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Abstract. The rainfall in southern Africa has a large inter-

annual variability, which can cause rain-fed agriculture to

fail. The staple crop maize is especially sensitive to dry

spells during the early growing season. An early prediction

of the probability of dry spells and below normal precipita-

tion can potentially mitigate damages through water manage-

ment. This paper investigates how well ECMWF’s seasonal

forecasts predict dry spells over the Limpopo basin during

the rainy season December–February (DJF) with lead times

from 0 to 4 months. The seasonal forecasts were evaluated

against ERA-Interim reanalysis data, which in turn were cor-

rected with GPCP (EGPCP) to match monthly precipitation

totals. The seasonal forecasts were also bias-corrected with

the EGPCP using quantile mapping as well as post-processed

using a precipitation threshold to define a dry day. The results

indicate that the forecasts show skill in predicting dry spells

in comparison with a climatological ensemble based on pre-

vious years. Quantile mapping in combination with a precip-

itation threshold improved the skill of the forecast. The skill

in prediction of dry spells was largest over the most drought-

sensitive region. Seasonal forecasts have the potential to be

used in a probabilistic forecast system for drought-sensitive

crops, though these should be used with caution given the

large uncertainties.

1 Introduction

Southern Africa is largely a semi-arid region, which expe-

riences substantial inter- and intra-annual rainfall variabil-

ity (Barron et al., 2003; Nyakudya and Stroosnijder, 2011).

Given the limited extent and scope for development of sur-

face water irrigation, most countries in southern Africa rely

strongly on rain-fed agriculture. However, if the rainfall

amount or temporal distribution is inadequate, crops may

fail, thus compromising food security. While a lower total

amount of rainfall over the crop growing season will influ-

ence the crop yield, it is often the poor temporal distribution

of rainfall resulting in dry spells and wet spells that is the

cause of reduced crop yields (Rockstrom, 2000; Ingram et

al., 2002; Ochola and Kerkides, 2003; Barron, 2004; Usman

and Reason, 2004; Barron and Okwach, 2005).

A staple crop that is grown widely in southeastern Africa

is maize, the yields of which are sensitive to the occurrence

of dry spells, depending on when these occur. Barron et

al. (2003) discuss the sensitivity of maize to the occurrence

of dry spells in different stages of the growing season, be-

ing particularly high in the first 50 days after sowing, and

again during the grain filling stage (70–90 days after sow-

ing). Additionally, the onset of the rains is important, with

planting only done after initial rains exceeding 30–40 mm

on eight consecutive days in areas studied in Tanzania and

Kenya (Barron et al., 2003) and 25 mm on 7 consecutive days

or 40 mm on 4 in northern Zimbabwe (Nyakudya and Stroos-

nijder, 2011). Delays in planting due to late onset of the
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rains may result in reduced yield, while planting following

a “false” onset of the rain season may lead to failure and the

need for expensive replanting. Typical lengths of the growing

season for maize are 120–140 days.

Love et al. (2010) summarise a number of typical agro-

meteorological indicators that are important for water man-

agement and rain-fed agriculture. These hold important in-

formation that can aid farmers in improving their agricul-

tural production process, as well as help disaster managers

or food security agencies prepare better for food shortage.

Examples include the frequency of dry spells of different

lengths (Nyakudya and Stroosnijder, 2011), and the proba-

bility of the occurrence of dry and wet spells derived from

the analysis of historical rainfall through e.g. a Markov chain

process (Barron et al., 2003). While these provide valuable

information to the understanding of how sensitive (maize)

crops in a given area are to reduced yield and even failure,

such analysis is useful primarily in the process of the plan-

ning of crops and developing of plans for mitigating the im-

pact of dry spells (Kandji et al., 2006).

Reducing the impact of dry and wet spells on the yield may

then be found through mitigation measures. Rainfall water

harvesting techniques such as improving the soil water re-

tention capacity may reduce vulnerability due to rainfall vari-

ability (Brown and Hansen, 2008), and mitigation measures

through supplementary irrigation, from for example on-farm

ponds (Barron and Okwach, 2005), may reduce the impact of

dry spells.

