where the future period is simulated under RCP8.5 scenario and the past is from the historical simulation. Shown are

ensemble mean differences, with stippling indicating that more than two-thirds of the models agree on the sign of the change. In (a) and

(c) the ensemble is limited to the runs included in the downscaled ensemble used in the rest of this study, but only regridded to a 2◦× 2◦

resolution. In (b) and (d) the ensemble includes 38 coupled models from the CMIP archives; and for each model we have used the ensemble

mean of all available realizations, for a total of 76 historical and RCP8.5 simulations.

at the gulf coast even though mean annual P declines here,

a difference caused by an increase in monthly intensity that

dominates over the mean drying. The strengthening of the

robust pattern of anomalies in F compared to annual rainfall

is an indication that the seasonal cycle of rainfall will be get-

ting more peaked, i.e., more rain in the rainy season (Chou

and Lan, 2012). As noted above, this behavior is more pro-

nounced in the downscaled anomalies, while the same mod-

els at the native resolution would indicate negative anomalies

extending over Texas, Louisiana, and Mexico (Fig. 11).

Changes in the burst factor B are the most uniformly

positive. B values reflect changes in both mean rainfall

and rainfall extremes. This is especially true given that we

have calculated the effective rainfall entering B using the

observation-derived threshold of half an inch, which corre-

sponds to higher rainfall percentiles in the models. More-

over, the maximum daily rainfall for the month enters the

calculation directly. The domain-wide robust increase in B –

extending farther than either mean rainfall or mean intensity

– is consistent with the expectation that the intensity of ex-

treme rainfall events will increase more than average rainfall

and average intensity.

Given the pattern of robustness and uncertainty in the pre-

dictors of erosivity (that is, in mean annual rainfall, daily in-

tensity, F and B), we can expect that erosivity changes will

be generally positive but quite uncertain in the southern and

central US and dependent on the method used to estimate

erosivity from rainfall. In the following section we look at

such changes in a more quantitative way.

We have noted how the downscaling method introduces its

own uncertainty in the projected rainfall changes used in this

study; another source of uncertainty comes from the scatter

across the models itself and can be partially addressed by

looking at the sensitivity of our results to the size of the cli-

mate model ensemble. Figure 11 compares the mean signal

in annual mean accumulation and in the modified Fournier

index when we use one realization of the 21 models used for

downscaling from the native resolution CMIP5 ensemble to

the projection from 76 runs from 38 models in the CMIP5

ensemble. The two patterns are very similar but they differ in

details, such as on the sign of the anomalies over Louisiana.

Finally, while here we focus on the climate change signal, it

is important to remember that natural variability in rainfall

is large over North America and capable of masking forced

trends even over multi-decadal periods (Deser et al., 2010).

3.2 Erosivity

Keeping in mind all these sources of uncertainty in rainfall

changes, we now proceed to estimate the projected changes

in rainfall erosivity. These inherit all the uncertainty in the

climate projections and compound those with the uncertainty

in the relationship between accumulated rainfall and erosiv-

ity.
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Figure 12. Projections of changes in erosivity: difference between 2079–2099 and 1980–2000, where the future period is simulated under

RCP8.5 scenario and the past is from the historical simulation. Erosivity is calculated from daily precipitation values following method 1.

(a) Ensemble mean difference in erosivity units (MJ mm ha−1 h−1 year−1). (b) Intra-ensemble standard deviation in erosivity units. (c) En-

semble mean difference in percent of mean 20th century values. (d) Intra-ensemble standard deviation in percent.

Figure 13. As in Fig. 12, but for erosivity calculated by non-linear regression from the modified Fournier index F (method 2).

Figures 12, 13, and 14 show the multi-model mean differ-

ence in erosivity between 1980–2000 and 2080–2100, both

in erosivity units (MJ mm ha−1 h−1 year−1, top panels) and

as percentages of the 20th century values (bottom panels),

alongside the intra-ensemble scatter in the same quantities.

In Fig. 12, R is estimated from the daily precipitation val-

ues (method 1), while in Figs. 13 and 14 it is estimated from

F , either through a linear (method 2) or through a non-linear

regression (method 3), as described in Sect. 2.

As would be expected from the rainfall changes, the mod-

els suggest an overall increase in erosivity across the US,

but the details of the projections change quite significantly

depending on the method used to estimate R. These pat-

terns match very closely the patterns of the erosivity predic-

tors (rainfall changes and F ), indicating that non-linearities

have a weak role in setting the erosivity anomalies. For the

same reason, the inter-model agreement pattern for erosivity

matches that for the climatic predictors. When daily precip-
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Figure 14. As in Fig. 12, but for erosivity calculated by non-linear regression from the modified Fournier index F (method 3).

itation is used, the increase in erosivity covers the west, east

and north-central US, with negative anomalies in Texas and

north into the Colorado Plateau. Conversely, the estimates

obtained from the modified Fournier index would indicate

positive anomalies in Texas (as in most of the domain) and

only a region of very weak decrease in erosivity further north

around Colorado and Kansas. For R using daily data the

changes are primarily driven by the changes in mean accu-

mulation. For R calculated via F , changes in monthly inten-

sity are more important and there are regions where, by this

estimate, R increases even as accumulation declines, because

an increase in monthly intensity dominates.

