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Abstract. The use of lumped, conceptual models in hydro-

logical impact studies requires placing more emphasis on

the uncertainty arising from deficiencies and/or ambiguities

in the model structure. This study provides an opportunity

to combine a multiple-hypothesis framework with a multi-

criteria assessment scheme to reduce structural uncertainty

in the conceptual modelling of a mesoscale Andean catch-

ment (1515 km2) over a 30-year period (1982–2011). The

modelling process was decomposed into six model-building

decisions related to the following aspects of the system be-

haviour: snow accumulation and melt, runoff generation, re-

distribution and delay of water fluxes, and natural storage ef-

fects. Each of these decisions was provided with a set of al-

ternative modelling options, resulting in a total of 72 compet-

ing model structures. These structures were calibrated using

the concept of Pareto optimality with three criteria pertaining

to streamflow simulations and one to the seasonal dynamics

of snow processes. The results were analyzed in the four-

dimensional (4-D) space of performance measures using a

fuzzy c-means clustering technique and a differential split

sample test, leading to identify 14 equally acceptable model

hypotheses. A filtering approach was then applied to these

best-performing structures in order to minimize the overall

uncertainty envelope while maximizing the number of en-

closed observations. This led to retain eight model hypothe-

ses as a representation of the minimum structural uncertainty

that could be obtained with this modelling framework. Future

work to better consider model predictive uncertainty should

include a proper assessment of parameter equifinality and

data errors, as well as the testing of new or refined hypothe-

ses to allow for the use of additional auxiliary observations.

1 Introduction

Conceptual catchment models based on the combination of

several interconnected stores are popular tools in flood fore-

casting and water resources management (e.g. Jakeman and

Letcher, 2003; Xu and Singh, 2004). The main rationale be-

hind this success lies in the fact that relatively simple struc-

tures with low data and computer requirements generally out-

weigh the performance of far more complex physically based

models (e.g. Michaud and Sorooshian, 1994; Refsgaard and

Knudsen, 1996; Kokkonen and Jakeman, 2001). Also, most

water management decisions are made at operational scales

having much more to do with catchment-scale administra-

tive considerations than with our understanding of fine-scale

processes. As a result, conceptual models are being increas-

ingly used to evaluate the potential impacts of climate change

on hydrological systems (e.g. Minville et al., 2008; Ruelland

et al., 2012) and freshwater availability (e.g. Milano et al.,

2013; Collet et al., 2013).

This modelling strategy, however, is regularly criticized

for oversimplifying the physics of catchments and leading

to unreliable simulations when conditions shift beyond the

range of prior experience. Part of the problem comes from the

fact that model structures are usually specified a priori, based

on preconceived opinions about how systems work, which

in general leads to an excessive dependence on the calibra-
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tion process. More than a lack of physical background, this

practice reveals a misunderstanding about how such mod-

els should be based on physics (Kirchner, 2006; Blöschl and

Montanari, 2010). Hydrological systems are not structureless

things composed of randomly distributed elements, but rather

self-organizing systems characterized by the emergence of

macroscale patterns and structures (Dooge, 1986; Sivapalan,

2005; Ehret et al., 2014). As such, the reductionist idea that

catchments can be understood by merely aggregating (up-

scaling) fine-scale mechanistic laws is generally misleading

(Dooge, 1997; McDonnell et al., 2007). Self-organization at

the catchment scale means that new hydrologic relationships

with fewer degrees of freedom have to be envisioned (e.g.

McMillan, 2012a). Yet, finding simplicity in complexity does

not imply that simple models available in the literature can be

used as ready-made engineering tools with little or no con-

sideration for the specific features of each catchment (Wain-

wright and Mulligan, 2004; Savenije, 2009). As underlined

by Kirchner (2006), it is important to ensure that the “right

answers” are obtained for the “right reasons”. In the case

of poorly defined systems where physically oriented inter-

pretations can only be sought a posteriori to check for the

model realism, this requires placing more emphasis on the

uncertainty arising from deficiencies and/or ambiguities in

the model structure than is currently done in most hydrolog-

ical impact studies.

Structural uncertainty can be described in terms of inad-

equacy and non-uniqueness. Model inadequacy arises from

the many simplifying assumptions and epistemic errors made

in the selection of which processes to represent and how to

represent them. It reflects the extent to which a given model

differs from the real system it is intended to represent. In

practice, this results in the failure to capture all relevant as-

pects of the system behaviour within a single model struc-

ture or parameter set. A common way of addressing this

source of uncertainty is to adopt a top-down approach to

model-building (Jothityangkoon et al., 2001; Sivapalan et al.,

2003), in which different models of increasing complexity

are tested to determine the adequate level of process rep-

resentation. Where fluxes and state variables are made ex-

plicit, alternative data sources (other than streamflow) such

as groundwater levels (Seibert, 2000; Seibert and McDon-

nell, 2002), tracer samples (Son and Sivapalan, 2007; Birkel

et al., 2010; Capell et al., 2012) or snow measurements

(Clark et al., 2006; Parajka and Blöschl, 2008), can also

be used to improve the internal consistency of model struc-

tures. Additional criteria can then be introduced in relation

to these auxiliary data or to specific aspects of the hydro-

graph (driven vs. non-driven components, rising limb, reces-

sion limbs, etc.). In this perspective, multi-criteria evaluation

techniques based on the concept of Pareto-optimality pro-

vide an interesting way to both reduce and quantify structural

inadequacy (Gupta et al., 1998; Boyle et al., 2000; Efstra-

tiadis and Koutsoyiannis, 2010). A parameter set is said to be

Pareto-optimal if it cannot be improved upon without degrad-

ing at least one of the objective criteria. In general, meaning-

ful information on the origin of model deficiencies can be

derived from the mapping of Pareto-optimal solutions in the

space of performance measures (often called the Pareto front)

and used to discriminate between several rival structures (Lee

et al., 2011). Further, the Pareto set of solutions obtained with

a given model is commonly used to generate simulation en-

velopes (hereafter called “Pareto-envelopes” for the sake of

brevity) representing the uncertainty associated with struc-

tural errors (i.e. model inadequacy).

Non-uniqueness refers to the existence of many differ-

ent model structures (and parameter sets) giving equally ac-

ceptable fits to the observed data. Structural inadequacy and

the limited (and often uncertain) information of the avail-

able data make it highly unlikely to identify a single, unam-

biguous representation of how a system works. There may

be, for instance, many different possible representations of

flow pathways yielding the same integral signal (e.g. stream-

flow) at the catchment outlet (Schaefli et al., 2011). Non-

uniqueness in model identification has also been widely de-

scribed in terms of equifinality (Beven, 1993, 2006) and may

be viewed as a special case of a more general epistemo-

logical issue known as the “underdetermination” problem.

Over the past decade, these considerations have encouraged

a shift in focus toward more flexible modelling tools based

on the concept of multiple working hypotheses (Buytaert

and Beven, 2011; Clark et al., 2011). A number of modu-

lar frameworks have been proposed, in which model compo-

nents (i.e. individual hypotheses) can be assembled and con-

nected in many ways to build a variety of alternative model

structures (i.e. overall hypotheses). Recent examples of such

modular modelling frameworks (MMFs) include the Impe-

rial College Rainfall–Runoff Modelling Toolbox (RRMT)

(Wagener et al., 2002), the Framework for Understanding

Structural Errors (FUSE) (Clark et al., 2008) and the SU-

PERFLEX modelling environment (Fenicia et al., 2011).

