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Abstract. The ability to estimate terrestrial water storage

(TWS) realistically is essential for understanding past hy-

drological events and predicting future changes in the hydro-

logical cycle. Inadequacies in model physics, uncertainty in

model land parameters, and uncertainties in meteorological

data commonly limit the accuracy of hydrological models in

simulating TWS. In an effort to improve model performance,

this study investigated the benefits of assimilating TWS es-

timates derived from the Gravity Recovery and Climate Ex-

periment (GRACE) data into the OpenStreams wflow_hbv

model using an ensemble Kalman filter (EnKF) approach.

The study area chosen was the Rhine River basin, which

has both well-calibrated model parameters and high-quality

forcing data that were used for experimentation and compar-

ison. Four different case studies were examined which were

designed to evaluate different levels of forcing data qual-

ity and resolution including those typical of other less well-

monitored river basins. The results were validated using in

situ groundwater (GW) and stream gauge data. The analy-

sis showed a noticeable improvement in GW estimates when

GRACE data were assimilated, with a best-case improve-

ment of correlation coefficient from 0.31 to 0.53 and root

mean square error (RMSE) from 8.4 to 5.4 cm compared to

the reference (ensemble open-loop) case. For the data-sparse

case, the best-case GW estimates increased the correlation

coefficient from 0.46 to 0.61 and decreased the RMSE by

35 %. For the average improvement of GW estimates (for all

four cases), the correlation coefficient increases from 0.6 to

0.7 and the RMSE was reduced by 15 %. Only a slight over-

all improvement was observed in streamflow estimates when

GRACE data were assimilated. Further analysis suggested

that this is likely due to sporadic short-term, but sizeable, er-

rors in the forcing data and the lack of sufficient constraints

on the soil moisture component. Overall, the results high-

light the benefit of assimilating GRACE data into hydrolog-

ical models, particularly in data-sparse regions, while also

providing insight on future refinements of the methodology.

1 Introduction

Terrestrial water storage (TWS) is the integrated sum of all

surface water, soil moisture, snow water, and groundwater

(GW) availability, and is a metric critical for monitoring the

water supply for domestic, industrial, and agricultural sec-

tors. The ability to estimate TWS is useful for understanding

past events and predicting future changes in the hydrologi-

cal cycle, streamflow and water availability, as well as their

impact on the occurrence of droughts, heat waves, and floods

(Hirschi et al., 2007). The individual components of TWS in-

fluence the climate system in different ways. Soil moisture is

a major source of water for the atmosphere in the terrestrial
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water cycle (Jung et al., 2010) and plays a particularly impor-

tant role in the climate system (Seneviratne et al., 2010). Soil

moisture estimates are also useful for seasonal predictions,

and have been shown to improve predictions of air tempera-

ture in North America (Koster et al., 2010) and Europe (van

den Hurk et al., 2012). Similarly, realistic estimation of the

snowpack can improve the prediction of near-surface temper-

atures at high latitude regions at 15–30-day scales (Orsolini

et al., 2013). Finally, GW variability influences soil mois-

ture and evapotranspiration, and is related to long-term water

availability and climate changes (Bierkens and van den Hurk,

2007; Green et al., 2011).

Despite the importance of having reliable estimates of

TWS, knowledge about the spatial and temporal variations of

TWS and its components is generally lacking. This is partic-

ularly true at large scales, due to the absence of global mon-

itoring systems. Ground-based measurements, while very

accurate, only provide point-wise estimates (Dorigo et al.,

2011; Lettenmaier and Famiglietti, 2006). Large spatial cov-

erage can be achieved using satellite remote-sensing obser-

vations, but these often measure only one component of the

total storage and suffer from additional limitations. For ex-

ample, in the case of soil moisture, satellite observations are

limited to the top few centimetres of the soil column and to

areas free from dense vegetation cover (e.g. de Jeu et al.,

2008; Entekhabi et al., 2010; Kerr et al., 2012). Variations in

surface water can be observed with satellite altimetry, but this

technique is currently limited to large target areas (> 10 km)

(Phan et al., 2012; Schwatke et al., 2013; Kleinherenbrink et

al., 2014).

Since measurements alone are not sufficient to compre-

hensively monitor all components of TWS, hydrological

models are often employed. A strong point of hydrological

models is their ability to obtain spatially distributed esti-

mates, differentiate TWS components, and simulate chang-

ing boundary conditions. Many hydrological models are

available, which vary in terms of process description, tem-

poral resolution, spatial resolution, and the detail in process

representation (Koster et al., 2000; Rodell et al., 2004). Mod-

els vary in terms of which TWS components are included in

the model and how they are represented. The performance of

hydrological models is also influenced by the accuracy of the

input forcing data and the quality of the model calibration.

The existence of model uncertainties motivates the need to

combine the model with independent observations to obtain

a better representation of the system’s behaviour.

Changes in TWS can also be estimated by observing vari-

ations of the regional gravity field over time. The idea is that

changes in water storage, including those deep underground,

induce a gravitational signature proportional to the amount

of (water) mass redistribution. Since 2002, these variations

have been measured by the Gravity Recovery and Climate

Experiment (GRACE) satellite mission (Tapley et al., 2004).

GRACE allows temporal variations of Earth’s gravity field

to be observed at spatial scales ranging in the hundreds of

kilometres, and at timescales as short as 1 month. As part of

the GRACE data processing, atmospheric and ocean related

time-variable gravity effects are removed from the data, leav-

ing the remaining gravity signal over the continents mostly

representing changes in TWS (in some areas, additional re-

moval of other nuisance signals is needed, such as those due

to glacier melting, glacial isostatic adjustment, and megath-

rust earthquakes). The GRACE mission has enabled the first

direct observations of large-scale TWS, and studies to date

have shown high correlation with modelled TWS in terms

of seasonal dynamics and regional spatial patterns (Syed et

al., 2008; Becker et al., 2011; Longuevergne et al., 2013). A

unique feature of satellite gravimetry is that it observes the

total column of mass variations (including GW), while other

remote-sensing techniques can only penetrate to a very lim-

ited depth, often just a few centimetres. In contrast to hydro-

logical modelling, it is not possible to identify which layer

the inferred mass variations can be attributed to (Rodell et

al., 2009).

Several earlier studies have employed data assimilation

to combine the strengths of hydrological modelling and

GRACE observations and to mitigate their respective weak-

nesses (Zaitchik et al., 2008; Su et al., 2010; Houborg et al.,

2012; Li et al., 2012; Forman et al., 2012). In data assimila-

tion, the model states are constrained by observations, taking

into account the estimated uncertainties for both the model

states and the observations (Evensen, 2003; Reichle, 2008).

Employing data assimilation provides a mechanism to down-

scale the coarse GRACE TWS variations to the temporal and

spatial resolution of the model as well as providing insight

from the hydrological model into the distribution of TWS be-

tween the individual storage terms. Zaitchik et al. (2008) as-

similated GRACE into the Catchment Land Surface Model to

estimate the TWS over the Mississippi River basin. Houborg

et al. (2012) and Li et al. (2012) applied a similar strategy to

improve the drought indicator over North America and Eu-

rope, respectively. Su et al. (2010) and Forman et al. (2012)

extended the work of Zaitchik et al. (2008) to improve the

estimated snow water equivalent over North America and

northwestern Canada, respectively. All results from earlier

studies reported that assimilating GRACE improved, or at

least did not degrade, the hydrology model’s performance.

