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Abstract. The Brutsaert and Nieber (1977) analysis is a well-

known method that can estimate soil parameters given dis-

charge data for some aquifers. It has been used for several

cases where the observed late-time behavior of the recession

suggests that the water stream that is adjacent to the aquifer

has nonzero depth. However, its mathematical formulation is,

strictly speaking, not capable of reproducing these real-case

scenarios since the early time behavior is based on a solution

for which the aquifer stream has zero depth (Polubarinova-

Kochina, 1962). We propose a simple generalization for the

Brutsaert and Nieber (1977) method that takes into consider-

ation the depth of the adjacent water stream. The generaliza-

tion is based on already available solutions by Polubarinova-

Kochina (1962), Chor et al. (2013) and Dias et al. (2014) and

can be readily implemented with little effort. The original

and proposed equations are tested against numerical simula-

tions of the full nonlinear Boussinesq equation. A sensitivity

analysis shows that the modification can have significant im-

pact on the predicted values of both the drainable porosity

and the saturated hydraulic conductivity.

1 Introduction

The Brutsaert and Nieber (1977) analysis (from now on re-

ferred to as BN77) has been widely used in hydrologic re-

search to estimate aquifer parameters given some discharge

data. This technique is based on “state-space”-like plots of

Q× dQ/dt , whereQ(t) is the aquifer discharge as a function

of time. It is based on solutions for the Boussinesq equation

for groundwater flow applied to a system as the one presented

in Fig. 1, which shows a water channel of length L with one

aquifer of length B on each side. Traditionally three solu-

tions of the Boussinesq nonlinear partial differential equa-

tion for groundwater flow (Boussinesq, 1903) are considered

for this method, which are the three solutions proposed by

BN77. Solution (i) was originally given as an incomplete se-

ries by Polubarinova-Kochina (1962) (the complete set of co-

efficients was given by Chor et al. (2013)) for a semi-infinite

aquifer that deals with early-time behavior as

h(x, t)=H

∞∑
n=0

bn
x
√

4Dt

3n+1
2
, (1)

where the coefficients bn are given by a recurrence relation

(Chor et al., 2013), D=H k0/ne and x is the horizontal dis-

tance. Solution (ii) is the exact solution provided by Boussi-

nesq (1904) for a finite aquifer, which is adequate for later

times. It is given by

h(x, t)= F(x)
1

ât + 1
, (2)

where F(x) is defined from the incomplete beta function and

â is a constant coefficient.

Solution (iii) is the linearized solution provided by Boussi-

nesq (1903) (also appropriate for late-time behavior) which

is given by

h(x, t)=H0+
4

π
(H −H0)

∞∑
n=1,3,5...

1

n
sin
(πnx

2B

)
exp

(
−
π2n2k0pH

4neB2
t

)
. (3)

In order to obtain Eq. (3), the water table height h is approx-

imated as pH in the nonlinear term of the Boussinesq partial

differential equation, for linearization purposes.
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Figure 1. Schematic of a watershed of simple geometry during a

hydrologic recession.

From the aforementioned solutions, only Solution (iii) is

able to deal with nonzero water-stream depths (H0) adjacent

to the aquifer (of initial water table height H ). Recently, So-

lution (i) – from now on we call “Solution (i)” any solution

for a semi-infinite aquifer where discharge is occurring – has

been generalized by Chor et al. (2013) and Dias et al. (2014).

The work by Dias et al. (2014) is of particular importance for

us because it extends the early-time behavior to cases where

the stream depth is different from zero.

Since BN77, many changes and improvements have been

suggested (for detailed reviews, see Rupp and Selker, 2006,

and Troch et al., 2013) but its main insight remains the same:

that one should look at the rate of discharge as a function of

discharge, or, mathematically (for the case of a power law),

dQ

dt
=−αQβ , (4)

where Q is the water discharge, t is time and α and β

are calibrated coefficients which can be compared to the

predictions from the abovementioned analytical solutions

by Polubarinova-Kochina (1962), Boussinesq (1903) and

Boussinesq (1904), among many others (Rupp and Selker,

2006).

If one wishes to estimate only the soil hydraulic con-

ductivity k0 and the drainable porosity ne, two of the three

aforementioned solutions can be used. In this work, the so-

lutions used are the ones by Polubarinova-Kochina (1962),

Dias et al. (2014), and Boussinesq (1903). However, the so-

lution by Polubarinova-Kochina (1962) is only valid for the

case H0= 0: it is therefore important to assess how much

this assumption affects the estimate of k0 and of ne for cases

where it does not hold.

From the long list of solutions of the Boussinesq equation

that are used for BN77’s method, very few take H0 into con-

sideration (from the list of 13 equations presented by Rupp

and Selker (2006), only 2 have H0 as a parameter), so it is

safe to say that the approximation of zero water level depth

has not been thoroughly studied.

