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Abstract. Evapotranspiration (ET) is the main link between

the natural water cycle and the land surface energy bud-

get. Therefore water-balance and energy-balance approaches

are two of the main methodologies for modelling this pro-

cess. The water-balance approach is usually implemented as

a complex, distributed hydrological model, while the energy-

balance approach is often used with remotely sensed obser-

vations of, for example, the land surface temperature (LST)

and the state of the vegetation. In this study we compare the

catchment-scale output of two remote sensing models based

on the two-source energy-balance (TSEB) scheme, against

a hydrological model, MIKE SHE, calibrated over the Skjern

river catchment in western Denmark. The three models uti-

lize different primary inputs to estimate ET (LST from differ-

ent satellites in the case of remote sensing models and mod-

elled soil moisture and heat flux in the case of the MIKE SHE

ET module). However, all three of them use the same ancil-

lary data (meteorological measurements, land cover type and

leaf area index, etc.) and produce output at similar spatial res-

olution (1 km for the TSEB models, 500 m for MIKE SHE).

The comparison is performed on the spatial patterns of the

fluxes present within the catchment area as well as on tem-

poral patterns on the whole catchment scale in 8-year long

time series. The results show that the spatial patterns of la-

tent heat flux produced by the remote sensing models are

more similar to each other than to the fluxes produced by

MIKE SHE. The temporal patterns produced by the remote

sensing and hydrological models are quite highly correlated

(r ≈ 0.8). This indicates potential benefits to the hydrological

modelling community of integrating spatial information de-

rived through remote sensing methodology (contained in the

ET maps derived with the energy-balance models, satellite

based LST or another source) into the hydrological models.

How this could be achieved and how to evaluate the improve-

ments, or lack of thereof, is still an open research question.

1 Introduction

Evapotranspiration (ET) acts as a coupling between two of

the most important natural processes affecting the land sur-

face: the water (mass) exchange and the energy exchange

(Campbell and Norman, 1998). Therefore it has a strong

impact on, and is impacted by, plant biophysics, weather

and climate, and is an important component when modelling

those processes. At the same time the knowledge of both the

magnitude of water loss from the ground through evapotran-

spiration and spatial distribution of this flux has many practi-

cal applications, such as in agri- and aqua-culture, water re-

source management or drought monitoring (Anderson et al.,

2012). This has led to an active interest from the research

community in the spatially distributed modelling of evapo-

transpiration and to the development of a number of differ-

ent methodologies. Two of the most common approaches are

(1) the modelling of land surface energy fluxes, mostly with

the use of land surface temperature (LST) maps derived from

remote sensing observations, and (2) distributed physically

based hydrological models.
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The two types of modelling approaches have been com-

pared previously, for example recently by Conradt et al.

(2013) who compared ET patterns produced by hydrolog-

ical model, remote sensing based model and ground mea-

surements in sub-basins of the Elbe River. That paper con-

cluded with a recommendation of further comparison stud-

ies of the different modelling approaches, especially using

more than two independent models, to better understand their

relative strengths and weaknesses. This should lead to im-

proved model performance, but also to increased understand-

ing of the errors (and their magnitudes) present in the differ-

ent models, which is particularly important if the approaches

are to be combined through, for example, data assimila-

tion. Without the knowledge of errors, assimilating remotely

sensed ET into hydrological models might not provide its full

benefit. Pan et al. (2008), for example, found that assimilat-

ing ET derived with remote sensing observations into their

hydrological model did not have a large impact on the mod-

elled water budget since it was assumed that the calibrated

hydrological model provided much more accurate ET val-

ues than the satellite observation based model. Schuurmans

et al. (2011) found that although spatial patterns produced by

the hydrological model became more realistic after the as-

similation of satellite based ET, a major weakness was the

lack of information about the standard error present in the

ET estimates and lack of independent spatially distributed

ET data set that could be used for validation. Therefore, in

this study we compare two remote sensing based ET mod-

els and a hydrological model, with the aim of improving the

understanding of their limitations and providing information

that could be used in potential future integration of the ap-

proaches through data assimilation.

The remote sensing models of evapotranspiration (Kalma

et al., 2008) aspire to minimize the calibration of site-specific

parameters and the usage of locally derived data. Instead they

aim to be applicable in a wide number of climatic and veg-

etation conditions without any major modifications, and to

rely mostly on data acquired through satellite observations

(e.g. LST) or regional-scale modelling (e.g. air temperature).

This necessitates a number of assumptions and simplifica-

tions, which might lead to reduced accuracy of the mod-

elled fluxes. Another feature of the remote sensing models

is the treatment of each pixel within the modelling domain

as a stand-alone sub-domain without any connections or in-

teractions with the surrounding pixels. In some approaches,

such as the triangle approach (see below), some of the model

parameters are derived through common analysis of all the

pixels in the domain, but the fluxes in the individual pixels

are still derived individually. Similarly, the remote sensing

models consider each satellite image as a stand-alone snap-

shot of the land surface conditions, with no memory of the

past.

There are a number of remote sensing modelling method-

ologies being actively used by the research community rang-

ing from simpler, empirical ones to more complex, physically

based ones. One of the simpler approaches consist of the

so-called “triangle” models, named after the shape resulting

from plotting the pixel values of an LST map against pixel

values of a vegetation index map. The evaporation fraction

can then be derived by interpolating between the edges of the

triangle (Jiang and Islam, 2001; Stisen et al., 2008). More ad-

vanced schemes characterize the ground surface as one layer

(soil and vegetation combined) in one-source models (e.g.

Surface Energy Balance System model, Su, 2002), or as two

layers (soil and vegetation separately) in two-source models,

the majority of which follow the two-source energy-balance

(TSEB) modelling scheme (Norman et al., 1995). Both the

one-source and two-source models characterize the fluxes of

heat and moisture between the surface and the atmosphere in

terms of a set of resistance equations, formulated from physi-

cally based models of boundary layer behaviour under differ-

ent atmospheric conditions and vegetation covers. The two-

source models have the advantage of explicitly representing

the separate contributions of the soil and the vegetation, thus

avoiding the need for parametrization of an “excess” resis-

tance term whose value differs significantly from one ref-

erence to another (Norman et al., 1995; Matsushima, 2005;

Kustas and Anderson, 2009; Boulet et al., 2012).

The distributed physically based hydrological models,

in contrast to the remote sensing models, are heavily

parametrized and calibrated for each individual catchment

or study area (Refsgaard, 1997). Besides evapotranspiration,

and other land surface fluxes, they can model a host of

other hydrological processes such as channel flow, unsatu-

rated zone flow or ground water flow and the interactions be-

tween those processes (Graham and Butts, 2005). This means

that the modelling is performed in four dimensions (latitude,

longitude, elevation or depth, and time) and that there is an

interaction between the model pixels in both time and space.

Due to their complex nature the hydrological models require

significant computational resources and a large number of

inputs for calibration and operation. During the operational

stage the models require gridded meteorological input (in-

cluding rainfall, air temperature and humidity), gridded soil

hydraulic parameters and a digital elevation model among

others (Stisen et al., 2011a). During the calibration stage

(prior to the operational stage) additional information is re-

quired, for example measured hydrological parameters such

as hydraulic head or stream outflow.

