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Abstract. An aquifer consisting of a skin zone and a forma-

tion zone is considered as a two-zone aquifer. Existing solu-

tions for the problem of constant-flux pumping in a two-zone

confined aquifer involve laborious calculation. This study de-

velops a new approximate solution for the problem based

on a mathematical model describing steady-state radial and

vertical flows in a two-zone aquifer. Hydraulic parameters

in these two zones can be different but are assumed homo-

geneous in each zone. A partially penetrating well may be

treated as the Neumann condition with a known flux along

the screened part and zero flux along the unscreened part.

The aquifer domain is finite with an outer circle boundary

treated as the Dirichlet condition. The steady-state drawdown

solution of the model is derived by the finite Fourier cosine

transform. Then, an approximate transient solution is devel-

oped by replacing the radius of the aquifer domain in the

steady-state solution with an analytical expression for a di-

mensionless time-dependent radius of influence. The approx-

imate solution is capable of predicting good temporal draw-

down distributions over the whole pumping period except at

the early stage. A quantitative criterion for the validity of ne-

glecting the vertical flow due to a partially penetrating well is

also provided. Conventional models considering radial flow

without the vertical component for the constant-flux pump-

ing have good accuracy if satisfying the criterion.

1 Introduction

The constant-flux pumping (CFP) test is a widely used well

test for characterizing the aquifer properties such as trans-

missivity and storage coefficient. The test is performed with

a constant pumping rate at a fully or partially penetrating

well in either a confined or unconfined aquifer. Existing an-

alytical solutions for the CFP in a homogenous confined

aquifer are briefly reviewed herein. Theis (1935) was the

first article in the groundwater literature to present an ana-

lytical solution for aquifer drawdown due to pumping in a

fully penetrating well with an infinitesimal radius. Carslaw

and Jaeger (1959) presented analytical solutions for the three

kinds of heat conduction problems which can be analogous

to the CFP problems including the aquifers of the infinite

domain with a finite-radius well, finite domain with a finite-

radius well, and finite domain with an infinitesimal-radius

well. Hantush (1962) developed an analytical solution of

drawdown induced by a partially penetrating well for the

CFP. Papadopulos and Cooper (1967) obtained an analyti-

cal solution of drawdown considering the effects of well ra-

dius and wellbore storage. They provided a quantitative cri-

terion of time for neglecting the effects. The criterion will be

stated in the next section. Chen (1984) derived an analytical

solution for drawdown in a circular aquifer with the Dirichlet

boundary condition of zero drawdown and provided a quan-

titative criterion describing the beginning time of the bound-

ary effect on the drawdown. Yang et al. (2006) developed

an analytical solution describing aquifer drawdown due to a

partially penetrating well with a finite radius. The effect of

partial penetration on temporal drawdown distributions was
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discussed. Wang and Yeh (2008) provided a quantitative cri-

terion for the beginning time of the boundary effect on draw-

down induced by the CFP and constant-head pumping. Yeh

and Chang (2013) provided a comprehensive review on ana-

lytical solutions for the CFP in unconfined and multilayered

aquifer systems.

Drilling an aquifer to install a well may decrease or in-

crease the permeability of the formation around the wellbore.

The perturbed formation, called skin zone, extends from a

few millimeters to several meters. A positive skin zone means

that its permeability is lower than the original formation.

On the other hand, a negative skin zone is of a higher per-

meability than the original formation. Existing solutions ac-

counting for the CFP in a two-zone confined aquifer con-

sisting of the skin zone and formation zone are reviewed.

Novakowski (1989) developed a semi-analytical solution

of drawdown with the wellbore storage effect and investi-

gated the effect of an infinitesimally thin skin on temporal

drawdown curves. Hemker (1999) proposed an analytical–

numerical solution describing pumping drawdown in a multi-

layered aquifer system where the radial flow was analytically

treated and the vertical one was handled by a finite difference

method. The flux along the well screen was non-uniform

through an infinitesimal thin skin, and the flow was subject

to the wellbore storage effect. Kabala and El-Sayegh (2002)

