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Abstract

Water resources are essential to the ecosystem and social economy in the desert and
oasis of the arid Tarim River Basin, Northwest China, and expected to be vulnerable
to climate change. Regional Climate Models (RCM) have been proved to provide more
reliable results for regional impact study of climate change (e.g. on water resources)
than GCM models. However, it is still necessary to apply bias correction before they
are used for water resources research due to often considerable biases. In this paper,
after a sensitivity analysis on input meteorological variables based on Sobol’ method,
we compared five precipitation correction methods and three temperature correction
methods to the output of a RCM model with its application to the Kaidu River Basin,
one of the headwaters of the Tarim River Basin. Precipitation correction methods in-
clude Linear Scaling (LS), LOCal Intensity scaling (LOCI), Power Transformation (PT),
Distribution Mapping (DM) and Quantile Mapping (QM); and temperature correction
methods include LS, VARIlance scaling (VARI) and DM. These corrected precipita-
tion and temperature were compared to the observed meteorological data, and then
their impacts on streamflow were also compared by driving a distributed hydrologic
model. The results show: (1) precipitation, temperature, solar radiation are sensitivity
to streamflow while relative humidity and wind speed are not, (2) raw RCM simula-
tions are heavily biased from observed meteorological data, which results in biases in
the simulated streamflows, and all bias correction methods effectively improved the-
ses simulations, (3) for precipitation, PT and QM methods performed equally best in
correcting the frequency-based indices (e.g. SD, percentile values) while LOCI method
performed best in terms of the time series based indices (e.g. Nash—Sutcliffe coef-
ficient, Hz), (4) for temperature, all bias correction methods performed equally well
in correcting raw temperature. (5) For simulated streamflow, precipitation correction
methods have more significant influence than temperature correction methods and the
performances of streamflow simulations are consistent with these of corrected pre-
cipitation, i.e. PT and QM methods performed equally best in correcting flow duration
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curve and peak flow while LOCI method performed best in terms of the time series
based indices. The case study is for an arid area in China based on a specific RCM
and hydrologic model, but the methodology and some results can be applied to other
area and other models.

)

1 Introduction

In recent decades, the ecological situation of the Tarim River Basin in China has seri-
ously degraded especially in the lower reaches of the Tarim River due to water scarcity.
In the meantime, climate change is significant in this region with a consistent increase
in temperature at a rate of 0.33 ~ 0.39°C decade™ ' and a slight increase in precipitation
(Li et al., 2012) over the past 5 decades. Under the context of regional climate change,
water resources in this region are expected to be more unstable and ecosystems are
likely to suffer from severe water stress because the hydrologic system is particularly
vulnerable to climate change in the arid region (Arnell et al., 1992; Shen and Chen,
2010; Sun et al., 2013; Wang et al., 2013). The impact of climate change on hydrologic
system has already been observed and it is expected that the hydrological system will
continue to change in the future (Liu et al., 2010, 2011; Chen et al., 2010). Therefore,
projecting reliable climate change and its impact on hydrology are important to study
the ecology in the Tarim River Basin.

Only recently efforts have been made to evaluate and project the impact of climate
change on hydrology in the Tarim River Basin. These studies include research on the
relationships of climate variables and streamflow based on the historical measure-
ments (e.g. Z. Chen et al., 2013; Xu et al., 2013), and use of the output of General Cir-
culation Models (GCMs) to drive a hydrologic model to study the future climate change
on water resources (Liu et al., 2010, 2011). Study on historical relationships has limited
applications on future water resource management, especially under the global climate
change background. And though GCMs have been widely used to study impacts of
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future climate change on hydrological systems and water resources, they are impeded
by their inability to provide reliable information at the hydrological scales (Maraun et al.,
2010; Giorgi, 1990). In particular, in mountainous regions, fine scale information such
as the altitude-dependent precipitation and temperature information, which is critical for
hydrologic modeling, is not represented in GCMs (Seager and Vecchi, 2010). Although
there are options to downscale GCM outputs to the regional scale, recent studies tend
to use the higher-resolution Regional Climate Models (RCMs) to preserve the physical
coherence between atmospheric and land surface variables (Bergstrom et al., 2001;
Anderson et al., 2011). As such, when evaluating the impact of climate change on wa-
ter resources in a watershed scale, the use of RCMs instead of GCMs is preferable
since RCMs have been proved to provide more reliable results for impact study of cli-
mate change on regional water resources than GCM models (Buytaert et al., 2010;
Elguindi et al., 2011). However, the RCM simulations may be still biased especially in
the mountainous regions (Murphy, 1999; Fowler et al., 2007), which makes the use of
RCM outputs as the direct input for hydrological model challenging, thus it is of signifi-
cance to properly correct the RCM simulated meteorological variables before they are
used to drive the hydrological model especially in the arid regions where the hydrology
is sensitive to climate change.

Several bias correction methods have been developed to downscale climate vari-
ables from the RCMs, ranging from the simple scaling approach to sophisticated dis-
tribution mapping (Teutschbein and Seibert, 2012). And their applicability in the arid
Tarim River Basin has not been investigated, thereby, evaluating and finding the appro-
priate bias correction method is necessary to evaluate the impact of climate change to
water resources.