Since the hydrological models are calibrated using de-

tailed hydrological observations, it is our hypothesis that the

catchment-wide evapotranspiration estimated by those mod-

els is more accurate than the one derived with remote sens-

ing models. On the other hand, we expect the energy-balance

models driven by remote sensing observations to better rep-

resent the spatial patterns of the fluxes present within the

catchment. We evaluate this hypothesis by running a hydro-

logical model, MIKE SHE, described in Sect. 4.1, and two

TSEB based models, Dual-Temperature-Difference (DTD –

Norman et al., 2000; Guzinski et al., 2013) and TSEB-2 An-
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gle Radiative Transfer (TSEB-2ART – Nieto et al., 2013),

described in Sect. 4.2, over the Skjern river catchment lo-

cated in western Denmark (see Sect. 2). Apart from being

the largest river in Denmark, Skjern is also the study area

of the Danish hydrological observatory HOBE (Jensen and

Illangasekare, 2011), thus providing ample data for calibrat-

ing and validating the models. The three models are run with

the same meteorological inputs, interpolated from field based

observations, and the same land cover and leaf area index

(LAI) maps, in order to minimize the uncertainties inherent

in using different data sets. The differences between the mod-

els, and their input data, are described in Sect. 4.

The output land surface fluxes, and in particular the latent

heat flux, from the three models are then inter-compared. The

comparison is performed on a pixel-by-pixel basis as well

as on catchment scale, and both systematic and unsystem-

atic differences are analysed (Ji and Gallo, 2006). In addi-

tion, the catchment-scale temporal evolution of the evapo-

transpiration estimated from the three models is evaluated.

Through this, we assess strengths and weaknesses of the dif-

ferent modelling approaches and in particular try to answer

the following question: is there any additional (spatial) infor-

mation present in inputs or outputs of remote sensing based

surface energy-balance models that is missing from the phys-

ically based distributed hydrological model?

2 Study area

The study area covers the Skjern River catchment (Fig. 1)

which is located on the western part of Denmark’s Jutland

peninsula and it is the largest river catchment in Denmark

in terms of water volume. It has a roughly rectangular shape

with the east–west length of around 60 km and north–south

length of around 40 km. The Skjern River outlet is on the

western side of the catchment with the discharge entering

Ringkøbing Fjord. The terrain is mostly flat with a maximum

elevation of 125 m a.s.l. and a gentle east to west slope. The

soils are predominantly sandy with the main land use being

agriculture and coniferous plantations. The catchment expe-

riences a temperate maritime climate, with mean annual pre-

cipitation of 990 mm and mean annual temperature of 8.2 ◦C.

Since 2007 the catchment is hosting the Danish Hydrolog-

ical Observatory, HOBE, with numerous experiments and

measurements concerning precipitation, evapotranspiration,

greenhouse gas exchange, groundwater–surface water inter-

actions and other related topics, making it highly suitable for

calibrating and evaluating the distributed physically based

hydrological models. For more details refer to Jensen and

Illangasekare (2011).

3 Common model inputs

In order to compare the performance of the three models and

not the accuracy of their inputs, the models used the same

Figure 1. Land use map of the study area: the Skjern river catch-

ment in the west of Denmark’s Jutland peninsula. Model input me-

teorological data were interpolated from the measurements taken by

the stations shown on the map.

auxiliary input data whenever possible. Those common

inputs consisted of maps with meteorological forcings,

LAI, albedo and land cover types. For the meteorological

forcing data, kriged fields of wind and temperature corrected

precipitation from 43 rain gauges were used (Stisen et al.,

2011b) together with air temperature, relative humidity,

incoming shortwave radiation, wind speed and pressure

interpolated from 16 climate stations. The locations of the

rain gauges and climate stations in relation to the study

area are presented in Fig. 1. The vegetation-related inputs

were derived using remote sensing data with LAI estimated

from MODIS NDVI (MOD13A1 product) following the

study of Boegh et al. (2009) and albedo estimated from

narrow band MODIS reflectance following Liang (2001).

It should be noted that albedo maps were only shared

by MIKE SHE and DTD, with TSEB-2ART producing

its own albedo maps as one of the outputs. A land cover

map was taken from the Danish Areal Information Sys-

tem run by the Danish Ministry of Environment (http:

//www2.dmu.dk/1_Viden/2_Miljoe-tilstand/3_samfund/

AIS/1a_Dynamisk_gis/Image_viewer/AAK_IMS_en.htm,

last access: 29 January 2013), with the land cover dependent

parameters listed in Table 1. The LAI correction factor,

mentioned in the last row of Table 1, was derived during

the calibration of the MIKE SHE model and is used as

multiplicative factor for LAI estimated from MODIS NDVI

for all land cover classes except for forests. Even though

this is a MIKE SHE-specific parameter, it was also applied

to LAI inputs to DTD and TSEB-2ART to ensure that

comparable input data were used in all the models.

All common input data maps were delivered in UTM32-

WGS84 projection. The LST observations used by the dif-

ferent models, as well as data used only by a single model,

are described in the sections below.
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Table 1. Land cover dependent parameters for the three models. The equations referred to in the table are (Eq. a) 0.15·LAI and (Eq. b)

0.12·LAI+0.07, where LAI is the leaf area index before multiplication by the LAI correction factor and has a minimum value of 0.5.

Parameter Land cover class Units

Grass Coniferous forest Heath Crop

MIKE SHE DTD TSEB-2ART MIKE SHE DTD TSEB-2ART MIKE SHE DTD TSEB-2ART MIKE SHE DTD TSEB-2ART

Vegetation heigh (hC) Eq. (a) Eq. (a) Eq. (a) 9.0 9.0 9.0 Eq. (a) Eq. (a) Eq. (a) Eq. (a) Eq. (a) Eq. (a) m

Clumping factor NA 1.0 NA NA 0.5 NA NA 0.9 NA NA 0.9 NA unitless

Canopy height/canopy width NA 1.0 1.0 NA 3.0 3.0 NA 1.0 1.0 NA 1.0 1.0 unitless

Leaf size 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 m

Temperature measurement height 10.0 10.0 10.0 18.0 18.0 18.0 10.0 10.0 10.0 10.0 10.0 10.0 m

Wind measurement height 10.0 10.0 10.0 18.0 18.0 18.0 10.0 10.0 10.0 10.0 10.0 10.0 m

Root depth Eq. (b) NA NA Eq. (b) NA NA Eq. (b) NA NA Eq. (b) NA NA m

Minimum stomata resistance 90 NA NA 150 NA NA 120 NA NA 90 NA NA sm−1

Extinction coefficient 0.6 NA NA 0.5 NA NA 0.3 NA NA 0.6 NA NA unitless

LAI correction factor 2.21 2.21 2.21 1.0 1.0 1.0 2.21 2.21 2.21 2.21 2.21 2.21 unitless

4 Models

4.1 MIKE SHE model

The implementation details of the hydrological model used

in this study, MIKE SHE SW-ET, are presented in Stisen

et al. (2011a) and Overgaard and Rosbjerg (2005). Briefly,

the model couples ground-water and surface-water modules

together with an ET module (Overgaard and Rosbjerg, 2005).