Predictions of dry spells across the growing season and in

particular during the periods most sensitive to the impact of

dry spells can help plan such mitigation measures, as well

as help optimise the use of a scarce commodity such as water

stored in on-farm ponds. Additionally, prediction of the onset

of the rains can aid a more judicious planning of the sowing

period. The importance of the predictability of such indica-

tors, which are tailored to specific end users such as rain-

fed agriculture, is acknowledged by Reason et al. (2005).

They investigated the inter-annual variability of dry spells

within the rainy season, and anomalies in the onset of the

rainy season over the Limpopo basin, and found a signifi-

cant relationship between these indicators and El Nino 3.4

(for a definition, see Trenberth, 1997). The study suggested

that there may be predictability of the rainfall characteris-

tics on the seasonal scale within the Limpopo region. Sea-

sonal predictions can be used to inform decisions in planning

cropping patterns, planting period, and mitigation measures

to reduce the impact of dry spells, or even predict crop yields,

such as the sugarcane yield forecasting system proposed by

Bezuidenhout and Singels (2007).

Despite the chaotic nature of weather, the potential of

seasonal prediction, in particular at the low latitudes, has

been long recognised (Charney and Shukla, 1981; Slingo

and Palmer, 2011). Useful forecast lead times will also de-

pend very much on the decision that is informed by the pre-

diction. Where decision on cropping patterns would bene-

fit from seasonal forecasts covering the full growing season

(120–140 days), or in any case to the end of the grain filling

period (90 days), other decisions such as the planning of the

sowing period given the onset of the rains, or applying sup-

plemental irrigation may require forecasts with lead times of

only up to some 20–30 days.

Such information may be provided by seasonal (0–

6 months) forecasting systems. Seasonal forecasts differ

from the short-range to medium-range weather forecasts as

it does not provide information on the weather on any spe-

cific day. Instead, seasonal forecasts provide information on

the development of the climate up to 6 months, or in some

cases even 12 months ahead. The skill of the seasonal fore-

casts depends on its ability to model processes at the scale of

months, for example the ENSO (El Nino Southern Oscilla-

tion). It has to be noted that seasonal forecast systems have

significantly more skill than deterministic forecasts (Molteni

et al., 2011).

Reason et al. (2005) showed that the December–February

(DJF) season is most important because this includes the

most crucial periods that influence maize yields, which is

particularly sensitive in this season. Moreover, the DJF sea-

son is most strongly impacted by ENSO (Lindesay, 1988;

Love et al., 2010), which also would result in the best pre-

dictability of the rainy season anomalies (Reason et al., 2000;

Landman et al., 2001). Winsemius et al. (2014) assessed the

ability of ECMWF’s seasonal forecasts (SYS4) to predict

dry spells and heat stress, indicators relevant to the farmer

needs for the Limpopo basin. They found that heat stress was

well captured by the seasonal forecasting system, whereas

the dry spells were less well captured. A study by Mwangi et

al. (2014) further tested the SYS4 for drought forecasting in

East Africa and could show skill in the precipitation forecast

for the autumn rainy season (September–November).

Forecast models suffer from biases – the climate of the

model forecasts differs to a greater or lesser extent from

the observed climate. Precipitation is a non-linear and inter-

mittent process, and many atmospheric general circulation

models (AGCMs) are not able to correctly resolve these pro-

cesses, for example, the number of rainy days and heavy pre-

cipitation events, due to constraints in resolution and how

the processes are implemented in the model. With increas-

ing resolution and better descriptions of model physics the

modelling of precipitation will improve in future model ver-

sions (Haiden et al., 2014). Since variations in the predicted

seasonal distributions are often small, this bias needs to be

taken into account, and must be estimated from a previous

set of model integrations (Molteni et al., 2011). The 30 year

hindcasts of SYS4 provide a large set of forecasts that can

be used to correct model biases, and to evaluate the skill of

the forecasting system. A common practice is to bias correct

the monthly means of the model climate with the verification

data set (e.g. Saha et al., 2006).