This study evaluates performances of five precipitation bias correction methods and
three temperature bias correction methods in correcting RCM output and applied to
the Kaidu River Basin, one of the most important headwaters of the Tarim River. These
bias correction methods include most frequently used bias correction methods. We
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compare their performances in terms of precipitation and temperature and evaluate
their impact on streamflow through hydrological modeling.

The remaining is constructed as follows: Sect. 2 introduces the study area and data;
Sect. 3 describes the bias correction methods for precipitation and temperature along
with the hydrological model, sensitivity analysis method and result analysis strategy;
and then Sect. 4 gives results and discussion, followed by conclusions in Sect. 5.

2 Study area and data
2.1 Study area and observed data

The Kaidu River Basin, with a drainage area of 18634 km? above the Dashankou hy-
drological station, is located on the south slope of the Tianshan Mountains in Northwest
China (Fig. 1). Its altitude ranges from 1340 to 4796 ma.s.l. with an average elevation
of 2995 m, and climate is featured by temperate continental climate with alpine climate
characteristic. As one of the headwaters of the Tarim River, it provides water resources
for agricultural activity and ecological environment of the oasis in the lower reaches.
This oasis, with a population of over 1.15million, is stressed by lack of water and wa-
ter resources are the main factor constricting the development (Y. Chen et al., 2013).
Therefore, projecting the impact of future climate change on water resources is urgent
to the sustainable development of this region.

Daily observed meteorological data, including precipitation, maximum/minimum tem-
perature, wind speed and relative humidity of two meteorological stations (Bayanbulak
and Baluntai, stars in Fig. 1), are from the China Meteorological Data Sharing Service
System (http://cdc.cma.gov.cn/). The mean annual maximum and minimum tempera-
ture at the Bayanbulak meteorological station are 3.1 and —10.6 °C and mean annual
precipitation is 267 mm, and generally precipitation falls as rain from May to September
and as snow from October to April of the next year.
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The observed streamflow data at the Dashankou hydrologic station (the triangle in
Fig. 1) are from Xinjiang Tarim River Basin Management Bureau. The average daily
flow is around 110m3®s™" (equivalent to 185mm runoffyear'1), ranging from 15 to
973m3s™".

2.2 Simulated meteorological variables from the regional climate model

The RCM outputs to be corrected are based on the work done by Gao et al. (2013). In
Gao et al. (2013), the RCM model (RegCM, Giorgi and Mearns, 1999) was driven by
a global climate model BCC_CSM1.1 (Beijing Climate Center Climate System Model;
Wu et al., 2013; Xin et al., 2013) at a horizontal resolution of 50 km over China. The
model was validated with the observational dataset over China for the period from 1961
to 2005. Model validation shows a good simulation was obtained, and compared to
BCC_CSM1.1, marked improvement of the RCM was achieved in reproducing present
day precipitation and temperature (more details refer to Gao et al., 2013). As a first
step to assess the impact of future climate change on water resources, RCM outputs
need to be bias corrected. In this paper, meteorological outputs of the RCM model used
include maximum/minimum temperature, precipitation, wind speed, solar radiation and
humidity.

3 Methodology
3.1 Hydrologic model and sensitivity of input meteorological variables

SWAT (Soil and Water Assessment Tool; Arnold et al., 1998) is a distributed and time

continuous watershed hydrologic model. The climatic input (driving force) consists of

daily precipitation, maximum/minimum temperature, solar radiation, wind speed and

relative humidity, and SWAT uses elevation bands to account for orographic effects

on precipitation and temperature. The processes SWAT simulates include snow ac-

cumulation, snowmelt, evapotranspiration, surface runoff, lateral flow, and baseflow,
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sediment erosion, point and non-point pollution, river routing and in-stream water qual-
ity processes on a daily basis. More details refer to SWAT manuals (www.brc.tamus.
edu/). It has been being widely used for comprehensive modeling of the impact of man-
agement practices and climate change on the hydrologic cycle and water resources at
a watershed scale (e.g. Arnold et al., 2000; Arnold and Fohrer, 2005; Setegn et al.,
2011).

In this study, SWAT model was firstly set up with available DEM, landuse, soil, and
observed climate data, and then model parameters were calibrated with the observed
streamflow data at the Dashankou station. The simulation results show: (1) model appli-
cation shows excellent performances for both calibration period (1986 ~ 1989) and vali-
dation period (1990 ~ 2001) with “NS”s (Nash—Sutcliffe coefficients, Nash and Sutcliffe,
1970; see the definition in Eq. 16) and “R*’s over 0.80, which is highly acceptable,
(2) model parameters are reasonable and spatial patterns of precipitation and temper-
ature are in agree with other studies in the region (see more details in Fang et al.,
2014). Figure 2 shows a comparison of mean hydrographs of the observed (“obs”) and
simulated flows (“default”). This calibrated model hence provides a basis for evaluation
of the impact of different correction methods on streamflow.