The SW-ET module, based on the two-source model of Shut-

tleworth and Wallace (1985), uses hydrological modules’

outputs of soil moisture, soil heat flux and fraction of soil

and leaf covered by ponded water. Besides these parameters,

meteorological observations of air temperature and humidity,

wind speed and incoming shortwave radiation and maps of

albedo, LAI and land cover are used to solve a set of 10 lin-

ear equations for the temperature and humidity of dry and

wet soil, dry and wet leaf and inter-canopy air (see Appen-

dices A and D in Overgaard and Rosbjerg, 2005, for more

details). With those parameters it is possible to estimate the

effective soil and leaf temperatures as well as the radiometric

surface temperature (LST) and the latent and sensible heat

fluxes. Since the model simulates LST, it is possible to cal-

ibrate the model against remotely sensed LST in addition

to hydrological variables such as hydraulic head or stream

outflow. The model used in this study was calibrated for

the Skjern river catchment against the above mentioned hy-

drological variables, LST taken from the MYD11A1 Aqua-

MODIS product, evapotranspiration measured at three flux

tower sites placed within the catchment area and soil mois-

ture measurements from a distributed sensor network. The

calibration methodology will be a topic of a subsequent pa-

per.

As input the model requires gridded meteorological forc-

ing data, soil hydraulic parameters and a number of param-

eters related to vegetation. The meteorological forcing data,

LAI, albedo and land use maps are described in Sect. 3. The

soil hydraulic parameters came from a study of Greve et al.

(2007). The derivation of other input parameters, such as soil

surface roughness or irrigation water input, is described in

Stisen et al. (2011a). The MIKE SHE SW-ET model, from

now on referred to as MIKE SHE, was run at 500 m resolu-

tion, and as output provided the surface energy fluxes (sen-

sible, latent and ground heat fluxes and net radiation) to-

gether with LST and soil and canopy temperatures, TS and TC

respectively. The outputs were bilinearly interpolated from

500 m to 1 km to match the resolution of the outputs from

both remote sensing models.

4.2 TSEB modelling scheme

The TSEB approach (Norman et al., 1995) splits the ob-

served directional LST into its two main components,

namely the temperature of soil and canopy:

TR(θ)≈
[
f (θ)T 4

C + (1− f (θ))T
4

S

]0.25

, (1)

where TR(θ) is the LST observed at the view zenith angle

(VZA) of θ and f (θ) is the fraction of vegetation cover in the

field of view of the sensor at VZAθ . This allows the model

to estimate the latent and sensible heat fluxes from the soil

and canopy separately, thus avoiding the need to parametrize

the “excess” resistance term which is often present in single-

source models but for which there does not yet exist an es-

tablished methodology for estimating its value (e.g. Mat-

sushima, 2005; Boulet et al., 2012).

In the single-angle TSEB models, the latent heat flux of

the canopy, LEC, is initially estimated using the assumption

that the canopy is transpiring at the potential rate dictated

by the divergence of net radiation in the canopy, Rn,C, and

a modified Priestly–Taylor approach. This allows an initial

estimation of the sensible heat flux of the canopy,HC, and of

TC. If the model returns unrealistic results (LE< 0 meaning

condensation during daytime) the transpiration of the canopy

can be iteratively reduced until realistic results are obtained

(Norman et al., 1995).

In the dual-angle TSEB models, TS and TC can be derived

directly from the observation geometry, followed by HS and

HC and finally LEC as residual of the canopy energy balance.

In both cases the total energy balance is ensured by estimat-

ing the latent heat flux from the soil, LES, as residual:

LES = Rn,S−HS−G=
(
Rn−Rn,C

)
− (H −HC)−G, (2)
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where Rn,S is the net radiation of the soil, HS is the sensible

heat flux of the soil and G is the ground heat flux.

The two TSEB based models used in this study follow the

principles described above but differ in other implementation

details as described in the subsections below.

4.2.1 DTD model

The DTD model minimizes the influence of systematic error

in the retrievals of LST and air temperature by replacing ab-

solute temperature measurements with temperature change

between two observations (Norman et al., 2000). In the orig-

inal DTD model the first observations was early in the morn-

ing, when fluxes are minimal, and the second later in the

morning or in the afternoon. Guzinski et al. (2013) demon-

strated that replacing the early morning observations with

night-time ones does not have a significant effect on the ac-

curacy of the modelled fluxes, thereby facilitating the use

of polar orbiting satellites with day and night overpasses,

and introduced a simple scheme for accounting for vegeta-

tion phenology when estimating canopy transpiration. The

model was further modified in Guzinski et al. (2014) where

the resistance network to sensible heat flux was modified, to

the so-called “series” configuration, to explicitly consider the

in-canopy air temperature, thus improving the model perfor-

mance during dry conditions. The DTD model formulation

used in this study is as described in the Appendices of Guzin-

ski et al. (2014), with the exception of the formulation of the

resistance to heat transfer from the soil surface, RS.

The RS formulation used in the TSEB modelling scheme

accounts for turbulent transport from free convection (Kustas

and Norman, 1999):

RS =
1

c(TS− TC)
1/3
+ buS

, (3)

where c and b are constants given a value of

0.0025 ms−1 K−1/3 and 0.012 ms−1 respectively and

uS is the wind speed just above the soil surface. However,

since DTD aspires to use just time differential temperature

measurements, it was originally decided to remove the

(TS− TC)1/3 term from the resistance equation and instead

to replace it with a LAI-dependent constant. For dense

canopies TS− TC was assumed to be 5 K, while for sparse

canopies it was assumed to be 15 K (Norman et al., 2000).

Those assumptions made sense for the data sets used to

evaluate the model performance, taken in New Mexico over

June and July 1997 (http://hydrolab.arsusda.gov/sgp97, last

accessed 27 February 2014) and in Arizona from June to

September 1990 (Kustas and Goodrich, 1994). However,

in the current study area, dominated by croplands located

in temperate maritime climate (see Sect. 2), sparse canopy

conditions are usually present in early spring and autumn

when the difference between TS to TC is significantly

less than 15 K. Therefore the RS formulation was further

modified to make use of the difference in thermal inertia of

LST and air temperature:

RS =
1

c
[(
TR,1− TR,0

)
−
(
TA,1− TA,0

)]1/3
+ buS

, (4)

where subscript 0 indicates temperatures estimate at night or

early in the morning, and 1 indicates estimate at some other

time during the day, and b and c have the same values as

shown above. Thus, the use of both non-time differential tem-

perature estimates and the assumptions about the magnitude

of TS−TC are avoided. This formulation implicitly takes into

account the amount of vegetation cover, since vegetation has

larger thermal inertia than soil and thus (TR,1−TR,0) is lower

for dense canopies, while also reflecting the climatic condi-

tions present in the study area.

The model uses MODIS LST estimates from the

MYD11A1 product, together with land cover, LAI and

albedo values derived as described in Sect. 3 and vegeta-

tion indices (normalized difference vegetation index and en-

hanced vegetation index) from the MOD13A2 product for

estimating the fraction of vegetation that is green (Guzinski

et al., 2013). The meteorological inputs are also as described

in Sect. 3. The MODIS LST and vegetation indices products

were provided by NASA in a georeferenced grid with 930 m

resolution and Sinusoidal projection. This was bilinear re-

sampled to 1 km resolution grid and reprojected to UTM32-

WGS84 projection. The modelled fluxes are output at 1 km

resolution.