Clark et al. (2011) suggested that this approach to model

identification represents a valuable alternative to “most prac-

tical applications of the top-down approach”, which “sel-

dom consider competing process representations of equiv-

alent complexity”. Compared to current multimodel strate-

gies, MMFs also provide the possibility to better scrutinize

the effect of each individual hypothesis (i.e. model compo-

nent), provided that the model decomposition is sufficiently

fine-grained. Finally, Clark et al. (2011) argued that ensem-

bles of competing model structures obtained from MMFs

(both of equal and varying complexity) can also be used to

quantify the structural uncertainty arising because of sys-

tem non-identifiability (i.e. model non-uniqueness). So far,

however, this method has mostly been applied to relatively

small (< 500 km2) and humid catchments of the Northern

Hemisphere (Krueger et al., 2010; Smith and Marshall, 2010;

Staudinger et al., 2011; Kavetski and Fenicia, 2011; McMil-

lan et al., 2012b; Coxon et al., 2013), with less attention be-

ing given to larger scales of interest (> 1000 km2) and semi-
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Figure 1. The Claro River basin at Rivadavia (1515 km2) in Chile: topography and mean annual precipitation and temperature from 1982

to 2011 (based on Ruelland et al., 2014). Several of the stations used in this study were located outside the catchment and therefore are not

displayed on the following maps.

arid regions (e.g. Clark et al., 2008). Moreover, several of

these studies have insisted on the need for multiple crite-

ria related to different aspects of the system’s behaviour in

order to improve the usefulness of MMFs. Yet, most of the

time these additional criteria or signatures were not used to

guide model development or constrain calibration but rather

as posterior diagnostics in validation (see Kavetski and Feni-

cia, 2011). Thus, the potential benefits of using the con-

cept of Pareto-efficiency to constrain model development and

help differentiate between numerous competing hypotheses

remain largely unexplored in the current literature devoted

to MMFs. Also, very few studies have included alternative

conceptual representations of snow processes in their modu-

lar frameworks (e.g. Smith and Marshall, 2010), even though

snowmelt may have played a significant role in several cases

(Clark et al., 2008; Staudinger et al., 2011).

Addressing these issues is of particular importance in the

case of arid to semi-arid Andean catchments such as those

found around 30◦ S. The Norte Chico region of Chile, in par-

ticular, has been identified as being highly vulnerable to cli-

mate change impacts in a number of recent reports (IPCC,

2013) and studies (e.g. Souvignet et al., 2010; Young et al.,

2010). Yet, very few catchments in this region have been

studied intensively enough to provide reliable model simula-

tions, often with no estimation of the surrounding uncertainty

(Souvignet, 2007; Ruelland et al., 2011; Vicuña et al., 2011;

Hublart et al., 2013). This study is the first step of a larger

research project, whose final aim is to assess the capacity

to meet current and future irrigation water requirements in

a mesoscale catchment of the Norte Chico region. The ob-

jective here is to provide a set of reasonable model struc-

tures that can be used for the hydrological modelling of the

catchment. To achieve this goal, a MMF was developed and

combined with a multi-criteria optimization framework using

streamflow and satellite-based snow cover data.

2 Study area

2.1 General site description

The Claro River catchment is a semi-arid, mountainous

catchment located in the northeastern part of the Coquimbo

region, in north-central Chile (Fig. 1). It drains an area of

approximately 1515 km2, characterized by high elevations

ranging from 820 m a.s.l. at the basin outlet (Rivadavia) to

over 5500 m a.s.l. in the Andes Cordillera. The topography

is dominated by a series of generally north-trending, fault-

bounded mountain blocks interspersed with a few steep-

sided valleys.

The underlying bedrock consists almost entirely of

granitic rocks ranging in age from Pennsylvanian to

Oligocene and locally weathered to saprolite. Above 3000 m,

repeated glaciations and the continuous action of frost and

thaw throughout the year have caused an intense shattering

of the exposed rocks (Caviedes and Paskoff, 1975), leaving a

landscape of bare rock and screes almost devoid of soil.

The valley-fill material consists of mostly unconsolidated

Quaternary alluvial sediments mantled by generally thin soils

(< 1 m) of sandy to sandy loam texture. Vineyards and or-

chards cover most of the valley floors and lower hill slopes

but account for less than 1 % of the total catchment area.

Most of the annual precipitation, however, occurs as snow

during the winter months, leading to an entire dependence

on surface-water resources to satisfy crop water needs during

the summer. Irrigation water abstractions occur at multiple

locations along the river’s course depending on both histor-

ical water rights and water availability. By contrast, natural

vegetation outside the valleys is extremely sparse and com-

posed mainly of subshrubs (e.g. Adesmia echinus and cush-

ion plants (e.g. Laretia acaulis, Azorella compacta) with very

low transpiration rates (Squeo et al., 1993). The Claro River
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originates from a number of small tributaries flowing either

permanently or seasonally in the mountains.

2.2 Hydro-climatic data

In order to represent the hydro-climatic variability of the

catchment, a 30-year period (1982–2011) was chosen ac-

cording to data availability and quality. Precipitation and

temperature data were interpolated based on 12 and 8

stations, respectively (Fig. 1), using the inverse distance

weighted method on a 5 km× 5 km grid. Since very few mea-

surements were available outside the river valleys, elevation

effects on precipitation and temperature distribution were

considered using the Shuttle Radar Topography Mission dig-

ital elevation model (Fig. 1). In a previous study, Ruelland

et al. (2014) examined the sensitivity of the GR4j hydrolog-

ical model to different ways of interpolating climate forc-

ing on this basin. Their results showed that a data set based

on a constant lapse rate of 6.5 ◦C km−1 for temperature and

no elevation effects for precipitation provided slightly better

simulations of the discharge over the last 30 years. However,

since the current study also seeks to reproduce the seasonal

dynamics of snow accumulation and melt, it was decided to

rely on a mean monthly orographic gradient estimated from

the precipitation observed series (Fig. 1). Potential evapo-

transpiration (PE) was computed using the following formula

proposed by Oudin et al. (2005):

PE=
Re

λρ
·

T+K2

K1

if T+K2 > 0 else PE= 0, (1)

where PE is the rate of potential evapotranspiration

(mm d−1), Re is the extraterrestrial radiation (MJ m−2 d−1),

λ is the latent heat flux (2.45 MJ kg−1), ρ is the density of wa-

ter (kg m−3), T is the mean daily air temperature (◦C) andK1

andK2 are fitted parameters (for more details on the values of

K1 and K2, see Hublart et al., 2014). Water abstractions for

irrigation were estimated using information on historical wa-

ter allocations provided by the Chilean authorities. Because

these abstractions are likely to influence the hydrological be-

haviour of the catchment during recession and low-flow pe-

riods, they were added back to the gauged streamflow in Ri-

vadavia before calibrating the models. In addition to stream-

flow data, remotely sensed data from the moderate resolu-

tion imaging spectroradiometer (MODIS) sensor were used

to estimate the seasonal dynamics of snow accumulation and

melt processes over a 9-year period (2003–2011). Daily snow

cover products retrieved from NASA’s Terra (MOD10A1)

and Aqua (MYD10A1) satellites were combined into a sin-

gle, composite 500 m resolution product to reduce the effect

of swath gaps and cloud obscuration. The remaining data

voids were subsequently filled using a linear temporal inter-

polation method.

Figure 2. Interannual variability in precipitation and observed

streamflow from 1989 to 2008. The hydrological year was defined

from May to April so as to capture the snowmelt and peak flow sea-

sons at mid-year (the graduations on the x axis indicate the 1 Jan-

uary of each year). Streamflow values are those measured at the

catchment outlet before accounting for water abstractions. Precipi-

tation values are those obtained after interpolation.

2.3 Hydrological functioning of the catchment

2.3.1 Precipitation variability

Among the primary factors that control the hydrological

functioning of the catchment is the high seasonality of pre-

cipitation patterns. Precipitation occurs mainly between June

and August when the South Pacific high reaches its northern-

most position. Most of the annual precipitation falls as snow

at high elevations, where it accumulates in seasonal snow-

pack that are gradually released from October to April. The

El Niño–Southern Oscillation (ENSO) represents the largest

source of climate variability at the interannual timescale (e.g.

Montecinos and Aceituno, 2003) (Fig. 2). Anomalously wet

(dry) years in the region are generally associated with warm

(cold) El Niño (La Niña) episodes and a simultaneous weak-

ening (strengthening) of the South Pacific high. It is worth

noting, however, that some very wet years in the catchment

can also coincide with neutral to weak La Niña conditions,

as in 1984, while several years of below-normal precipita-

tion may not exhibit clear La Niña characteristics (Verbist

et al., 2010; Jourde et al., 2011). These anomalies may be

due to other modes of climate variability affecting the Pacific

basin on longer timescales. The Interdecadal Pacific Oscil-

lation (IPO), in particular, has been shown to modulate the

influence of ENSO-related events according to cycles of be-

tween 15 and 30 years (Quintana and Aceituno, 2012). Re-

cent shifts in the IPO phase occurred in 1977 and 1998 and

may be responsible for the highest frequency of humid years
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during the 1980s and the early 1990s when compared to the

late 1990s and the 2000s.