To study the relative importance of the five meteorological variables, the Sobol’ sen-
sitivity analysis method (Sobol’, 2001) was applied. The Sobol’ method is based on the
decomposition of the variance I/ of objective function:

V=D Vi+ 2 QVyt+tlip (M
i i j>i

where

Vi = V(u(Y|X:)

Vij =Vu(Y|X, X)) =V -V

and so on. Herein, V (.) denotes the variance operator, V/ is the total variance, and
V; and V;; are main variance of X; (the /th factor of X) and partial variance of X; and
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X;. Here factors X are the changes applied to these five meteorological variables,
respectively (see Table 1 for a list of these factors). In practice, normalized indices are
often used as sensitivity measures:

! V’
iJ Vs = =

,,,,,,

where S;, S;; and Sr; are the main effect of X;, first order interaction between X; and
X;, and total effect of X;. Sr; ranges from 0 to 1 and denotes the importance of the
factor to model output. The larger Sy;, the more important this factor is. The difference
between S;; and S; denotes the significance of the interaction of this factor with other
factors. As a result, the larger this difference, the more significant the interaction is.

3.2 Bias correction methods

In this study, five bias correction methods were used for precipitation, and three for
temperature. These methods are listed in Table 2. All these bias correction methods
were conducted on a monthly basis from 1975 to 2005.

3.2.1 Linear Scaling (LS) of precipitation and temperature

LS method aims to perfectly match the monthly mean of corrected values with that
of observed ones (Lenderink et al., 2007). It operates with monthly correction values
based on the differences between observed and raw data (RCM-simulated data in
this case). Precipitation is typically corrected with a multiplier and temperature with an
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additive term on a monthly basis:

»U(Pobs,m)
Pcor,m,d = Praw,m,d : m (5)
Teor,m,d = Traw,ma + »U(Tobs,m) - .U(Traw,m) (6)

where P, o @nd T, ,, 4 are corrected precipitation and temperature on the dth day
of mth month and P, , 4 and Ty, 4 are the raw precipitation and temperature on
the dth day of mth month. u(.) represents the expectation operator (e.g9. 4(Tops m) rep-
resents the mean value of observed temperature at given month m).

3.2.2 LOCal Intensity scaling (LOCI) of precipitation

LOCI method (Schmidli et al., 2006) corrects the wet-day frequencies and intensities
and can effectively improve the raw data which have too many drizzle days (defined as
days with little precipitation). It normally involves two steps: firstly, a wet-day threshold
for the mth month A, ,, is determined from the raw precipitation series to ensure that
the threshold exceedance matches the wet-day frequency of the observation; secondly,

. P, P, >0 .
a scaling factor s, = — Fovsmalfoosma>0) s cajculated and used to ensure that the
U(Praw,m,a |Praw,m,d >Pinres,m)

mean of the corrected precipitation is equal to that of the observed precipitation:

b _ 0, if Praw,m,d < Pthres,m (7)
cor,m,d Pawmd-Sm» otherwise

3.2.3 Power transformation (PT) of precipitation

While the LS and LOCI account for the bias in the mean precipitation, it does not correct

biases in the variance. PT method uses an exponential form to further adjust the SD

of precipitation series. Since PT has the limitation in correcting the wet day probability

(Teutschbein and Seibert, 2012), which was also confirmed in our study (not shown),

LOCI method is applied to correct precipitation prior to the correction by PT method.
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Therefore, to implement this PT method, firstly, we estimate b, that minimizes:

Pasm) 0P 01
Hb,) = G(Pb m) _ L:CI, @)
H(Pops,m) u(P )

where b, is the exponent for the mth month, o(.) represents the SD operator, and
PLoci,m is the LOCI-corrected precipitation in the mth month. If b, is larger than one,
it indicates that the LOCI-corrected precipitation underestimates its coefficient of vari-
ance in month m.

After finding the optimal b,,, the parameter s, = HlPobsm)

bm
LOCI,m

that the mean of the corrected values corresponds to the observed mean. The cor-
rected precipitation series are obtained based on the LOCI corrected precipitation

Pcor,m,d:

is then determined such

by,
Pcor,m,d = sm'PLOCI,m,d' 9)

3.2.4 Variance scaling (VARI) of temperature

The PT method is an effective method to correct both the mean and the variance of
precipitation, but it cannot be used to correct temperature time series, as temperature
is known to be approximately normally distributed (Terink et al., 2010). VARI method
was developed to correct both the mean and variance of normally distributed variable
such as temperature (Teutschbein and Seibert, 2012; Terink et al., 2010). Temperature
is normally corrected using VARI method with Eq. (10).

0(Tops,m)
7-cor,m,d = [Traw,m,d - :U(Traw,m)] : O'(TOJ

raw,m)

+ ;U(Tobs,m) (1 0)
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3.2.5 Distribution mapping (DM) of precipitation and temperature

DM method is to match the distribution function of raw data to that of observation.
It is used to adjust mean, SD and quantiles. Furthermore, it preserves the extremes
(ThemeRl et al., 2012). However, it also has its limitation due to the assumption that
both the observed and raw climate variables follow the same proposed distribution,
which may introduce potential new biases.

For precipitation, the Gamma distribution (Thom, 1958) with shape parameter a and
scale parameter G is often used for precipitation distribution and has been proven to
be effective (e.g. Block et al., 2009; Piani et al., 2010):
f.(x|a,B) = x*~1. 7:x20,0,8>0

—e 11
T @) an
where I'(.) is the Gamma function. Since the raw RCM-simulated precipitation contains
a large number of drizzle days, which may substantially distort the raw precipitation
distribution, the correction is done on LOCI corrected precipitation A o¢ . 4-
-1

Peormd = Fr (Fr(Ploci,m,al@Loctm: BLoctm)|@obs,m: Bobs,m) (12)
where F,(.) and F,‘1(.) are Gamma CDF (cumulative distribution function) and its in-
verse. @ oo m and B oc, are the fitted Gamma parameter for the LOCI corrected
precipitation in a given month m, and @ ,, and B,y , are these for observation.