Although the BN77 method has been the focus of many

studies for over 40 years, the subject is not, by any means, ex-

hausted. Among recent findings is the work by Bogaart et al.

(2013), which shows that, for sloping aquifers, it is possi-

ble to find a β coefficient of zero – something that until then

had not been found by any other work and that was again

found by Hogarth et al. (2014). Recent uses of this equation

include the linking of geological and geomorphological fea-

tures to hydrological behavior (Mutzner et al., 2013; Vannier

et al., 2014) and the definition of good engineering practices

for the robust calibration of parsimonious models (Melsen

et al., 2014).

Several considerations related to the complexities of

real watersheds as well as the actual physical mechanisms

through which baseflow is produced and routed through the

watershed raise criticism on the applicability of the BN77

recession analysis. A short, and by no means exhaustive, list

of such considerations includes the effect of steep hillslopes

and vertical inhomogeneity of k0, horizontal inhomogeneity

(variation of hydraulic properties within the watershed), dif-

ficulties in the identification of α and β in Eq. (4) due to noisy

data, geomorphological effects, etc. (Troch et al., 2013). Spa-

tial heterogeneity appears to be particularly important and its

effects were thoroughly investigated by Harman et al. (2009).

This latter work shows (in a very analytical manner) that het-

erogeneity alone can give rise to different values of the ex-

ponent β. The values of the exponents observed in real data,

however, are such that they can be explained by either the

hydraulics of the aquifer or by horizontal heterogeneity (Har-

man et al., 2009, Fig. 9).

The usefulness of recession analysis in hydrology, how-

ever, seems indisputable, as well as the validity of the Boussi-

nesq model in partly explaining hydrological recessions: the

Boussinesq model has proved able to include realistic effects

while being kept relatively simple, and remains an important

tool in obtaining representative parameters for hydrological

and land-surface models at the catchment scale (Pauwels and

Troch, 2010; Troch et al., 2013). As such, it is reasonable to

expect recession analysis and the Boussinesq model to play

important roles in future progress towards improved predic-

tive capabilities in hydrology.

It is beyond the scope of this article to explore all the con-

siderations mentioned above. Instead, we concentrate on a

single effect that has not been given much attention (H0 6= 0)

and study it with a simple mathematical model that allows its

importance to be assessed clearly and separately from other

effects. This is in line with a systematic approach to iden-

tify inconsistencies between the theoretical models and field

conditions (Pauwels and Troch, 2010, Sect. 4). Our approach

using numerical solutions follows many other similar works

on hydrological recessions (van de Giesen et al., 2005; Rupp

and Selker, 2006; Bogaart et al., 2013)

The attention in this paper is focused on the BN77 method

based on Solutions (i) and (iii) (which are given in Eqs. 1

and 3) of the Boussinesq equation. We will generalize the
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implementation of Solution (i) with existing solutions in or-

der to investigate the effects of the depth of the adjacent water

stream into the estimation of the drainable porosity and sat-

urated hydraulic conductivity. This generalized implementa-

tion is later shown to considerably improve the estimation

of the hydraulic conductivity and drainable porosity in nu-

merically generated data. This result suggests that this new

formulation of the BN77 analysis could potentially be useful

for obtaining k0 and ne in man-made drainage systems and

improving simulations of drainage and water table dynam-

ics from hypothetical hillslopes and for better understanding

single hillslope processes, where the BN77 analysis is more

likely to succeed (Troch et al., 2013, Sect. 4.3).

2 Generalization of the early-time equation

Let ξ denote the Boltzmann variable for the one-dimensional

Boussinesq equation (Chor et al., 2013; Dias et al., 2014),

ξ(x, t)=
x
√

4Dt
, (5)

where D=H k0/ne, and φ denotes a normalized water table

height,

φ =
h

H
, (6)

where h(x, t) is the water table height, x is the horizontal

distance from the water stream and t is time. Under the above

change of variables, the Boussinesq equation is reduced to

the dimensionless ordinary differential equation

d

dξ

(
φ

dφ

dξ

)
+ 2ξ

dφ

dξ
= 0 (7)

together with the boundary conditions φ(0)=φ0 and

φ(∞)= 1. Due to the second boundary condition, the solu-

tion is only valid for the initial phase of aquifer drawdown.

For φ0= 0, as already noted, the solution by Polubarinova-

Kochina (1962) suffices for the BN77 analysis; for φ0 6= 0, a

series solution of the form

φ(ξ)=

∞∑
n=0

anξ
n (8)

has been proposed by Dias et al. (2014), with a recursion

relation for the an’s. An important result in that work is an

empirical equation, fitted to numerically obtained values of

a1 in the series above, for the value of ψ0, defined below.

This is given as Eq. (16) in the present work.