In particular, good agreements between estimated state vari-

ables, e.g. GW and streamflow, and the in situ measurements

were observed. This study adds to these prior works by ex-

amining how GRACE assimilation performs when the hy-

drological model is not well calibrated or when unreliable

meteorological data are used to force the model. This focus

of the study is on the Rhine River basin (Fig. 1), which is

significantly smaller than the large basin or continent-scale

studies of these prior works, so the analysis presented here

provides new insight into the performance of GRACE assim-

ilation over smaller basins. And, while previous data assim-

ilation studies have been performed in the Rhine and neigh-

bouring basins (e.g. Weerts and Serafy, 2006; Rakovec et al.,
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Table 1. Parameters of the soil moisture and runoff routines in the OpenStreams wflow_hbv model.

Parameter Description Unit

fc Maximum soil moisture storage mm

β Empirical-based parameter determines the relative contribution to runoff from –

soil moisture storage

cflux Maximum value of capillary rise from upper zone storage to soil moisture storage mm day−1

khq Recession constant of upper zone storage, determines the amount of quick runoff 1/day

from upper zone storage

perc Maximum percolation value (from upper to lower zone storage) mm day−1

lp Soil moisture fraction above which actual evapotranspiration (ET) equals potential ET –

k4 Recession constant of lower zone storage, determines the amount of baseflow 1/day

from lower zone storage

α Non-linearity parameter of upper zone storage –

Figure 1. River gauge (circle) and well (triangle) locations over the

Rhine River basin used in this paper. Red triangles indicate Sun-

dern (1) and A319C locations (17). Names of all well locations are

given in Table A1.

2012), this study is the first to incorporate GRACE observa-

tions in the assimilation scheme for this region.

The primary goal of this study was to understand the im-

pact of GRACE assimilation on the estimated TWS, GW

variations and streamflow in the Rhine basin. The second

goal was to investigate the potential value of assimilating

GRACE observations in data-sparse regions. Four scenarios

were considered in which the model parameters used were

either calibrated (high quality) or basin-averaged (poor qual-

ity) values, and the forcing data were obtained from either

local (high quality) or global (poorer quality) data sets. In

this context, comparison of the four scenarios provides in-

sight into how GRACE can be used to constrain hydrological

models when limited data are available.

2 Hydrological modelling

The hydrological model employed in this study is the Open-

Streams wflow_hbv model (Schellekens, 2014). This is a dis-

tributed version of the HBV-96 model, named after the Hy-

drologiska Byråns Vattenbalansavdelning (Hydrological Bu-

reau Water Balance section). The HBV model was origi-

nally developed at this former section of the Swedish Me-

teorological and Hydrological Institute (SMHI) in the early

1970s. Since then, the HBV model has been used in over

40 countries. In 1996, a comprehensive re-evaluation of the

HBV model routines was carried out (Lindström et al., 1997),

which resulted in the HBV-96 version. The OpenStreams

wflow_hbv model is a variant of this model, programmed in

the PCRaster-Python environment (Karssenberg et al., 2009),

but using a kinematic wave for hydrological routing. It is

publicly available through the OpenStreams project (https:

//code.google.com/p/wflow/; last access: 18 January 2015).

The defined grid resolution used in this study was 1 km.

A schematic representation of OpenStreams wflow_hbv is

given in Fig. 2a and the key parameters of the soil moisture

and runoff response routines are listed and described in Ta-

ble 1.

OpenStreams wflow_hbv consists of three main routines:

(i) precipitation and snow, (ii) soil moisture, and (iii) runoff.

www.hydrol-earth-syst-sci.net/19/2079/2015/ Hydrol. Earth Syst. Sci., 19, 2079–2100, 2015
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The water from either precipitation or snow first enters the

interception storage and snow routine. The remaining liquid

water (from rainfall and snowmelt) after the snow routine in-

filtrates into the soil. The soil moisture storage term (SM in

millimetres), which includes both surface and root zone soil

moisture is controlled by three main parameters: fc, lp, and

β (see also Table 1). When the amount of water exceeds the

maximum capacity (fc), the excess water becomes available

for direct runoff. Within the soil layer, seepage is generated

and controlled by an empirical parameter β. The volume of

water available for runoff (direct runoff and seepage) is trans-

ferred to the runoff response routine. Additionally, some per-

centage of the soil moisture evaporates, which is controlled

by a defined threshold (fc× lp).

Two linear reservoirs are defined in the runoff routine,

namely the upper and lower zones (UZ and LZ). The excess

water from SM recharges the UZ, and some of the water in

UZ percolates to LZ, as determined by the perc parameter.

At the same time, capillary flow from UZ to SM also occurs,

controlled by cflux (maximum value of capillary rise from

upper zone storage to soil moisture storage). The runoff gen-

eration in UZ is controlled mainly by two main parameters,

the recession constant (khq) and the non-linearity parameter

(α). LZ contributes the water to the base flow through the

recession constant (k4). The amount of base flow is simply

the multiplication between k4 and the amount of LZ. Runoff

from UZ and LZ then enters the routing model to determine

the streamflow.

For reference, TWS is defined here as the sum of SM, UZ

and LZ. Groundwater storage is defined as the sum of UZ

and LZ. These storage terms are calculated in the soil mois-

ture and runoff response routines. Figure 2b shows the simu-

lated SM, UZ, and LZ from a nominal model run (i.e. using

the calibrated parameters and local forcing data). The main

source of TWS variation in this model is SM, with the varia-

tions in LZ and UZ an order of magnitude smaller. Extraction

of GW for irrigation is considered to be small over our study

region. It accounts for less than 1 km3 yr−1. Industry is the

largest user (Wada et al., 2014). However, the net removal

is small as only 10 % of the total water withdrawal over the

Rhine is from GW and the water is re-introduced to the sys-

tem after being used for industry. This is markedly different

to the extraction of GW for irrigated agriculture observed in

India (Ferrant et al., 2014). Therefore, this impact on TWS is

not considered in this study.

The OpenStreams wflow_hbv model was calibrated for the

Rhine River basin using observations from in situ streamflow

gauges (Mülders et al., 1999; Eberle et al., 2002, 2005; Pho-

tiadou et al., 2011). The spatial distribution of the calibrated

model parameters is shown in Fig. 3.

In data-sparse regions, a lack of in situ (meteorological

and streamflow) data makes it difficult to calibrate hydrolog-

ical models (Sivapalan et al., 2003; Hrachowitz et al., 2013).

Therefore, we decided to add non-calibrated cases to our sim-

ulations. In those cases, we defined the non-calibrated param-

Figure 2. (a) OpenStreams wflow_hbv model structure, adapted

from Schellekens (2014). (b) Sample results of the nominal run

related to soil moisture (SM), upper groundwater zone (UZ), and

lower groundwater (GW) zone (LZ) storages averaged over Rhine

River basin.

eters as the areally averaged values of the calibrated param-

eters in the entire basin, and used these for every grid cell in

the basin.