For temperature, the Gaussian distribution (or normal distribution) with mean u and
SD o is usually assumed to fit temperature best (Teutschbein and Seibert, 2012):

—(x—p)?
X @ 202

fn(x|u, o) = _r ;X € R. (13)

o x V21

And then similarly the corrected temperature can be expressed as:

7-cor,m,d = F/\71 (FN(Traw,m,dIﬂraw,m’ O-raw,m)ltuobs,m’ O-obs,m) (14)
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where Fy(.) and F,\f(.) are Gaussian CDF and its inverse, L, , and Uy ,, are the
fitted and observed means for the raw and observed precipitation series at a given
month m, and Oy, ,, and Oy 1, are the corresponding SDs, respectively.

3.2.6 Quantile Mapping (QM) of precipitation

QM method is a non-parametric bias correction method and is generally applicable for
all possible distributions of precipitation without any assumption on precipitation dis-
tribution. This approach originates from the empirical transformation (Themefl et al.,
2012) and was successfully implemented in the bias correction of RCM simulated pre-
cipitation (Sun et al., 2011; ThemeBl et al., 2012; J. Chen et al., 2013; Wilcke et al.,
2013). It can effectively correct bias in the mean, SD and wet day frequency as well as
quantiles.

For precipitation, the adjustment of precipitation using QM can be expressed in terms
of the empirical CDF (ecdf) and its inverse (ecdf‘1):

Pcor,m,d = eCdf;;s‘m(eCdfraw,m(’Draw,m,d)) (15)

3.3 Performance evaluation

The performance evaluation of these correction methods is based on their abilities
to reproduce precipitation, temperature, and streamflow simulated with a hydrological
model (SWAT) driven by bias corrected RCM-simulation, specifically. When evaluating
ability to reproduce streamflow, streamflow is firstly simulated by running the hydro-
logical model driven by 15 different combinations of corrected precipitation, max/min
temperature with different correction methods (these hydrologic simulations are then
referred to as simulations 1 to 15, which are listed in Table 3) together with hydrologic
simulations driven by observed meteorological data (“default”) and raw RCM simula-
tion (“raw”). These 15 simulations were then compared with observed streamflows and
“default” and “raw”.
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The performance evaluation of precipitation, temperature and streamflow with differ-
ent correction methods are:

1. For corrected precipitation, frequency-based indices and time series perfor-
mances are compared with observed precipitation data. The frequency-based
5 indices include mean, median, SD, 90th percentile, probability of wet days, and
intensity of wet day while time series based metrics include NS, R? and Percent

bias (Fzias):

n
2
i=1
% (yObS ymean>2

i=1

I;( yobs _ S|m>
% (Y/'Obs)

10 i=1

(Yobs Ysm)

NS =1- (16)

(17)

PBIAS =

mean

where Y°°° and ¥°™ are the ith observed and simulated variables, ¥™" is the

mean of observed variables, and n is the total number of observations.

NS indicates how well the simulation matches the observation and it ranges be-
tween —oco and 1.0, with NS = 1 meaning a perfect fit. The higher this value, the
15 more reliable the model is. Py pg Mmeasures the average tendency of the simulated
data to their observed counterparts. Positive values indicate an overestimation of
observation, while negative values indicate an underestimation. The optimal value
of Pgias is 0.0, with low-magnitude values indicating accurate model simulations.

2. For corrected temperature, frequency-based indices and time series perfor-
20 mances are compared with observed temperature data. The frequency-based
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indices include mean, median, SD, and 10th, 90th percentiles while time series
based metrics include NS, RZ and Fgas.

3. For simulated streamflow driven by corrected RCM-simulations, the frequency-
based indices are visualized using boxplot, exceedance probability curve, and ex-
ceedance probabilities of 7 day peak flow and low flow. Time series based metrics
include NS, R? and Pgas.

4 Results

4.1 |Initial streamflow simulation driven with raw RCM simulation and sensitivity
analysis

To illustrate the necessity of bias correction in climate change impact on hydrology, we
re-calibrated SWAT using the raw RCM simulation while keeping all SWAT parame-
ters in their reasonable ranges. The assumption is that if the re-calibrated hydrological
model driven by the raw RCM simulation performs well and model parameters are rea-
sonable, then there is no need for bias correction. The streamflow simulated by the
re-calibrated model was plotted in Fig. 2, and it systematically overestimates the ob-
servation a lot with NS equals to —6.65. Therefore, it is necessary to correct the climate
variables before they can be used for hydrological impact study.

