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Abstract. Efforts to improve the understanding of past cli-

matic or hydrologic variability have received a great deal of

attention in various fields of geosciences such as glaciology,

dendrochronology, sedimentology and hydrology. Based on

different proxies, each research community produces dif-

ferent kinds of climatic or hydrologic reanalyses at differ-

ent spatio-temporal scales and resolutions. When consider-

ing climate or hydrology, many studies have been devoted

to characterising variability, trends or breaks using observed

time series representing different regions or climates of the

world. However, in hydrology, these studies have usually

been limited to short temporal scales (mainly a few decades

and more rarely a century) because they require observed

time series (which suffer from a limited spatio-temporal den-

sity).

This paper introduces ANATEM, a method that combines

local observations and large-scale climatic information (such

as the 20CR Reanalysis) to build long-term probabilistic air

temperature and precipitation time series with a high spatio-

temporal resolution (1 day and a few km2). ANATEM was

tested on the reconstruction of air temperature and precipi-

tation time series of 22 watersheds situated in the Durance

River basin, in the French Alps. Based on a multi-criteria

and multi-scale diagnosis, the results show that ANATEM

improves the performance of classical statistical models –

especially concerning spatial homogeneity – while provid-

ing an original representation of uncertainties which are con-

ditioned by atmospheric circulation patterns. The ANATEM

model has been also evaluated for the regional scale against

independent long-term time series and was able to capture

regional low-frequency variability over more than a century

(1883–2010).

1 Introduction

Multi-decadal variations of climate variables, intrinsically

arising from the chaotic and non-linear nature of the climate

system, have long been observed for a number of large as

well as local-scale climate features (Madden, 1976).

In a non-stationary climate, multi-decadal variations can

remain substantially above or below the long-term trend. In

climate projections for the coming decades, they often lead

to large uncertainties (e.g. Hawkins and Sutton, 2009; Deser

et al., 2012). For precipitation or hydrometeorological vari-

ables such as streamflow, these uncertainties can even sur-

pass uncertainties due to climate models (e.g. Terray and

Boé, 2013; Lafaysse et al., 2014).

Unfortunately, most climate change impact studies still

fail to account for them. For example, projected climatic
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and hydrological scenarios for a given future lead time are

classically compared to a so-called reference period (around

30 years of data) expected to be representative of the re-

cent climate context. As shown by Hänggi and Weingartner

(2011) with a 200-year runoff time series of the Rhine at

Basel, the hydrological reference features are however likely

to highly depend on the period used for their estimation. In

such a case, the relevance of conclusions and/or adaptation

recommendations formulated on the basis of such a study

may be questionable. In our opinion, they suffer from a cer-

tain lack of large historical perspective, which would at least

require characterising the multi-scale variability of climate

variables.

Today, characterising the multi-scale variability of climate

variables would appear to be important (if not mandatory)

in order to put future climate projections into perspective.

Numerous studies worldwide have investigated past variabil-

ity of climate and related variables. In hydrology for in-

stance, the following studies could be considered as repre-

sentative for France (Renard, 2006), Spain (Lorenzo-Lacruz

et al., 2012), Germany (Renner and Bernhofer, 2011), Eu-

rope (Stahl et al., 2010), Canada (Zhang et al., 2001), west-

ern North America (Rood et al., 2005) or Australia (CSIRO,

2010). They are based on a set of observed time series

available for the region of interest. However, given that the

density of observations was significantly lower before 1960

(Hannah et al., 2011), most time series usually cover a few

decades only, which is obviously not sufficient for a relevant

analysis of multi-decadal variations (Mathevet and Garçon,

2010; Hannaford et al., 2013). Long-term historical time se-

ries (covering a period longer than 100 years) are of course

the ideal material for such an analysis. Such historical se-

ries have been used for the Loire River in France (Renard,

2006), the Columbia and Missouri rivers in the USA (Rood

et al., 2005), the Murray–Darling Basin in Australia (CSIRO,

2010) and, more recently, for a larger set of French stations

by Boé and Habets (2013). Long-term streamflow time se-

ries are rare, with a typically very low spatial density. Some

could still be recovered from various national and regional

archive sources but the recovery process is long and requires

demanding digitising and quality check phases. Finally, the

temporal homogeneity of data is often questionable (e.g. be-

cause of the evolution of measurement practices as shown

in Kuentz et al., 2012, 2014, anthropogenic influences, etc.),

hindering the use of some series for variability analysis.

Characterising the low-frequency variability of climate

and related variables from observations is therefore seldom

possible. An alternative is to reconstruct the past tempo-

ral variations of the variable of interest. A number of re-

construction approaches have been presented for numerous

fields of geosciences. They use environmental markers such

as tree rings (Frank and Esper, 2005) or lake sediments (Wil-

helm et al., 2013, 2012), narrative evidence of droughts (Pfis-

ter et al., 2006) or geochemical tracers in ice cores from

glaciers (Jouzel et al., 2007). Simulations provide an effi-

cient way to reconstruct past flow variations. Simulated dis-

charge times series are obtained using a hydrological model

forced with past variations of meteorological variables avail-

able for the region. When meteorological observations re-

quired for such analysis do not cover the whole target period,

they can also be reconstructed. A classical reconstruction is

obtained using external data (proxy data) from long-term se-

ries of observations available from one or several neighbour-

ing stations. The most popular reconstruction approach is

based on linear (multiple-)regression models but a variety of

other approaches have been proposed, including non-linear

multiple regression (e.g. neural networks), kriging methods

and copula-based methods (Coulibaly and Evora, 2007; Tee-

gavarapu, 2012; Bárdossy and Pegram, 2014).

Local meteorological data can alternatively be recon-

structed from past climate variations. The recent release of

two major atmospheric reanalyses covering the entire 20th

century (from 1871 for the NOAA 20CR, Compo et al., 2011

and from 1900 for the ECMWF ERA-20C, Poli et al., 2013)

provides a great opportunity for such a reconstruction. Un-

fortunately, their spatial and temporal resolutions rarely fit

the resolution needs (typically sub-daily time step, up to

1000 km2) of hydrological applications. In such a case, the

required local meteorological data can be obtained through

downscaling.

This study compares three different statistical approaches

for the reconstruction of high-resolution precipitation and

temperature data. Reconstructions are respectively obtained

from observations available at a neighbouring station, from

large-scale (mesoscale) atmospheric variables extracted from

the 20CR reanalysis and from a combination of both. Al-

though the first two approaches have already been applied

in similar studies, the last is an original approach in that

it makes use of both local observations and large-scale at-

mospheric information. The principle of reconstructions ob-

tained with the three approaches is illustrated in Fig. 1. Re-

constructions are built at a daily time step for the 22 sub-

catchments of the Upper Durance River basin, a mesoscale

catchment located in the southeastern Alps. They have been

produced for hydrological reconstructions covering the past

140 years. An exhaustive evaluation of the whole hydrologi-

cal reconstruction process can be found in Kuentz (2013).