2.3.2 Catchment-scale water balance and dominant

processes

Notwithstanding this significant climate variability, a rough

estimate of the catchment water balance can be given for

the period 2003–2011 using the data presented in the pre-

vious subsection and additional information available in the

literature. Spatially averaged precipitation ranges from a

minimum of 80 mm in 2010 to an estimated maximum of

190 mm in 2008. Evapotranspiration from non-cultivated ar-

eas is sufficiently low to be reasonably neglected at the basin

scale (Kalthoff et al., 2006). By contrast, water losses from

the cultivated portions of the basin are likely to be around

10 mm yr−1 (Hublart et al., 2014). At high elevations, sub-

limation plays a much greater role than evapotranspiration.

Mean annual sublimation rates over two glaciers located in

similar, neighbouring catchments have been estimated to be

about 1 mm d−1 (see, e.g., MacDonell et al., 2013). Thus, a

first estimate of the annual water loss associated with snow

sublimation can be made by multiplying, for each day of the

period, the proportion of the catchment covered with snow

by an average rate of 1 mm d−1. This leads to a mean an-

nual loss of 70 mm between 2003 and 2011. Note that this

value is of the same order of magnitude as those obtained by

Favier et al. (2009) using the Weather Research and Forecast-

ing regional-scale climate model. Mean annual discharge per

unit area varies from a minimum of 20 mm in 2010 to a max-

imum of 140 mm in 2003. Interestingly, runoff coefficients

exceed 100 % during several years in this period (in 2003,

2006, 2007 and 2009), indicating either an underestimation

of precipitation at high elevations, as suggested by Favier et

al. (2009), or a delayed contribution of groundwater to sur-

face flow from one year to another (Jourde et al., 2011).

Groundwater movement in the catchment is mainly from

the mountain blocks toward the valleys and then northward

along the riverbed. In the mountains, groundwater flow and

storage are controlled primarily by the presence of secondary

permeability in the form of joints and fractures (Strauch et

al., 2006). The unconfined valley-fill aquifers are replen-

ished by mountain front recharge along the valley margins

and by infiltration through the channel bed along the losing

river reaches (Jourde et al., 2011). Their hydraulic conduc-

tivity and saturated thickness range from about 10 m d−1 and

40 m, respectively, in the upper part of the catchment to more

than 30 m d−1 and 60 m respectively at the outlet (CAZA-

LAC, 2006), allowing a rapid transfer of water to the hy-

draulically connected surface streams. Pourrier et al. (2014)

studied flow processes and dynamics in the headwaters of the

neighbouring Turbio River catchment; yet very little remains

currently known about the emergent processes taking place

at the catchment scale.

3 Methods

3.1 Multiple-hypothesis modelling framework

In order to evaluate various numerical representations of

the catchment functioning, a multiple-hypothesis modelling

framework inspired by previous studies in literature was

developed. All the models built within this framework are

lumped hypotheses run at a daily time step. The modelling

process was decomposed into three modules and six model-

building decisions. Each module deals with a different as-

pect of the precipitation–runoff relationship through one or

more decisions (Fig. 3): snow accumulation (A) and melt (B),

runoff generation (C), redistribution (D) and delay (E) of wa-

ter fluxes, and natural storage effects (F). Each of these deci-

sions is provided with a set of alternative modelling options,

which are named by concatenating the following elements:

first a capital letter from A to F referring to the decision being

addressed, then a number from 1 to 3 to distinguish between

several competing architectures and, finally, a lower case let-

ter from a to c to indicate different parameterizations of the

same architecture. Model hypotheses are named by concate-

nating the names of the six modelling options used to build

them (see Table 4). The models designed within this frame-

work share the same overall structure (based on the same

series of decisions) but differ in their specific formulations

within each decision.

The model-building decisions can be divided into two

broad categories. The first pertains to the production of fluxes

from conceptual stores (decisions B, C and F). The second

concerns the allocation and transmission of these fluxes us-

ing the typical junction elements and lag functions (decisions

A, D and E) described in Fenicia et al. (2011). Junction ele-

ments can be defined as “zero-state” model components used

to combine several fluxes into a single one (option D2) or

split a single flux into two or more fluxes (options A1 and

D3). Lag functions are used to reflect the travel time (de-

lay) required to convey water from one conceptual store to

another or from one or more conceptual stores to the basin

outlet. They usually consist of convolution operators (option

E2), although conceptual stores may also do the trick. Mod-

elling options in which water fluxes are left unchanged are la-

belled as “No operation” options in Fig. 3. Water fluxes and

state variables are named using generic names (from Q1 to

Q6 and from S1 to S4, respectively) to ensure a perfect mod-

ularity of the framework. Further details on the alternative

options provided for each decision are given in the following

subsections. Note that some combinations of modelling op-

tions were clearly incompatible with one another (options C1

and C2, for instance, cannot work with option D2). As a re-

sult, these combinations were removed from the framework.

Another important feature of this modular framework

is the systematic smoothing of all model thresholds using

infinitely differentiable approximants, as recommended by

Kavetski and Kuczera (2007) and Fenicia et al. (2011). The

www.hydrol-earth-syst-sci.net/19/2295/2015/ Hydrol. Earth Syst. Sci., 19, 2295–2314, 2015
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Figure 3. Overall architecture (modules), decision tree and available modelling options of the modular multiple-hypothesis framework (P:

catchment-averaged daily precipitation; SWE: snow water equivalent; AE: catchment-averaged daily actual evapotranspiration; Sjj ∈ [1,5]:

state variables of the conceptual stores; Qjj ∈ [1,5]: water fluxes between the model components).

purpose here is twofold: first, to facilitate the calibration pro-

cess by removing any unnecessary (and potentially detrimen-

tal) discontinuities from the gradients of the objective func-

tions; and second, to provide a more realistic description of

hydrological processes across the catchment (Moore, 2007).

3.1.1 Snow accumulation and melt (decisions A and B)

Snow accumulation and melt components deal with the rep-

resentation of snow processes at the catchment scale. All

modelling options rely on a single conceptual store to ac-

cumulate snow during the winter months and release water

during the melt season. Decision A refers to the partition-

ing of precipitation into rain, snow or a mixture of rain and

snow. Decision B refers to the representation of snowmelt

processes. Option A1 is the only hypothesis implemented to

evaluate the relative abundance of rain and snow. A logis-

tic distribution is used in this option instead of usual tem-

perature thresholds to implicitly account for spatial varia-

tions in rain/snow partitioning over the catchment. In con-

trast, three modelling options drawing upon the temperature-

index approach (Hock, 2003) are available for the evaluation

of snowmelt rates (options B1a, B1b, B1c). Option B1a relies

on a constant melt factor while options B1b and B1c allow

for temporal variability in the melt factor to reflect seasonal

changes in the energy available for melt. A recent example

of option B1c can be found in Clark et al. (2009). Option

B1b has been previously applied by Schreider et al. (1997)

but at the grid cell scale. Finally, it is worth noting that a

smoothing kernel proposed by Kavetski and Kuczera (2007)

was introduced in the state equation of the snow reservoir to

ignore residual snow remaining in the reservoir outside the

snowmelt season.

3.1.2 Runoff generation (decision C)

Runoff generation components determine how much of a

rainfall or snowmelt event is available for runoff, lost through

evapotranspiration or temporarily stored in soils and sur-

face depressions. Many models rely on a conceptual store

to keep track of the catchment moisture status and generate

runoff as a function of both current and antecedent precipi-

tation. Here, an assortment of four commonly used methods

is available. Option C1 is the only one in which no moisture-

accounting store is required to estimate the contributing rain-

fall or snowmelt (see Fig. 3). Actual evapotranspiration then

represents the only process involved in the production of

runoff from precipitation or snowmelt. The remaining op-

tions make use of moisture-accounting stores and distribu-

tion functions (see Table 1) to estimate the proportion of the

basin generating runoff. An important distinction is made be-

tween option C2, in which runoff generation occurs only dur-
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Table 1. Constitutive equations of fluxes between the various components of the modelling options described in Fig. 2. Parameter (in

italic) significations and units are detailed in Table 2 (P: catchment-averaged daily precipitation; rain: rain fraction of precipitation P; snow:

snow fraction of precipitation P; T: catchment-averaged daily temperature; PE: catchment-averaged daily potential evapotranspiration; AE:

catchment-averaged daily actual evapotranspiration; Sj, j ∈ [1,5]: state variables of the conceptual stores; Qj, j ∈ [1,5]: water fluxes between

the model components).