And then the Sobol’ method was applied to study which meteorological variables
should be corrected for hydrological modeling. Table 1 lists the sensitivity results for
these five meteorological variables. As it can be seen, precipitation is the most sensitive
(the main effect S; is 44.0 % and total effect Sy; is 74.0 %), followed by temperature
(S; =15.0% and Sy; = 36.9 %) and solar radiation (S; = 7.7 % and S7; = 22.6 %), and
the interactions between these factors are large. The relative humidity and wind speed
are insensitive in this case. This means precipitation, temperature and solar radiation
need to be bias corrected before applied to hydrologic models.
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4.2 Evaluation of corrected precipitation and temperature

The bias correction was done on RCM simulated precipitation, minimum temperature,
maximum temperature, and solar radiation (for solar radiation, LS and VARI methods
were used) for two meteorological stations Bayanbulak and Baluntai. Results show:
(1) for solar radiation, there is no significant difference for different correction methods.
There the results are not shown. (2) Similar results were obtained for minimum temper-
ature and maximum temperature, and for Bayanbulak and Baluntai. Therefore we only
list and discuss results for Bayanbulak, and maximum temperature.

Table 4 lists the frequency-based statistics of observed, raw RCM-simulated and cor-
rected precipitation data at the Bayanbulak Station. This station has a low precipitation
(daily mean 0.73 mm or annual mean 266 mm) and precipitation falls in 32 % days in
a year with a mean intensity 2.3 mm. Compared to the observation, the raw RCM sim-
ulation deviates significantly from observation, with overestimations of all the statistics.
All the bias-correction methods improves the raw RCM-simulated precipitation, how-
ever, there are differences between their corrected statistics. LS method has a good
estimation of the mean while it shows a large bias in other measures, e.g. it largely
overestimated the probability of wet days (e.g. up to 41 % overestimation) and under-
estimated the SD (up to 0.91 mm underestimation). LOCI method provides a good
estimation in the mean, median, wet-day probability and wet-day intensity; however,
there is a slight underestimation in the SD and therefore 90th percentile. Compared
to LS and LOCI, PT method performs well in all these metrics. In spite of slight better
estimation of SD, probability of wet days and intensity of wet day, DM method has an
overestimation of the mean and an underestimation of SD. This means that precipi-
tation does not follow the assumed Gamma distribution. On the contrary, QM method
does not have this assumption and it provides an excellent estimation of these statis-
tics. These results are consistent with previous studies (Themefl et al., 2011, 2012;
Wilcke et al., 2013; Graham et al., 2007).
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Table 5 lists the frequency-based statistics of observed, raw RCM simulated and
bias-corrected maximum temperature data at the Bayanbulak Station. The mean and
SD are 3.08 and 14.5°C, with the 90th percentile being 19.2°C. Analysis of the raw
RCM simulation indicates deviation from observation, with an overestimation of the
mean, and underestimations of the median, SD, and 90th percentile. All three bias-
correction methods corrected biases in raw RCM temperature simulation and improved
estimations of the statistics. LS has a correct estimation of mean but a slight underes-
timation of median and SD, while VARI and DM have a good match with observations
for all the frequency-based statistics. These results are in accordance with Teutschbein
and Seibert (2012), i.e. LS method does not adjust the SD and the 10th/90th per-
centiles while VARI and DM methods do.

Figure 3 shows the exceedance probability curves of the observed and corrected
precipitation and temperature. For precipitation, the raw RCM simulation is heavily bi-
ased (as also shown by statistics in Table 4). All correction methods effectively, but
in different extent, correct biases in raw precipitation. The LS method underestimates
the high precipitation with probability below 0.06 and overestimates the low precip-
itation with probability between 0.06 ~ 0.32. The overestimation of precipitation with
probability between 0.32 ~ 0.73 indicates LS method has a very limited ability in re-
producing dry day precipitation (below 1 mm). Similar to LS method, the LOCI method
also overestimates the low precipitation with probability between 0.08 ~ 0.32 and un-
derestimates the high precipitation with probability below 0.08. However, unlike LS
method, LOCI method performs well on the estimation of the dry days with precipi-
tation below 1 mm. The PT, DM and QM methods well adjust precipitation exceedance
except that DM method slightly overestimates the precipitation with probability between
0.12 ~ 0.28. For temperature, the raw temperature overestimates low temperature with
probability above 0.65 and underestimates high temperature with probability below
0.65. All temperature correction methods adjust the biases in raw temperature and the
corrected temperature has the similar quantiles with the observation. They performed
equally well and differences among each correction method are negligible.
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Time series based performances were evaluated and results are listed in Fig. 4 and
Table 6. For precipitation, all bias correction methods significantly improve the raw RCM
simulations. However, as shown in the right plot of Fig. 4, there is a systematic mis-
match between observation and corrections which follow the pattern of raw RCM sim-
ulation. In addition, this mismatch differs between different methods, among which the
difference is smaller for LS and LOCI methods than for PT, DM, and QM methods. This
resulted in a slightly better squared difference based measures (e.g. NS, Rz) for LS
and LOCI than PT, DM and QM methods, as indicated in Table 6. Similar to precipita-
tion, all correction methods significantly improved the raw RCM simulated temperature.
Differences between observation and raw temperature (e.g. 1.1°C in spring, 1.0°C in
summer, 3.3°C in autumn, and up to 7.6°C in winter) were significantly corrected.
These three correction methods performed equally well and no significant differences
exist between the average annual daily temperature graphs.