The Upper Durance River basin as well as the meteorolog-

ical and atmospheric data are presented in Sect. 2. The three

reconstruction models are presented in Sect. 3 and evaluated

and compared in Sect. 4. Section 5 briefly discusses the low-

frequency climatic variability reconstructed over the 1870–

2010 period. Finally, conclusions and perspectives emanat-

ing from this work are given in Sect. 6.
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Figure 1. Schemes of the three reconstruction models: local model (LM – top scheme), analogue model (ANA – middle scheme), com-

bined local+analogue model (ANATEM – bottom scheme). Predictors are either (1) local-scale meteorological predictors (LM model), (2)

mesoscale atmospheric predictors (ANA model) or both (1) + (2) (ANATEM model). Local-scale predictors are daily observations of the

variable at one (possibly several) neighbouring precipitation or temperature station (for the present work, Gap rain gauge, Marseille tem-

perature station for precipitation/temperature reconstruction respectively). Mesoscale predictors are fields of atmospheric variables (700

and 1000 hPa geopotential heights over a mesoscale European domain). Local and mesoscale predictors cover the whole period (observa-

tion + reconstruction). The three reconstruction models are first developed and evaluated based on their reconstruction skill for the observation

period where concomitant observations of the target variable are available (dots of series 3 in the scheme, period 1948–2010 in the present

work). Models are next applied for the reconstruction of each day of the reconstruction period (period 1883–2010 in the present work). Note:

the reconstruction period can also include the observation period (this is the case in the present work).

2 Data

2.1 Case study location and spatial climatic inputs

The three methods have been applied for the reconstruction

of mean areal temperature and precipitations of 22 sub-basins

of the Durance River basin, a mesoscale Alpine watershed

located in southeastern France (Fig. 2). The main character-

istics of the watersheds are detailed in Table 1.

Bounded in the north by the Écrins mountain range of

the Alps and in the south by the Mediterranean Sea, the

various subcatchments display very different climates. Up-

stream hydrological regimes are dominated by snow with

high snowmelt flows in late spring and early summer. When

moving downstream, they become more Mediterranean with

additional autumn floods due to large rainfall amounts in that

period.

For each watershed, daily mean areal air temperature and

precipitation data over the 1948–2010 period have been taken

from the SPAZM meteorological analysis produced by Got-

tardi et al. (2012). In the following, the 1948–2010 pe-

riod will be referred to as the “observation period” and the

SPAZM series will be referred to as “observations” even

though they are not direct recordings, but rather mean areal

air temperature and precipitation series aggregated at the wa-

tershed scale from local observations of temperature and pre-

cipitation (Gottardi et al., 2012).
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Table 1. Main characteristics of the 22 selected watersheds. The numbers in the first column correspond to those indicated in Fig. 2, PA is

the annual mean precipitation (over the period 1948–2010) and T the mean air temperature (over the period 1948–2010).

# Name Altitude Area PA T

m km2 mm yr−1 ◦C

1 The Durance River at Val-des-Près 1360 203 1322 2.5

2 The Guisane River at Monêtier-les-Bains 1510 78 1627 2.3

3 The Durance River at Briançon 1187 548 1381 2.9

4 The Guil River at Montdauphin 895 725 1087 3.3

5 The Durance River at La Clapière 787 2170 1352 3.5

6 The Riou de Crachet River at Saint-Paul 2020 4 1532 1.6

7 The Ubaye River at Roche-Rousse 790 946 1235 4.1

8 The Ubaye River at Barcelonnette 1132 549 1201 3.6

9 The Durance River at Serre-Ponçon 652 3582 1301 4.0

10 The Buëch River at Les Chambons 662 723 1259 7.4

11 The Méouge River at Méouge 545 221 1094 8.9

12 The Jabron River at Piedguichard 593 89 1206 9.1

13 The Bes River at La Javie 805 165 1085 6.6

14 The Lauzon River at Villeneuve 341 124 1097 10.4

15 The Asse River at La Clue de Chabrières 605 375 1077 8.6

16 The Verdon River at Allos 1780 10 1592 2.7

17 The Verdon River at Colmars 1230 158 1453 4.3

18 The Issole River at Saint-André-les-Alpes 931 137 1229 6.8

19 The Verdon River at Castillon 790 657 1319 6.2

20 The Artuby River at La Bastide 1008 91 1272 8.4

21 The Jabron River at Comps-sur-Artuby 782 66 1116 9.0

22 The Verdon River at Sainte-Croix 400 1625 1176 8.2

Figure 2. Map of the study area with the 22 selected watersheds.

2.2 Long local reference series

To reconstruct the mean areal air temperatures and precipita-

tion of the 22 watersheds, it was first necessary to search for

the longest observed series on or near the Durance watershed.

In a technical report published in 1892, Imbeaux (1892) re-

ported 4 air temperature and 40 precipitation measurement

stations in the watershed and its neighbourhood. Unfortu-

nately, most of the data from these stations have been lost

and only very few and incomplete series remain available

today. For precipitation, it was possible to rebuild a 1883–

2010 series for the Gap location by merging two sources of

data, provided respectively by Electricité de France (EDF)

and Météo-France. For air temperature, the nearest daily se-

ries found, provided by Météo-France, was for Marseille and

covers the period 1868–2010.

For a qualitative assessment of the reconstructed series,

five monthly time series from the HISTALP project database

(monthly series, Auer et al., 2007) were also used. They

also go back to the 1870s. For air temperature, the se-

lected stations are located around the southeastern part of

the Alps, at University of Genoa, Milan-Brera, Montpel-

lier, Nice airport and Nîmes airport. For precipitation, they

are closer to the Durance watershed, located in the cities of

Aix-en-Provence, Nice (Cap Ferrat), Orange, Saint-Paul-les-

Durance and Toulon.
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2.3 Large-scale climatic data

Large-scale atmospheric data (describing mesoscale circu-

lation) were extracted from the “20th Century Reanalysis”

(“20CR”, Compo et al., 2011) from the project of the same

name, supported by the US Department of Energy and the

Climate Program Office of the National Oceanic and Atmo-

spheric Administration (NOAA). This reanalysis was pro-

duced by assimilating only sea level pressure data, making

it possible to go back to the end of the 19th century. The re-

analysis covers the 1871–2010 period. In the present work,

the large-scale variables used for the reconstruction are the

fields of 700 and 1000 hPa geopotential heights in the rect-

angular spatial domain situated between longitudes 8◦W and

12◦ E and latitudes 38 and 50◦ N.

3 Methodology: combining two sources of information

In climatology and hydrology, the reconstruction of past cli-

matic data is usually necessary to estimate missing values,

assess data quality or build long-term climatic reanalyses.