3 Data sets

3.1 GRACE observation

The most recent release (RL05) of the GRACE gravity model

product, generated by the University of Texas at Austin’s

Center of Space Research (CSR; Bettadpur, 2012), was used

in the analysis. The CSR RL05 models represent a time se-

ries of Stokes coefficients up to a maximum spherical har-

monic degree and order of 60, and are provided monthly. Fol-

lowing the GRACE conventional processing steps, degree-1

coefficients provided by Swenson et al. (2008) were added,

and the degree-2 coefficients were replaced by the values

estimated from satellite laser ranging (Cheng and Tapley,

2004). Variations in the gravity field were computed by re-

moving the long-term mean (computed over the entire study

period; see Sect. 5) from each monthly solution. The TWS

variations over the Rhine basin were then produced using

the approach described by Wahr et al. (1998). Because of

strong noise artefacts present in the high degree coefficients,

a de-striping filter similar to that described in Swenson and

Hydrol. Earth Syst. Sci., 19, 2079–2100, 2015 www.hydrol-earth-syst-sci.net/19/2079/2015/
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Figure 3. Calibrated parameters of the soil moisture and runoff response routines of the OpenStreams wflow_hbv model.

Wahr (2006) was applied to each monthly solution. The fil-

ter used a 5th degree polynomial (Savitsky-Golay) over a 5-

point window to remove the correlations, and orders below

8 remained unchanged. Further, an additional 250 km radius

Gaussian smoothing (Jekeli, 1981) was applied. While this

process helps to mitigate noise in the solution, it also attenu-

ates a genuine signal, so a scale factor is often applied in an

effort to restore some of the signal that gets leaked out of the

basin due to the spatial filtering. To that end, scale factors us-

ing the Global Land Data Assimilation System (GLDAS) hy-

drological model (Rodell et al., 2004) were computed follow-

ing the method described by Landerer and Swenson (2012).

The sum of four soil moisture layers (0 to 2 m) and a snow

water equivalent layer from a monthly GLDAS Noah Land

Surface Model version 1 was defined as the TWS. We (least-

squares) fitted the time series between the original and fil-

ter GLDAS at every grid node over the Rhine using only 1

scale factor. The estimated filtering-scale factors varied be-

tween 0.98 and 1.02 over the Rhine River basin. The correc-

tion for glacial isotactic adjustment, which has been shown in

other regions to affect the interpretation of long-term trends

(Peltier, 2004), was determined to be small in our study, so

the corresponding correction was not applied.

3.2 Forcing data

The forcing data required to drive the OpenStreams

wflow_hbv model are precipitation, temperature, and poten-

tial evapotranspiration (PET). Two types of forcing data were

used in this study. Local forcing data indicate the best avail-

able data, and global forcing data indicate a lower quality

data set but one which is available globally or nearly glob-

ally.

In this study of the Rhine basin, local forcing data refer to

meteorological data from the network of local weather sta-

tions, providing higher spatial and temporal resolution. Lo-

cal precipitation and temperature data were retrieved from

the European Climate Assessment & Data set (ECA & D) and

www.hydrol-earth-syst-sci.net/19/2079/2015/ Hydrol. Earth Syst. Sci., 19, 2079–2100, 2015
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ENSEMBLES project, known as E-OBS data (Haylock et

al., 2008). Data collected from several hundred ground sta-

tions were combined to produce a daily grid of precipitation

and mean surface temperature at a 0.25◦ spatial resolution.

Local PET data were derived from climatological data ob-

tained from the Commission for the Hydrology of the Rhine

basin (CHR) and the German Meteorological Service (DWD)

(Weerts et al., 2008). The daily local PET was interpolated

from a monthly mean value with a fixed annual cycle and

was available at a 1 km spatial resolution (Weerts et al., 2008;

Photiadou et al., 2011).

Global precipitation and temperature data were obtained

from Sheffield et al. (2005). These data are constructed based

on the long-term near-surface meteorological variables from

the National Centers for Environmental Prediction – National

Center for Atmospheric Research (NCEP/NCAR) reanalysis

product. The daily global precipitation and temperature data

were provided at a spatial resolution of 0.5◦. For global PET,

the 1◦ daily product generated by Senay et al. (2008) was

used.

Figure 4 shows a comparison between mean daily precip-

itation, temperature, and PET in 2006 from the local and

global forcing data sets. For the mean temperature, aside

from the resolution difference, the spatial distribution and

magnitude is very similar between the two data sets. On the

other hand, significant differences can be seen between the

local and global precipitation data, especially over the High

Rhine. Differences are also observed in the PET products,

with the global data set having generally higher values than

the local one, in addition to the much coarser spatial resolu-

tion of the global product.

3.3 Validation data

Groundwater and streamflow measurements from various

networks are used to validate our estimated results.

3.3.1 Groundwater data

In situ GW measurements were obtained from three different

networks:

1. Ministerium für Klimaschutz, Umwelt, Landwirtschaft,

Natur- und Verbraucherschutz des Landes Nordrhein-

Westfalen (http://www.elwasweb.nrw.de; last access:

5 March 2014).

2. Bayerisches Landesamt für Umwelt (http://www.gkd.

bayern.de; last access: 5 March 2014).

3. Portail national d’Accès aux Donnéessur les Eaux

Souterraines (ADES, http://www.ades.eaufrance.fr; last

access: 17 March 2014).

Measurements that did not exhibit seasonal variations were

flagged as belonging to confined aquifers, and were ex-

cluded. Data from stations with weekly measurements

Figure 4. Mean daily precipitation, temperature, and potential evap-

otranspiration in 2006 from the local (left panels) and global (right

panels) forcing data sets.

(e.g. ADES) were interpolated to daily intervals. A total of

18 wells were used for validation. Their locations are shown

in Fig. 1, and their names are provided in Table A1.

The in situ GW measurements were provided in the form

of piezometric head. The variations in piezometric head

can be related to variations in GW storage if the specific

yield is known (Rodell et al., 2007). As the latter data were

unavailable, the piezometric head was scaled to the units

of GW storage based on other GW data. Previous studies

have demonstrated that subtracting SM derived from GLDAS

from GRACE was able to extract the GW component from

GRACE in several regions, e.g. North America (Rodell et

al., 2007), Australia (Tregoning et al., 2012), or the Middle

East (Longuevergne et al., 2013). We adopt a similar idea

by using the relationship between 1TWS − 1SM (TWS

Hydrol. Earth Syst. Sci., 19, 2079–2100, 2015 www.hydrol-earth-syst-sci.net/19/2079/2015/
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variation from GRACE minus SM variation) and the ob-

served head to scale the observed head. Ideally, we would

prefer to use in situ soil moisture data to represent the SM

term, but they are not available at the well locations, and

the nearest station from the International Soil Moisture Net-

work (ISMN; Dorigo et al., 2011) does not have data cover-

ing the GRACE observation period. The soil moisture esti-

mated from remote sensing was also not appropriate because

the penetration depth depends on frequency and would not be

the same as that in OpenStreams wflow_hbv. Therefore, we

decided to use GLDAS-derived SM in this study. The SM

variation from GLDAS (1SMGLDAS) was computed by re-

moving its long-term mean value. The long-term mean value

was produced from all GLDAS SM data over the same pe-

riod as the GRACE observations (see Sect. 5). The GW vari-

ations from GRACE (1GWGRACE) were obtained by remov-

ing1SMGLDAS from the GRACE observations every month.