presented a semi-analytical solution for the transient flowme-

ter test in a multilayered aquifer system where the radial flow

was considered in each layer assuming no vertical flow com-

ponent and uniform flux along the well screen. Predictions

from the solution were compared with those from a numer-

ical solution which relaxes those two assumptions. Yeh et

al. (2003) obtained an analytical solution for pumping draw-

down induced by a finite-radius well in a two-zone confined

aquifer and discussed the error caused by neglecting the well

radius. Chen and Chang (2006) developed a semi-analytical

solution for the CFP on the basis of the Gram–Schmidt

method to deal with the non-uniform skin effect represented

by an arbitrary piecewise function of elevation. They indi-

cated that flow near a pumping well is three dimensional due

to the effect and away from the well is radial. Perina and

Lee (2006) proposed a general well function for transient

flow toward a partially penetrating well considering the well-

bore storage effect and non-uniform flux between the screen

and skin zone in a confined, unconfined, or leaky aquifer.

Chiu et al. (2007) developed a semi-analytical solution for

the CFP at a partially penetrating well in a two-zone confined

aquifer. They indicated that the influence of the partial pen-

etration on drawdown is more significant for a negative skin

zone than a positive one. C. T. Wang et al. (2012) provided

an analytical solution of drawdown for the CFP in a two-

zone confined aquifer of finite extent with an outer boundary

under the Dirichlet condition of zero drawdown. They also

derived a large-time drawdown solution which reduces to the

Thiem solution in the absence of the skin zone. X. Wang et

al. (2012) presented a finite layer method (FLM) based on

Galerkin’s technique for simulating radial and vertical flows

toward a partially penetrating well in a multilayered aquifer

system. The FLM was verified by an analytical solution and

finite difference solution.

It is informative to classify the above solutions into two

groups, i.e., homogeneous aquifer and two-zone aquifer sys-

tems in Table 1. The solutions in each group are categorized

according to the well penetration, well radius, and wellbore

storage.

At present, a time-domain analytical solution of drawdown

for flow induced by the CFP at a finite-radius partially pene-

trating well in a two-zone confined aquifer has not been de-

veloped. The Laplace-domain result of the above-mentioned

problem was presented by Chiu et al. (2007) resorting to a

numerical inversion scheme called the Crump method. The

application of their solution may therefore be inconvenient

for those who are not familiar with numerical approaches.

The purpose of this note is to develop a new approximate

transient solution for the problem in a way similar to the

work of Yang et al. (2014). A mathematical model for steady-

state flow due to a partially penetrating well in a finite-extent

two-zone confined aquifer is built. The flow equations de-

scribing spatial drawdowns in the skin and formation zones

are employed. The outer boundary of the aquifer is speci-

fied as the Dirichlet condition of zero drawdown. The well

is treated as the Neumann condition with a constant flux for

the screened part and zero flux for the unscreened part. The

steady-state solution of the model for drawdown is derived by

the method of finite Fourier cosine transform. The approxi-

mate transient solution of drawdown is then obtained on the

basis of the steady-state solution and a time-dependent ra-

dius of influence. The transient solution is in terms of simple

series with advantages of fast convergence, simplicity, and

good accuracy from a practical viewpoint. It can be used as a

convenient tool to estimate temporal and spatial drawdown

distributions for the constant-flux pumping and to explore

physical insights into the flow behavior affected by hydroge-

ological properties and aquifer configuration. The accuracy

of the solution is investigated in comparison with the Chiu et

al. (2007) solution. In addition, the condition of neglecting

the effect of the vertical flow on temporal drawdown distri-

butions is investigated.

2 Methodology

2.1 Mathematical model

This section introduces a new mathematical model for

steady-state flow due to the CFP at a finite-radius partially

penetrating well in a radial two-zone confined aquifer. The

symbols representing variables and parameters for the model

are listed in Table A1. The hydraulic parameters in the

two zones are different but in each zone are assumed ho-

mogeneous. The outer boundary is considered to be un-
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Table 1. Categorization of the solutions for the constant-flux pumping in confined aquifers.