Different methods are classically used to reconstruct climatic

observations. Some of them are solely based on the series

being reconstructed (long-term average or regime methods,

temporal interpolation techniques . . . ), others are based on

external data (proxy data) used to calibrate and run a re-

construction model. For climatic reconstructions, proxy data

could be either observations of the same variable as the one

to be reconstructed or observations of different variables as-

sumed to be linked to it.

In the following section, the three methods used for the re-

construction are presented. The first one uses local neighbour

observations of a similar proxy (respectively, air temperature

or precipitation observation). The second is basically a down-

scaling approach using regional large-scale information of

a different proxy (geopotential fields). The third approach

uses both proxies.

As in most reconstruction works, these methods rely on

a period over which both data at the reconstruction point and

proxy information are available (see Fig. 1). This period will

be referred to as the observation period. The reconstruction

period is the period over which the reconstruction model is

applied, corresponding to the period where proxy informa-

tion is available but data are missing at the reconstruction

point (in the following, the reconstructions are also presented

for the observation period).

3.1 Local information

A classical method used for climatic reconstructions is based

on regression-like models, where predictors should be well

correlated with the data to be reconstructed. This model is

calibrated against observations during the observation pe-

riod.

In the following, the principle of the local model (LM) is to

reconstruct the target series (referred to as Tg) from a local

neighbour series (referred to as Ne) using a classical linear

regression model.

3.1.1 Air temperature reconstruction

For air temperature reconstruction, the LM model classically

uses an additive correction, assumed to be constant over time

and mainly influenced by the altitude difference between the

target and neighbour series. However, even when the target

and neighbour series are very well correlated, residuals of

such a model usually exhibit a strong seasonal pattern. In this

case, the LM model can be slightly improved by applying an

additive correction that varies over time. In the present case,

it is represented by a daily harmonic function, calibrated on

the inter-annual mean monthly residuals of the differences

between the target series and the neighbour series.

The local model for air temperature reconstruction can

thus be written as

LM : T̂LM(d)= TNe(d)+β(d)+ ε(d), (1)

where T̂LM(d) is the estimate of the target air temperature for

day d , TNe(d) is the value of the neighbour series temperature

for the same day, β(d) is the correction, depending on the

calendar day of the year, and ε(d) is a residual assumed to

have zero mean.

In the present study this model has been used in a deter-

ministic way, that is without considering the residual term.

Uncertainty is accounted for in the mixed model as explained

in Sect. 3.3.

3.1.2 Precipitation reconstruction

For precipitation reconstruction, the LM model classically

uses a multiplicative correction, assumed to be constant over

time. This multiplicative correction is compatible with the

asymmetrical distribution of precipitation values (never neg-

ative). The correction factor is taken to be constant through-

out the year. The improvement obtained by using a vari-

able correction has been assessed and shown to be negligible

(Kuentz, 2013). The constant multiplicative correction factor

is calibrated over the observation period as

α =
P Tg

PNe

, (2)

where PNe is the mean value of the neighbour series and P Tg

is the mean value of the target series, both calculated over the

observation period.

The local model used for precipitation reconstruction

reads

LM : P̂LM(d)= α · PNe(d)+ ε(d), (3)

where P̂LM(d) is the estimate of the target precipitation for

day d , the PNe(d) is the value of the neighbour series precipi-

tation for this same day and ε(d) is a residual with zero mean.
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Once again, a simple version of this model with a residual

term equal to zero is used in the present work.

3.2 Large-scale climatic information: the analogue

method

The second reconstruction model is based on the analogue

method introduced by Lorenz (1969). Currently, this method

is largely used to produce meteorological scenarios in the

context of weather forecasting (Van Den Dool, 1989; Hor-

ton et al., 2012) or climate projections (Teng et al., 2012;

Bourqui et al., 2011; Hingray et al., 2013). The method is sel-

dom applied to the reconstruction of climatic series as done

by Timbal et al. (2006). Nevertheless, the release of the long

atmospheric reanalyses for the 20th century opens the door to

more such uses, allowing the reconstruction of long climatic

series covering the entire 20th century.

The analogue method is based on the fact that local me-

teorological variables are strongly influenced by the state

of the atmosphere and its mesoscale circulation. Provided

that a sufficiently long archive with concomitant local and

large-scale observations is available, it is therefore possible

to produce local meteorological scenarios for any other day

for which the required large-scale atmospheric predictors are

available. For this, the n days that are the most similar to the

target day in terms of atmospheric circulation are first identi-

fied in the archive. The surface meteorological variables ob-

served for one of those analogue days are then used as the

weather scenario for the target day.

In the present case, the archive is the SPAZM meteorolog-

ical analysis (Gottardi et al., 2012) covering the 1948–2010

observation period. As large-scale atmospheric predictors are

available for each day of the 1883–2010 period covered by

the 20CR atmospheric reanalysis, the method allows the re-

construction of a 127-year time series of daily and local me-

teorological variables.

The analogue method has some parameters to be set such

as the type and level of predictors, the number of analogue

days selected for the prediction, the spatial domain used to

compute the similarity criterion or the similarity criterion it-

self. Numerous variations of the analogue method have been

developed. In the present work, the analogue model (ANA)

presented by Obled et al. (2002) and further explored by

Bontron and Obled (2005), Ben Daoud et al. (2010), Hor-

ton et al. (2012) and Chardon et al. (2014) is used. Its main

features are presented below.

– The predictors are the 700 and 1000 hPa geopotential

height fields at times 00:00 and 24:00 UTC. For the

spatial domain of the present study, these geopotential

fields were found to be the most informative predictors

by Bontron (2004).

– The similarity criterion is proposed by Teweles and

Wobus (1954). This score is based on the shape of the

geopotential fields and has been shown to perform bet-

ter than a classical Euclidean distance for this type of

use (e.g. Wetterhall et al., 2005).

– The spatial domain used to estimate the similarity in-

cludes all grid points between longitudes 8◦W and

12◦ E and latitudes 38 and 50◦ N, with a step of 2◦.

– A moving calendar filter is used for the determination of

candidate analogue days: for each target day, candidate

analogue days are the days included in a 60-day interval

around the calendar day of the target.

The reconstruction is deterministic when only one analogue

is used (classically the nearest analogue). The analogue day

can be also selected among the n nearest analogues. An en-

semble of reconstructions can be produced when all n near-

est analogues are successively used for the reconstruction.

In the following, the ensemble is simply defined with the

empirical distribution of the n observations from the n near-

est analogues respectively. This ensemble of reconstructions

makes it possible to evaluate the uncertainty in the recon-

struction. The ensemble of reconstructions obtained with the

ANA model for the variable X and day d will be written as

[X(dk)]k=1...n where [dk]k=1...n refers to the n nearest ana-

logue days selected for day d . In the present case, the ensem-

ble of reconstructions is obtained from the 50 nearest ana-

logues (n= 50).