1GWGRACE was interpolated to daily values in order to com-

pare it to the daily head variations 1h. The comparison was

done using the following relationship:

1GWGRACE+ e = a+ b ·1h, (1)

where e indicates the observation error. The two parameters a

and b were estimated by least-squares regression. The scaled

in situ GW variation (1GWin situ) were then obtained from

the observed variations in piezometric head using

1GWin situ = â+ b̂ ·1h, (2)

where â and b̂ are the parameters estimated from Eq. (1).

3.3.2 Streamflow data

Streamflow was validated using observations from the 13 in

situ gauges indicated in Fig. 1. Time series were provided by

the Hydrological Modelling Basis in the Rhine basin (HY-

MOG; Bader et al., 2013). The hourly data were aggregated

to daily data for this study.

4 Data assimilation

4.1 Ensemble Kalman filter

The ensemble Kalman filter (EnKF) is used here to assimilate

GRACE TWS into the OpenStreams wflow_hbv model. The

EnKF uses a Monte Carlo approach: an ensemble of model

states is integrated forward in time using the forward model.

The update equation from the classical Kalman filter is used

to update the model estimate, where the Kalman gain is deter-

mined using the error covariances calculated from the ensem-

ble (Evensen, 1994). The EnKF and its variants are widely

used because they are efficient, easy to implement and al-

low great flexibility in terms of model uncertainty (Evensen,

2003). In this study, we implement a so-called 1D-EnKF (De

Lannoy et al., 2009) in which each grid cell is updated indi-

vidually. The state equation in a discrete form is given as

ψ(t + 1)= f (ψ(t), u(t + 1), α, w(t)), (3)

where f is the model operator, ψ is the state variables, u is

the forcings, α is the model parameters, and w is the model

error. In this paper, the state variables (ψ) are an n× 1 vec-

tor of TWS from OpenStreams wflow_hbv. The observations

available at a measurement time t are gathered in a vector of

observations d (TWS from GRACE):

d(t)=Hψ(t)+ ε; ε ∼N(0, R), (4)

where d is an m× 1 vector containing the observations, H is

measurement operator which relates the state ψ(t) to the

measured variables d(t). In this study, the observation and

the state vector are TWS, so n=m= 1 and H is the unit ma-

trix. The uncertainties in the observations are given in the

random error ε, which is assumed to have zero mean and co-

variance matrix R. In the initialization phase, the EnKF is

initialized by generating an ensemble (i) of N realizations of

the state ψi(t), i= 1, . . . , N around a nominal ψ(t). This re-

flects the prior knowledge of the state at the initial time. The

EnKF moves sequentially from one observation time to the

next and works in two steps, a forecast step and an update

step. At the updated time t (when the observation is avail-

able), an ensemble of perturbed observations, di(t) is gener-

ated as

di(t)= d(t)+ εi(t), (5)

where εi denotes the perturbation of the error of each ensem-

ble member i. If the ensembles of the variables are stored in a

matrix A= (ψ1, ψ2, ψ3, . . . , ψN ), the ensemble perturbation

matrix can be defined as A′=A−A, where A is the mean

computed from all ensemble members. Similarly, the ensem-

ble members of the observation and perturbations are gath-

ered into the matrices D= (d1, d2, d3, . . . , dN ) and γ = (ε1,

ε2, ε3, . . . , εN ). The analysis equation can be expressed as

(Evensen, 2003)

Aa(t)=A(t)+A′(t)A′
T
(t)HT(

HA′(t)A′
T
(t)HT

+ γ γ T
)−1

(D(t)−HA(t)), (6)

where Aa is the analyzed model state.

4.2 Assimilating GRACE observations

Several steps must be taken before GRACE TWS can be

assimilated into OpenStreams wflow_hbv. GRACE observa-

tions represent average TWS variations over 1 month, while

the OpenStreams wflow_hbv model has a daily time step. In

this study, it is assumed that the average TWS corresponds

to the middle of the month. Then, spline interpolation be-

tween consecutive months is used to generate a time series
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of GRACE TWS variations at 5-day intervals. The 5-day in-

terval was chosen through trial-and-error to be a good com-

promise between allowing the ensemble to grow between up-

dates and avoiding implausible jumps. As in any land sur-

face assimilation application, the update results in disconti-

nuities as mass is added or removed from the state but these

are not large enough to be obvious when a 5-day interval is

used (see Sect. 5.1). If the update took place at larger time

interval (e.g. once a month) and the entire increment was ap-

plied on 1 day, more significant artefacts or temporal discon-

tinuities would occur (Widiastuti, 2009). In order to convert

GRACE variations to absolute values the mean TWS in the

study period was calculated from the nominal OpenStreams

wflow_hbv run and added to the GRACE time series.

GRACE observes total TWS, some components of which

can be neglected (e.g. nominal OpenStreams wflow_hbv sim-

ulations indicate that surface water and interception storage

contributed by less than 1 % to the estimated TWS). Snow is

also small averaged over the study area (approximately 2 %

to the estimated TWS in winter). Only over the Alps (see

Fig. 1) is the snow contribution greater (approximately 7 %).

Therefore, we decided to exclude the snow from the state

vector. To reconcile GRACE to OpenStreams wflow_hbv

TWS, we then removed the snow component estimated from

the nominal run from the GRACE prior to assimilation. Note

that in catchments where the snow component is more sig-

nificant, it should not be excluded from the state vector.

In the EnKF, the GRACE TWS are calculated and assim-

ilated at each 1 km model grid cell every 5 days. Because

the analyzed model state Aa(t) was an integrated value of

TWS, the increment (1A(t)=Aa(t)−A(t)) for every en-

semble member needed to be disseminated among the three

stores, SM, UZ, and LZ. The information about the distri-

bution of the increment among the different model com-

partments could be obtained directly from the Kalman filter.

However, we chose to carry out the vertical distribution in

the way consistent with the OpenStreams wflow_hbv model

(Fig. 2). While the SM and LZ stores have upper bounds de-

termined by model parameters, UZ does not. As a result, al-

lowing it to update freely in the EnKF runs the risk that it

becomes excessively large, which would also have a detri-

mental effect on runoff. Therefore, the increment is used to

adjust the SM first, subject to the upper and lower limits of

zero and fc. Any remaining increment is applied in turn to

LZ, up to its upper limit, and only then to UZ.

The GRACE observation error is assumed to be 20 mm

and horizontal observation error correlations are not con-

sidered. The 20 mm value is considered realistic as it was

suggested by several independent assessments, e.g. Klees et

al. (2008), Wahr et al. (2006), and it also had been applied in

previous GRACE assimilation studies (Zaitchik et al., 2008;

Houborg et al., 2012). Our philosophy was to set the GRACE

errors to realistic values determined from independent stud-

ies, so that the solutions were not guided towards any partic-

ular outcome.

4.3 Uncertainty in model forcing data and parameters

In the EnKF, stochastic noise can be included in model forc-

ing data and parameters to account for model uncertainty.