In this paper we evaluate the skill of the ECMWF seasonal

probabilistic forecasting system over the Limpopo basin in
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southern Africa in predicting indicators relevant to making

decisions, within the rainy December–February (DJF) sea-

son. Instead of seasonal accumulated anomalies, we tailor

this investigation to end user required information on rain-

fall characteristics, being the length of dry spells and the

amount of dry spells within the DJF season. We test how

post-processing of the forecast could increase skill depend-

ing on the use of quantile mapping against observations and

applying a precipitation threshold to define a dry day. The

hypothesis is that predictability will increase when a post-

processing is applied. The paper is organised as follows: ma-

terial and methods are described in Sect. 2, the main results

in Sect. 3, a discussion in Sect. 4 and main conclusions in

Sect. 5.

2 Material and methods

2.1 Study basin

The Limpopo basin (22–25◦ S, 27–32◦ E) land use is gov-

erned by croplands, in particular in the downstream (i.e. east-

ern) part of the basin (Fig. 1). Most of these croplands are

rain-fed or rely on the scarce and over-committed surface

water resources (Love et al., 2010). The climate is charac-

terised by extremely variable rainfall, resulting in a mixture

of very dry years and years with floods. Rainfall concentrates

in one rainy season, largely controlled by the Inter-Tropical

Convergence Zone, which means that most of the rainfall

is received in the months December, January and Febru-

ary (DJF). The precipitation in Limpopo is very dependent

on ENSO giving warm and dry years during strong ENSO

events (Ogallo, 1988). Its water resources are shared by

South Africa, Botswana, Zimbabwe and Mozambique. There

are a number of important water users in the basin, amongst

which are ecology and nature preservation (a large part of the

Kruger National Park is located inside the basin), municipali-

ties, agriculture and livestock. The agricultural users (except

some large corporate sugarcane fields in the South African

part of the basin) are primarily smallholder farmers, without

access to significant supplementary irrigation.

The Limpopo basin suffers from drought every 7 to

11 years, but there are large differences in vulnerability to

droughts, as shown in the Drought Hazard Index (DHI) maps

(Fig. 2; Muñoz Leira et al., 2003). The DHI maps show the

probability of crop failure combined with the degree of rain-

fall variability from year to year, and a low (high) DHI means

a stable (sensitive) environment. Four regions were identified

according to their geographical location and drought haz-

ard: regions 1 and 3 with moderate to high; region 2 with

high/very high; and region 4 with low/moderate DHI respec-

tively. The analysis in this study was made for the catchment

as a whole and for each region separately.

Figure 1. Land use in the Limpopo River basin (source: IGBP;

Loveland et al., 2000). The orange coloured regions are classified

as croplands, most of which are rain-fed.
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Figure 2. Areas of drought hazard for the Limpopo basin. The four

areas are characterised by their sensitivity to droughts, ranging from

low/moderate to very high/high. The underlying maps are from

Muñoz Leira et al. (2003). The grid points denote the grid points

of the ECMWF seasonal forecasting system (SYS4) on a T319 re-

duced Gaussian grid.

2.2 Data description

2.2.1 Merged ERA-Interim and GPCP rainfall

estimates

ERA-Interim (hereafter ERAI) is the latest global atmo-

spheric reanalysis produced by ECMWF. ERAI covers the

period from 1 January 1979 onwards, and continues to be

extended forward in near-real time (www.ecmwf.int; Dee

et al., 2011). The ERAI configuration has a spectral T255

horizontal resolution, which corresponds to approximately

79 km. ERAI suffers from model biases, and to correct pre-

cipitation, Balsamo et al. (2010) performed a scale-selective

rescaling, hereafter named EGPCP. The procedure corrected

ERAI 3-hourly precipitation on a grid-point scale with multi-

plicative factors to match the total monthly accumulation of
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the GPCP v2.1 product (Huffman et al., 2009). The advan-

tage of this procedure is that small-scale features of ERAI

can be preserved (e.g. orographic precipitation enhancement)

while the monthly totals are rescaled to match GPCP. More-

over, the rescaling improves the root mean square error and

spatial/temporal correlations by combining the advantages of

the observation-based GPCP product with those of the origi-

nal high-resolution ERAI data. Szczypta et al. (2011) evalu-

ated ERAI over France, based on the high-resolution (8 km)