The fact that the pattern of change in rainfall accumula-

tion differs from that of the modified Fournier index leads

to increased uncertainty in erosivity changes, compared to

what has been previously reported in the literature as a con-

sequence of the climate uncertainty. For example, in eastern

Texas, estimates based on F suggest a robust increase of ero-

sivity across a majority of climate models (even if the inter-

model spread is large, Fig. 13b, there is strong agreement

on the sign of the change, Fig. 13a), but estimates based on

daily precipitation accumulation paint the opposite picture.

For this region, the uncertainty derived from the rainfall–

erosivity relationship is greater than the uncertainty derived

from scatter across climate projections.

In spite of the overall uncertainties and biases in the model

estimates, it is nonetheless clear that the expectation of in-

creased erosivity for most of the US is supported by this

analysis and that strategies to prevent soil loss will need to be

implemented in a variety of environmental conditions, from

the mountains of the west to the northern Great Plains, to the

Appalachian Range and the Eastern Seaboard.

4 Conclusions

Changes in soil erosion have many drivers and a full eval-

uation of the effect of climate change on soil loss and sed-

iment deposition can only be achieved by a truly integrated

assessment that takes into consideration changes in vegeta-

tion and land use. At the moment, the coupling of climate,

vegetation, and landscape dynamics at the scales relevant for

erosion is not yet achievable, and an assessment of erosion

risks under global warming must, by necessity, take a sim-

plified approach. Here, we focus on the one driver of erosion

most directly related to climate: rainfall erosivity.

The purpose of this study was to provide an assessment of

the projected changes in erosivity for the continental United

States, based on the most up-to-date projections of climate

change. We have used downscaled rainfall projections from

21 climate models from the CMIP5 archive to estimate future

erosivity changes. To estimate erosivity, we have used both

daily rainfall values and the modified Fournier index – which

is based on monthly rainfall accumulation – and derived the

scaling relationship between rainfall and erosivity from ob-

servational estimates of both. While daily rainfall maps are

available for the period 1980–2000, only the mean value for

the 1971–2000 is available for erosivity. Such a dearth of data

hinders a robust estimate of the relationship between rainfall

and erosivity and introduces another large source of uncer-

tainty in the estimate of future changes, comparable to that

due to the spread in climate projections across the CMIP5

ensemble.
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Overall, we confirm that the general expectation of wors-

ening erosivity under climate change is correct, but we sug-

gest that previous estimates have been too confident for large

swaths of the United States, especially in the south and in

the interior. The pattern of erosivity change estimated in our

study from CMIP5 changes in F is consistent with what was

found by Segura et al. (2014) using just three models (with

three scenarios each) from the older CMIP3 archive. But the

pattern changes when we estimate erosivity with a differ-

ent method: when erosivity is estimated from daily rainfall

values, the multi-model mean indicates a decrease in Texas

and the southern Great Plains, while an increase in erosiv-

ity is simulated by a majority of models when the estimate

is done using monthly precipitation. Within this region there

are locations where the climate signal itself is not very ro-

bust (some climate models project wetting, others drying)

but there are also locations where the climate models agree

on the rainfall changes. There, uncertainty in the sign of the

erosivity changes is solely a consequence of our poor knowl-

edge of how best to link erosivity to rainfall accumulation.

Thus, we conclude that, for some regions, uncertainty in the

method of estimation of R can be more consequential than

uncertainty derived from the spread in climate simulations.

A more quantitative assessment will remain a challenge,

hindered both by model deficiencies and by lack of com-

plete erosivity records from observations. Ameliorating the

biases in the representation of rainfall intensity in climate

models is bound to help, and the task is already on the mod-

elers’ agenda, as is the need for reducing uncertainty in the

projections of regional climate change. But the uncertainty

stemming from the relationship between rainfall and erosiv-

ity could be ameliorated without having to wait for progress

in climate models. Progress could be made by recalculat-

ing erosivity time series from high-quality gauges, and high-

frequency, high-resolution satellite estimates of rainfall, so

that a more detailed and more reliable record of the connec-

tion between daily rainfall and erosivity can be established

for the entire US. Outside the Unites States (and few scat-

tered localities), the lack of high-frequency, high-resolution

data and a worse uncertainty in the relationship between

rainfall characteristics and erosion potential (van Dijk et al.,

2002) combine to make the challenge even more formidable.
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