4.2.2 TSEB-2ART model

When TSEB is applied with single-angle LST, some assump-

tions are needed based on the expectation that plants tran-

spire at their potential rate. This assumption may lead to sig-

nificant errors in cases when plants are stressed, or when the

potential canopy transpiration is not well defined. For that

reason, the green fraction of vegetation (fg) is an important

parameter within the model since it improves TSEB accu-

racy in forested ecosystems and during senescence by tak-

ing into account the phenological development of the vegeta-

tion (Guzinski et al., 2013; Chirouze et al., 2014). However,

there does not yet exist an established method of estimat-

ing fg using remote sensing data. To overcome this issue,

dual-angle LST can be used for retrieving soil and canopy

temperatures without employing any assumptions based on

the canopy transpiration (Chehbouni et al., 2001; Kustas and

Norman, 1997; Nieto et al., 2010a, b). Simple models for

such retrieval have been proposed based on the proportion of

vegetation and soil observed at two different viewing angles

(Chehbouni et al., 2001; Kustas and Norman, 1997). How-

ever, since plant canopies are composed of finite leaves, mul-

tiple scattering of energy occurs within the canopy and there-

fore more physically complex methods for retrieving soil and

canopy temperatures may be needed when using dual-angle

LST measurements (François, 2002; Nieto et al., 2013).
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The TSEB-2ART model (Nieto et al., 2013) couples

a dual-angle version of TSEB introduced by Kustas and Nor-

man (1997), with radiative transfer model (RTM) 4SAIL

(Verhoef et al., 2007). Through this coupling it is possible to

retrieve canopy and soil temperatures by analytically invert-

ing the RTM with LST estimates of the same area but ob-

tained through two different view zenith angles. 4SAIL takes

into account the different emissivities of the end members

(canopy and soil) and hence multiple scattering of the ther-

mal radiation, as well as the downwelling longwave radiation

reflected by the surface. Therefore, the coupling should re-

sult in more accurate temperature retrievals compared to just

using the geometric configuration of the observations (Ni-

eto et al., 2013). Similarly to other TSEB based models, the

canopy and soil temperatures are then used by TSEB-2ART

to estimate the sensible heat flux of the canopy and soil re-

spectively. In addition the RTM is used to estimate the net ra-

diation, and radiation divergence in the canopy, while taking

into account multiple scattering of the shortwave/longwave

radiation between the soil and the canopy and within the

canopy. The inclusion of 4SAIL also allows for the use of

different leaf inclination distribution functions, rather than

the spherical leaf distribution of the original TSEB (Norman

et al., 1995; Kustas and Norman, 1999). Ground heat flux

is estimated as a fraction of net radiation reaching the soil

based on Choudhury et al. (1987). Finally, transpiration and

soil evaporation can be obtained as residual terms of the veg-

etation and soil energy budgets.

TSEB-2ART has been evaluated over three flux tower

sites within the HOBE area, obtaining more accurate flux re-

trievals than both the original dual-angle (Kustas and Nor-

man, 1997) and the single-angle TSEB (Norman et al., 1995)

implementations when driven by LST estimates derived with

the AATSR sensor on board the Envisat satellite (Nieto et al.,

2013). Even though the Envisat satellite is no longer func-

tional, the model can be applied to the dual-angle LST obser-

vations in the future Sentinel 3 mission (Donlon et al., 2012).

Apart from the AATSR derived LST the model uses the same

meteorological data as well as land cover and LAI maps as

MIKE SHE and DTD models but produces its own albedo as

part of the implementation of 4SAIL. The Envisat LST was

derived from the ATS_TOA_1P, AATSR Gridded Brightness

Temperature and Radiance, product, which is a full resolu-

tion data set resampled to a 1km×1km grid for both the nadir

and forward views by the European Space Agency (Scarpino

and Cardaci, 2009). The split-window brightness tempera-

tures (11 and 12 µm) for both forward and nadir were then

reprojected to UTM32-WGS84 and resampled to the same

1 km resolution using a bilinear interpolation. LST at the

two AATSR observation angles was then retrieved by the

quadratic dual-channel split-window algorithm proposed by

Coll et al. (2006) for AATSR. The modelled fluxes are output

at 1 km resolution.

5 Comparison methodology

The spatial comparison was performed by selecting all the

pixels in the Skjern catchment on all the days between 2003

and 2010 when at least 10 % of the catchment was cloud free

during the night and day Aqua overpasses and which met the

following conditions:

– the pixel is not classified as water or urban area (met by

96 % of the catchment area);

– all three models produce valid results, meaning

LE> 0 Wm−2 and H ≥−100 Wm−2 (met by 85 % of

modelled fluxes).

This resulted in over 95 000 sets to be compared. A median

moving-window filter of 3× 3 pixels was applied to the out-

put maps to reduce noise caused by image misregistration

while preserving the spatial patterns found in the maps.

The comparison was performed using the instantaneous

modelled sensible heat flux, latent heat flux and available en-

ergy (AE) defined as the net radiation minus the ground heat

flux. The magnitude of those fluxes is strongly influenced

by the incoming solar radiation and so it has a cyclic annual

component with generally larger fluxes during the summer

months and lower during the winter months. This could po-

tentially influence the correlation between the fluxes mod-

elled with different models. To remove this time dependent

component and instead to evaluate the influence of water

availability on the partitioning of the available energy into

latent and sensible heat fluxes by the different models, the

evaporative fraction (EF), defined as the ratio of energy used

for evapotranspiration to the total available energy, was also

used during the comparison.

When comparing the fluxes estimated by the three differ-

ent models the time at which the fluxes are estimated must be

taken into account. The TSEB-2ART fluxes are estimated at

the time of the Envisat overpass, which is around 11:30 local

time (LT), while the DTD fluxes are estimated at the time

of Aqua overpass, around 12:00–13:00 LT. The MIKE SHE

fluxes are estimated at hourly intervals throughout the day.

Therefore, when comparing the fluxes between MIKE SHE

and one of the satellite based models a linear interpolation

was performed between the two MIKE SHE estimates brack-

eting the satellite based estimate (e.g. if satellite overpass was

at 11:48, MIKE SHE estimates from 11:00 and 12:00 would

be used). When comparing the fluxes from two satellite based

models there is an offset present due to this time difference,

although it should be reduced when comparing EF (Peng

et al., 2013). A decision was made to perform the comparison

using instantaneous modelled fluxes, and not their daily esti-

mates, since extrapolating to daily values would just involve

multiplying EF by the daily available energy (or net radiation

assuming negligible daily G). Therefore the multiplicative

factor would be the same (if field-measured daily available

energy were used) or very similar (if modelled daily avail-

able energy were used) for the three models and no additional
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information or insight would be gained. On the contrary, the

self-preservation of EF might not always hold over the whole

study area due to frequently cloudy conditions, bringing ad-

ditional complications and errors when extrapolating to daily

values.

A number of statistical measures are used to explore the

relation between the fluxes, and temperatures, estimated by

the three models. The first one is the Pearson correlation co-

efficient, r , which measures the linear covariation of two data

sets. To assess the differences between the data sets the root

mean square difference (RMSD), which is the square root of

the mean square difference (MSD), is used:

RMSD=MSD0.5
=

[
1

n

n∑
i=1

(Xi −Yi)
2

]0.5

, (5)

where Xi and Yi are the ith points in the X and Y data sets.