Let us also define

ψ ≡ φ
dφ

dξ
, (9)

which we apply to Darcy’s law, along with Eqs. (5) and (6)

to obtain

q(x, t)=
H 3/2(nek0)

1/2

2

ψ (ξ(x, t),H0/H)

t1/2
, (10)

where q(x, t) is the flow rate per unit width at any point x

of the aquifer. Since we are interested in the aquifer–stream

interaction, we set x= 0, which produces

q(t)=
H 3/2(nek0)

1/2

2

ψ (ξ = 0,H0/H)

t1/2

=
H 3/2(nek0)

1/2

2

ψ0 (φ0)

t1/2
, (11)

where ψ0≡ψ(ξ = 0) and φ0≡H0/H .

The value of ψ0, as far as we know, cannot be obtained an-

alytically and is generally obtained numerically or by means

of approximations: its calculation will be dealt with later. For

now, it suffices to note that ψ0 is a function of φ0 as given

above.

Writing dQ/dt =−α1Q
β1 , where the subscript 1 indi-

cates the early-time solution, and Q= 2Lq is the flow per

unit length taken over the total length (L) of the tributary and

main channel sections upstream from the gaging station, with

q as in Eq. (11), yields β1= 3 and

α1 =

[
2H 3k0ne(ψ0 (φ0))

2L2
]−1

. (12)

Equation (12) is generally used with the assumption of

H0= 0, which yields ψ0(0)=90≈ 0.6642, which (substi-

tuting back into Eq. 12) gives the well-known Eq. (18b) of

BN77.

However, often the value of H0 is not small enough in

comparison with H in order for this approximation to be

valid (Munster et al., 1996; Serrano and Workman, 1998;

Barlow et al., 2000; Peterson and Connelly, 2001; Langhoff

et al., 2006; Ha et al., 2008; Sena and de Melo, 2012). In

these cases the misplaced assumption could lead to biased

estimates of k0 and ne. These latter errors depend not only

on the determination of α1 but also on the late-time equa-

tions chosen and on the determination of the constants for

that solution.

Evidence that the water depth of the adjoining stream is

not negligible can be found (for example) in the work by

Brutsaert and Lopez (1998), where the late-time data showed

a decay with β2≈ 1, which in fact indicates that the water-

shed analyzed has a ratioH0/H close to one (we use the sub-

script 2 to indicate the late-time solution). Indeed, for φ0= 0,

the exact analytical solution provided by Boussinesq (1904),

which is valid for late times, gives β2= 3/2 (Brutsaert and

Nieber, 1977), whereas numerical solutions of the Boussi-

nesq equation (Kan, 2005) show that β2 varies from 3/2

down to 1 as H0/H varies from 0 to 1.
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Figure 2. Comparison between the saturated hydraulic conductivity

k0 as estimated by the original BN77 analysis (dotted line and sym-

bols) and the method proposed here (solid line) – both normalized

by the real value k0 used to numerically generate the discharge data

and varying against the normalized water height at the origin φ0.

3 Comparison between both approaches

We dedicate this section to the estimation of the errors that

arise by assuming that the stream depth H0 is zero. For that

purpose we take as a late-time equation the solution of the

linearized Boussinesq equation, given by Eq. (3), which pre-

dicts β2= 1 and

α2 =
π2k0pHL

2

neA2
, (13)

where A is the area of the watershed, approximated by 2BL.

Solution of Eqs. (13) and (12) gives, for ne and k0,

ne =
(p

2

)1/2 π

Hψ0A
(α2α1)

−1/2 (14)

and

k0 =
A

√
2pH 2L2πψ0

(
α2

α1

)1/2

. (15)

In this formulation we assume both ψ0 and p to

be functions of φ0=H0/H , so we have ψ0(φ0) and

p(φ0), as was previously emphasized. We also assume that

p(φ0)= (1−p0)φ0+p0, where p0= 0.3465, based on the

fact that p= 0.3465 for H0= 0 (Brutsaert and Lopez, 1998).

SettingH0= 0 (and therefore φ0= 0) in this model will yield

exactly the same equations as presented by Brutsaert and

Lopez (1998).

To obtain ψ0(φ0) we use the approximation provided by

Eq. (14) of Dias et al. (2014), since it is sufficiently accurate

and simple to program, viz.

ψ0 (φ0)≈
(
9d0 + aφ

b
0

) 1
d (

1−φc0
)(

1+ f φ
g

0

)e
, (16)

with a= 0.733841, b= 0.999223, c= 0.98359, d = 2.94568,

e= 0.186587, f = 0.966673, and g= 0.93347. As explained

in Dias et al. (2014), even after a general recursion relation
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Figure 3. Comparison between the drainable porosity ne as esti-

mated by the original BN77 analysis (dotted line and symbols) and

the method proposed here (solid line) – both normalized by the real

value ne used to numerically generate the discharge data and vary-

ing against the normalized water height at the origin φ0.

for the an’s in Eq. (8) has been obtained, the values of the an’s

still cannot be obtained analytically, essentially because the

series’ radius of convergence is limited so that the boundary

condition φ(∞)= 1 cannot be imposed analytically. Instead,

they must be obtained numerically with the aid of numer-

ical solutions of Eq. (7). The coefficients above have been

obtained in Dias et al. (2014) by curve fitting with a large

number of numerical solutions.