3.3 Mixing formulation: the ANATEM model

Both local and large-scale predictors are available for the

1870–2010 period. The local model (LM) and the analogue

model (ANA) can therefore be used to produce two different

reconstructions of precipitation or air temperature for this pe-

riod, one based on local observed data (another station with

available data), the other from large-scale atmospheric infor-

mation (mesoscale variables). The originality and strength of

the ANATEM model introduced here lies in an approach that

combines the two previous models. In this way, it can take

advantage of both local and large-scale information and pro-

duce an original representation of uncertainties, conditioned

by atmospheric circulation patterns.

The principle of ANATEM is the following: for any target

day, the analogue model allows the identification of n ana-

logue days in terms of atmospheric circulation (see Sect. 3.2).

The local model is then used to obtain an estimate of the vari-

able to be reconstructed (precipitation or air temperature at

the target site) for each of the selected analogue days. These

n estimates are respectively compared with the correspond-

ing observed values for these n days, allowing the calcula-

tion of n predictions errors. These n error values are finally

used to define the error distribution associated with the pre-

diction obtained with the local model for the target day d .

The prediction obtained with ANATEM for the target day is

therefore probabilistic.

Hydrol. Earth Syst. Sci., 19, 2717–2736, 2015 www.hydrol-earth-syst-sci.net/19/2717/2015/
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3.3.1 Air temperature reconstruction

The probabilistic air temperature prediction from the

ANATEM model for day d has the following expression:[
T̂ kANATEM(d)

]
k=1...n

= T̂LM(d)+
[
T (dk)− T̂LM(dk)

]
k=1...n

, (4)

where
[
T̂ kANATEM(d)

]
k=1...n

is the ensemble of reconstructed

values for the target day d , with T̂LM(d) the air temperature

estimate obtained with LM for target day d , with dk the kth

analogue day selected for target day d, with T (dk) the ob-

served air temperature for this kth analogue day and with

T̂LM(dk) the air temperature estimate obtained with the local

model (LM) for the same day dk .

In this expression,
[
T (dk)− T̂LM(dk)

]
is the error obtained

with the LM model when it is applied to estimate the temper-

ature of the kth analogue day dk .

The statistical dressing of the LM prediction for the tar-

get day d can be simply represented on a graph in a (TLM,

T ) space, as shown in Fig. 3 (right). In this figure, the green

point is the value obtained for the target day with the LM

model. The different blue crosses in the y-direction around

this estimate define the distribution of the n errors obtained

with the LM model respectively applied to the n analogue

days. Each cross is simply the intercept of two lines: the

vertical line at the T̂LM(d) value on the x-axis and the 1 : 1

line passing through the point (T̂LM(dk), T (dk)). This is il-

lustrated for a given analogue day in Fig. 3 (left).

For the example shown in Fig. 3, over the n analogue days

with mesoscale situations similar to that of day d, the lo-

cal model estimate TLM was on the average higher than the

observed temperature at the target point. Applying this error

distribution to the reconstructed day d leads to a negative cor-

rection on most of the ensemble. While the value of the local

model was −9.8 ◦C, the 50 air temperature values produced

by the ANATEM model have a mean of −11.2 ◦C and their

10 and 90 % quantiles are respectively −13.1 and −9.3 ◦C.

3.3.2 Precipitation reconstruction

Although the ANATEM model uses the same basic principle

for precipitation reconstruction, a somewhat different formu-

lation is proposed to account for the specific features of pre-

cipitation (asymmetric distribution and many zero values).

The additive correction formulation used for the proba-

bilistic reconstruction of temperature (Eq. 4) is not suitable

here. It can actually produce negative values as illustrated in

Fig. 4 (left), elaborated following the same principle as ex-

plained in Fig. 3 (right).

An alternative formulation uses a multiplicative correction

for each analogue date. The probabilistic reconstruction is

here defined by the following expression:[
P̂ kMULT(d)

]
k=1...n

= P̂LM(d) ·

[
P(dk)

P̂LM(dk)

]
k=1...n

. (5)

The multiplicative formulation obviously avoids the estima-

tion of negative precipitation values. A graphical representa-

tion of this reconstruction strategy is given in Fig. 4 (right).

As illustrated, the reconstructed values appear to be reason-

able for common values, but can be unreasonably high in

certain cases.

In the following, the probabilistic reconstruction of pre-

cipitation has therefore been built with a correction model

intended to have a multiplicative behaviour for low values of

P̂LM(d) and an additive behaviour for high values of P̂LM(d).

Its analytical formulation and its asymptotic behaviour when

x tends to zero or infinity (through a Taylor expansion) have

the following expressions:

P̂ kANATEM(d)= f (x(d))=
x(d)2+ a(dk) · x(d)

x(d)+ b(dk)
, (6)

where x(d)= P̂LM(d) and a(dk) and b(dk) are parameters to

be expressed as a function of P(dk) and P̂LM(dk). In what

follows, for the sake of simplicity, the day indices will be

omitted from a(dk), b(dk) and x(d):

P̂ kANATEM(d)=
x2
+ a · x

x+ b
= x ·

x+ a

x+ b
∼
x→0

x ·
a

b

P̂ kANATEM(d)=
x2
+ a · x

x+ b
= x ·

(
1+

a

x

)
·

(
1+

b

x

)−1

∼
x→+∞

x+ (a− b). (7)

The two model parameters a and b are defined as in the work

of Dufour and Garçon (1997) for the assimilation of stream-

flow data in a hydrological model. The parameters are de-

fined as a function of P(dk) and P̂LM(dk) in order to reach

a compromise between a good multiplicative behaviour for

low values and a good additive behaviour for high values.

Two conditions have been set to define the parameters:

– the slope of the tangent to the curve at x = 0 must be(
P(dk)

P̂LM(dk)

)2

;

– when P(dk)= P̂LM(dk), the equality P̂ kANATEM(d)=

P̂LM(d) must be obtained.

These two conditions lead to the following expressions for

the parameters:

a = P(dk) and b =

(
P̂LM(dk)

)2
P(dk)

. (8)

More detailed calculations of the asymptotic behaviour

when x tends to zero or infinity and the use of the two con-

ditions are provided in the Supplement published along with

this paper.

The probabilistic reconstruction obtained with ANATEM

for precipitation finally reads

[
P̂ kANATEM(d)

]
k=1...n

=

 P̂LM(d)
2
+P(dk) · P̂LM(d)

P̂LM(d)+
P̂LM(dk)

2

P(dk)


k=1...n

. (9)
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Figure 3. Representation of the ANATEM formulation for air temperature reconstruction of a given day d . Left panel: observed temperature

for any analogue day as a function of the temperature estimate with LM for this day. The green point corresponds to the target day d . The

red-circled point corresponds to a particular analogue day dk . For this analogue day, the corrected estimate for day d is T̂ k
ANATEM

(d) which

is obtained as T̂LM(d)+1(dk) where1(dk)= T (dk)− T̂LM(dk). Right panel: probabilistic prediction obtained for d from the 50 analogues.