The MSD can be further split into systematic and unsystem-

atic mean product differences (MPD), MPDs and MPDu re-

spectively, where MPDs measures the distance between the

geometric mean regression line (Barker et al., 1988) of two

data sets and the 1–1 line, while MPDu measures the distance

between the data sets’ points and the geometric mean regres-

sion line (Ji and Gallo, 2006). The geometric mean regres-

sion is used instead of the linear regression since the former

one assumes that both X and Y are subject to errors. Since

MSD=MPDs+MPDu it is also possible to calculate the rel-

ative contribution of the systematic and unsystematic differ-

ence to the total difference as MPDs/MSD and MPDu/MSD

respectively (Ji and Gallo, 2006). The systematic component

of the difference represents the variation between the data

sets that can be corrected by simple linear transformation of

one of the data sets, while the unsystematic difference can be

thought of as noise caused by some unknown factors which

is harder to correct for (Ji et al., 2008). For presentation pur-

poses a square root is taken of MPDs and MPDu to obtain

RMPDs and RMPDu respectively which are then shown in

the results’ tables. The last statistical measure used is the

mean bias, calculated as the difference between the means of

two data sets. With the exception of the sign of the bias, all

the statistical measures are symmetric, meaning that no as-

sumption is made about the correctness or otherwise of any

of the data sets and that the same values are obtained if the

order of the data sets is reversed when calculating the mea-

sures.

The temporal patterns of evapotranspiration were evalu-

ated at catchment scale, meaning that all the valid non-urban

and non-water pixels within the catchment were averaged to

determine the catchment-scale fluxes. It should be noted that

since MIKE SHE also simulates the fluxes over water and

urban pixels, this average is not the whole catchment evapo-

transpiration as modelled by MIKE SHE. However, since the

number of water and urban pixels is quite small (Fig. 1), the

averaged value should be close to the whole catchment evap-

otranspiration. Only those days on which the remote sensing

models produced flux estimates in pixels representing at least

70 % of all non-urban and non-water catchment pixels were

included in the analysis. In the case of DTD this condition

was satisfied on 132 days over the 8-year period, while in the

case of TSEB-2ART there were 68 valid days due to the less

frequent revisit time of AATSR vs. MODIS. The catchment

averages for each date were produced using the same set of

pixels for the remote sensing models and MIKE SHE. The

two data sets were compared using the r correlation coeffi-

cient, RMSD and bias and the ratio of RMSD and bias to the

mean evapotranspiration estimated by MIKE SHE.

6 Results

6.1 Spatial patterns

The results of pixel-to-pixel comparisons of fluxes between

the three model pairs are presented in Figs. 2 (MIKE SHE–

DTD), 3 (MIKE SHE–TSEB-2ART), and 4 (TSEB-2ART–

DTD) with statistics summarized in Table 2 and described

for each model pair in the subsections below.

6.1.1 MIKE SHE vs. DTD

The bias between the turbulent fluxes modelled with

MIKE SHE and DTD is significant with a value of 19 Wm−2

and −45 Wm−2 for H and LE respectively. The RMSD

is also quite large, at 78 Wm−2 for H and 106 Wm−2 for

LE, and consequently the correlation coefficient between the

modelled turbulent fluxes is relatively low, with a maximum

value of 0.56. When the differences are split into systematic

and unsystematic parts, 89 % of the error in H and 81 %

of error in LE is unsystematic. The differences are propa-

gated through to EF, leading to very low correlation although

with a small bias. The differences in the turbulent fluxes can-

not be caused mainly by differences in the parametrization of

the available energy since in that case the correlation reaches

0.97. This was expected since the two models use the same

incoming solar radiation forcing and the same albedo maps

so the majority of the 35 Wm−2 RMSD (55 % of MSD) is

systematic and caused by the differences in the net longwave

radiation estimation due to different LSTs, with DTD using

MODIS LST and MIKE SHE the modelled LST from the

SW-ET module, and by the ground heat flux calculations.

6.1.2 MIKE SHE vs. TSEB-2ART

The comparison of fluxes produced with MIKE SHE and

TSEB-2ART follows a similar pattern as in the previous sec-

tion, with relatively low correlation and significant RMSD

but with much lower bias (maximum magnitude of 8 Wm−2

in the case of H ). The other statistics are similar to the

ones from MIKE SHE–DTD comparison, with RMSD of

84 Wm−2 and r of 0.38 for H and 85 Wm−2 and 0.58 for

LE. The correlation of EF is slightly higher than in the case
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Figure 2. Density scatter plot of over 95 000 points comparing the

sensible heat flux (top left), latent heat flux (top right), available en-

ergy (bottom left) and evaporative fraction (bottom right) modelled

by MIKE SHE and DTD. Red colour indicates higher density of

points, blue colour lower density.

Figure 3. Density scatter plot of over 95 000 points comparing the

sensible heat flux (top left), latent heat flux (top right), available

energy (bottom left) and evaporative fraction (bottom right) mod-

elled by MIKE SHE and TSEB-2ART. Red colour indicates higher

density of points, blue colour lower density.

Figure 4. Density scatter plot of over 95 000 points comparing the

sensible heat flux (top left), latent heat flux (top right), available en-

ergy (bottom left) and evaporative fraction (bottom right) modelled

by TSEB-2ART and DTD. Red colour indicates higher density of

points, blue colour lower density.

of DTD, with a value of 0.25, and the characterization of AE

is consistent between the two models, with a correlation of

0.95 and a bias of −7 Wm−2, with only 8 % of MSD being

attributed to systematic errors.

6.1.3 TSEB-2ART vs. DTD

The correlation between the turbulent fluxes modelled with

TSEB-2ART and DTD is the highest of any model pairs,

with correlation coefficient of 0.42 for H and 0.70 for LE,

even though the fluxes were obtained at different times of

the day. The time offset is evident in the bias of AE, with the

value of AE during the later Aqua overpass time being on av-

erage 55 Wm−2 higher than the value of AE during Envisat

overpass time. The biases are also present in the other flux

estimates, particularly of LE, with a value of −77 Wm−2.

However, even though the biases are much higher than in

any other pair, the RMSD between TSEB-2ART and DTD

estimated turbulent fluxes is comparable to RMSD of those

fluxes between the other pairs. As can be seen from the split

of the difference into systematic and unsystematic compo-

nents, a large component of the MSD between the fluxes is

systematic with RMPDu of LE reaching the lowest values of

all the model pairs and RMPDu of H being very close to the

minimum. The correlation and RMSD of EF is also the best

of all the model pairs, with values of 0.33 and 0.18 respec-

tively.
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Table 2. Statistical comparison between MIKE SHE, DTD and TSEB-2ART models for sensible and latent heat fluxes (H and LE), available

energy (AE) and evaporative fraction (EF). Statistics used: correlation coefficient (r), root mean square difference (RMSD), systematic and

unsystematic root mean product differences (RMPDs and RMPDu respectively), the percentage of mean square difference (MSD) attributed

to systematic and unsystematic mean product differences (MPD) (MPDs/MSD and MPDu/MSD respectively) and bias. The statistics for

H , LE and AE are in Wm−2, with the exception of MPDs/MSD and MPDu/MSD, which are percentages. The statistics for EF are unitless,

with the exception of MPDs/MSD and MPDu/MSD, which are percentages.

r RMSD RMPDs RMPDu MPDs/MSD MPDu/MSD Bias

MIKE SHE–DTD

H 0.42 78 26 74 11 89 19

LE 0.56 106 46 95 19 81 −45

AE 0.97 35 26 23 55 45 −25

EF 0.21 0.20 0.08 0.18 18 82 −0.07

MIKE SHE–TSEB-2ART

H 0.38 84 12 83 2 98 −8

LE 0.58 85 18 83 5 95 5

AE 0.95 36 10 34 8 92 −7

EF 0.25 0.19 0.03 0.18 2 98 0.01

TSEB-2ART–DTD

H 0.42 79 26 75 11 89 18

LE 0.70 104 78 68 57 43 −77

AE 0.94 67 56 37 69 31 −55

EF 0.33 0.18 0.09 0.15 26 74 −0.09
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Figure 5. Average catchment-wide latent heat fluxes on the days when at least 70 % of non-water and non-urban pixels were modelled by

either DTD (left) or TSEB-2ART (right). In the main graph the blue circles represent catchment fluxes modelled by MIKE SHE and the red

crosses represent the catchment fluxes modelled by the remote sensing models on the same year and day of year (DOY) and at the same

time of day. The figure contains dates from the 8 years under investigation and the blue solid line shows an 8-year averaged whole catchment

ET for a particular DOY as modelled by MIKE SHE around the time of Aqua (left) or Envisat (right) overpass. The blue broken line shows

potential ET for the same data set estimated using the Priestley–Taylor approach and MIKE SHE AE. The inset image contains a scatterplot

of the MIKE SHE and remote sensing fluxes with black indicating fluxes from January to April, green from May to August and brown from

September to December.