Table 6 lists performances of correction methods for monthly time series of precip-
itation and temperature at the Bayanbulak Station. For precipitation, the performance
of the raw RCM simulation is very poor as indicated by very low NS and R?, and the
improvements of correction are obvious. The “Pg|ag”s of the corrected precipitation are
within £5% and “NS”s approach 0.64. It is worth noting that LS and LOCI methods
perform better than PT and QM methods in terms of time series performances. For
temperature, although the raw RCM simulation obtains an acceptable NS value (0.84),
it severely overestimates the observation (Fgag equals to 15.78 %). The “Fgag”s of the
corrected temperatures are within £5% and “NS”s are over 94 % (better than that of
the “raw”) for all three correction methods and there is no significant difference be-
tween these results, which indicates the corrected monthly temperature series are in
good agreement with the observation.

4.3 Evaluation of streamflow simulations

Figure 5 compares the mean, median, first and third quantiles of daily observed stream-
flows (“obs”) with simulated streamflows driven by observed meteorological inputs
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(“default”), raw RCM simulations (“raw”), and 15 combinations of corrected precipita-
tion and corrected temperature (i.e. simulations 1—15). The overestimation of simulated
streamflow using uncorrected RCM climate variables (i.e. “raw”) is obvious. For simu-
lations 1-3, streamflow overestimations are also observed and they substantially over-
estimate the mean streamflow by over 100 %, while simulations 4—15 reproduce similar
streamflows as the observation or simulation “default”. As the major difference between
simulations 1-3 and other simulations is that simulations 1-3 use the LS-corrected
precipitation, this means precipitation corrected with LS method is not suitable for flow
simulation in this study.

Figure 6 shows the exceedance probability curves (flow duration curves) of the ob-
served flow, and flows with simulations “default” and simulations 4-15. Generally all
simulations are in good agreement with the observation for frequencies between 0.12
and 0.72, and precipitation correction methods have more significant influence than
temperature correction methods. This confirms the previous sensitivity result that pre-
cipitation is the most sensitive driving force to streamflow simulation. Similar to perfor-
mances of bias corrected precipitation, simulations with DM-corrected precipitation (i.e.
simulations 10-12) deviates the observation the most, followed these with LOCI cor-
rected precipitation (i.e. simulations 4—6), and then with PT method and QM method. All
simulations encounter the problem to correctly mimic the low flow part (i.e. exceedance
larger than 0.7). This might be a systematic problem of the calibrated hydrologic model
(as indicated by simulation “default”), e.g. the objective function of the hydrological
modeling is not focused on baseflow. Differences among streamflows driven by dif-
ferent temperature but same precipitation are insignificant. This result differs from the
study of Teutschbien and Seibert (2012). This may be related to the chosen RCM
model or watershed characteristic.

The time series performances of simulation “default”, simulation “raw” and simula-
tions 1—15 at daily and monthly time steps are summarized in Table 3. The “default”
performs well with NS reaching 0.80 for daily and 0.90 for monthly streamflow. The
‘raw” is heavily biased with NS close to —53.4 and Fgzg as large as 421 % for monthly
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data. All the 15 simulations improve the statistics of the “raw” scenario significantly. For
simulations 1 to 3, whose precipitation series are corrected by LS method, NS ranges
from -3.10 to —2.87 for monthly streamflow and they substantially overestimate the
streamflow with Py ag Over 110 %. For simulations 4—15, monthly “NS”s are over 0.60,
which indicates they can reproduce satisfactory monthly streamflow in this watershed,
and simulations with precipitation corrected by LOCI (simulations 4 to 6) have best
“NS”s and “Pgjas”s. However, these indices of daily streamflow are lower (the highest
NS is 0.50 for simulations 5 and 6), and this is related to the mismatch between cor-
rected and observed precipitation time series (see top plot in Fig. 4), which is intrinsic
from the RCM model and cannot be improved through these correction methods.

It is worth noting that simulations 1-3 and simulations 4—6, whose precipitation is
corrected by LS and LOCI, respectively, vary significantly. The difference between LS
and LOCI is that LOCI introduces a threshold for the wet day precipitation to correct
the wet day probability while LS does not. That is a simple but quite pragmatic ap-
proach since the raw RCM simulated precipitation usually has too many drizzle days
(Teutschbein and Seibert, 2012). Obviously, wet day probability is crucial to streamflow
simulation in this study.

Figure 7 shows the simulated monthly mean flow and exceedance probability curves
of 7day peak and 7day low flow. For the monthly mean streamflow, obviously the
“raw” is heavily biased with deviations ranging from 282 to 426 %. Simulations 1-3
also overestimate the observation, while simulations 4—15 reproduced good monthly
mean streamflow especially for simulations 4—6. The annual peak flow and low flow
is presented in Fig. 7 to investigate the impact of bias correction methods on extreme
flows. For the peak flow, the exceedance probabilities of the simulations 4-15 are close
to the observation while “raw” and simulations 1-3 deviate significantly (not shown). It
is worth noting that simulations 4—6, which perform the best in terms of the “NS”s,
slightly underestimate the peak flow by 1 ~ 28 %. The reason may be that the LOCI
method adjusts all precipitation events in a certain month with a same scaling factor,
which leads to the underestimation of the SD (Table 4) and high precipitation intensity,
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and finally results in an underestimation of the peak streamflow. For the low flow, all
simulations overestimate the observation, but are in good agreement with the “default”,
which can be attributed to the systematic deficit of the hydrological model.