An earlier sensitivity study (Widiastuti, 2009) was conducted

to identify the parameters of the OpenStreams wflow_hbv

model that had a significant impact on TWS. Six such pa-

rameters, which include fc, lp, β, cflux, khq, and perc were

found. Therefore, the soil moisture routine parameters, fc, lp,

and β, as well as the runoff routine parameters, cflux, khq,

and perc, were perturbed. For the calibrated case, the cal-

ibrated model parameters in each grid cell were perturbed

using additive Gaussian noise, with a mean of zero and a

standard deviation equal to 10 % of the range of values that

occurred over the whole Rhine basin. In the non-calibrated

case, the mean parameter value in each grid cell was set to

the average calibrated value across the whole basin, and the

standard deviation was set to that of the calibrated parameter

across the whole basin. This was considered as a proxy for

assigning approximate values based on the land cover type,

topography, and climatology from the globally available

databases. Averaging each parameter across the entire Rhine

basin is intended merely to reflect this kind of first-order as-

sumption. Though not all OpenStreams wflow_hbv parame-

ters can be gleaned from such global databases, the averaged

values could be compared to those in the Food and Agri-

culture Organization (FAO) of the United Nations database

(http://www.fao.org/geonetwork/srv/en/main.home; last ac-

cess: 5 December 2014). The areally averaged parameter val-

ues over the Rhine were found to be within the range pro-

vided by FAO. For example, the areally averaged soil mois-

ture field capacity over the Rhine FAO provided is mostly

between 150 and 200 mm, while the areally averaged value

of approximately 180 mm is used as a mean in this study

with a standard deviation of 33 cm. The meteorological forc-

ing data were also varied, with the temperature data being

perturbed with additive Gaussian noise, and the precipita-

tion and PET being perturbed with additive log-normal noise.

In the local forcing data case, noise with standard deviation

based on 10 % of the nominal value was added to precipi-

tation while 15 % noise was added to temperature and PET.

For the global forcing data case, we assumed that the local

forcing data were accurate and reliable, and the differences

between the local and global forcing data represent the errors

of global forcing data. The errors were assumed to be spa-

tially correlated, so an exponential correlation function was

applied to the covariance matrix for each variable. The cor-

relation lengths for precipitation, temperature, and PET were

determined using variogram analysis (Widiastuti, 2009) and

found to be 21, 21, and 59 km, respectively.

Recall from Sects. 1 and 3.2 that four cases are consid-

ered in this study: (1) calibrated parameters with local forc-

ing data (CL), (2) calibrated parameters with global forcing

data (CG), (3) non-calibrated parameters with local forcing

data (NCL), and (4) non-calibrated parameters with global
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forcing data (NCG). Comparison of the four scenarios pro-

vides insight into the benefit of GRACE assimilation under

different degrees of uncertainty. The lowest and highest lev-

els of uncertainty are associated with the CL and the NCG

cases.

5 Results and discussion

Using the EnKF approach described above, GRACE obser-

vations were assimilated into the OpenStreams wflow_hbv

model. An ensemble of 100 model states was propagated for-

ward from 1 January 2001 to 30 November 2003 to spin up

the model. The ensemble state at the end of the spin-up pe-

riod provided the initial state for the assimilation. The study

period is from 1 December 2003 to 31 October 2007 be-

cause the observed streamflow was only available until au-

tumn 2007.

5.1 Impact of GRACE assimilation on TWS estimates

First, the impact of assimilating GRACE on the temporal

and spatial patterns of the estimated TWS is considered.

For the temporal pattern, the areal mean of the estimated

TWS over the entire Rhine River basin was computed. The

time series of TWS variations from the ensemble open loop

(EnOL; ensemble run without GRACE assimilation), EnKF,

and GRACE observations are shown in Fig. 5.

As expected, there is a seasonal cycle in the TWS esti-

mates, which varies between ±75 mm. The high frequency

variations in TWS in the CL and NCL that are not apparent in

CG and NCG are due to the coarser spatial resolution of the

global precipitation product. Lower spatial variability of the

global data causes smoother averaged TWS presented in the

CG and NCG time series. During the summer of 2006 (June-

July-August: JJA), the areal mean global and local precipi-

tation and temperature products agree. However, the global

PET product estimates an areal mean PET of 4.10 mm day−1

while the local PET data suggest it was 2.89 mm day−1. As

the result, the minimum TWS in the CL and NCL cases in the

EnOL is −69 mm while CG and NCG are close to −90 mm.

In this period, GRACE assimilation has little impact on CL

and NCL, but results in a significant (25 mm) update in TWS

in the CG and NCG cases. The largest difference between

the EnOL and EnKF occurs when TWS is increasing (e.g.

October 2005). This is apparent in all cases, but is greatest in

the two non-calibrated cases. In all cases, Fig. 5 shows that

assimilation draws the TWS estimate toward the GRACE ob-

servation.

The impact of GRACE assimilation also varies within the

basin. Figure 6 shows the spatial distribution of the aver-

age increment (posterior minus prior) in TWS during winter

(December-January-February: DJF, 2005–2006) and summer

(JJA) of 2006. During the winter (left panels), the EnKF esti-

mated wetter conditions over entire Rhine River basin when

Figure 5. Area-averaged mean terrestrial water storage (TWS) over

the Rhine River basin from the EnOL, EnKF, and GRACE observa-

tions in four different scenarios (CL: calibrated parameters with lo-

cal forcing data; CG: calibrated parameters with global forcing data;

NCL: non-calibrated parameters with local forcing data; NCG: non-

calibrated parameters with global forcing data).

the local forcing data were used. In the Alps, the global pre-

cipitation product is approximately 35 % higher than the lo-

cal precipitation product. Therefore, GRACE assimilation re-

duced the TWS estimate over the Alps in the CG and NCG

cases. During the summer (right panels), GRACE assimila-

tion reduced the TWS estimate over the Alps and Neckar

basin when local forcing data were applied, but adds mois-

ture in the global data case. In this period, the local PET

product is 66 % lower than the global product over the Alps

and 44 % lower over the Lahn basin. This is consistent with

the increase in areal-averaged TWS observed in the CG and

NCG cases in Fig. 5. Since the local precipitation data are

generally considered to be more accurate, the adjustment of

the TWS estimates towards those produced by the local prod-

uct is an excellent example of the benefit of GRACE assimi-

lation, particularly in data-sparse areas.

In the Regnitz basin (east of domain), GRACE assimila-

tion leads to a significant increase in TWS in both calibrated

cases during the winter months. In this basin, the UZ reces-

sion coefficient (khq) is 0.52 in the calibrated case, compared
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Figure 6. Averaged increment (posterior minus prior) of TWS in

mm during the winter 2005–2006 (left panels) and summer of 2006

(right panels) in four different scenarios (CL: calibrated parameters

with local forcing data; CG: calibrated parameters with global forc-

ing data; NCL: non-calibrated parameters with local forcing data;

NCG: non-calibrated parameters with global forcing data). The

polygons in the right column define the southern part of Moselle

basin.

to 0.3 in the non-calibrated case. This results in almost twice

as much fast runoff in the calibrated case, which depletes the

TWS in the winter months. GRACE assimilation adds mois-

ture to the UZ and LZ stores, drawing the TWS closer to the

GRACE observations.