6.2 Temporal patterns

The results of comparing DTD and TSEB-2ART catchment-

wide evapotranspiration estimates against MIKE SHE are

presented in Fig. 5, with the statistics summarized in Ta-

ble 3. The correlation between the latent heat fluxes mod-

elled with DTD or TSEB-2ART and MIKE SHE are quite

similar, with correlation coefficients having a value of 0.79 in

the case of comparing MIKE SHE and DTD and 0.83 in the

case of MIKE SHE and TSEB-2ART. The biases between the

modelled fluxes are quite small, with the largest one present

when looking at LE between MIKE SHE and DTD and hav-

ing a value of −30 Wm−2, which represents just 13 % of the

mean value of LE modelled by MIKE SHE. The RMSD val-

ues between DTD and MIKE SHE and between TSEB-2ART

and MIKE SHE are 68 and 45 Wm−2 respectively. This rep-
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Table 3. Statistical comparison of catchment-wide latent heat fluxes estimated by the model pairs (MIKE SHE–DTD and MIKE SHE–TSEB-

2ART) for predominantly cloud-free days over the period of 8 years. Statistics used: correlation coefficient (r), root mean square difference

(RMSD), relative RMSD (%RMSD), bias and relative bias (%bias). RMSD and bias are in Wm−2 while %RMSD and %bias are calculated

as the statistic divided by the mean of the MIKE SHE LE estimates and are percentages.

r RMSD %RMSD Bias %Bias

MIKE SHE–DTD LE 0.79 68 28 −30 −13

MIKE SHE–TSEB-2ART LE 0.83 45 21 6 3
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Figure 6. Histogram of the pixel-wise differences between evap-

orative fraction (EF) estimated by MIKE SHE at the time of Aqua

overpass and Envisat overpass. The differences between the two sets

were evaluated using the two-sample t test and are found to be sta-

tistically significant with a p value smaller than 0.001.

resents 28 % of the mean value of MIKE SHE LE in the case

of DTD and 21 % in the case of TSEB-2ART.

7 Discussion

7.1 Spatial patterns

Even though DTD and TSEB-2ART estimate fluxes at dif-

ferent times during the day, the correlation between H and

LE estimated by those two models is as strong (in the case

of H ) or stronger than between either of the models and

MIKE SHE. In addition, the value of RMPDu between LE

estimated with those two models is lower than for the other

comparisons, even though the RMSD between LE modelled

with TSEB-2ART and MIKE SHE is lower. This indicates

that the spatial patterns produced by the remotely sensed

models have a stronger agreement with each other than with

the patterns produced by the hydrological model. It can be

presumed that if the DTD and TSEB-2ART estimated the

fluxes at the same time, the correlation would be even higher

and the differences even smaller.

When the seasonal signal of the available energy is re-

moved by replacing the turbulent fluxes by EF, the spatial

patterns produced by the remote sensing models are still

more strongly correlated than when either of them is com-

pared to the hydrological model. The correlation coefficient

of TSEB-2ART and DTD EF is 0.33 compared to the second

highest value of 0.25 between MIKE SHE and TSEB-2ART

EF. However, it should once again be kept in mind that the re-

mote sensing models estimate the fluxes at different times of

the day. Usually it is assumed that during clear sky days the

EF remains constant throughout the daytime and especially

around noon (Peng et al., 2013). However, by comparing the

differences of EF modelled by MIKE SHE at the Aqua and

Envisat overpass times (Fig. 6), it can be seen that EF differs

between the overpasses. This could be due to the fact that for

the majority of the days used in this study there was some

cloud cover over the Skjern river catchment (the threshold of

inclusion in the study was 10 % of cloud free pixels during

the night and day Aqua overpass) meaning that it is highly

probable that clouds have passed over the study pixels be-

tween the two satellite overpasses, breaking the assumption

of self-preservation of EF (Crago, 1996). Therefore it can be

assumed that if the EF from TSEB-2ART and DTD were es-

timated at the same time the correlation would be higher still.

Figure 7 and Table 4 present the results of comparing

just the vegetation transpiration (LEC) produced by the three

models. The correlation coefficient of the modelled transpi-

ration is higher than for bulk LE (transpiration and soil evap-

oration combined) for all the model pairs, with the correla-

tion between TSEB-2ART and DTD still remaining the high-

est. However, the RMSD of transpiration is higher than that

of bulk LE when comparing TSEB-2ART with both DTD

and MIKE SHE. This is also the case with bias, which addi-

tionally switches sign. The differences between transpiration

produced by MIKE SHE and DTD are smaller than between

the bulk ET. Those statistics could indicate that either the

retrieval of canopy temperatures is more accurate than the

retrieval of soil temperatures (which appears to be corrob-

orated by the discussion in Sect. 7.1.2) or that the canopy

component of two-source models is more physically sound.

However, there are very few studies in which the two compo-

nents of bulk LE are validated separately due to the difficulty

of obtaining such measurements in situ, especially for com-

parison with models driven with satellite based observations.

Therefore, the accuracy of those components has not yet been
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Figure 7. Density scatter plot comparing the vegetation latent heat flux modelled by MIKE SHE and DTD (left), MIKE SHE and TSEB-

2ART (centre) and TSEB-2ART and DTD (right). Red colour indicates higher density of points, blue colour lower density.

Table 4. Statistical comparison between MIKE SHE, DTD and TSEB-2ART models for latent heat flux of the canopy (LEC). Statistics

used: correlation coefficient (r), root mean square difference (RMSD), systematic and unsystematic root mean product differences (RMPDs

and RMPDu respectively), the percentage of mean square difference (MSD) attributed to systematic and unsystematic mean product differ-

ences (MPD) (MPDs/MSD and MPDu/MSD respectively) and bias. The statistics are in Wm−2, with the exception of MPDs/MSD and

MPDu/MSD, which are percentages.

r RMSD RMPDs RMPDu MPDs/MSD MPDu/MSD Bias

MIKE SHE–DTD LEC 0.67 85 41 75 23 77 29

MIKE SHE–TSEB-2ART LEC 0.63 145 104 101 51 49 −96

TSEB-2ART–DTD LEC 0.86 133 121 56 82 18 105

established and focused studies are required in order to come

to more definitive conclusions.

When considering the causes of the remaining differences

in the modelled fluxes, some factors can be directly removed.