SAFRAN atmospheric reanalysis (Vidal et al., 2010), and

found that the EGPCP precipitation performs better than the

original ERAI product. Belo-Pereira et al. (2011) compared

the skill of ERAI and GPCC (similar to GPCP over land),

among others, against a high-resolution observational-based

data set of precipitation. They found that both ERAI and

GPCP provided a good estimate of drought conditions, the

latter closer to the observations. The merged EGPCP rain-

fall estimate is assumed to be the best estimation of ground

truth in this study. All skill evaluations are therefore based

on comparisons between seasonal forecast and the EGPCP

estimates.

2.2.2 ECMWF seasonal forecast system

The ECMWF seasonal forecasts system 4 (SYS4) consists

of a global coupled ocean–atmosphere general circulation

model to calculate the evolution of the ocean and atmosphere

and an ocean analysis to estimate the initial state of the ocean

(Molteni et al., 2011). The ocean model used is NEMO (Nu-

cleus for European Modelling of the Ocean; Madec, 2012)

adopting the ORCA1 grid, which has a horizontal resolu-

tion of approximately 1◦, and 42 levels in the vertical (http:

//www.noc.soton.ac.uk/nemo/?page=configurations, last ac-

cess 3 December 2014). The atmospheric component of

SYS4 is the ECMWF integrated forecasts system (IFS) with

the same horizontal resolution is the same as ERAI but using

91 vertical levels instead of the 60 used in ERAI. The fore-

casts consist of a 51 member ensemble, with initial date of

the 1st of each month, and then run daily for 7 months. The

51 ensemble members are made up with one control mem-

ber initialised by ERA-Interim and 50 ensembles in which

the initial conditions (ocean and atmosphere) combined with

stochastic schemes in the model physics of the atmospheric

model. The re-forecasts (also referred to as hindcasts) for

SYS4 consist of forecasts starting on the 1st of every month

for the years 1981–2010 with an ensemble size of 15 mem-

bers. The hindcasts can be used to calibrate the real-time

forecasts in combination with the observed weather and cli-

mate.

Figure 3. Flowchart of the bias correction of the seasonal forecasts.

2.3 Experimental setup

2.3.1 Quantile-based mapping

In this study we evaluate dry spells based on daily precip-

itation, and a simple mean monthly bias correction would

not correct biases in the distribution of dry events. Therefore

a quantile-based mapping (QM; Panofsky and Brier, 1968)

was applied on the forecast. QM adjusts the forecasted pre-

cipitation to the observed precipitation (in our case EGCP)

by matching the cumulative density function (CDF) of daily

precipitation for each grid cell individually. This relatively

simple approach has been successfully used in hydrological

and climate impact studies (e.g. Maurer and Hidalgo, 2008;

Li et al., 2010; Jakob Themeßl et al., 2011; Wetterhall et al.,

2012) as well as medium-range (Voisin et al., 2010) and sea-

sonal forecasts (Wood et al., 2002). The precipitation of the

seasonal forecast was rescaled using a multiplicative factor

(or transfer function) for each initial forecast date (calendar

month), lead time and grid point. The multiplicative factor

is a discrete array which corrects the precipitation values for

quantiles ranging from 0 to 1 with a step of 0.02. QM was

only done for rainy days since the number of rainy days are

very similar for the SYS4 and EGPCP, and therefore an ad-

justment of the number of rainy days was not necessary. A

schematic view of the corrections used in this paper is shown

in Fig. 3.