The corresponding boxplot (10, 25, 50, 75 and 90 % quantiles) is given to the right of the figure (the blue point indicates the mean value).

Figure 4. Representation of the additive and multiplicative formulation for precipitation reconstruction from a local model and 50 analogue

days for a given day d . Left panel: additive formulation for the correction. Right panel: multiplicative formulation for the correction. The

triangles highlight anomalous or potentially anomalous corrected predictions.

The graphical representation of this formulation is shown in

Fig. 5. The graph on the left side shows the curve correspond-

ing to Eq. (9) applied for 1 analogue day dk and the graph on

the right side shows the ensemble of curves associated re-

spectively with the n analogue days. The distribution of the

reconstructed values [P̂ kANATEM(d)]k=1...n is represented by

the boxplot.

In the case of very different values of P(dk) and P̂LM(dk),

Eq. (9) can potentially produce unreasonably high values of

corrected precipitation P̂ kANATEM(d). In order to avoid such

values the following filters have been applied:

– if P(dk) > 10 · P̂LM(dk) then the value of

P(dk) = 10 · P̂LM(dk), and

– if P(dk) <
1

10
· P̂LM(dk) then the value of

P(dk) =
1

10
· P̂LM(dk).

The filtering threshold (10) has been chosen arbitrarily.

A sensitivity analysis with different values from 2 to 100

showed that this threshold has little impact on reconstruction

performance. This is true because very few analogue days are

generally affected by this filtering operation. The filters are

represented by blue zones in Fig. 5.
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Figure 5. Representation of the ANATEM formulation for precipitation reconstruction for a given day d. Left panel: observed precipitation

at the target site for each of the analogue days as a function of the precipitation estimate from LM for the same days. For a given analogue

day k, the corrected estimate for day d is the ordinate of the point on the red curve (defined by Eq. 9) crossed by abscissa P̂LM(d). Right

panel: probabilistic prediction obtained for d from the 50 analogues. The corresponding boxplot (10, 25, 50, 75 and 90 % quantiles) is given

to the right of the figure (the blue point indicates the mean value).

For the example day shown in Fig. 5, the local model

LM gives a reconstructed value of 15.0 mm. The mean and

the 10 and 90 % percentiles of the probabilistic reconstruc-

tion obtained with ANATEM are respectively 14.8, 7.8 and

21.0 mm.

4 Analysis of ANA, LM and ANATEM performance

4.1 Evaluation process

The data presented in Sect. 2 can be used to reconstruct the

daily air temperature and precipitation series for the 22 se-

lected watersheds over the period 1883–2010. The recon-

struction is deterministic for the LM model. For ANATEM

and ANA, 50 reconstructed time series are generated. In the

present section, the three reconstruction models are evaluated

based on their reconstruction skill for the 1948–2010 obser-

vation period.

The evaluation is based on three criteria. The ratio β be-

tween the mean estimated value and mean observed value of

the variable evaluates the bias of the reconstruction. The ratio

between the standard deviations of the reconstructed and ob-

served time series (α) evaluates the ability of the reconstruc-

tion to reproduce the observed variability of the variable. The

coefficient of correlation r between the observed and recon-

structed series additionally measures the ability of the re-

construction to reproduce the observed temporal variations

(e.g. alternating dry/wet or warm/cold periods). The overall

performance obtained for these three criteria is summarised

by the Kling–Gupta efficiency criterion (KGE; Gupta et al.,

2009) defined as follows:

KGE= 1−

√
(1− r)2+ (1−α)2+ (1−β)2. (10)

The ability of the reconstruction to reproduce the variabil-

ity and variations of observations was evaluated for multi-

ple temporal resolutions: daily (high-frequency variability),

monthly (accounting thus for the intra-annual variability) and

annual (low-frequency variability) resolutions. For the an-

nual resolution, the series are aggregated by hydrological

year, i.e. from 1 October to 30 September.

In the following sections, the performance of the three

models for an illustrative watershed (Ubaye River at

Barcelonnette) is first presented. The evaluation relies (1) on

the graphical comparison of the observed and reconstructed

annual series for the 1948–2010 period and (2) on the dis-

tributions obtained for r , α, β and KGE when estimated for

the daily, monthly and annual time step from the 50 ensem-

bles. Then, the results obtained for the 22 watersheds of the

Durance Basin are presented.

4.2 Performance for the Ubaye River at Barcelonnette

watershed

4.2.1 Air temperature reconstruction

Figure 6 presents the mean annual time series of mean air

temperature for the watershed. These figures first show that

the observed temperature has increased over the last 60 years,

with a mean value of around 3 ◦C in the 1950s and a mean

value of around 4 ◦C nowadays. The ANA model does not

capture the temporal evolution and the variability of air tem-

perature, as opposed to the LM and ANATEM models. Note
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Figure 6. Annual time series of air temperature reconstructions

for the Ubaye River at Barcelonnette watershed by the analogue

(ANA), local (LM) and ANATEM models.

also that the spread of the ANA ensembles is much higher

than that of the ANATEM ensembles. These observations are

consistent with the distributions obtained for the different cri-

teria at the annual time step (Fig. 7, right):

– ANA shows a limited mean bias (β close to 1), but a

rather poor temporal correlation and significant bias of

variability, which is exhibited by relatively low mean

values of r , α and KGE (between 0.2 and 0.6, not visible

in the figure);

– LM and ANATEM show very good temporal correla-

tions (mean r greater than 0.9) and limited mean and

variability bias. The two models show slightly differ-

ent skills: LM shows no mean bias (by construction)

but a significant variability bias (mean α less than 0.9)

whereas ANATEM shows a limited mean and variabil-

ity bias (mean β and mean α greater than 0.95).

Figure 7 also shows the distributions of the criteria for daily

and monthly time steps. The hierarchy of the performance

of the three models is the same for both time steps, with

KGE values ranging from 0.77 to 0.87 for ANA, 0.95 to

0.98 for LM and 0.93 to 0.97 for ANATEM. Moreover,

the mean criteria are higher at a monthly time step than at

a daily time step, while the annual time step performance is

the lowest. This means that these models have greater dif-

ficulty in reproducing inter-annual or daily variability than

intra-annual variability (this is partly due to the seasonality

of air temperature). The LM model performed slightly better

than ANATEM at daily and monthly time steps. Conversely,

ANATEM performs better than LM at annual time steps.