Options Constitutive equations Options Constitutive equations

A1 Snow= P/(1+ exp[(T − TS)/mS]) C3 Q1 = (Melt+Rain)[1− (1− S1/Sm)
b
]

Rain= P−Snow Q2 =K1S1

B1a, B1b, Melt=MF(T− log[1+ exp(−T )]) D1 Q3 = Q2 and Q4 = Q1

B1c with T= (T− TM)/mM and mM = 0.1◦C or Q3 = Q1

B1a MF= fMmM D2 Q3 = Q1+Q2

B1b MF= r1+ r2T30 D3 Q3 = (1−α)Q1

with T30 the mean temperature of Q4 = αQ1

the last 30 days

B1c MF= f1+ f2 sin(0.551π + 2πd/366) E1 Qj,lag = Q2

with j∈ {3,4}

C1 AE=min(Melt+Rain,KCPE) E2 Qj,lag(t)=
∑Nb

i=1
ω(i)Qj(t − i+ 1)

with ω(i)=
∫ i

i−12udu/N2
b

C2, C3 AE= PEmin(1,S1/Sm) F1a, F2a, F3a Q5 =K2S
1+δ
2

Q6 =K3S3

C1 Q1 =Melt+Rain F1b, Q5 =K4S2+K2(S2− log[1+ exp(−S2)])

F2b, F3b Q6 =K3S3

with S2 = (S2− SC)/mC and mC = 0.1mm−1

C2 Q1 = (Melt+Rain)(S1/Sm)
β F3a, F3b Q6 =DS2

ing rainfall or snowmelt events, and option C3, in which a

leakage from the moisture-accounting store remains possible

even after rainfall or snowmelt has ceased. Examples of these

two moisture-accounting options can be found in the Hy-

drologiska Byråns Vattenbalansavdelning (HBV) (e.g. Seib-

ert and Vis, 2012) and probability-distributed model (PDM)

(Moore, 2007) rainfall–runoff models. Alternative distribu-

tion functions are available in the literature, for instance in

the GR4j (Perrin et al., 2003) and FLEX (Fenicia et al.,

2008b) models, but the rationale behind their use remains the

same. Actual evapotranspiration is computed from the esti-

mated PE using either a constant coefficient (option C1) or

a function of the catchment moisture status (options C2 and

C3).

3.1.3 Runoff transformation and routing

(decisions D to F)

Runoff transformation components account for all the re-

tention and translation processes occurring as water moves

through the catchment. In practice, junction elements (deci-

sion D) and lag functions (decision E) are typically combined

with one or more conceptual stores (decision F) to represent

the effects of different flow pathways on the runoff process

(both timing and volume). Additional elements in the form

of lag functions or conceptual stores can also be used to re-

flect water routing in the channel network. However, in this

study channel routing elements were considered useless at a

daily time step. All the modelling options available for deci-

sion F consist of two stores. These can be arranged in parallel

(options F1a and F1b), in series (options F2a and F2b), or in

a combination of both (options F3a and F3b). In each case,

one of the stores has a nonlinear behaviour while the other re-

acts linearly. Two types of nonlinear response are provided:

one that relies on smoothed thresholds and different storage

coefficients (options F1b, F2b and F3b), and the other that re-

lies on power laws (options F1a, F2a and F3a). Options F1a

and F1b are based on the classical parallel transfer function

used in many conceptual models, such as the PDM (Moore,

2007) and the IHACRES (identification of unit hydrographs

and component flows from rainfall, evapotranspiration and

streamflow) (Jakeman et al., 1993) models, where one store

stands for a relatively quick catchment response and the other

for a slower response. The structure of options F3a and F3b

is very close to the response routine of the HBV model (e.g.

Seibert and Vis, 2012). Note that some combinations of mod-

elling options were deemed unacceptable and thus not con-

sidered (e.g. D3–E1–F1a or D3–E1–F1b).

3.2 Multi-objective optimization

3.2.1 Principle

In optimization problems with at least two conflicting objec-

tives, a set of solutions rather than a unique one exists be-

cause of the trade-offs between these objectives. A Pareto-
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Figure 4. Description of the snow error criterion. The overall snow

error (SE) can be described as a sum of two terms, SE1 and SE2,

whose values are given by a confusion matrix. In this example, wa-

ter storage in the snow-accounting store (solid line) starts (SE1) and

ends (SE2) sooner than what would be expected from the snow-

covered area (SCA) data (dashed line).

optimal solution is achieved when it cannot be improved

upon without degrading at least one of its objective criteria.

The set of Pareto-optimal solutions for a given model is often

called the “Pareto set” and the set of criteria corresponding

to this Pareto set is usually referred to as the “Pareto front”.

3.2.2 The NSGA-II algorithm

The Non-dominated Sorted Genetic Algorithm II (NSGA-

II) (Deb, 2002) was selected to calibrate the models imple-

mented within the multiple-hypothesis framework. This al-

gorithm has been used successfully in a number of recent hy-

drological studies (see, e.g., Khu and Madsen, 2005; Bekele

and Nicklow, 2007; De Vos and Rientjes, 2007; Fenicia et al.,

2008a; Shafii and De Smedt, 2009) and has the advantage of

not needing any additional parameter (other than those com-

mon to all genetic algorithms, i.e. the initial population and

the number of generations). Its most distinctive features are

the use of a binary tournament selection, a simulated binary

crossover and a polynomial mutation operator. For the sake

of brevity, the detailed instructions of the algorithm and the

conditions of its application to rainfall–runoff modelling can-

not be discussed further here. Instead, the reader is referred

to the aforementioned literature.

3.2.3 Simulation periods and assessment criteria

The simulation period was divided into a rather dry calibra-

tion period (1997–2011) and a relatively humid validation

period (1982–1996). These two periods were chosen based

on data availability to represent contrasted climate condi-

tions: the two periods are separated by a shift in the IPO

index, as explained in Sect. 2.3.1.

Four criteria were chosen to evaluate the models built

within the multiple-hypothesis framework. The first three of

them are common to both calibration and validation periods

while the fourth criterion differs between the two.

The first criterion is related to the estimation of high flows

and draws upon the Nash–Sutcliffe efficiency (NSE) metric:

Crit1= 1−NSE=

N∑
d=1

(
Qd

obs−Qd
sim

)2/
N∑

d=1

(
Qd

obs−Qobs

)2

(2)

where Qd
obs and Qd

sim are the observed and simulated dis-

charges for day d, and N is the number of days with available

observations.

The second criterion (NSElog) is related to the estimation

of low flows and draws upon a modified, log version of the

first criterion:

Crit2= 1−NSElog =

N∑
d=1

(
log

(
Qd

obs

)
− log

(
Qd

sim

))2/
N∑

d=1

(
log(Qd

obs)− log
(
Qobs

))2

(3)

The third criterion quantifies the mean annual volume error

(VEM) made in the estimation of the water balance of the

catchment:

Crit3= VEM =

Nyears∑
y=1

(∣∣Vy

obs−V
y

sim

∣∣/Vy

obs

)/
Nyears (4)

where V
y

obs and V
y

sim are the observed and simulated volumes

for year y, and Nyears is the number of years of the simulation

period.

The fourth criterion (Crit4) differs between the two simu-

lation periods. In calibration, snow-covered areas (SCA) es-

timated from the MODIS data were used to evaluate the con-

sistency of snow-accounting modelling options in terms of

snow presence or absence at the catchment scale. The ob-

jective was to quantify the error made in simulating the sea-

sonal dynamics of snow accumulation, storage and melt pro-

cesses. Following Parajka and Blöschl (2008), the snow error

(SE) was defined as the total number of days when the snow-

accounting store of options B1a, B1b and B1c disagreed with

the MODIS data as to whether snow was present in the basin

(Fig. 4). The number of days with simulation errors is even-

tually divided by the total number of days with available

MODIS data to express SE as a percentage.