References Well Well Wellbore Remark

penetration radius storage

Homogeneous aquifer

Theis (1935)a Fully Infinitesimal None Infinite aquifer

Carslaw and Jaeger (1959, p. 328)a Fully Finite None Infinite aquifer

Carslaw and Jaeger (1959, p. 332)a Fully Finite None Finite aquifer with Dirichlet boundary

Carslaw and Jaeger (1959, p. 335)a Fully Infinitesimal None Finite aquifer with Dirichlet boundary

Hantush (1962)a Partially Infinitesimal None Infinite aquifer

Papadopulos and Cooper (1967)a Fully Finite Considered Infinite aquifer

Chen (1984)a Fully Infinitesimal None Finite aquifer with Dirichlet boundary

Yang et al. (2006)a Partially Finite None Infinite aquifer

Two-zone aquifer

Novakowski (1989)b Fully Finite Considered Infinite aquifer

Hemker (1999)c,* Partially Finite Considered Multilayered aquifer with radial and vertical flows

Kabala and El-Sayegh (2002)b Fully Finite Considered Multilayered aquifer with radial flow only

Yeh et al. (2003)a Fully Finite None Infinite aquifer

Chen and Chang (2006)b,* Fully Finite Considered Non-uniform skin effect

Perina and Lee (2006)b Partially Finite Considered General well functions for three-kinds of aquifers

Chiu et al. (2007)b Partially Finite None Infinite aquifer

C. T. Wang et al. (2012)a Fully Finite None Finite aquifer with Dirichlet boundary

X. Wang et al. (2012)a Partially Infinitesimal None Multilayered aquifer with radial and vertical flows

a, b and c represent analytical, semi-analytical and analytical–numerical solutions, respectively. ∗ represents an infinitesimal thin skin zone.

Figure 1. A schematic diagram of the constant-flux pumping at a partially penetrating well in a cylinder two-zone confined aquifer with the

Dirichlet boundary. (The symbols of the variables are defined in Table 2.)

der the Dirichlet condition of s2= 0 at r =R. The top and

bottom confining beds are under the no-flow conditions of

∂si/∂z= 0 where i ∈ (1, 2). The effect of wellbore storage

on aquifer drawdown is assumed ignorable. Note that this

effect diminishes when t > 2.5× 102 r2
c /T2, as mentioned

in Papadopulos and Cooper (1967). In addition, Yeh and

Chang (2013) also mentioned that this effect can be neglected

for a well with rc≤ 0.25 m. A schematic diagram for the CFP

problem is illustrated in Fig. 1.

The governing equations describing steady-state dimen-

sionless drawdown distributions in the skin and formation

zones are expressed, respectively, as

∂2s1

∂r2
+

1

r

∂s1

∂r
+α1

∂2s1

∂z2
= 0 for 1≤ r ≤ rs, (1)

and
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∂2s2

∂r2
+

1

r

∂s2

∂r
+α2

∂2s2

∂z2
= 0 for rs ≤ r ≤ R, (2)

where α1 and α2 reflect the effect of aquifer anisotropy on

dimensionless aquifer drawdown. The inner boundary desig-

nated at the rim of the wellbore is under the Neumann condi-

tion as

∂s1

∂r
=−

γ

ϕ
(U (z− z1)−U (z− z2))

at r = 1 and 0≤ z ≤ 1, (3)

where U(·) is the unit step function. Equation (3) indicates

that the flux is uniformly distributed over the screen. Two

continuity conditions required at r = rs are

s1 = s2 at r = rs, (4)

and

∂s1

∂r
= γ

∂s2

∂r
at r = rs. (5)

2.2 Steady-state solution

A new solution derived by the application of the finite Fourier

cosine transform to the model can be written as

s1(r,z)= ln
(
R/rs

)
+ γ ln(rs/r)+

2γ

z2− z1

∞∑
n=1

F1(r,n)cos(nπz) for 1≤ r ≤ rs, (6)

and

s2(r,z)= ln(R/r)+
2γ

rs (z2− z1)
∞∑
n=1

F2(r,n)cos(nπz) for rs ≤ r ≤ R, (7)

with

F1(r,n)= ω(ζI0 (λ1r)+ ξK0 (λ1r))/(λ1ψ), (8)

F2(r,n)= ω
(
K0

(
λ2R

)
I0 (λ2r)− I0

(
λ2R

)
K0 (λ2r)

)
/(λ1ψ), (9)

ψ = λ1G(0,−1)H(1,−1)− γ λ2G(1,1)H(0,1), (10)

ζ = λ1K1 (λ1rs)G(0,−1)+ γ λ2K0 (λ1rs)G(1,1), (11)

ξ = λ1I1 (λ1rs)G(0,−1)− γ λ2I0 (λ1rs)G(1,1), (12)

G(µ,c)= Iµ (λ2rs)K0

(
λ2R

)
+ cKµ (λ2rs)I0

(
λ2R

)
, (13)

H(µ,c)=K1 (λ1)Iµ (λ1rs)+ cI1 (λ1)Kµ (λ1rs) , (14)

and

ω = (sin(z2πn)− sin(z1πn))/(πn), (15)

where λi =π n
√
αi , and Iµ(·) and Kµ(·) are the modified

Bessel functions of the first and second kinds with order µ,

respectively. The detailed derivation of the solution is given

in Appendix A.