4.2.2 Precipitation reconstruction

Figure 8 presents the observed and reconstructed annual time

series of mean precipitation on the watershed. As shown,

observed annual precipitation presents a high variability,

ranging from 1000 mmyr−1 over certain periods to 1500 to

2000 mmyr−1 for some exceptional years. All three models

capture relatively well this variability and are able to repro-

duce wet and dry periods. The spread of the ANA ensembles

is much greater than that of the ANATEM ensembles.

The distributions of criteria at the annual time step (Fig. 9,

right part) confirm these statements:

– ANA shows a moderate correlation (mean r close to

0.5), while LM and ANATEM show a rather good cor-

relation (mean r greater than 0.8);

– LM shows no mean bias (by construction), while ANA

and ANATEM show a moderate mean bias (less than

0.05);

– ANA shows a noticeable variability bias (up to 0.15),

while LM and ANATEM show a limited variability bias

(around 0.03).

The hierarchy of the performance of the three models is the

same for both daily and monthly time steps, with KGE val-

ues ranging from 0.35 to 0.7 for ANA, 0.78 to 0.88 for LM

and 0.73 to 0.85 for ANATEM (Fig. 9). ANA performance

is clearly poor at a daily time step, with a very limited cor-

relation (r less than 0.4). The mean criteria are higher at

a monthly time step and similar at daily and annual time

steps. As for air temperature, this highlights the difficulty

the models have in reproducing the low- and high-frequency

variability while the intra-annual variability is well captured.

4.3 Performance for all 22 watersheds

For the sake of readability, only one time series is consid-

ered for each model. ANA and ANATEM probabilistic re-

constructions are represented by the mean time series de-

rived from the ensemble (the daily reconstructed value for

a given day is the mean of the 50 probabilistic reconstruc-

tions for this day). For the sake of simplicity, these mean

time series will be referred to as the reconstructed time series

in the following. As will be illustrated later, note that these

ensemble mean time series logically present a much lower

temporal variability than each individual component of the

reconstruction ensemble. In the following, the performance

of a given model will be presented with the distributions of
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Figure 7. Daily, monthly and annual performance criteria of air temperature reconstructions for the Ubaye River at Barcelonnette watershed

by the analogue (ANA), local (LM) and ANATEM models. For the annual time step, ANA results are smaller than 0.75; they therefore do

not appear in the figure.

Figure 8. Annual time series of precipitation reconstructions for the

Ubaye River at Barcelonnette watershed by the analogue (ANA),

local (LM) and ANATEM models.

r , α, β and KGE criteria obtained for the 22 watersheds at

the daily, monthly and annual time steps.

4.3.1 Air temperature reconstruction

The main results obtained for air temperature reconstruction

are (Fig. 10):

– At daily and monthly time steps, the ANA model suf-

fers from a limited positive mean bias (mean β around

1.03) and a significant negative variability bias (mean

α from 0.85 to 0.88). Correlation with observations is

very good (mean r greater than 0.93). At the annual time

step, ANA fails to capture the low-frequency variability

and trend, with a very low correlation (mean r close to

0.53, not shown in the figure) and a very strong negative

variability bias (mean α close to 0.42, not shown in the

figure). At different time steps and for different criteria,

ANA exhibits a rather good spatial robustness of per-

formance (i.e. homogeneity of the results at a regional

scale, which could be related to a rather limited spread

of the distribution compared to LM and ANATEM mod-

els, as shown by the distance between quantiles 0.1 and

0.9).

– At all the different time steps, the LM model provides

very satisfactory results. It shows no mean bias (by

construction) and a moderate to limited variability bias

(mean α between 0.91 and 0.99). The high- to low-

frequency variability is very well captured (mean r be-

tween 0.92 and 0.99). LM shows moderate spatial ro-

bustness for correlation and variability bias, for daily

and annual time steps.

– At all the different time steps, the ANATEM model

provides very satisfactory results. It shows a moderate
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Figure 9. Daily, monthly and annual performance criteria of precipitation reconstructions for the Ubaye River at Barcelonnette watershed by

the analogue (ANA), local (LM) and ANATEM models.

Figure 10. Daily, monthly and annual performance criteria of air temperature mean reconstructions for 22 watersheds by the analogue

(ANA), local (LM) and ANATEM models. For the annual time step, ANA results are smaller than 0.6; they therefore do not appear in the

figure.

mean negative bias (mean β close to 0.97) and a lim-

ited to moderate variability bias (mean α between 0.95

and 0.98). The high-frequency to low-frequency vari-

ability is very well captured (mean r between 0.94 and

0.99). ANATEM exhibits moderate robustness concern-

ing mean bias and concerning correlation and variability

bias, for daily and annual time steps.

The LM and ANATEM models clearly outperform the ANA

model. LM is characterised by a very good correlation and

no mean bias, but a moderate variability bias. ANATEM is

characterised by a very good correlation, and limited mean

and variability bias. Model performance is better and more

robust at a monthly time step, compared to daily and annual

time steps. ANATEM exhibits a slightly better spatial robust-

ness of performance than LM. This is also expressed by mean

KGE values, ranging from 0.25 to 0.87 for ANA, 0.88 to 0.99

for LM and 0.92 to 0.97 for ANATEM respectively.

4.3.2 Precipitation reconstruction

The three models present slightly different results for precip-

itation reconstruction (Fig. 11):

– At a daily time step, ANA suffers from a very moder-

ate mean negative mean bias (mean β close to 0.95) and

a strong variability bias (mean α around 0.55). It also

shows a limited correlation (mean r close to 0.65). At

monthly and annual time steps, ANA shows a moderate

to limited mean bias (mean β close to 0.95), a signifi-

cant variability bias (mean α around 0.8) and an accept-

able level of correlation (mean r between 0.7 to 0.8).
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Figure 11. Daily, monthly and annual performance criteria of precipitation mean reconstructions for 22 watersheds by the analogue (ANA),

local (LM) and ANATEM models.

– At all the different time steps, the LM model shows very

satisfactory results. It shows no mean bias (by construc-

tion) and a limited variability bias (mean α from 0.97 to

1.05). The high-frequency to low-frequency variability

is well captured (mean r between 0.77 and 0.84).

– At all the different time steps, the ANATEM model

shows very satisfactory results. It shows a limited neg-

ative mean bias (mean β around 0.96) and a limited

variability bias (mean α from 0.94 to 1.02). The high-

frequency to low-frequency variability is well captured

(mean r between 0.75 and 0.87).

The LM and ANATEM models thus perform better than the

ANA model, particularly in terms of correlation. LM is char-

acterised by a good correlation, no mean bias and a limited

variability bias. ANATEM is also characterised by a good

correlation, limited mean and variability bias. Model perfor-

mance is better and more robust at a monthly time step com-

pared to daily and annual time steps. The spatial robustness

of performance is slightly lower for the variability criterion

than for the other criteria. LM shows the lowest spatial ro-

bustness, then ANATEM and finally ANA. This is again il-

lustrated by the mean KGE values ranging from 0.43 to 0.71

for ANA, from 0.75 to 0.83 for LM and from 0.76 to 0.84 for

ANATEM.