In validation, a cumulated volume error was used to re-

place the snow error criterion that could not be computed

due to a lack of remotely sensed data over this period:

Crit4= VEC =

∣∣∣∣∣∣
Nyears∑
y=1

V
y

obs−

Nyears∑
y=1

V
y

sim

∣∣∣∣∣∣
/

Nyears∑
y=1

V
y

obs (5)
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3.3 Model selection, model analysis and ensemble

modelling

Finally, a total of 72 model structures were implemented

and tested within the multi-objective and multiple-hypothesis

frameworks. In addition to their names and for purposes of

simplicity, these 72 model hypotheses are given a number

from 1 to 72 corresponding to their order of appearance in

the simulation process (see, e.g., Sect. 4.1).

Model hypotheses can be thought of as points x in the

space of performance measures. One possible way to lo-

cate these points in space is to consider that each coordi-

nate (xi)i=1...4 of x is given by the best performance obtained

along the Pareto front of model x with respect to the ith cri-

terion described in Sect. 3.3.2. A clustering technique based

on the fuzzy c-means algorithm (Bezdek et al., 1983) and the

initialization procedure developed by Chiu (1994) was cho-

sen to explore this multi-objective space and identify natural

groupings among model hypotheses. To facilitate compar-

ison between calibration and validation, the clustering op-

erations were repeated independently for each period. The

whole experiment, from model-building to multi-objective

optimization and cluster identification, was repeated several

times to ensure that the final composition of the clusters re-

mains the same.

Once the composition of each cluster was established, it

was possible to identify a set of “best-performing” clusters

for each simulation period, i.e. a set of clusters with the

smallest Euclidian distances to the origin of the objective

space. The model structures of these “best-performing” clus-

ters can be regarded as an equally acceptable representations

of the system. An important indicator of structural uncer-

tainty is the extent to which the simulation bounds derived

from the Pareto sets of these models reproduce the various

features of the observed hydrograph. The overall uncertainty

envelope should be wide enough to include a large propor-

tion of the observed discharge but not so wide that its rep-

resentation of the various aspects of the hydrograph (ris-

ing limb, peak discharge, falling limb, baseflow) becomes

meaningless. In this study, priority was given to maintain-

ing at its lowest value the number of outlying observations

before searching for the best combination of models which

minimized the envelope area. This was achieved iteratively

through the following steps:

1. Start with an initial ensemble composed of the Nmax

models identified as members of the best-performing

clusters in both calibration and validation (i.e. models

which fail the validation test are ruled out).

2. From now on, consider only the calibration period. Add

up the Nmax individual simulation envelopes that can

be obtained from the Pareto sets of the Nmax models

(hereafter referred to as the “Pareto-envelopes”).

3. Estimate the maximum number of observations

enclosed within the resulting overall envelope,

Nobs (Nmax), and calculate the area of this envelope,

Area(Nmax).

4. For k = 1 to Nmax:

(a) Identify the

(
Nmax

Nmax− k

)
possible combinations of

Nmax models taken Nmax− k at a time.

(b) For each of these combinations,

– add up the individual Pareto-envelopes of the

Nmax− k models and calculate the number of

observations enclosed within the bounds of the

resulting overall envelope, Nobs (Nmax− k);

– if Nobs (Nmax− k)=Nobs (Nmax);

– if Area(Nmax− k) < Area (Nmax− k+ 1) –

accept the current combination;

– if Nobs (Nmax− k) < Nobs (Nmax) – reject the

current combination.

(c) If all the possible combinations ofNmax−k models

are rejected, break the loop. The final ensemble of

models to consider is the last accepted combination

of Nmax− k+ 1 models.

4 Results

4.1 Model hypotheses evaluation

4.1.1 Cluster analysis

The 72 model hypotheses can be grouped into five clusters

in calibration and six in validation. Table 3 displays the co-

ordinates of the cluster centroids and gives, for each cluster,

the number of points with membership values above 50 %.

Figure 5 shows the projections of these clusters onto three

possible two-dimensional (2-D) subspaces of the objective

space (the three other subspaces being omitted for the sake

of brevity). Each cluster is given a rank (from 1 to 5 or 6) re-

flecting its distance from the origin of the coordinate system.

As is evident from both Fig. 5 and Table 3, most of the best-

performing structures can be found in cluster 1. This is par-

ticularly clear in the planes defined by the high-flow (Crit1)

and low-flow (Crit2) criteria (Fig. 5), where all clusters tend

to line up along a diagonal axis (dashed line). In contrast,

a small trade-off between cluster 1 and cluster 2 can be ob-

served in calibration in the plane defined by the high-flow

(Crit1) and volume error (Crit3) criteria: models from cluster

2 (respectively cluster 1) tend to perform slightly better than

those from cluster 1 (respectively cluster 2) with respect to

Crit3 (respectively Crit1). However, this trade-off disappears

in validation. Similar comments can be made about the other

2-D subspaces (not shown here). In the following analysis,
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Figure 5. Projections of the clusters onto three possible planes of the objective space in calibration and validation. As explained in Sect. 3.3,

each point represents a different model hypothesis.

cluster 1 will be considered as the only best-performing clus-

ter. This cluster encompasses 24 members in calibration as

against 15 in validation, indicating that several model struc-

tures do not pass the validation test (namely model nos. 30,

32, 49, 52, 53, 55, 66, 67, 69 and 72, as shown in Table 4).

Several observations can be made regarding the composi-

tion of cluster 1 in both simulation periods. As can be seen

from the values listed in Table 4, it is not possible to pick

out a single, unambiguous model hypothesis that would per-

form better than the others with respect to all criteria. On

the one hand, there appears to be several equally acceptable

structures for each individual criterion. Model nos. 22 (A1–

B1a–C3–D2–E1–F2b), 46 (A1–B1b–C3–D2–E1–F2b) and

54 (A1–B1c–C1–D3–E2–F1b), for instance, yield very simi-

lar values of the high-flow criterion (Crit1), despite some dif-

ferences in their modelling options. This illustrates the equi-

finality of model structures in reproducing one aspect of the

system behaviour. On the other hand, some structures seem

more appropriate for the simulation of high flows or snow

dynamics while others appear to be better at reproducing low

flows or estimating the annual water balance of the catch-

ment. This indicates trade-offs between model structures in

reproducing several aspects of the system behaviour. It is

however possible to identify some recurring patterns among

the modelling options present in (or absent from) cluster 1

in both periods. First, option B1c is the most represented

snowmelt-accounting hypothesis, despite an increase in the

number of alternative options (B1a, B1b) in validation. More

strikingly, option C2 is totally absent from cluster 1 in both

periods. Single-flux combinations (C1–D1 and C3–D2) and

their splitting counterparts (C1–D3 and C3–D1) tend to be

equally well represented, thus providing evidence of signifi-

cant equifinality among these conceptual representations. Fi-

nally, runoff transformation options based on a threshold-like

behaviour (F1b, F2b and F3b) account for 75 % of model hy-

potheses in calibration and over 90 % in validation. In par-

ticular, option F3a turns out to be completely absent from

cluster 1 in both periods while models based on option F2a

(nos. 49, 55, 67 and 69) fail the validation test. On the oppo-

site, option F2b is particularly well represented.

4.1.2 Pareto analysis

In general, valuable insight can be gained from the mapping

of Pareto fronts in the space of performance measures. While

a full description of all the Pareto fronts obtained in calibra-

tion is not possible here due to space limitations, two model

hypotheses are used to illustrate this point. Figure 6 shows

the Pareto-optimal solutions of model nos. 49 (A1–B1c–C1–

D1–E1–F2a) and 50 (A1–B1c–C1–D1–E1–F2b) plotted in

two dimensions for different combinations of two of the four

objective functions used in calibration. Note that these two

models differ only in their runoff transformation options (F2a

vs. F2b) so that the comparison can be made in a controlled

way. Trade-offs between the high-flow (Crit1) and low-flow

(Crit2) criteria are clearly more important with option F2a
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Figure 6. Projections of the Pareto fronts of model hypotheses (a) no. 49 (A1-B1c-C1-D1-E1-F2a) and (b) no. 50 (A1-B1c-C1-D1-E1-F2b)

onto three possible two-dimensional subspaces of the objective space.

Figure 7. Estimated normalized ranges of the Pareto-optimal sets of eight alternative model structures differing in at least one of their

components. The coloured lines stand for the best solutions obtained in calibration with respect to the high-flow criterion (in black), the

low-flow criterion (in red), the mean annual volume error (in blue) and the snow error (in green).