To account for the uncertainty due to the small sample

size, the CDFs of the hindcasts of SYS4 and EGPCP were

evaluated empirically by sorting the daily precipitation and

then bootstrapping 50 distributions from a sample of 50 %

of the data, thereby creating 50 SYS4 CDFs and their re-

spective multiplicative factors. The final correction used the

average of the 50 bootstrapped multiplicative factors to ad-

just the distribution. To allow a smooth transition in time of

the multiplicative factor, and to increase the sample size, the

training data set was expanded using the two adjacent months

for each lead time. For example, for the forecasts starting in

November with lead time 1 (valid in December), we selected

all the November, December and January months from EG-

PCP, and the SYS4 forecasts starting in November for lead
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Figure 4. Cumulative density function (CDF) (a–c) of daily precipi-

tation from EGPCP (black) and SYS4 forecasts started in November

(grey lines from the bootstrapping sampling) and valid for Decem-

ber (a), January (b) and February (c). Quantile match coefficients

applied to correct SYS4 forecasts (black mean, grey bootstrapping

range) started in November and valid in December (d), January (e)

and February (f). The represented CDFs and quantile match coeffi-

cients were averaged over the region (27 to 32◦ E; −22 to −25◦ N).

times 0, 1 and 2 to evaluate the empirical CDFs (Fig. 4). To

make the comparison easier, both the EGCP and SYS4 data

were interpolated to a regular grid with spatial resolution 0.7◦

in latitude and longitude, which is very close to the original

resolution of the seasonal forecasts.

2.3.2 Skill as function of dry/wet day threshold, bias

correction, spatial scale and lead time

The predictability of the occurrence of dry spells and dry

spell length can be assumed to be dependent on the follow-

ing factors: (1) the lead time of the seasonal forecast, (2) the

definition of a dry day within the perspective of our meteoro-

logical forecast model, (3) the presence of model bias (which

in itself is also assumed to be a function of lead time) and

(4) the spatial averaging scale of prediction. ECMWF’s sea-

sonal forecasting system archives daily forecasts with a lead

time of 7 months, starting at the first day of each month.

Subsequently, five forecasts overlap the rainy season (DJF)

any given year, with lead times with respect to the onset of

DJF season ranging from 0 to 4 months. There is large ev-

idence that seasonal forecast skill deteriorates strongly with

lead time (Molteni et al., 2011). Therefore, the forecast was

evaluated for each lead time.

In this study a “dry spell” was defined as a sequence of

days (minimum 3 days) where rainfall is below a certain

threshold (see the red bars in Fig. 5). The threshold accounts

for a number of factors, for example that part of a day’s rain-

fall is intercepted by canopy, understory, litter and by the very

top few centimetres of soil; and therefore evaporates before

Figure 5. The timing of the growing season and lead times of sea-

sonal forecasts. Evaluation of dry spells is performed in the growing

season (see red lines).

infiltrating down to the root zone (Savenije, 2004; de Groen

and Savenije, 2006; Gerrits et al., 2007). This amount can

be significant, and De Groen and Savenije (2006) suggest a

value between 2 and 5 mm day−1 for the southern African

region, depending on season and land cover characteristics.

These water balance components therefore do not take part in

the biomass assimilation process and from the point of view

of a crop, a day is therefore wet as soon as rainfall exceeds a

certain threshold. To test the sensitivity of the choice of this

threshold, a large range of thresholds were considered, rang-

ing from 1 to 15 mm day−1. Note that from the point of view

of crop growth, 15 mm day−1 rainfall should not be consid-

ered to be a dry day anymore (de Groen and Savenije, 2006).

The wide range is only used to demonstrate the predictabil-

ity of the ECMWF probabilistic seasonal forecasting system

over a range of thresholds. For each forecast, the frequency

of dry spells, defined as the number of dry spells longer than

3 days, was computed for each model grid cell. The same

was done for the observational data EGPCP. This results in

pairs of “observed” and forecast values for the frequency of

dry spells and the length of the longest dry spell for each lead

time and for each year of available data.