4.4 Spatial patterns of model performance

In the present section, the spatial patterns of performance (in

terms of correlation, at a daily time step) of the three mod-

els and the spatial patterns of the gain in performance ob-

tained with ANATEM reconstructions when either compared

to ANA or LM alternatives will be discussed.

4.4.1 Air temperature reconstruction

For temperature reconstructions, the spatial patterns of model

performance are presented in Fig. 12. For ANA, the perfor-

mance of the reconstruction appears to be mostly indepen-

dent of the location of the watershed, with a mean correlation

ranging from to 0.92 to 0.94 (Fig. 12a). For LM (Fig. 12b),

the location of the watershed had a slightly higher influence

on the performance, with a mean correlation ranging from

0.95 to 0.98. This spatial pattern has a clear southwest to

northeast structure, with a decrease in model performance

driven by the distance from the local reference time series

(located in Marseille, southwest of the watersheds). Finally,

for the ANATEM model (Fig. 12c), the location of the water-

shed (i.e. distance from Marseille) also influences the perfor-

mance of the reconstruction, with a mean correlation ranging

from 0.97 to 0.99. However, ANATEM shows slightly better

performance than LM and ANA and the range of correlation

values is slightly smaller than for LM.

The contribution of the LM (resp. ANA) model to the per-

formance of the ANATEM model is presented in Fig. 14a

(resp. 14b). It is estimated by the difference between the per-

formance of the ANATEM and ANA (resp. LM) models. The

contribution of the LM model is much higher than that of

ANA, whatever the location, meaning that most of the infor-

mation provided by ANATEM comes from LM. Note how-

ever that for both the LM and ANA models, the contribution

of the model presents a clear southwest to northeast gradient,

which decreases for LM (from 0.06 to 0.04) and increases

for ANA (from 0.0 to 0.02). The contribution of large-scale

information (through the ANA model) is stronger when the

LM model (local information) is less effective, that is, when

the location to be reconstructed is far from the reference tem-

perature station.
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Figure 12. Regional correlation patterns of air temperature mean reconstructions by the (a) analogue model (ANA), (b) local model (LM)

and (c) ANATEM model (daily time step).

4.4.2 Precipitation reconstruction

The spatial patterns of model performance obtained for pre-

cipitation are slightly different than those obtained for tem-

perature (Fig. 13). For ANA, the location of the watershed

does not appear to really influence the performance, with

a mean correlation ranging from 0.62 to 0.68 (Fig. 13a). On

the other hand, for LM (Fig. 13b) and ANATEM (Fig. 13c),

watersheds close to the local reference station (Gap) show

better performance than the others (the correlation ranges

from 0.62 to 0.88 for LM and from 0.69 to 0.89 for

ANATEM). However, the distance from the local reference

station is probably not the only factor influencing perfor-

mance, as two watersheds at the same distance from the Gap

station displayed somewhat different performance (i.e. the

reconstructions for the Buëch watershed – #10 in Fig. 2 –

have a very good correlation of 0.88 and the reconstructions

for the Durance at Briançon watershed – #3 in Fig. 2 – a mod-

erate correlation of 0.77). This could be due to large-scale

climatic influences that give some watersheds a higher prox-

imity to Gap in terms of the precipitation pattern.

ANATEM slightly increases the overall reconstruction

performance but at the same time notably smoothes local

contrasts. The contribution of LM to the performance of

ANATEM is generally higher than that of ANA, but de-

creases as the distance from Gap increases, ranging from

0.22 to 0.02 (Fig. 14c). On the other hand, the contribution

of ANA to the performance of ANATEM is close to 0 for

the stations closest to Gap and slightly increases (up to 0.07)

with the distance from Gap (Fig. 14d). As observed for air

temperature reconstruction and here in a more pronounced

way, the contribution of large-scale information (through the

ANA model) is stronger when the LM model (local informa-

tion) is less effective, as a result of the increasing distance

from the reference station.

5 Climatic variability assessment

5.1 1883–2010 reconstructions of air temperature

Figure 15 presents the 1883–2010 annual time series of

air temperature anomalies reconstructed by the ANATEM
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Figure 13. Regional correlation patterns of precipitation mean reconstructions by the (a) analogue model (ANA), (b) local model (LM) and

(c) ANATEM model (daily time step).

model (mean model) for the 22 watersheds of the Durance

River. Anomalies have been computed as differences with re-

spect to the 1883–2010 mean. This figure exhibits a pseudo-

stationary period from 1880 to 1940, then a slight temper-

ature increase between 1940 and 1980 and a stronger in-

crease from 1980 until the present. In order to better char-

acterise low-frequency variability, the mean of all 22 recon-

structed series was computed and smoothed using a LOESS

low-pass filter (Cleveland, 1979, smoothing parameter value

used: 0.15).

The ANATEM reconstructions have been qualitatively

compared to five series of air temperature anomalies obtained

from homogenised series of the HISTALP project (Univer-

sity of Genoa, Milan-Brera, Montpellier, Nice airport and

Nîmes airport).

The ANATEM model reproduces fairly well the annual

and low-frequency variability of air temperature anoma-

lies from the HISTALP stations (the mean correlation be-

tween ANATEM and HISTALP annual series is close to

0.8). However, the warming trend in the HISTALP series

is stronger than in the ANATEM reconstructions, HISTALP

temperatures being significantly lower than ANATEM tem-

peratures before 1900 and significantly higher after 1980.

ANATEM reconstructions and HISTALP time series are ob-

viously sensitive to the reference time series (i.e. Marseille

for ANATEM) and the homogenisation process applied to

the observations (for both Marseille and HISTALP stations).

Further research is required to explore the sensitivity of the

ANATEM reconstructions to these key features (partly tested

in Kuentz, 2013).

5.2 1883–2010 reconstructions of precipitation

Figure 16 presents the 1883–2010 annual multiplicative

time series of precipitation anomalies reconstructed with

ANATEM for the 22 watersheds along with five precipita-

tion HISTALP series (Aix-en-Provence, Nice (Cap Ferrat),

Orange, Saint-Paul-les-Durance and Toulon). For both the

reconstructions and the HISTALP series, the mean smoothed

series are also given.