(Fig. 6a) than with option F2b (Fig. 6b). This means that op-

tion F2a is less efficient in reproducing simultaneously high

and low flows and explains why this option disappears from

cluster 1 in validation. By contrast, the other pairs of criteria

(Crit1–Crit3, Crit1–Crit4) displayed in Fig. 6 appear to be

less useful in differentiating between the two models.
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Table 2. Parameters used in the various modelling options with their signification and initial sampling.

Parameter Options Signification Units Initial range

TS A1 Rain/snow partitioning temperature ◦C −10 to 10

threshold

mS A1 Rain/snow partitioning smoothing – 0.01–3

parameter

TM B1a, B1b, B1c Snowmelt temperature threshold ◦C −10 to 10

fM B1a Constant melt factor ◦Cmm−1 0–10

r1 B1b Coefficient for computation of the ◦Cmm−1 1–5

variable melt factor

r2 B1b Coefficient for computation of the ◦Cmm−1 1–5

variable melt factor

f1 B1c Coefficient for computation of the ◦Cmm−1 1–5

variable melt factor

f2 B1c Coefficient for computation of the ◦Cmm−1 1–5

variable melt factor

KC C1 Evapotranspiration coefficient – 0.05–0.5

Sm C2, C3 Maximum storage capacity of the mm 10–100

moisture-accounting store

β C2 Shape parameter – 0.1–3

b C3 Shape parameter of Pareto distribution – 0.1–3

K1 C3 Infiltration coefficient d−1 0.001–0.7

α D3 Splitting parameter – 0.1–0.9

Nb E2 Number of time steps in the lag routine – 1–6

K2 F1a to F3b Storage coefficient d−1 0.01–0.99

K3 F1a to F3b Storage coefficient d−1 0.001–0.01 (F1a, F1b, F3a, F3b)

0.001–0.01 (F2a, F2b)

δ F1a, F2a, F3a Power law parameter of the non-linear – 0–1

store in the runoff transformation module

Sc F1b, F2b, F3b Threshold parameter of the non-linear mm 10–300

store in the runoff transformation module

D F3a, F3b Recharge coefficient d−1 0.001–0.5

K4 F1b, F2b, F3b Storage coefficient d−1 0.001–0.01

Table 3. Coordinates of the cluster centroids in the four-dimensional (4-D) space of performance measures. The number of models with

membership values > 50 % (N50 %) is given for each cluster.

Calibration period (1997–2011)

Cluster no. Crit1 (1-NSE) Crit2 (1-NSElog) Crit3 (VEM) (%) Crit4 (SE) (%) N50 %

1 0.15 0.25 10 9 24

2 0.23 0.30 10 10 24

3 0.49 0.58 23 11 10

4 0.60 0.62 25 16 13

5 0.92 0.97 33 20 1

Validation period (1982–1996)

Cluster no. Crit1 (1-NSE) Crit2 (1-NSElog) Crit3 (VEM) (%) Crit4 (VEC) (%) N50 %

1 0.24 0.21 14 3 15

2 0.32 0.29 15 4 25

3 0.38 0.31 15 5 8

4 0.51 0.42 25 23 8

5 0.61 0.44 27 27 11

6 0.61 0.51 30 33 5
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Table 4. Detailed composition of cluster 1 in calibration and validation. The tables indicate the numbers and the names of the models as

well as their number of parameters NP. For each criterion only the best performance value obtained along the Pareto front is given. Npar (%)

represents the proportion of observations enclosed within the simulation bounds of each Pareto set of solutions. Asterisks are used to indicate

the models which are not in the best-performing group (cluster 1) either in calibration or in validation.

Calibration period (1997–2011)

Model no. Model name (options) NP NSE NSElog VEM (%) SE (%) Npar (%)

2 A1–B1a–C1–D1–E1–F2b 9 0.87 0.76 10.6 11.2 76.0

4 A1–B1a–C1–D1–E1–F3b 10 0.84 0.77 10.4 11.2 53.2

8 A1–B1a–C1–D3–E2–F2b 11 0.83 0.75 11.7 11.1 76.5

20 A1–B1a–C3–D1–E2–F2b 12 0.83 0.76 10.0 11.4 60.0

22 A1–B1a–C3–D2–E1–F2b 11 0.90 0.77 10.4 11.2 64.1

26 A1–B1b–C1–D1–E1–F2b 10 0.87 0.77 10.1 11.5 58.4

30 (*) A1–B1b–C1–D3–E2–F1b 12 0.84 0.70 9.8 11.4 69.6

32 (*) A1–B1b–C1–D3–E2–F2b 12 0.83 0.71 11.1 11.4 68.4

44 A1–B1b–C3–D1–E2–F2b 13 0.89 0.77 10.6 11.4 63.4

46 A1–B1b–C3–D2–E1–F2b 12 0.90 0.76 10.7 11.4 45.4

49 (*) A1–B1c–C1–D1–E1–F2a 9 0.82 0.73 10.9 7.0 67.0

50 A1–B1c–C1–D1–E1–F2b 10 0.86 0.77 10.4 7.0 67.4

52 (*) A1–B1c–C1–D1–E1–F3b 11 0.85 0.72 8.8 8.1 65.7

53 (*) A1–B1c–C1–D3–E2–F1a 11 0.79 0.76 10.8 7.0 63.8

54 A1–B1c–C1–D3–E2–F1b 12 0.90 0.78 11.5 7.5 55.7

55 (*) A1–B1c–C1–D3–E2–F2a 11 0.80 0.73 10.7 7.0 54.5

56 A1–B1c–C1–D3–E2–F2b 12 0.85 0.75 10.8 7.6 76.3

65 A1–B1c–C3–D1–E2–F1a 12 0.83 0.78 8.0 7.7 65.0

66 (*) A1–B1c–C3–D1–E2–F1b 13 0.81 0.77 9.6 6.8 63.5

67 (*) A1–B1c–C3–D1–E2–F2a 12 0.81 0.75 10.7 7.0 73.7

68 A1–B1c–C3–D1–E2–F2b 13 0.85 0.74 10.6 6.8 74.5

69 (*) A1–B1c–C3–D2–E1–F2a 11 0.82 0.73 10.6 7.0 51.8

70 A1–B1c–C3–D2–E1–F2b 12 0.87 0.76 10.7 7.5 76.4

72 (*) A1–B1c–C3–D2–E1–F3b 13 0.81 0.71 9.8 7.1 69.0

Validation period (1982–1996)

Model no. Model name NP NSE NSElog VEM (%) VEC (%) Npar (%)

2 A1–B1a–C1–D1–E1–F2b 9 0.75 0.78 13.3 2.7 87.1

4 A1–B1a–C1–D1–E1–F3b 10 0.73 0.80 14.1 3.8 50.0

8 A1–B1a–C1–D3–E2–F2b 11 0.75 0.76 14.5 5.8 84.8

20 A1–B1a–C3–D1–E2–F2b 12 0.72 0.77 13.7 3.7 58.4

22 A1–B1a–C3–D2–E1–F2b 11 0.76 0.78 12.3 3.3 75.3

26 A1–B1b–C1–D1–E1–F2b 10 0.74 0.78 12.9 3.5 70.2

42 (*) A1–B1b–C3–D1–E2–F1b 13 0.73 0.75 15.6 3.3 62.7

44 A1–B1b–C3–D1–E2–F2b 13 0.74 0.79 13.0 4.1 69.3

46 A1–B1b–C3–D2–E1–F2b 12 0.76 0.77 15.2 3.4 48.4

50 A1–B1c–C1–D1–E1–F2b 10 0.78 0.81 13.9 2.5 73.1

54 A1–B1c–C1–D3–E2–F1b 12 0.77 0.78 15.3 3.5 60.8

56 A1–B1c–C1–D3–E2–F2b 12 0.75 0.77 13.2 4.5 81.3

65 A1–B1c–C3–D1–E2–F1a 12 0.74 0.80 13.8 3.6 73.0

68 A1–B1c–C3–D1–E2–F2b 13 0.77 0.74 13.5 3.7 78.7

70 A1–B1c–C3–D2–E1–F2b 12 0.73 0.78 14.2 3.4 79.4

Further insight into the structural strengths and weak-

nesses of model hypotheses can be obtained by determin-

ing how parameter values vary along the Pareto fronts of the

models. A large “Pareto range” in some parameters indicates

structural deficiencies in the corresponding model compo-

nents (see, e.g., Gupta et al., 1998) or a lower sensitivity of

model outputs to those parameters (Engeland et al., 2006).