The three models used many of the same spatial data sets as

input: LAI maps, land cover map and meteorological forc-

ing data (air temperature, incoming solar radiation, humidity

and wind speed). In addition, DTD and MIKE SHE used the

same albedo maps and MIKE SHE was calibrated using the

same Aqua MODIS LST observations as used by DTD. The

mismatch caused by image misregistration was reduced by

applying the median filter over the output maps, although on

cloudy days there are many isolated pixels, making the fil-

tering less efficient. The available energy is very highly cor-

related in all three comparisons, with small RMSD and bias

in the case of the two comparisons for which fluxes are esti-

mated at the same hour, so this is also not a major contributor

to the differences between the turbulent fluxes.

The remaining major causes of the observed differences in

the model outputs could be (1) parametrization used in differ-

ent land cover classes; (2) the LST input maps estimated by

different sensors, in the case of DTD (MODIS) and TSEB-

2ART (AATSR), or modelled, in the case of MIKE SHE; and

(3) the differences in the modelling approach between the

three models even though all of them apply the two-source

modelling scheme.

7.1.1 Differences due to parameterization of land cover

classes

Figures 8–10 show box plots of the turbulent fluxes, AE and

EF split according to the land cover class. The graphs indi-

cate that the statistical distribution of fluxes in the different

land cover classes is quite similar among the models, albeit

with a large number of outlier points in sensible heat estima-

tions of all models and latent heat estimations of DTD.

When looking at the median and 25th and 75th percentile

values of evapotranspiration, the differences do not appear

as significant as could be expected from the results shown

in Table 2. Considering the DTD model, the ET estimated

with the remote sensing model is generally larger than the

MIKE SHE estimated ET across all land cover classes. The

same can be observed in the case of AE but not in the case

of H . This is largely due to the DTD soil heat flux (G) being

affected by the LAI multiplicative factor (Table 1). The cal-

culation of G in DTD is dependent on a fraction of the net

radiation reaching the soil, which is fundamentally estimated

based on the Beer–Lambert law. Therefore, an increase in the

value of LAI input into the model leads to a decrease in the

magnitude of G, which in turn means that AE is higher and

that the magnitude of LE also increases.

In the case of TSEB-2ART, the range between the 25th

and 75th percentile values of ET is smaller in croplands and

grasslands when compared to MIKE SHE ET, while the me-

dian value of conifer forest ET is a bit larger. The range
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Figure 8. Box plots of sensible heat flux (top left), latent heat

flux (top right), net radiation (bottom left) and evaporative frac-

tion (bottom right) modelled by MIKE SHE (leftward box in each

category) and DTD (rightward box in each category) and split by

land cover class. The red horizontal line indicates the median value

with the upper and lower box edges indicating the 75th and 25th

percentiles respectively. The whiskers extend to the furthest point

within 1.5 times the inter-box range above or bellow the box edges

with points beyond that categorized as outliers and marked individ-

ually as a red crosses.

of values between the 25th and 75th percentiles of H is

also smaller in TSEB-2ART modelled fluxes, even though

the range of AE is generally larger. This could be partially

due to the different radiation scheme of TSEB-2ART. Firstly,

TSEB-2ART estimates soil albedo as well as canopy albedo

and transmissivity based on the spectral properties of the

leaves and soil, whereas MIKE SHE uses the surface albedo

derived from MODIS reflectances. Secondly, TSEB-2ART

is also able to account for different leaf inclination distri-

bution functions. Grass and cereal crops are characterized

by a more erectophyll leaf distribution than the spherical

distribution characteristic of other vegetation types, such as

conifers and some broadleaved forests or shrubs, and imple-

mented in MIKE SHE.

Finally, the time difference between Envisat and Aqua

overpasses is clearly visible when comparing TSEB-2ART

and DTD LE and AE, but it is not reflected in the values of

H . This would indicate that the environment in the Skjern

river catchment is not water limited, since the extra energy is

generally used for evapotranspiration.
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Figure 9. Box plots of sensible heat flux (top left), latent heat flux

(top right), net radiation (bottom left) and evaporative fraction (bot-

tom right) modelled by MIKE SHE (leftward box in each cate-

gory) and TSEB-2ART (rightward box in each category) and split

by land cover class. The red horizontal line indicates the median

value with the upper and lower box edges indicating the 75th and

25th percentiles respectively. The whiskers extend to the furthest

point within 1.5 times the inter-box range above or bellow the box

edges with points beyond that categorized as outliers and marked

individually as a red crosses.

The large number of outliers present in the modelled H

values can be partially attributed to the LAI multiplicative

factor, especially in the case of TSEB-2ART. The model

is quite sensitive to the increase in LAI, due to the physi-

cally based radiative transfer modelling, but also due to the

large view zenith angle (55◦) of the second AATSR LST ob-

servation. At this observation angle and with LAI above 4,

the model assumes that almost all of the temperature sig-

nal comes from the vegetation cover. If the model simula-

tions with LAI larger then 4 are removed (around 18 % of

all model runs), the correlation between TSEB-2ART fluxes

and the other modelled fluxes increases significantly and the

errors decrease, while the comparison between DTD and

MIKE SHE remains largely unaffected (Table 5).
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Figure 10. Box plots of sensible heat flux (top left), latent heat

flux (top right), net radiation (bottom left) and evaporative frac-

tion (bottom right) modelled by TSEB-2ART (leftward box in each

category) and DTD (rightward box in each category) and split by

land cover class. The red horizontal line indicates the median value

with the upper and lower box edges indicating the 75th and 25th

percentiles respectively. The whiskers extend to the furthest point

within 1.5 times the inter-box range above or bellow the box edges

with points beyond that categorized as outliers and marked individ-

ually as a red crosses.

Maps of correlation, RMSD and bias between LE mod-

elled with different model pairs (Fig. 11) show clear spatial

patterns, at least partly influenced by land cover (see Fig. 1).

There is clear lack of statistically significant correlation be-

tween MIKE SHE and the remote sensing models over the

forested areas, which is not present when the two remote

sensing models are compared. Additionally RMSD is gen-

erally higher in forests for all model pairs, but particularly

when comparing MIKE SHE and DTD. The bias between LE

modelled with TSEB-2ART and DTD is negative throughout

the catchment (due to the later overpass of Aqua as compared

to Envisat), with the exception of most of the forest areas,

where it is slightly positive. Apart from the land cover influ-

enced patterns there is a larger-scale pattern when comparing

the outputs of the hydrological and remote sensing models:

the correlation is lower, RMSD higher and bias negative in

the northern and eastern parts of the catchment (with the ex-

ception of the very north-western tip), while the opposite is

true in the south-western part. This is due to the first area

being classified as having predominantly clayey soil and sec-

ond as having predominantly coarse sandy soil (see Fig. 3 in

Greve et al., 2007). This pattern is not visible when TSEB-

2ART and DTD are compared which illustrates the sensitiv-

ity of the hydrological model to the proper characterization

of soil hydraulic properties (which is difficult to do over large

areas) and the advantage of the remote sensing models in not

requiring this parameter.

7.1.2 Differences due to estimates of LST and its

component temperatures

Table 6 shows the statistical comparison between the LST,

which is used as input of the remote sensing models and is

one of the outputs of the hydrological model, for all the pix-

els where flux comparison was also performed. The graphical

representation is shown in the top left panels of Figs. 12–14.