In order to compare both approaches, we have solved nu-

merically the original Boussinesq equation (in x and t) to

model the system depicted in Fig. 1 and generated synthetic

discharge data for different values of H0<H . We then ap-

plied the original BN77 method to these data, as well as the

generalized method we propose here. With this analysis we

can quantify the error of both methods in order to determine

their accuracy.

Figures 2 and 3 show the results for k0 and ne, respectively,

for increasing values of φ0, plotted against the true values

k0 and ne. As can be seen, the k0 estimate using the origi-

nal equations remains close to the true value up to φ0= 0.4

approximately. Furthermore, there is a more or less linear

trend in ne estimated with the original equations all the way

from φ0= 0. Both differ considerably from the truth for large

values of φ0 (φ0> 0.4 for k0 and φ0> 0.2 for ne, approxi-

mately). On the other hand, our Eqs. (15) and (14) give esti-

mated values of k0 and ne that differ very little from the true

ones for the whole φ0 range, and as such represent a consid-

erable improvement over the original equations.

The small kinks between φ0= 0.7 and φ0= 0.8 are an arti-

fact of the choice of the range of the streamflow Q for fitting

α1 and α2 used in the recession analysis. This (to the best of

our knowledge) is still a subjective part of the BN77 analysis:

the ranges were chosen to fit the recession plots dQ/dt ×Q

reasonably well, but they were not “fudged” to “optimize”,

in any way, the estimated k0 and ne.

Hydrol. Earth Syst. Sci., 19, 2755–2761, 2015 www.hydrol-earth-syst-sci.net/19/2755/2015/
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4 Conclusions

We have given an expression for early time aquifer discharge

that generalizes the broadly used Eq. (18) of Brutsaert and

Nieber (1977) for cases where H0 is not small enough com-

pared withH to make φ0= 0 a valid approximation and com-

pared the results to the original BN77 method. The main mo-

tivation for this approach was to investigate the effects of this

assumption on the determination of the saturated hydraulic

conductivity k0 and drainable porosity ne. This generaliza-

tion, given mainly by Eq. (12), is easily applicable and re-

quires virtually no change in the original theory presented by

BN77.

The comparisons presented in Figs. 2 and 3 suggest that

the BN77 estimates of the hydraulic conductivity k0 under-

estimate the “true” numerical value more and more as φ0 in-

creases. This under-estimation is particularly large when H0

is above 40 % the value of H (φ0> 0.4). The same behav-

ior is observed with the estimation of the drainable porosity

ne, with the under-estimation being specially large for H0

greater than 20 % the value of H (φ0> 0.2). On the other

hand, the method presented here deviates very little from the

“true” numerical values in both cases and for any value of

φ0. We consider the errors using the original BN77 analy-

sis for both cases to be large enough that the water stream

depth should be considered as a variable when using BN77

to estimate these parameters.

www.hydrol-earth-syst-sci.net/19/2755/2015/ Hydrol. Earth Syst. Sci., 19, 2755–2761, 2015
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Appendix A: List of symbols

Table A1. List of symbols used throughout the article.

Symbol Meaning SI unit

A Area of the watershed (2BL) m2

B Total length of aquifer m

D H k0/ne m2 s−1

h Water table height m

H Water table height in aquifer at time zero m

H0 Depth of adjacent water stream m

k0 Hydraulic conductivity m s−1

L Length of tributary channel m

p Linearization coefficient 1

p0 Linearization coefficient for the homogeneous case 1

Q Aquifer discharge m3 s−1

q Aquifer discharge per unit length of the channel m2 s−1

ne Drainable porosity 1

t Time s

x Horizontal distance from the aquifer–stream interface m

α, α1, α2 Coefficient for the Brutsaert and Nieber analysis m3−3β tβ−2

β, β1, β2 Coefficient for the Brutsaert and Nieber analysis 1

φ Normalized water table height (h/H ) 1

φ0 Normalized water table height at origin (H0/H ) 1

ψ Normalized variable related to the discharge per unit length 1

ψ0 The value of ψ at the origin x= 0 1

90 The value of ψ0 for the homogeneous case (H0= 0) 1

ξ Boltzmann similarity variable 1

Hydrol. Earth Syst. Sci., 19, 2755–2761, 2015 www.hydrol-earth-syst-sci.net/19/2755/2015/
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