For the peak flow and low flow, both DM and QM methods perform well and QM
method is slightly better than DM method as the latter overestimates both peak flow
and low flow. However, there is an essential problem of QM method when comes to
correcting future climate since it fails to resolve the “new extreme” (modeled values be-
yond the observed range) problem (ThemeBl et al., 2012) as the corrected precipitation
always falls between the maximum and minimum values.

5 Conclusions

This work compared the abilities of five precipitation bias correction methods and three
temperature bias correction methods in correcting RCM simulations for an arid re-
gion. The evaluation includes their abilities to reproduce precipitation, temperature and
streamflow simulated using a hydrological model driven by corrected variables.

Sensitivity analysis shows precipitation is the most sensitive driving force to stream-
flow simulation, followed by temperature and solar radiation, while relative humidity and
wind speed are not sensitive.

The raw RCM simulations are heavily biased from observed data, and this results in
biases in the simulated streamflows which cannot be corrected by model calibration;
and all bias correction methods effectively improve these simulations.

For precipitation, the PT and QM methods performed equally best in terms of the
frequency-based indices, (e.g. mean, SD, percentiles); while LOCI method performed
best in terms of the time series based indices (e.g. NS, Fgag and R?).

For temperature, the raw RCM simulated temperature is highly relevant to the ob-
servation but generally biased (E’2 =0.88 and Fgag = 15.78 % for monthly data). All
correction methods effectively corrected biases in the raw RCM-simulated temperature
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and they performed almost equally well for both frequency-based indices and time se-
ries based indices.

For simulated streamflow, precipitation correction methods have more significant in-
fluence than temperature correction methods and their performances of streamflow
simulations are consistent with these of corrected precipitation, i.e. PT and QM meth-
ods performed equally best in correcting flow duration curve and peak flow while LOCI
method performed best in terms of the time series based indices (e.g. NS =0.69,
|Paias| < 5 %). Besides, the wet day probability is vital in simulating streamflow in this
study and it is recommended the LOCI method be applied to correct precipitation prior
to the correction by PT method.

This study also stresses the need for bias correction when assessing the impact
of climate change on hydrology using the RCM simulations. The most appropriate
bias correction method for RCM simulations may differ regarding to climate conditions
or evaluation indices. As such, it is necessary to find an appropriate bias correction
method based on the study purpose.
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Table 1. Sensitivity indices of the five meteorological variables based on the Sobol’ method.

Factor = Meaning Factor Main effect S;(%) Total effect Sy;(%)
range

a__tmp Additive change to temperature [-5,5] 15.0 36.9

r__pcp Relative change to precipitation [-0.5,0.5] 44.0 74.0

r__hmd Relative change to humidity [-0.5,0.5] 0.0 0.0

r__slr Relative change to solar radiation  [-0.5,0.5] 7.7 22.6

r__wnd Relative change to wind speed [-0.5,0.5] 0.3 0.9
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Table 3. Performances of simulated streamflows driven by observed (default), raw RCM-
simulated (raw), and 15 combinations of bias-corrected precipitation and temperature during
the period 1986 ~ 2001. For all combinations, solar radiation is corrected with Linear Scaling
(LS) method. (Values are given with two decimals.)

Bias correction method Daily Monthly

Precipitation =~ Temperature NS Psias R? NS Fsias R?
default obs obs 0.80 4.33 0.81 0.90 433 0.90
raw raw raw -44.91 42047 0.36 -53.35 421.07 0.58
1 LS LS -2.65 11557 0.48 -3.10 115.81 0.69
2 LS VARI -243 112.74 0.50 -2.87 11295 0.71
3 LS DM -243 112.74 0.50 -2.87 11295 0.71
4 LOCI LS 049 -3.74 0.50 069 -3.71 0.69
5 LOCI VARI 0.50 -4.45 0.51 0.69 -4.43 0.70
6 LOCI DM 0.50 -4.45 0.51 069 -4.43 0.70
7 PT LS 0.37 1.10 043 0.62 1.14 0.63
8 PT VARI 0.38 0.27 0.43 0.63 0.29 0.63
9 PT DM 0.38 8.29 0.45 0.62 8.34 0.65
10 DM LS 0.40 7.50 0.46 0.63 6.72 0.62
11 DM VARI 0.40 7.50 0.46 0.63 590 0.62
12 DM DM 0.38 0.27 0.43 0.63 590 0.61
13 QM LS 0.37 1.83 0.43 0.63 1.87 0.64
14 QM VARI 0.38 0.99 043 0.63 1.01 0.63
15 QM DM 0.38 0.99 0.43 0.63 1.01 0.63
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Table 4. Frequency-based statistics of daily observed (“obs”), raw RCM-simulated (“raw”) and
bias-corrected precipitations at the Bayanbulak Station (values are given with two decimal dig-

its).