2.3.3 Computation of skill measures

Relative operating characteristic (ROC) and continuous

ranked probability scores (CRPS; Matheson and Winkler,

1976) were used to estimate the performance of SYS4. The

correlation coefficient was calculated on the annual averages

of the all ensemble members and all the land grid points in

the Limpopo basin compared with EGCP. The hits, misses

and false alarms for the contingency table were estimated by

considering values above the 70th percentile of the EGCP

data as an event. The contingency table was calculated over

all grid points and ensemble members and then averaged into

www.hydrol-earth-syst-sci.net/19/2577/2015/ Hydrol. Earth Syst. Sci., 19, 2577–2586, 2015
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hit rates (HR) and false alarm rates (FAR).

HR=
Hits

Hits+Misses
(1)

FAR=
False alarms

False alarms+Correct negatives
(2)

Plotting the FAR against HR for various thresholds of de-

tection, i.e. the probability of an event generates the receiver

operating characteristic (ROC) curve, from which the area

under the ROC curve (AUC) can be estimated. The AUC is a

summary statistics of the performance of the system and tests

the system’s ability to discriminate between positive and neg-

ative outcomes. A value of AUC close to 1 denotes a perfect

forecast, whereas values below 0.5 denote that the forecast

performs worse than a random forecast.

CRPS is a common tool to evaluate ensemble data and is

defined as

CRPS=
1

N

N∑
n=1

∞∫
−∞

[
F (x)−H(x− x0)

2
]

dx, (3)

where N is the number of forecasts, F(x) is the cumulative

distribution function F(x)= p(X≤ x) of the forecasted pre-

cipitation x, xo the observed precipitation, and H(x–x0) is

the Heaviside function, which has the value 0 when x–x0 < 0

and 1 otherwise. In order to quantify the skill of the proba-

bility score, the skill score is calculated as

SSCRPS = 1−
CRPSFP

CRPSRP

, (4)

where CRPSFP denotes the forecast score and CRPSRP is the

score of a reference forecast of the same predictand. CRPS

and SSCRPS were calculated for each grid point and lead time

respectively. The benchmark forecast in this study was a cli-

matological ensemble, which was created by randomly se-

lecting 15 time series (to match the seasonal forecast hind-

cast ensemble size) from each starting month from the EG-

PCP historical database of the same length as the seasonal

forecast (7 months), excluding the actual year.

3 Results

The results from the hindcast period were evaluated in terms

of the effect of the precipitation threshold and bias correc-

tion. Furthermore, the predictability for the four identified

regions was evaluated individually.

3.1 Effect of quantile mapping

The forecast of frequencies and length of the longest dry spell

were both improved in absolute terms, which is to be ex-

pected since the correction is towards observed values (Ta-

ble 1). The bias correction affected both hit rates and false

Figure 6. Effect of the threshold on (a) the length of dry spells

and (b) frequency of dry spells for EGPCP, raw forecast and bias-

corrected forecast for each season over the entire forecast period for

lead time 0. The edges of the boxplot show the 25 and 75 quantiles;

the whiskers indicate the maximum and minimum values.

alarms but in opposite directions, depending on the target

variable; hits and false alarms increased (decreased) for the

length of the longest dry spell (frequency of dry spells). The

overall effect on AUC was however an improvement (or no

effect) after QM. The positive effect of the QM becomes

more apparent with the increasing precipitation threshold

(Fig. 6). The boxplots indicate the inter-annual spread in the

EGPCP data, and this is substantially larger than for the fore-

cast, which is also seen in Table 1. There is a breakpoint

around 5 mm, where the forecast and the EGCP data show

the best agreement, and the effect of the QM persists with in-

creasing thresholds. Figure 6 shows the result for lead time 0,

but the results are similar for longer lead times (not shown).