2.3 Approximate transient solution

The inverse Laplace transform to Chiu et al. (2007) semi-

analytical solution of drawdown leads to a time-domain re-

sult for the CFP in a two-zone aquifer system; however, the

resultant solution involves laborious calculations. We there-

fore develop an approximate transient solution of drawdown

for the CFP problem. The idea originated from the concept

of a time-dependent diffusion layer for the solution of the

diffusion equation in the field of electrochemistry (Fang et

al., 2009). The approximate transient solution is obtained

by replacing the R in the steady-state solution (i.e., Eqs. 6–

15) with a dimensionless time-dependent radius of influence

R(t). The result is in terms of dimensionless time denoted as

s1(r,z, t)= ln
(
R(t)/rs

)
+ γ ln(rs/r)+

2γ

z2− z1

∞∑
n=1

F1(r, t)cos(nπz) for 1≤ r ≤ rs, (16)

s2(r,z, t)= ln(R(t)/r)+
2γ

rs (z2− z1)
∞∑
n=1

F2(r,n, t)cos(nπz) for rs ≤ r ≤ R, (17)

and

R(t)= 1+

√
πt/1.4, (18)

where F1(r , n, t) and F2(r , n, t) obtained from Eqs. (8)

and (9), respectively, with coefficients ψ , ζ , ξ , and G(µ, c)

defined in Eqs. (10)–(13), respectively, are functions of di-

mensionless time due to substitution of Eq. (18). The time-

dependent radius of influence R(t) was first assumed as

R(t)= 1+
√
π t/c where c is a constant. By trial and error,

we found that the drawdowns predicted by the approximate

solution and Chiu et al. (2007) Laplace-domain solution with

the Crump method agree well when c approaches 1.4. A de-

tailed discussion follows in Sect. 3.1. Notice that Eq. (18) is

similar to an equation given in Yang et al. (2014, Eq. 25) but

has a different coefficient value.

2.4 Special case 1: solution for CFP at fully penetrating

well in a two-zone aquifer

When z1= 0 and z2= 1 (i.e., z1= 0 and z2= b) for the case

of well full penetration, one can obtain ω= 0 according to

Eq. (15). The simple series in Eqs. (16) and (17) then van-

ishes, and the solution for temporal drawdown distributions

subject to the skin effect reduces to

s1(r, t)= ln
(
R(t)/rs

)
+ γ ln(rs/r) for 1≤ r ≤ rs, (19)

and

s2(r, t)= ln(R(t)/r) for rs ≤ r ≤ R(t). (20)
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Figure 2. Predicted drawdowns by the Chiu et al. (2007) solution and the approximate solution, Eqs. (16) and (17), with γ = 0.1, 1, and 10 for

(a) spatial distributions at t = 3× 106 and (b) temporal distributions at r = 20 with z= 0.5, rs= 5, z1= 0.4, z2= 0.6, and α1=α2= 10−7.

Note that Eqs. (19) and (20) are independent of z, indicating

that groundwater flow is only horizontal.

2.5 Special case 2: solution for CFP at fully penetrating

well in a homogeneous aquifer

When z1= 0, z2= 1, and γ = 1 (i.e., z1= 0, z2= b, and

Kr1
=Kr2

) for the case of a fully penetrating well in a ho-

mogeneous aquifer, Eqs. (16) and (17) yield

s(r, t)= ln(R(t)/r) for 1≤ r ≤ R(t), (21)

which is indeed a dimensionless form of Thiem’s equation.

Note that Eq. (21) can also be derived by substituting γ = 1

into Eq. (19).