In the summer, an average of 0.7 and 1.07 mm was re-

moved in each update from the southern part of Moselle

basin in the CL and CG cases, respectively (Fig. 6b and d),

compared to 0.74 and 1.25 mm added per update in the NCL

and NCG cases. In the two calibrated cases, the evaporation

threshold value (the product of fc and lp) is approximately

11 % less than that in the non-calibrated cases. This leads

to less soil evaporation and higher soil moisture in the cal-

ibrated cases. GRACE assimilation reduces the SM in the

calibrated cases, and increases it in the non-calibrated cases

to draw the TWS closer to the GRACE observations in all

cases.

5.2 Impact of GRACE assimilation on GW estimates

The TWS and GW variations from OpenStreams wflow_hbv

were computed at every grid cell. The estimates at the Sun-

dern and A319C wells are shown in Figs. 7 and 8. The two

stations represent the behaviour of the other 16 stations (de-

tailed below). For example, stations 2, 3, 4, 6, 9, 10, 11, 13,

and 18 have similar behaviour to Sundern, while the rest have

similar behaviour to the A319C station. Recall that GW is

defined as the sum of UZ and LZ, so the difference between

the left and right columns is the SM term. GRACE measures

monthly variations, so the monthly mean of TWS, GW es-

timates, and the in situ data are shown. Similar to the areal

mean values, the TWS from the EnKF in the individual grid

cells (left column) is generally between the values from the

EnOL and those observed by GRACE.

At Sundern (Fig. 7) in the CG and NCG cases, the im-

pact of the forcing data was seen in the summer of every

year. Table 2 shows that the precipitation, temperature, and

PET at Sundern were higher in the global forcing data than

in the local data. Figure 7c and g suggest that this leads to a

more negative estimate of TWS in the EnOL for the CG and

NCG cases. In the EnKF results, these TWS estimates are

drawn towards the GRACE observations. The corresponding

updates in terms of GW are larger in the global forcing data

case than in the local forcing data cases – assimilation added

approximately 5–10 mm of water to GW in the global data

cases. Similar behaviour was also seen in CL and NCL cases

in summer 2005.

At Sundern, the estimated GW in the CL case agrees quite

well with the in situ values, suggesting that the distribution

between the SM and GW components is reasonable in the

calibrated cases. The fact that a good estimate of TWS does

not result in an improved GW estimate indicates that the non-

calibrated parameters are leading to an incorrect distribution

of the TWS between the different stores. In the NCL and

NCG cases, fc is just 179 mm compared to the calibrated
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Figure 7. TWS variation (left panels) and GW variation (right panels) at the Sundern well location in four different scenarios (CL: calibrated

parameters with local forcing data; CG: calibrated parameters with global forcing data; NCL: non-calibrated parameters with local forcing

data; NCG: non-calibrated parameters with global forcing data).

value of 239 mm. So, for the same TWS value, the non-

calibrated cases have more water in GW than the calibrated

cases. As a result, despite the agreement in TWS in the win-

ter months, the GW variation is considerably overestimated.

In every case at the A319C well location (Fig. 8), the

EnOL estimated lower TWS in the first half of 2004 and

2006, and higher in the second half of the same years. Assim-

ilation updated the TWS toward GRACE observation in these

periods and resulted in better agreement between the assim-

ilated and observed GW. In late 2005, the estimated TWS

from the EnOL and EnKF are very close to the GRACE ob-

servations. However, the estimated GW in both cases is much

lower than that observed in situ. As discussed, the difference

between the two is soil moisture. The model is predicting

a significant increase in soil moisture in all four cases. How-

ever, given there is little to improve in terms of TWS, the GW

estimate from the EnKF is as bad as that from the EnOL.

The impact of the forcing data used is also presented.

In the CG and NCG cases, on 3 October and 23 Octo-

ber 2006, underestimated global precipitation caused the
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Figure 8. TWS variation (left panels) and GW variation (right panels) at the A319C well location in four different scenarios (CL: calibrated

parameters with local forcing data; CG: calibrated parameters with global forcing data; NCL: non-calibrated parameters with local forcing

data; NCG: non-calibrated parameters with global forcing data).

underestimated GW. GRACE could not correct such a high

frequency event due to the limitation of its temporal resolu-

tion.

The choice of the parameters plays a role in the estimated

GW magnitude (as seen in Fig. 7), but now the non-calibrated

parameters (compared to the calibrated ones) provided closer

values to the in situ data (Fig. 8f and h). A higher non-

calibrated fc parameter (see Table 3 for the values) was re-

sponsible for smaller GW estimates.

Tables 4 and 5 show the correlation coefficient and root

mean square error (RMSE) between the estimated and in situ

GW for all 18 well locations indicated on Fig. 1. These were

calculated based on the monthly mean, but similar results

were obtained using the daily values. In most cases, assim-

ilation leads to an increase in correlation coefficient and a

reduction in RMSE.

The results varied across the wells. The highest correlation

coefficients in the EnOL simulations were typically found in

the CL case, followed by the NCL. Clearly, using the local
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Figure 9. Estimated and observed streamflow at the Maxau gauge station in four different scenarios (CL: calibrated parameters with local

forcing data; CG: calibrated parameters with global forcing data; NCL: non-calibrated parameters with local forcing data; NCG: non-

calibrated parameters with global forcing data).

forcing data has a significant impact in resolving features at

a single grid cell. An exception is the Main basin (wells 5,

7–10) where the global forcing data produce TWS more con-

sistently with the GRACE observations and hence result in a

better agreement with the GW. The highest correlation co-

efficients in the EnKF cases are also found in the two local

data cases. The improvements in correlation coefficient are

seen in all four cases. The CL and NCL cases also yield the

lowest RMSE values in the EnOL case, and the results with

the EnKF are very mixed.

It is important to note that at many wells, the NCL and

NCG cases yield higher correlation coefficients than the CL

and CG cases, respectively. Recall that the model is cali-

brated using streamflow, not GW data. So, while assimilation

draws the modelled TWS towards the GRACE observations,

the model parameters have a significant impact on whether

or not this translates to an improvement in the GW estimate.

One of the objectives was to examine the potential value

of GRACE assimilation in data-sparse regions. In the NCG

case, it is encouraging that GRACE assimilation consistently

leads to an increase in the correlation coefficient (from 0.46

to 0.61 in best case) and reduction in RMSE (up to 35 %).

In other scenarios, assimilation of GRACE observations also

leads into an increase in the correlation coefficient (from 0.31

to 0.53 in best case, at station 11 in the CG case) and a de-

crease in RMSE (up to 35 %, at station 1 in the NCG case).

For the average improvement of GW estimates (for all four

cases), the correlation coefficient increases from 0.6 to 0.7

and the RMSE was reduced by 15 %.
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Figure 10. Estimated and observed streamflow at the Wesel gauge station in four different scenarios (CL: calibrated parameters with local

forcing data; CG: calibrated parameters with global forcing data; NCL: non-calibrated parameters with local forcing data; NCG: non-

calibrated parameters with global forcing data).

5.3 Impact of GRACE assimilation on streamflow

estimates

The estimated and observed streamflows at Maxau (up-

stream) and Wesel (downstream) gauge stations are shown

in Figs. 9 and 10. Accurate forcing data, particularly precipi-

tation, are essential for reproducing the observed streamflow.

The high frequency variations in streamflow associated with

fast response to local precipitation are often reproduced rea-

sonably well in the CL case, but not in the CG case (compare

Figs. 9a–b and 10a–b).