3.2 Skill as function of precipitation thresholds

Using a non-zero threshold to define rainy and non-rainy

days has a clear impact on the skill (Fig. 7). The effect of

the thresholds is different for the raw and corrected forecast.

Using a threshold of precipitation of between 5 and 10 mm

depending on lead time and target variable was the optimum

for the bias-corrected forecasts, whereas the optimum thresh-

old for the raw forecast was lower. However, a threshold of

10 mm is higher than the precipitation amounts expected to

be lost to transpiration from interception. To accommodate

for the most optimum threshold as well as to use a physically

sensible threshold, 5 mm was selected, which is in agreement

with previous studies (de Groen and Savenije, 2006).

3.3 Spatial variations in skill

The spatial pattern of skill for the raw forecast shows a pat-

tern where the forecast performance of the south-western part

of the Limpopo catchment is comparatively worse than for

the north-east (Fig. 8). The patterns are similar for both the

longest dry spell and the frequency of dry spells. QM im-
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Table 1. Length of dry spells and frequency of dry spells from the EGCP data (observed) and forecasted with raw forecast and bias corrected.

The results are with a 5 mm threshold applied and averaged over all points and years, and all ensemble members for the forecast. The standard

deviation is shown in brackets.

Lead 1 Lead 2 Lead 3 Lead 4 Lead 5

Frequencies of dry spells

Observed 8.7 (2.2)

Raw forecast 9.0 (1.1) 9.2 (1.1) 9.4 (0.8) 9.5 (0.9) 9.6 (0.7)

Corrected forecast 8.5 (1.1) 8.7 (1.1) 8.8 (0.9) 8.8 0.9) 8.7 (0.7)

AUC raw 0.67 0.63 0.56 0.58 0.58

AUC corrected 0.69 0.65 0.59 0.61 0.59

Length of longest dry spells

Observed 23 (7.4)

Raw forecast 23 (3.0) 22 (3.2) 21 (2.3) 21 (2.2) 20 (1.9)

Corrected forecast 24 (3.3) 23 (3.5) 23 (2.5) 23 (2.4) 23 (2.1)

AUC raw 0.54 0.55 0.51 0.52 0.55

AUC corrected 0.58 0.55 0.51 0.53 0.55

Figure 7. CRPSS as a function of precipitation thresholds for dif-

ferent lead times over the Limpopo catchment. Top panel shows the

results for the longest dry spell over the rainy season, and the bottom

panel the frequency of dry spells over the rainy season. The blue line

denotes the raw forecast, and the black line the bias-corrected. The

blue (green) areas denote the 5 to 95 spread of the raw (corrected)

forecasts respectively.

proved the forecast over all grid boxes and the increase is

largest for the shorter lead times (Fig. 9). The highest skill

both before and after the QM was seen for area 2, which is

also the most vulnerable to droughts. The forecasts for area 4,

which also is the area least sensitive to droughts, had the low-

est skill. The correction improved the skill scores to levels

comparable to the other areas. The effect of QM is most evi-

dent for the shorter lead times; for the longer lead times, the

signal is noisier.

Figure 8. CRPSS for the different areas over the Limpopo basin

with a precipitation threshold of 5 mm and lead time of 1 month.

4 Discussion

4.1 Choices in the methodology

It was found very useful to perform a proper bias correction

of the forecasts before any attempt was made to predict the

occurrence and length of dry spells. This is demonstrated by

comparing bias-corrected skill with non-bias-corrected skill

(Figs. 5–8). The CRPSS was in many cases negative prior

to QM. The computation of dry spells and dry periods is

strongly dependent on the ability of the prediction system to

distinguish a wet day from a dry day, and the seasonal fore-

casts are typically impacted by significant bias during low-

intensity rainfall (“drizzle effect”), which strongly impacts
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Figure 9. CRPSS as a function of lead time for the four areas in the

Limpopo basin.

on the lower tail of the distribution of the forecasted daily

rainfall amount.