For purposes of clarity, Fig. 7 focuses on eight illustrative

structures identified as members of cluster 1 in calibration.

The models are paired in such a way that two models of the
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Figure 8. Comparison of MODIS-based SCA data (red dashed lines) with the snow water equivalent (SWE) simulations (shaded areas) of

model nos. 6, 30 and 54. The shaded area corresponds to the range of SWE simulations obtained from the Pareto sets of these models.

same pair differ in only one modelling option. Thus, the ef-

fects of potential interactions between model constituents are

more likely to be detected. Parameter values are normalized

using the lower and upper limits given in Table 2 so that all of

them lie between 0 and 1. Different colours are used to indi-

cate the parameter sets associated with the smallest high-flow

(in black), low-flow (in red), volume (in blue) and snow (in

green) errors. The extent to which these coloured solutions

converge toward the same parameter values or diverge from

each other determines the level of parameter identifiability

of each model hypothesis. In terms of snow-accounting op-

tions, a distinction can be made between snow accumulation

paramaters (TS and mS), whose ranges of variation appear to

be large in all cases, and snowmelt parameters (TM, fM, r1,

r2, f1, f2), whose levels of identifiability depend on interac-

tions with the other model components. In Fig. 7a, the Pareto

range of snowmelt parameters decreases in width when mov-

ing from option B1a to B1b and using the combination of

options C3–D2–E1. Yet changing this combination into C3–

D1–E2 has the opposite effect (Fig. 7b): parameter uncer-

tainty now decreases when moving from option B1b to B1a.

In terms of runoff transformation parameters (α,Nb,K2,K3,

δ, SC and K4), the black and red solutions are closer to each

other when options F2b (Fig. 7a, b and c) and F1b (Fig. 7d)

are used. By contrast, options F2a (Fig. 7c) and F1a (Fig. 7d)

require very different parameter sets to adequately simulate

both low and high flows. Again, this suggests that runoff

transformation options based on a threshold-like behaviour

may be more consistent with the observed data than those

based on a power law relationship. It should be noted, how-

ever, that relatively large Pareto ranges in some runoff trans-

formation parameters (e.g. K2 and K3) may still be required

to obtain small volume and snow errors at the same time as

high low-flow and high-flow performances (e.g. model nos.

44 and 54). Interestingly, the black, red and blue solutions of

model nos. 49, 50, 53 and 54 also converge towards the same

low values of parameter KC (evapotranspiration coefficient)

independently of runoff transformation options.

Drawing any conclusion at this stage about the links

between parameter identifiability and model performance

might be somewhat hazardous. Other examples (not shown

here) show that a model structure may have highly identi-

fiable parameter values in calibration and yet not be suited

to the conditions prevailing in validation. Also, a reduction

of parameter uncertainty as is the case with options F2b and

F1b often comes with a greater number of parameters.

Finally, a better understanding of the reasons why some

models, or modelling options, work better than others is pro-

vided by the simulation bounds (or Pareto-envelopes) derived

from the Pareto sets of these models. Figure 8 shows the

Pareto-envelopes of the snow water equivalent (SWE) inter-

nal state variable obtained with three competing model hy-

potheses (nos. 6, 30 and 54) differing only in their snowmelt-

accounting options (respectively B1a, B1b and B1c). Note

that only the last two of these models (30, 54) belong to clus-

ter 1 in calibration (see Table 4). Simulated snow accumu-

lation starts later than expected with all modelling options

(B1a, B1b and B1c). As will be further discussed in Sect. 5.2,

this is likely to indicate systematic errors in the input precip-

itation and/or MODIS-based SCA data. On the whole, the

envelope widths suggest a reduction in the uncertainty asso-

ciated with the prediction of snow seasonal dynamics when

moving from option B1a to option B1c. This is consistent

with the mean annual snow errors reported in Table 4, which

are significantly lower with option B1c independently of the

other model options. It must be acknowledged, however, that

even this option (B1c) fails to capture the seasonal dynamics

of snow accumulation and melt during several years of the

period. The release of water from the snow-accounting store

of model no. 54 continues well after the end of the observed

snowmelt season in 2008, 2009, 2010 and 2011. On the con-

trary, the simulated snowmelt season tends to end sooner than

expected with model no. 30 in 2003, 2004, 2005 and 2006.

In that case, options B1b and B1c appear to be somewhat

complementary.
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Figure 9. Comparison of observed daily discharge at Rivadavia with the overall uncertainty envelope obtained by combining the Pareto-

envelopes of eight model structures. These structures have been selected among the 14 members of cluster 1 in both calibration and validation

so as to minimize the uncertainty envelope area (Area, in pixels2) while holding constant the number of outlying observations (Outlying, in

%). The red parts indicate potential errors in the model structures or observed data.

4.2 Representation of structural uncertainties

This section deals with the identification and use of an en-

semble of equally acceptable model structures to quantify

and represent the uncertainty arising from the system non-

identifiability. Figure 9 shows the overall uncertainty enve-

lope obtained with the eight model structures whose com-

bination minimizes the envelope area in calibration while

holding constant the number of outlying observations (see

Sect. 3.3). Over 82 % of discharge observations are captured

by the envelope in both simulation periods. Interestingly, this

number exceeds the best Npar value obtained in calibration

with the individual Pareto-envelopes (see Table 4), which

shows how necessary it is to consider an ensemble of model

structures. In validation, however, a better combination could

be identified since several models of cluster 1 display sig-

nificantly higher Npar values (Table 4). On the whole, the

comparison of the observed hydrograph with the simulation

bounds of the envelope shows a good match of rising limbs

and peak discharges in both simulation periods, but a less ac-

curate fit of falling limbs during at least one major (in 1987–

1988) and two minor (in 2005–2006 and 2007–2008) events.

The slower recession of the observed hydrograph might indi-

cate a delayed contribution of one or more catchment com-

partments that cannot be described by any of the modelling

options available in the multiple-hypothesis framework.

5 Discussion and conclusions

This study aimed at reducing structural uncertainty in the

modelling of a semi-arid Andean catchment where lumped

conceptual models remain largely under used. To overcome

the current lack of information on model adequacy in this

catchment, a modular modelling framework (MMF) rely-

ing on six model-building decisions was developed to gen-

erate 72 competing model structures. Four assessment crite-

ria were then chosen to calibrate and evaluate these models

over a 30-year period using the concept of Pareto-optimality.

This strategy was designed to characterize both the param-

eter uncertainty arising from each model’s structural defi-

ciencies (i.e. model inadequacy) and the ambiguity associ-

ated with the choice of model components (i.e. model non-

uniqueness). Finally, a clustering approach was taken to iden-

tify natural groupings in the multi-objective space. Over-

all, the greatest source of uncertainty was found in the con-

nection between runoff generation and runoff transforma-

tion components (decisions D and E). However, the results

also showed a significant drop in the number of plausible

representations of the system. After validation, 14 model

structures among the 24 identified in calibration as the best-

performing ones were finally considered as equally accept-

able.