Mean Median SD 90th percentile  Probability of Intensity of
(mm)  (mm) (mm)  (mm) wet days (%) wet day (mm)
obs 0.73 0.00 2.44 1.90 32 2.30
raw 2.87 1.44 4.09 7.44 86 3.34
LS 0.73 0.20 1.53 2.10 73 1.00
LOCI  0.73 0.00 1.70 2.40 32 2.29
PT 0.73 0.00 2.44 1.80 32 2.30
DM 0.78 0.00 2.30 2.11 32 2.46
QM 0.73 0.00 2.44 1.90 32 2.31
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Table 5. Frequency based statistics (unit: °C) of daily observed (“obs”), raw RCM simulated
(“raw”) and bias corrected maximum temperatures at the Bayanbulak Station (values are given

with two decimals).

Mean Median SD  10th percentile 90th percentile
obs 3.08 7.20 14.50 -18.70 19.20
raw 3.45 3.21 10.88 -10.34 17.90
LS 3.08 6.65 14.14 -17.33 19.40
VARI  3.08 6.85 14.50 -17.76 19.36
DM 3.08 6.85 14.50 -17.76 19.36
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Table 6. Time series based metrics of bias-corrected precipitation and temperature on
a monthly scale at the Bayanbulak Station (values are given with two decimals).

NS Pyns (%) A

Precipitation raw -6.78 293.28 0.42
LS 0.64 0.06 0.65

LOCI 0.61 -0.71 0.64

PT 0.42 -0.09 0.53

DM 0.46 6.64 0.56

QM 0.44 0.03 0.54

Temperature raw 0.84 15.78 0.88
LS 0.95 3.04 0.95

VARI 0.94 478 0.94

DM 0.94 474 0.94
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Figure 1. Location of the study area, two meteorological stations and one hydrological station.
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Figure 2. Mean annual hydrographs of observed streamflow (“obs”) and simulated stream-
flow using observed meteorological data (“default”) during the period of 1986 ~ 2001 at the
Dashankou Station. The simulated streamflow using raw RCM-simulated meteorological data
after re-calibration (“raw”) is also plotted. The NS values are for the daily continuous data and
not for the mean hydrograph.
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Figure 3. Exceedance probabilities of the observed (“obs”), raw, and bias-corrected precipita-
tion (top panel) and temperature (bottom panel) at the Bayanbulak Station.
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Figure 4. Average precipitation and temperature hydrographs of observed (“obs”), raw RCM
simulated (“raw”), and bias corrected values at Bayanbulak Station, which were smoothed with
7 day moving average method. The precipitation and temperature during May to August is am-
plified to inspect the performance of each correction method.
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Figure 5. Box plots of observed (“obs”) and simulated daily streamflows using observed (“de-
fault”), raw RCM simulated (“raw”) and corrected meteorological data (numbers from 1 to 15;
see Table 3 for setup of these 15 simulations). Solid boxes signify values from 1st to 3rd quan-
tile while the median value is shown in the interior of the box, and the mean values are shown
with diamonds.
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Figure 6. Exceedance probability curves of observed (“obs”) and simulated streamflow driven
by observed (“default”), and bias-corrected meteorological data (numbers from 4 to 15; also
see Table 3 for detail setup of these 12 simulations). For plotting purpose, simulations “raw”

and 1-3 are not shown.

0.1

0.2

1
0.3 0.4 0.5 0.6

Exceedance

12695

0.7

obs
default

4:L0OCI_LS

5: LOCI_VARI
6: LOCI_DM

7:PT_LS

8: PT_VARI

9: PT_DM
10: DM_LS

11: DM_VARI
12: DM_DM

13: QM LS

14: QM_VARI
15: QM_DM

| Jadeq uoissnosigq | Jedeq uoissnosiq | Jaded uoissnosiqg

Jaded uoissnosiq

HESSD
11, 12659-12696, 2014

Comparing bias
correction methods
in downscaling
meteorological
variables

G. H. Fang et al.

(8)
K] (=)



http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/12659/2014/hessd-11-12659-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/12659/2014/hessd-11-12659-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

L] obs
e default
g l")m raw
g E 400 i 1:LS LS
ENr e 2: LS_VART
g 2 A s 3:1S DM
S E rd e .
S 5 100 o N, | 4:LOCI_LS
& 7 // g - 5: LOCI_VARI
oo o — - — 6:LOCI_DM
40 , I . [ 7:PT_LS
JJ)FM AMIJ I A S OND 8 PT VARI
Month 9:PT_DM
10: DM LS
11: DM_VARI
o A0 . 1 12: DM_DM
g LA 13:QM_LS
< E R B bbb 14: QM_VARI
= & 350 ° o i - 15:QM DM
3 5 ~ o
g = N
< % o g
Q - S .
2 =
0 S B
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Exceedance
70
_I‘/-\ 60' .
_E’m"’ [ ——
~ §, N
= 3 50 o e
S z
=
g2
< g .
2 40 . N
[ ]
35 . . . ® L]
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Exceedance

Figure 7. Monthly mean streamflow (top) and exceedance probability curves of annual 7 day
peak flow (middle) and annual 7 day low flow (bottom) during 1986 ~ 2001 in the Kaidu River
Basin. The observation (“obs”), and simulated streamflows using observed (“default”), raw
RCM-simulated (“raw”) and bias-corrected (numbers from 1 to 15; also see Table 3 for de-
tail setup of these 15 simulations) meteorological data are also shown in the monthly mean
plot. For peak flow and low flow, the raw and simulations 1-3 are not shown as they are heavily
biased.
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