The effect of the variable threshold on the definition of

dry spells creates fewer but longer dry spells with increasing

threshold. It targets the effective precipitation, which is the

precipitation that is available for plants. The application of a

threshold precipitation at which a dry spell was defined im-

proved the results, especially after QM, which would suggest

that using both methods in combination was necessary to op-

timise the performance of the forecast. Since the simple bias

correction only affected the amount of precipitation, the ef-

fect of the threshold is more visible on the higher end of the

distribution. The selection of the optimal threshold is in the

end dependent on the application, i.e. what is most important

for the crop in terms of water need. The results in this study

shows that the bias correction has a positive effect on all

thresholds in the range from 1 to 15 mm. The threshold can

also be applied prior to applying bias correction (e.g. Wet-

terhall et al., 2012), but in cases where the energy balance

is important, for example in cases where agriculture produc-

tion is to be modelled, a correction of the temperature dis-

tribution would also be needed, since the occurrence or non-

occurrence of precipitation will affect the modelled tempera-

ture. The advantage of the methodology used in this study is

that the spatial correlation between temperature and precipi-

tation is better preserved.

The skill of the forecast varies generally significantly with

location, and this is clear also from our study. The highest

skill for the raw forecast was found in the northern part of the

catchment. However, the potential predictive skill of SYS4 is

more or less equal across the catchment, as is demonstrated

by the effect on the post-processing of the forecasts (Figs. 8–

9). The potential skill is in this paper evaluated using GPCP

v2.2 as the “ground truth”; however, this has its limitations,

as the quality of this global data set is very varying. If the true

skill of the system is to be assessed, local station precipitation

data would be necessary. However, as a proof-of-concept, the

proposed methodology is promising.

4.2 Potential value of the forecasting of rainfall

characteristics

Although seasonal forecasts deliver to some degree skilful

information on dry spell occurrence and dry spell lengths,

it is not guaranteed that this information will improve the

decision making process for the end user. Translation from

a forecast has value if the decisions that are taken based

on the forecast information indeed lead to an effective gain

(whether this is monetary or in some other way) with respect

to the status quo (i.e. without a forecast being used for de-

cision making). This is only the case if the integral of costs

(monetary or in any other meaningful form) of additional ac-

tions being taken on the basis of the forecast information over

time is lower than the integral of loss, prevented by the alter-

nate decision. This has been demonstrated by Verkade and

Werner (2011) for the case of flood forecasting and warn-

ing systems (Verkade and Werner, 2011; Pappenberger et al.,

2015). In most forecasting evaluations, the costs associated

with the decision and actions following this decision are ne-

glected, meaning that if the forecast has any skill compared

to the climatology, the system always has value. However, if

such costs cannot be neglected, then the value of the fore-

cast will decrease depending on the rate of false alarms and

misses. A false alarm will result in unnecessary costs, being

made to decide and act, while a hit will result in prevented

losses, which obviously are higher than the costs to act. In

order to evaluate the value of this forecast, we would there-

fore require local knowledge about how much the action, fol-

lowed by a forecast warning (in the case of the Limpopo, im-

porting of food and fodder) would cost, and how much would

be lost due to the occurrence of (long) dry spells, if action

would have been required, but is not taken. In the Limpopo

case, this could involve loss of harvest, loss of livestock, or

even loss of lives if food security is at stake.

5 Conclusions

This paper assesses the quality of using seasonal forecasts

from ECMWF to predict the duration of the longest dry spell

as well as the frequency of dry spells during the growing sea-

son in the Limpopo basin in southeastern Africa. The paper

further investigates post-processing techniques of the fore-

casts by applying a QM of the forecasts and a precipitation

threshold to define wet and dry events. The threshold was

applied to both the observed data and forecast to test the

sensitivity to user-defined needs. The results show that the

forecasts are improved by using a threshold to define events
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in combination with QM of the forecast. Post-processing in-

creases the potential predictability of the forecasts, but in or-

der to assess the full added value of a forecasting system, it

would need to be tested as a decision support tool by local

stakeholders.
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