5.1 Improved understanding of hydrological processes

Interestingly, both rejected and accepted hypotheses ap-

peared closely related to particular types of snowmelt-

accounting (decision B), runoff generation (decision C) and

runoff transformation (decision D) modelling options, sug-

gesting possible links to some physical features of the

catchment. For instance, the frequent occurrence of op-

tion C1 and the absence of option C2 among the set of

best-performing structures indicate that moisture-accounting

components may not be essential to the conceptual modelling

of this catchment. Most of the land cover is, indeed, domi-

nated by barren to sparsely vegetated exposed rocks, boul-

ders and rubble with poor soil development outside the val-

leys. This setting may also explain the relatively low values

of parameter KC obtained with the black, red and blue so-
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lutions shown in Fig. 7. Likewise, the frequency of options

F2a and F2b in the best-performing cluster suggests that the

catchment actually behaves as a “serial” system. The over-

all organization of fluxes in the catchment, from high ele-

vations toward the valleys and then northward to the out-

let, can be conceptualized as a series of two hydraulically

connected reservoirs: one standing for the granitic moun-

tain blocks (upstream reservoir) and the other for the allu-

vial valleys (downstream reservoir). Similar results were also

obtained for smaller catchments in Luxembourg character-

ized by relatively impervious bedrock and lateral water flows

(Fenicia et al., 2014). The results also provided some evi-

dence of a strong threshold behaviour at the catchment scale

(options F1b, F2b and F3b) compared to the smoother power

laws of options F1a, F2a and F3a. However, further research

would be needed to track the origin of this behaviour, which

might be related at some point to connectivity levels in the

fractured and till-mantled areas of the mountain blocks. With

regard to snowmelt, the frequent occurrence of option B1c

in the best-performing cluster in calibration may indicate a

need to account for processes which the degree-day method

implemented in option B1a does not fully capture. In semi-

arid central Andes (29–30◦ S), small zenith angles and a thin,

dry and cloud-free atmosphere during most of the year make

incoming short-wave radiation the most important source of

seasonal variations in the energy available for melt (e.g. Pel-

licciotti et al., 2008; Abermann et al., 2013). While this dom-

inant source of energy cannot be accounted for by tempera-

ture alone, the seasonal timing of snowmelt is also expected

to show a greater year-to-year stability, which may explain

the relative success of option B1c when compared to option

B1b.

Of course, these hypothesized relationships between some

physical characteristics of the catchment and specific mod-

elling options need to be further qualified. Differentiating

between physically adequate and purely numerical solutions

will always seem somewhat hazardous in the case of lumped

conceptual models. For instance, a small number of models

among those identified as the best-performing ones also rely

on parallel (F1a, F1b) and intermediate (F3b) runoff transfor-

mation options. Also, the relative proportions of snowmelt-

accounting options B1a, B1b and B1c, appears much more

balanced in validation, where no snow error criterion could

be applied, than in calibration. Although this was not our ob-

jective in this paper, comparative studies including several

similar or contrasted catchments would be required to better

understand how different model structures relate to different

physical settings. Such understanding is of primary impor-

tance to the choice of conceptual models in climate change

impact studies.

5.2 Model parsimony

Another important issue related to model identification is the

extent to which the “principle of parsimony” can be applied

to differentiate between a large number of model hypotheses.

Many authors rightly consider that a maximum of 5 to 6 pa-

rameters should be accepted in calibration when using a sin-

gle objective function. Efstratiadis and Koutsoyiannis (2010)

extended this empirical rule to the case of multi-objective

schemes by allowing “a ratio of about 1 : 5 to 1 : 6 between

the number of criteria and the number of parameters to op-

timize”. For a multi-objective scheme based on four crite-

ria (as in the present study), this leads to consider 20 to

24-parameter models as still being parsimonious. This will

certainly seem unreasonable to many modelers because, as

Efstratiadis and Koutsoyiannis (2010) also pointed out, the

various criteria used are generally not independent of each

other. In our case, for instance, the information added by

the low-flow criterion may not be so different from that al-

ready introduced by the high-flow criterion. By contrast, the

snow criterion tends to add new information on the snow-

related parameters. From this perspective, it is noteworthy

that most rejected hypotheses among the 24 identified in cal-

ibration as members of cluster 1 had more than 11 free pa-

rameters, with only one having 9 parameters. The principle

of parsimony, however, cannot be used to further discrimi-

nate between the remaining 14 best-performing hypotheses.

For instance, model no. 54 (12 parameters) performs better

than model no. 2 (9 parameters) with respect to the high-flow

criterion.

5.3 Uncertainty quantification

Eventually, the number of models used to represent struc-

tural uncertainty was reduced by searching for which min-

imal set of models maximized the number of observations

covered by the ensemble of Pareto-envelopes. It is impor-

tant to make clear that model inadequacy and non-uniqueness

were evaluated here in non-probabilistic terms. In particular,

the Pareto-envelopes derived for each model structure quan-

tify only the uncertainty arising from the trade-offs between

competing criteria and do not have a predefined statistical

meaning (Engeland et al., 2006). Consequently, the overall

simulation bounds shown in Fig. 9 cannot be easily inter-

preted as “confidence bands”. Although discussing the ad-

equacy of non-probabilistic approaches to structural uncer-

tainty was far beyond the scope of this study, it is interesting

to analyze the reasons why between 15 and 20 % of the ob-

servations remained outside the overall simulated envelope in

both calibration and validation. To a large extent, this lack of

performance can be attributed either to an insufficient cover-

age of the hypothesis and objective spaces or to uncertainties

in the precipitation and streamflow data that were overlooked

in this study.

The choice of Pareto-optimality to characterize structural

uncertainty can be criticized for leading to the rejection of

many behavioural parameter sets (i.e. being close to, but not

part of, the Pareto front) that might have been Pareto-optimal

with different performance measures, calibration data or in-
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put errors (e.g. Freer et al., 2003; Beven, 2006). Also, this

concept should not be confused with that of equifinality.

Both notions agree that it is not possible to identify a sin-

gle, best solution to the calibration problem and that multi-

ple parameters sets should be retained to give a proper ac-

count of model uncertainty. However, the Pareto set of so-

lutions represents the minimum parameter uncertainty that

can be achieved when several criteria are considered simul-

taneously with no a priori preference for one over the others

(Gupta et al., 2003). By contrast, two parameter sets are said

to be equifinal (in a statistical sense) if they can be regarded

as equally acceptable with respect to a given model outcome.

For a proper assessment of parameter equifinality, more prob-

abilistic approaches should be taken (Madsen, 2000; Huis-

man et al., 2010). In the context of multiple-hypothesis test-

ing, a meticulous selection of the assessment criteria is also

critical to avoid rejecting some modelling options for the

wrong reasons. For instance, the snow error criterion was

shown to have a great influence on the identification of snow-

accounting components, as much more ambiguity between

the various available options was observed during the valida-

tion period when this criterion could not be used. Also, like

any other multiple-hypothesis framework, the MMF devel-

oped in this study suffers from an insufficient coverage of the

hypothesis space (Gupta et al., 2012). The parameterization

of evapotranspiration, for example, was not considered as

an independent model-building decision. Only one formula

was applied to calculate potential evapotranspiration and the

possibility to retrieve actual evapotranspiration from down-

stream water stores was not provided. Likewise, the runoff

transformation process was described using only two water

stores, of which only one was assumed to have a nonlinear

behaviour. Future work to improve the conceptual modelling

of the Claro River catchment should include the testing of

new or refined hypotheses to allow for the use of additional

auxiliary data (e.g. observed snow heights or irrigation water

use).

5.4 Data quality issues

More fundamentally, our ability to discriminate among the

competing model hypotheses was constrained by inevitable

errors in the input and output data sets. In particular, the com-

parison of simulated SWE levels and MODIS-based SCA es-

timates revealed some uncertainty in the estimation of pre-

cipitation inputs and confirmed previous results obtained by

Favier et al. (2009). Some precipitation events occurring in

the early winter may not be captured by the gauging net-

work (< 3200 m a.s.l.) used for the interpolation of precip-

itation across the catchment. These errors may add to sys-

tematic volume errors caused by wind, wetting and evapo-

ration losses at the gauge level, leading to an overall under-

estimation of precipitation, as indicated by the rough esti-

mate of the catchment-scale water balance given in Sect. 2. It

was also possible to highlight some errors in the streamflow

data. The observed streamflow was “naturalized” by sim-

ply adding back the estimated historical water abstractions

(Sect. 2.2). When applied on a daily basis, this process in-

evitably adds some uncertainty to streamflow values because

a significant part of surface-water abstractions actually re-

turn to the river system within a few days due to conveyance

and field losses. In general, ignoring these return flows would

lead to overestimating daily natural flows. In this paper, how-

ever, the actual water withdrawals were not known with pre-

cision but only as percentages of the nominal water rights –

these percentages being fixed on a monthly basis by the au-

thorities to account for variations in water availability. The

combined impact of streamflow and precipitation errors on

the assessment of structural uncertainty thus remained un-

known. Further research is currently underway to integrate

the effects of water abstractions and crop water use in the hy-

drological modelling process (Hublart et al., 2015; see also

Kiptala et al., 2014 for another approach). From a multiple-

hypothesis perspective, the modelling of irrigation water use

should be regarded as a testable model component in its own

right.
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