Use of the global data frequently underestimates the

streamflow. This is clear on 5 June 2004, 24 August 2005,

6 October 2006, and 10 August 2007 in Fig. 9b and d. Com-

paring Fig. 9a to Fig. 9b, it is clear that the larger peaks in

streamflow are poorly estimated when the global data are

used. Because GRACE observations describe monthly varia-

tions over a larger area, they can do little to capture these in-

dividual streamflow events. By correcting TWS, GRACE as-

similation mainly influences the longer term variations. The

difference between EnOL and EnKF is very small in the CL

case. The largest differences are observed in the CG and

NCG cases, where TWS is updated to correct for errors in

forcing data (e.g. summer 2004 and 2006 in Fig. 9).

Figure 11 shows the impact of GRACE assimilation on

the correlation coefficient, Nash–Sutcliffe coefficient (NS)

(Nash and Sutcliffe, 1970), and RMSE in streamflow. Results

are shown for four gauge stations along the main channel, as

well as the average value across all 13 stations. These results

underscore the importance of forcing data and calibration for

estimating streamflow. By far, the highest correlation coef-

ficients and Nash–Sutcliffe coefficients and lowest RMSEs
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Table 2. Daily mean values of the forcing data at Sundern during summer (JJA) months.

Precipitation (mm) Temperature (◦C) PET (mm)

Local Global Local Global Local Global

2004 5.48 5.21 16.10 17.65 2.47 3.30

2005 5.25 4.68 16.12 17.46 2.47 3.55

2006 4.96 4.39 17.64 19.25 2.47 3.90

2007 9.97 7.08 16.09 17.52 2.47 3.25

Figure 11. The correlation coefficient (left panels), the Nash–Sutcliffe coefficient (middle panels) and RMSE (right panels) computed

between estimated streamflows and gauge measurements in four different scenarios (CL: calibrated parameters with local forcing data;

CG: calibrated parameters with global forcing data; NCL: non-calibrated parameters with local forcing data; NCG: non-calibrated parameters

with global forcing data). Results are shown for the Maxau (Max), Mainz (Mai), Andernach (And), and Wesel (Wes) gauge stations. Average

values (Avg) calculated across all 13 gauge locations are shown in the rightmost bar of each histogram, with the standard deviations indicated

by error bars.

Table 3. Ensemble mean parameter values at the Sundern and

A319C well locations for the calibrated and non-calibrated simu-

lations.

Sundern A319C

Parameter Calibrated Non- Calibrated Non-

calibrated calibrated

fc 239.03 179.12 130.95 181.98

β 2.06 1.65 1.95 1.68

cflux 0.06 0.27 0.41 0.30

khq 0.10 0.12 0.06 0.09

perc 0.67 1.15 0.43 1.09

lp 0.88 0.75 0.67 0.72

k4 0.63 0.03 0.01 0.03

are obtained when local forcing data are used. Use of global

forcing data leads to a significant loss in performance. For

example, using global rather than local forcing data with the

calibrated model results in a decrease in the correlation co-

efficient from 0.89 to 0.65, a decrease in the Nash–Sutcliffe

coefficient from 0.76 to 0.35, and an increase in RMSE of

71 % in the EnKF results. Using the non-calibrated model

rather than the calibrated model also leads to poorer perfor-

mance, though to a lesser degree. For example, using the non-

calibrated rather than calibrated model with the local forc-

ing data results in a decrease in the correlation coefficient

from 0.89 to 0.88, a decrease in the Nash–Sutcliffe coeffi-

cient from 0.76 to 0.65, and an increase in RMSE of 23 % in

the EnKF results.

Compared to the differences due to forcing data and cal-

ibration, GRACE assimilation leads to a relatively modest

improvement in streamflow estimates. In terms of correla-

tion coefficient, the largest improvements on average (Avg
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Table 4. Correlation coefficient computed between monthly mean estimated GW variation and monthly mean in situ variation. Names of the

stations (first column) are provided in Appendix A.

CL CG NCL NCG

EnOL EnKF EnOL EnKF EnOL EnKF EnOL EnKF

1 0.85 0.83 0.71 0.74 0.79 0.85 0.70 0.78

2 0.57 0.68 0.32 0.52 0.43 0.65 0.38 0.45

3 0.69 0.81 0.46 0.68 0.51 0.73 0.46 0.61

4 0.60 0.67 0.42 0.58 0.50 0.75 0.60 0.67

5 0.71 0.68 0.67 0.76 0.71 0.72 0.72 0.78

6 0.57 0.64 0.58 0.66 0.74 0.78 0.66 0.72

7 0.77 0.80 0.67 0.71 0.80 0.83 0.64 0.72

8 0.75 0.80 0.65 0.78 0.81 0.83 0.62 0.74

9 0.50 0.64 0.54 0.70 0.72 0.78 0.65 0.80

10 0.56 0.58 0.50 0.55 0.66 0.70 0.42 0.46

11 0.41 0.55 0.31 0.53 0.71 0.73 0.72 0.74

12 0.71 0.80 0.64 0.71 0.76 0.85 0.74 0.78

13 0.77 0.80 0.50 0.56 0.72 0.84 0.59 0.66

14 0.71 0.70 0.73 0.74 0.33 0.47 0.51 0.56

15 0.82 0.85 0.67 0.69 0.72 0.83 0.65 0.71

16 0.68 0.80 0.55 0.64 0.77 0.88 0.63 0.71

17 0.67 0.79 0.55 0.60 0.70 0.82 0.57 0.66

18 0.65 0.66 0.64 0.65 0.45 0.54 0.59 0.63

Mean 0.67 0.73 0.56 0.66 0.66 0.75 0.60 0.68

Table 5. RMSE (mm) computed between monthly mean estimated GW variation and monthly mean in situ variation. Names of the stations

(first column) are provided in Appendix A.

CL CG NCL NCG

EnOL EnKF EnOL EnKF EnOL EnKF EnOL EnKF

1 4.16 3.84 5.63 4.02 7.00 6.99 8.37 5.40

2 5.34 4.91 6.66 5.96 6.36 5.73 10.78 8.14

3 3.62 3.06 5.04 4.35 5.96 4.85 10.64 8.13

4 3.79 3.65 4.41 3.55 5.83 5.03 9.00 7.56

5 9.72 8.30 6.89 5.49 8.43 7.83 6.06 5.03

6 6.19 5.19 5.47 5.26 7.56 6.31 5.25 4.29

7 8.30 6.75 7.48 6.99 6.45 5.88 7.36 6.82

8 8.76 6.59 6.63 4.96 5.21 5.20 5.71 4.67

9 5.95 5.38 5.16 5.09 7.33 6.43 5.43 3.91

10 8.95 7.64 6.44 5.66 8.92 8.54 7.62 6.21

11 6.03 5.10 6.21 4.89 9.88 8.32 11.43 8.30

12 7.17 6.37 7.33 7.42 6.24 5.01 6.58 5.95

13 6.25 5.34 6.80 5.91 7.90 7.55 8.84 8.53

14 12.67 10.16 11.43 9.01 9.34 7.97 9.29 7.21

15 8.83 8.28 10.28 10.08 9.78 8.31 10.08 9.89

16 12.74 9.58 13.20 10.60 9.76 8.32 10.44 9.78

17 12.01 9.17 11.10 9.54 7.59 6.14 7.90 6.38

18 7.23 7.50 8.62 7.94 9.59 8.42 9.51 7.88

Mean 7.65 6.49 7.49 6.48 7.73 6.82 8.35 6.89
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column) are found when the global forcing data are used.