3 Results and discussion

3.1 Accuracy of approximate solution

On the basis of the comparison of predictions from the ap-

proximate solution and Chiu et al. (2007) Laplace-domain

solution, we have concluded that the accuracy of the present

solution depends only on dimensionless time t and radial dis-

tance r and does not relate to other dimensionless parameters

and space variable. Consider representative parameters and

variables as follows: z= 0.5, rs= 5, z1= 0.4, z2= 0.6, α1=

α2= 10−7, and γ = 0.1 for positive skins, 1 for no skin and

10 for negative skins. Figure 2a shows the spatial drawdown

distributions predicted by both solutions when t = 3× 106.

The figure indicates that both solutions agree very well on the

drawdown within the time-dependent radius of influence rep-

resented by R(t). The drawdown curves of γ = 0.1, 1 and 10

in the formation zone merge together at and beyond the inter-

face, i.e., rs= 5, because of α1=α2. Figure 2b displays the

temporal drawdown distributions predicted by both solutions

for an observation well at r = 20. This figure demonstrates

that the drawdown curves also have a good match over the

intermediate and late pumping periods. The discrepancy in

dimensionless drawdown at the early period of 0≤ t ≤ 600

can be attributed to the absence of the time derivative term in

both Eqs. (1) and (2). The drawdown dramatically increases

at t = 160 as soon as R(t = 160)= 20. It seems reasonable to

conclude that the approximate transient solution gives good

predicted drawdown in an observation well over the entire

pumping period except at an early time when the dynamic

radius of influence reaches the well (i.e., t ∼= 1.4(r − 1)2/π

derived by substituting R(t)= r into Eq. (18) and rearrang-

ing the result).

3.2 Vertical flow

The vertical flow induced by well partial penetration

is strongly dependent on both dimensionless lumped

parameters α1 r
2 and α2 r

2 (i.e., Kz1
r2/(Kr1

b2) and

Kz2
r2/(Kr2

b2), respectively). Figure 3 shows temporal

drawdown distributions predicted by the approximate solu-

tion, Eq. (17), for α1=α2 ranging from 10−6 to 10−2 when

r = 10, z= 0.5, z1= 0.4, z2= 0.6, rs= 5 and γ = 0.1. Equa-

tion (20) is the drawdown solution for the CFP at a fully

penetrating well; therefore, the vertical flow is absent. When

α1 r
2
=α2 r

2
= 1, the drawdown distributions predicted by

both equations agree well, indicating that the vertical flow

is negligible. We may, therefore, reasonably conclude that

the vertical flow effect on the aquifer drawdown at an obser-
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Figure 3. Temporal drawdown distributions predicted by the

approximate solution, Eq. (17), with r = 10, z= 0.5, z1= 0.4,

z2= 0.6, rs= 5, γ = 0.1 and various values of α1 with α1=α2.

vation well vanishes when α1 r
2
≥ 1 and α2 r

2
≥ 1, i.e., b is

small, r is large, and/or the values of Kz1
/Kr1

and Kz2
/Kr2

are large. On the other hand, Eq. (20) underestimates the

drawdown induced by the CFP at a partially penetrating

well because the vertical flow prevails when α1 r
2< 1 or

α2 r
2< 1.

4 Concluding remarks

This study presents an approximate drawdown solution,

Eqs. (16) and (17), in terms of a simple series for the CFP

at a partially penetrating well in a radial two-zone confined

aquifer. The solution is developed on the basis of the steady-

state drawdown solution with an outer boundary represented

by the time-dependent radius of influence. The comparison

with the Chiu et al. (2007) solution reveals that the approx-

imate solution gives accurate temporal drawdown distribu-

tions in an observation well over the entire pumping pe-

riod except at an early time when the dynamic radius of in-

fluence reaches the well (i.e., t ∼= 1.4(r − 1)2/π derived by

substituting R(t)= r into Eq. (18) and rearranging the re-

sult). The analysis of the temporal drawdowns predicted by

Eqs. (17) and (20) indicates that the vertical flow due to a par-

tially penetrating well prevails under the conditions of thick

aquifers, vicinity to the well, and/or small conductivity ratios

(i.e., α1 r
2< 1 or α2 r

2< 1). Accordingly, conventional mod-

els neglecting the vertical flow will underestimate drawdown

under those conditions.
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Appendix A: Derivation of Eqs. (6) and (7)