The dispersion between the 22 ANATEM reconstructed

time series is relatively low. It is actually similar to the dis-

persion obtained between the time series of observations
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Figure 14. (a, c) Spatial patterns of the contribution of the LM model to ANATEM performance (estimated by the difference between

the performance of the ANATEM and ANA models) for air temperature (a) and precipitation (c) reconstructions. (b, d) Spatial patterns

of the contribution the ANA model to ANATEM performance (estimated by the difference between the performance of the ANATEM and

LM models) for air temperature (b) and precipitation (d) reconstructions. Note the different colour scales for precipitation and temperature

reconstructions (daily time step).

available for the same 22 watersheds over the 1960–2010

period (not shown here). The dispersion observed between

the five HISTALP series is comparatively much higher. This

may be partly explained by the fact that the ANATEM series

are reconstructed for all watersheds based on a same refer-

ence series (Gap). The main reason is however probably that

the HISTALP series cover a much wider spatial domain with

a high spatial variability of atmospheric influences and thus

precipitation regimes and times series.

The smoothed time series from ANATEM reconstructions

is highly correlated with the smoothed time series from

HISTALP data. The ANATEM reconstruction is therefore

able to reproduce the low-frequency variability of precipita-

tion resulting from climate variability. Some differences can

be observed, for example between 1920 and 1930 or between

1970 and 1980. They may be due again to the large spatial

variability of precipitation which would also correspond to

different precipitation indices, as long as they are estimated

from different stations. As already noted for air temperature

reconstructions, these differences could also be due to the

reference series used in ANATEM and to the homogenisation

process for the HISTALP series. Additional work should be

considered to explore the importance of such issues.

6 Conclusions

Reconstructing local-scale meteorological variables over

long periods is a challenging but necessary task in order to

obtain a better understanding of the low-frequency variability

of regional climate and climate-driven variables. Three mod-

els are compared in the present work, using different types of

data for the reconstruction: the regression-based local model

(LM) uses local observations of the variable from neigh-

bouring stations as a predictor; the analogue model (ANA),

a so-called downscaling model, uses large-scale information

concerning atmospheric circulation and the ANATEM model
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Figure 15. Mean annual air temperature additive anomaly for the 22 watersheds (ANATEM) and five stations (HISTALP). The additive

anomaly for a given year has been computed as the difference between the annual temperature for this year and the 1883–2010 mean.

Figure 16. Mean annual precipitation multiplicative anomaly for the 22 watersheds (ANATEM) and five stations (HISTALP). The multi-

plicative anomaly for a given year has been computed as the ratio between the annual precipitation for this year and the 1883–2010 mean.

uses a mix of both local and large-scale atmospheric informa-

tion by combining the local and analogue models.

The three models have been developed and applied to the

reconstruction of mean air temperature and precipitation time

series for a sample of 22 watersheds situated in the Durance

Basin, in the south-east of France. This sample of watersheds

represents a wide range of climatic conditions, from highly

mountainous to Mediterranean. The local observations used

for the reconstruction are respectively Marseille air tempera-

ture, Gap precipitation historical time series and geopotential

height fields from the 20CR reanalysis.

The multi-criteria and multi-scale performance assessment

highlights that the best reconstructions are obtained when lo-

cal information is used. The ANA model is clearly less ef-

ficient than the two other models, particularly concerning

low-frequency (annual) air temperature variability or high-

frequency (daily) precipitation variability. On the other hand,

the regression-based model and the ANATEM model pro-

vide very satisfactory results for all criteria. ANATEM offers

a slight advantage and the spatial patterns of the reconstruc-

tion skills show that it benefits from the qualities of both un-

derlying models. Hence, the ANATEM model can be used

to reconstruct adequate air temperature and precipitation se-

ries at a high temporal resolution (daily) and different spatial

scales (from 4 to 3500 km2), while improving the spatial ro-

bustness of performance. Besides these results in terms of

performances, the ANATEM model provides an original rep-

resentation of uncertainties, which are conditioned by atmo-

spheric circulation patterns through the use of an ensemble

of analogue days.

Time series of air temperatures reconstructed for the

1883–2010 period exhibit the well-known warming expe-

rienced since the middle of last century, with a higher

rate since the 1980s. Reconstructed precipitation time series

highlight the large inter-annual variability of annual precip-

itation for the Durance region. Long-term climatic reanaly-

ses exhibit some particular periods with rather strong rainfall

anomalies, such as the wet periods at the beginning of the

1910s and mid-1930s (known for flood events), or relatively

dry periods such as the 1940s and 1970s (known for drought

events).
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The potential for improving the method is considerable.

The ANA method used here was first developed for pre-

cipitation forecasts (e.g. Obled et al., 2002). The poor re-

construction skill obtained for temperature was therefore not

a surprise and other large-scale predictors could potentially

provide a better reconstruction of air temperature variations.

This also applies to the precipitation reconstruction. The pre-

dictors used here provide information only on the atmosphere

dynamics. The inclusion of thermodynamic predictors and

humidity predictors for the identification of analogue days

has been proved to improve the performance of the method

for the studied region (Marty et al., 2011; Chardon et al.,

2014).

Another possibility for improvement concerns the com-

bined formulation used for the ANATEM model. The formu-

lation presented in this paper has been applied in a straight-

forward fashion. However, the authors are convinced that

further statistical developments concerning the way the two

models are combined (e.g. forecast combination methods as

in Winkler and Makridakis, 1983 or Hoeting et al., 1999)

could improve temporal correlation, reduce mean and vari-

ability bias and allow probabilistic calibration (not addressed

in this paper).

The choice of the reference series used for the local model

also presents a challenging issue. It has been shown that the

good performance of the models largely depends on this lo-

cal information. A thorough analysis of the sensitivity to the

choice of the reference time series should be carried out.

Considering the importance of local information, an exten-

sion of the method should also consider the possibility of

making use of other historical stations, if available, in the

neighbourhood of the region of reconstruction. Cases with

multiple historical stations available would open the door

to other alternative reconstruction approaches (as stated in

the Introduction). Of course, historical local-scale data cov-

ering long historical periods are very scarce and sparse. The

results also show that the reconstruction skill decreases as

the distance from the reference station increases. The region

considered in the present study is relatively small. The im-

portance of the reference station would be expected to de-

crease for reconstructions concerning larger regions. At the

same time, in such cases, the contribution of the large-scale

information would be expected to be higher. Additional work

is definitively required to assess the relative interest of both

components of the ANATEM model in this context.

Because of the numerous scientific and operational stakes

associated with the characterisation of long-term variability,

the authors are confident that all of these questions will be

tackled by the scientific community in the coming years.

A major application of such reconstructions will obviously

be the reconstruction of long-term variations for a number of

climate-driven variables. For example, the long-term climatic

time series produced in the present work have been used to

reconstruct long-term hydrological time series at multiple

hydrometric stations of the Durance Basin (Kuentz, 2013;

Mathevet et al., 2013). Thanks to the availability of long ob-

served discharge series, this latter study provided an indepen-

dent hydrological validation of the climatic reconstructions

over the entire 20th century.

The Supplement related to this article is available online

at doi:10.5194/hess-19-2717-2015-supplement.
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