The correlation coefficient increased from 0.64 to 0.65 in the

CG case, and 0.65 to 0.66 in the NCG case. The largest im-

provement at an individual station was found at Maxau where

assimilation resulted in an increase in correlation coefficient

from 0.54 to 0.59 in the NCG case.

Similarly, GRACE assimilation leads to a modest im-

provement in terms of NS coefficient. The largest average im-

provement was from 0.62 to 0.65 in the NCL case. GRACE

assimilation slightly reduced the RMSE in all four cases. The

greatest reduction is 4 % in the NCL case.

Though it is encouraging that GRACE assimilation im-

proved the estimated streamflow, these results demonstrate

that it clearly cannot replace high-quality forcing data or

good model calibration.

6 Conclusions

The first goal of this study was to investigate the impact of as-

similating GRACE into the OpenStreams wflow_hbv model

on the estimated TWS, GW storage and streamflow in the

Rhine River basin. GRACE observations were assimilated

into each grid cell of the model with an EnKF to update the

soil moisture and UZ and LZ storage terms of the model. In

general, assimilation drew the EnOL estimated TWS closer

to the GRACE observations. In the absence of independent

TWS observations, a qualitative analysis of the increments

in TWS indicated that GRACE assimilation could partially

correct the TWS estimate for the influence of errors in the

meteorological forcing data and model parameters. As a re-

sult, an improvement in the GW estimate after assimilating

GRACE data was noticeable. In the best case, correlation co-

efficient increased from 0.31 to 0.53 and RMSE decreased

by 35 % with respect to the EnOL case. However, it is found

that the improvement in TWS estimates did not always trans-

late to an improved agreement between the estimated and ob-

served GW storage variation at certain well locations. The

differences may be due to the OpenStreams wflow_hbv pa-

rameters: if the upper limit on soil moisture storage is too

high (low), then the GW variations could be under (over)-

estimated. This is particularly relevant in the type of model

where the calibration is per sub-basin. This does not allow

for local differences on the order of single or a few grid cells.

The issue of scale is also significant because GRACE ob-

serves monthly variations on the order of hundreds of kilo-

metres. Groundwater variations can be influenced by local

features at finer scales. When the basin average is consid-

ered, validation against a denser network of well data or an

independent GW model could be used to determine if an im-

provement occurs at the scale of the entire basin.

Furthermore, the considered model was used to simu-

late runoff. The GW terms, UZ and LZ, primarily serve

as reservoirs for quick and base runoff generation. Due to

the coarse resolution of the observations, GRACE assim-

ilation resulted in only a modest improvement in stream-

flow estimates. In the best case, correlation coefficients in-

creased from 0.65 to 0.66, Nash–Sutcliffe coefficients in-

creased from 0.62 to 0.65, and RMSE was reduced by 4 %.

The second goal of this study was to investigate the poten-

tial value of assimilating GRACE observations in data-sparse

regions. Results from four scenarios were compared in which

the ensemble mean model parameters were either calibrated

values or basin average values, and the meteorological forc-

ing data were either local (high quality) data or global (poorer

quality) data. By comparing the four cases, it was shown that

GRACE assimilation could correct for errors in model forc-

ing data and parameter calibration by drawing the estimated

TWS toward that observed by GRACE. This also resulted in

drawing the estimated GW storage closer to the in situ mea-

surement. Given that the most significant improvements were

observed in the NCG case, this suggests that GRACE ob-

servations are most valuable in data-sparse regions. In these

regions any additional observations, even those at coarse

spatial and/or temporal resolution, are welcome. GRACE

can provide essential independent observations for valida-

tion, and serves as a constraint for TWS within the assimi-

lation process. In terms of streamflow, a comparison of the

four scenarios demonstrates that the ability to capture high

flow events is determined largely by the quality of the forc-

ing data and the model parameters. The improvements in

streamflow estimates after assimilation are modest. Never-

theless, we consider the obtained results as promising, par-

ticularly in data-sparse scenarios, e.g. the NCG case. They

indicate that GRACE contains information that can be use-

ful for streamflow estimation. Whether updating TWS is the

best way to use this information is an open question. An al-

ternative strategy could be to use GRACE assimilation for

parameter estimation at a sub-basin or basin scale and con-

strain the rainfall–runoff model through assimilation of soil

moisture observations.

In conclusion, GRACE assimilation is beneficial, and the

largest improvements are generally observed in the NCG

(i.e. data-sparse) cases. In addition to providing a modest

improvement to the estimated streamflow, it may result in

a noticeable improvement in TWS estimates, yielding an ex-

tra insight into the behaviour of the hydrological model, its

forcing data and parameters. Further research will combine

assimilation of GRACE and a soil moisture remote-sensing

product to constrain the SM estimate storage term, and en-

sure that improved TWS would lead to more consistently im-

proved estimates of GW storage variations. Further research

will also explore the value of assimilating GRACE into a

GW model in which the primary processes of interest vary

on temporal and spatial scales similar to those of GRACE. In

addition, recent studies have explored the effect of spatial ag-

gregation of GRACE TWS prior to assimilation (Forman and

Reichle, 2013) as well as inclusion of the full GRACE error

structure (Eicker et al., 2014). Combining the advances made

in those studies with the assimilation framework presented
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here is expected to yield even more realistic estimates. As

shown by De Lannoy et al. (2009), working with a spatially

distributed state vector (3D-EnKF) can lead to an improved

estimate. Given the coarse resolution of GRACE, we expect

that implementing a 3D-EnKF within the assimilation frame-

work would lead to an improved performance. This could be

particularly important in small basins like the Rhine, and can

be used to account for the fact that the GRACE overpasses

are infrequent and may not be sensitive to TWS variations in

response to specific events.
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Appendix A: Names of well locations

Table A1. Names of the well locations used in this paper.

Location Name Source

number

1 Sundern Ministerium für Klimaschutz, Umwelt,

2 GEW KOELN 557 Landwirtschaft, Natur- und

3 SHELL GODORF GW I Verbraucherschutz des

4 LGD BN-BEUEL Landes Nordrhein-Westfalenb

(http://www.elwasweb.nrw.de)

5 Stetten S1

6 Dietersdorf

7 Haßfurt Q2 Bayerisches Landesamt für

8 Limbach Q1 Umwelt (http://www.gkd.bayern.de)

9 Rattelsdorf 136

10 Faulbach

11 01373X0130/A25

12 02303X0065/P

13 02307X0281/S Portail national d’Accès aux

14 01995X0030/563 Donnéessur les Eaux

15 02344X0082/326E Souterraines

16 02344X0055/319 (http://www.ades.eaufrance.fr)

17 02348X0009/319C

(called A319C in this paper)

18 03426X0197/136

www.hydrol-earth-syst-sci.net/19/2079/2015/ Hydrol. Earth Syst. Sci., 19, 2079–2100, 2015
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