The finite Fourier cosine transform is defined, in our nota-

tion, as

ŝi =

1∫
0

si cos(nπz)dz, (A1)

where i ∈ (1, 2). The formula for the inverse transform is ex-

pressed as

si = ŝi(0)+ 2

∞∑
n=1

ŝi(n)cos(nπz), (A2)

where ŝi(n), a function of n, is the solution in the transform

domain. Replacing si in Eq. (A1) by ∂2si/∂z
2 and applying

integration by parts twice yields

1∫
0

∂2si

∂z2
cos(nπz)dz= (−1)n

∂si

∂z

∣∣∣∣
z=1

−
∂si

∂z

∣∣∣∣
z=0

− (nπ)2 ŝi . (A3)

Applying the transform to Eqs. (1)–(5) on the basis of

Eq. (A3) with ∂si/∂z= 0 results in the following equations:

∂2ŝ1

∂r2
+

1

r

∂ŝ1

∂r
− λ2

1ŝ1 = 0 for 1≤ r ≤ rs, (A4)

∂2ŝ2

∂r2
+

1

r

∂ŝ2

∂r
− λ2

2ŝ2 = 0 for rs ≤ r ≤ R, (A5)

ŝ2 = 0 at r = R, (A6)

∂ŝ1

∂r
=−γω/ϕ at r = 1, (A7)

ŝ1 = ŝ2 at r = rs, (A8)

and

∂ŝ1

∂r
= γ

∂ŝ2

∂r
at r = rs. (A9)

The Fourier-domain solution of Eqs. (A4) and (A5) can be

expressed as

ŝ1 = c1I0 (λ1r)+ c2K0 (λ1r) , (A10)

and

ŝ2 = c3I0 (λ2r)+ c4K0 (λ2r) , (A11)

where I0(·) and K0(·) are the modified Bessel functions of

the first and second kinds of order zero, respectively, and

c1, c2, c3 and c4 are undetermined coefficients. Substituting

Eqs. (A10) and (A11) into Eqs. (A6)–(A9) and solving the

four resultant equations leads to

(c1,c2,c3,c4)=

(
γ ζω

ϕλ1ψ
,
γ ξω

ϕλ1ψ
,
γωK0

(
λ2R

)
ϕrsλ1ψ

,−
γωI0

(
λ2R

)
ϕrsλ1ψ

)
, (A12)

where ψ , ζ and ξ are defined in Eqs. (10)–(12), respectively.

According to Eq. (A12), Eqs. (A10) and (A11) can be writ-

ten, respectively, as

ŝ1(r,n)= γF1(r,n)/ϕ, (A13)

and

ŝ2(r,n)= γF2(r,n)/(ϕrs) , (A14)

where F1(r , n) and F2(r , n) are defined in Eqs. (8) and (9),

respectively. In the light of Eq. (A2), the inverse transforms

to Eqs. (A13) and (A14) lead to Eqs. (6) and (7), respectively.

Note that the first terms on the right-hand side of Eqs. (6)

and (7) are derived via L’Hospital’s law.
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Table A1. Summary of symbols used in the text and their definitions.

Symbols Definitions

(s1, s2) Drawdowns in skin and formation zones, respectively

r Radial distance from the center of the well

rs Radius of skin zone

R Radius of cylinder aquifer domain or the radius of influence

(rw, rc) Outer and inner radiuses of well, respectively

z Elevation from the aquifer bottom

(z1, z2) Lower and upper elevations of well screen, respectively

t Time since pumping

b Aquifer thickness

Q Pumping rate of well

(Kr1 , Kr2 ) Radial hydraulic conductivities of skin and formation zones, respectively

(Kv1 , Kv2 ) Vertical hydraulic conductivities of skin and formation zones, respectively

Ss2 Specific storage of formation zone

(T1, T2) Transmissivities of skin and formation zones, respectively

(s1, s2) (2π T2 s1/Q, 2π T2 s2/Q)

t Kr2 t/(Ss2 rw2 )

(r , rs, R) (r/rw, rs/rw, R/rw)

(z, z1, z2) (z/b, z1/b, z2/b)

(ϕ, γ ) (z2− z1, Kr2/Kr1 )

(α1, α2) (Kz1 r
2
w/(Kr1 b

2), Kz2 r
2
w/(Kr2 b

2)
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