When comparing LST, it must be noted that it is dependent

on the viewing geometry, such as VZA, which is quite differ-

ent between the two satellites and also between the satellites

and the hydrological model, for which the sensor is assumed

to be directly at nadir. The correlation between the LST from

the different model pairs is quite high, with r around 0.9

when comparing the remotely sensed LST from MODIS and

AATSR with the MIKE SHE estimates, but reaching 0.97

when the two remotely sensed LSTs are compared. RMSD

of LST is quite high, at 4.4 and 5.2 ◦C in the case of compar-

ing MODIS and AATSR with MIKE SHE and around 3 ◦C

when comparing MODIS with AATSR, although in this case

the time difference between the observations should be kept

in mind.

Although the high spatial correlation of LST would indi-

cate that the different sources of LST are not a major com-

ponent in the discrepancies between the modelled fluxes it

must be noted that the fluxes are strongly dependent on the

LST–Ta gradient and that this dependency is non-linear due

to the turbulent transport of heat between the surface and

the overlying air (Obukhov, 1971). Due to this non-linearity,

the systematic differences in LST between models can po-

tentially lead to larger unsystematic differences in flux esti-

mations. An additional complication in the current study is

the fact that the DTD uses the relative temperature difference

between night and day observations (Guzinski et al., 2013)

and that TSEB-2ART is based on the differences of tempera-

ture between the nadir and forward LST observations (Nieto

et al., 2013) for flux estimation. It is also interesting to note

that although MIKE SHE was calibrated with MODIS Aqua

LST observations in the Skjern River catchment, the two

satellite based LSTs have a better agreement with each other

than with MIKE SHE, despite the overpass times of the two

satellites being different. This indicates that the use of LST

observations from a satellite sensor, either as a forcing input

for MIKE SHE model or for data assimilation (in addition to

it being used for calibration), could potentially improve the

spatial performance of the hydrological model.
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Table 5. Statistical comparison between MIKE SHE, DTD and TSEB-2ART models for sensible and latent heat fluxes (H and LE), available

energy (AE) and evaporative fraction (EF) for flux estimates when LAI< 4. Statistics used: correlation coefficient (r), root mean square

difference (RMSD), systematic and unsystematic root mean product differences (RMPDs and RMPDu respectively), the percentage of

mean square difference (MSD) attributed to systematic and unsystematic mean product differences (MPD) (MPDs/MSD and MPDu/MSD

respectively) and bias. The statistics for H , LE and AE are in Wm−2, with the exception of MPDs/MSD and MPDu/MSD, which are

percentages. The statistics for EF are unitless, with the exception of MPDs/MSD and MPDu/MSD, which are percentages.

r RMSD RMPDs RMPDu MPDs/MSD MPDu/MSD Bias

MIKE SHE–DTD

H 0.43 71 26 66 13 87 23

LE 0.55 102 51 89 25 75 −51

AE 0.97 37 28 24 58 42 −28

EF 0.19 0.20 0.09 0.17 22 78 −0.09

MIKE SHE–TSEB-2ART

H 0.42 62 14 61 5 95 11

LE 0.65 74 9 73 2 98 −8

AE 0.95 32 1 32 0 100 0

EF 0.35 0.16 0.04 0.16 6 94 −0.03

TSEB-2ART–DTD

H 0.45 57 4 57 1 99 2

LE 0.77 92 69 60 57 43 −69

AE 0.94 72 64 33 79 21 −64

EF 0.41 0.15 0.07 0.13 21 79 −0.07

Figure 11. Maps of spatial patterns of correlation (r – first column), RMSD (second column) and bias (third column) calculated with LE

output of MIKE SHE–DTD (first row), MIKE SHE–TSEB-2ART (second row) and TSEB-2ART–DTD (third row) in the whole Skjern river

catchment. For each pixel in the RMSD and bias maps a mean of the statistics’ values was taken from all the points satisfying the conditions

stated in Sect. 5 (i.e. the same set of values was used as for producing statistics in Table 2 and density scatter plots in Figs. 2–4). Correlation

maps used the same set of values but only the pixels where correlation was significant at 5 % level are shown.

In addition, the canopy, soil and in-canopy air tempera-

tures (TC, TS and TAC respectively) estimated by the differ-

ent models are also compared in Table 6. The estimation of

those temperatures could be considered to be an intermediate

step during the estimation of the fluxes in the models (Nor-

man et al., 1995; Overgaard and Rosbjerg, 2005), thereby

allowing a deeper understanding of the internal model be-

haviour. The three models apply different methods for es-
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Table 6. Statistical comparison between MIKE SHE, DTD and TSEB-2ART models for the land surface temperatures (LST), canopy tem-

peratures (TC), soil temperatures (TS) and in-canopy air temperatures (TAC). Statistics used: correlation coefficient (r), root mean square

difference (RMSD), systematic and unsystematic root mean product differences (RMPDs and RMPDu respectively), the percentage of mean

square difference (MSD) attributed to systematic and unsystematic mean product differences (MPD) (MPDs/MSD and MPDu/MSD re-

spectively) and bias. LST comes from Aqua MODIS observations in the case of DTD and nadir view Envisat AATSR observations in the

case of TSEB-2ART, and is modelled in the case of MIKE SHE. The other temperatures are estimated by all models. The statistics are in ◦C,

with the exception of MPDs/MSD and MPDu/MSD, which are percentages.

r RMSD RMPDs RMPDu MPDs/MSD MPDu/MSD Bias

MIKE SHE–DTD

LST 0.89 4.4 3.0 3.2 48 52 3.0

TC 0.88 3.1 0.5 3.1 2 98 −0.1

TS 0.63 7.2 2.8 6.6 15 85 −0.2

TAC 0.93 2.5 0.6 2.4 7 93 −0.6

MIKE SHE–TSEB-2ART

LST 0.91 5.2 4.3 2.9 69 31 4.2

TC 0.87 7.8 6.9 3.8 77 23 6.6

TS 0.72 9.8 7.2 6.6 54 46 −4.5

TAC 0.94 5.2 4.5 2.5 77 23 4.2

TSEB-2ART–DTD

LST 0.97 2.9 2.3 1.8 61 39 −2.1

TC 0.90 8.5 7.8 3.3 85 15 −7.5

TS 0.69 9.3 4.2 8.3 20 80 3.1

TAC 0.94 6.5 6.0 2.5 85 15 −5.8

Figure 12. Density scatter plot of over 95 000 points comparing

land surface temperature (top left), canopy temperature (top right),

soil temperature (bottom left) and in-canopy air temperature (bot-

tom right). Land surface temperature on the x axis was modelled

by MIKE SHE and on the y axis came from daytime observations

from the MYD11A1 MODIS product. The other temperatures were

modelled by both MIKE SHE and DTD. Red colour indicates higher

density of points, blue colour lower density.

Figure 13. Density scatter plot of over 95 000 points comparing

land surface temperature (top left), canopy temperature (top right),

soil temperature (bottom left) and in-canopy air temperature (bot-

tom right). Land surface temperature on the x axis was modelled

by MIKE SHE and on the y axis came from nadir observations by

AATSR sensor on the Envisat satellite. The other temperatures were

modelled by both MIKE SHE and TSEB-2ART. Red colour indi-

cates higher density of points, blue colour lower density.

www.hydrol-earth-syst-sci.net/19/2017/2015/ Hydrol. Earth Syst. Sci., 19, 2017–2036, 2015



2032 R. Guzinski et al.: Inter-comparison of energy balance and hydrological models in a river catchment

Figure 14. Density scatter plot of over 95 000 points comparing

land surface temperature (top left), canopy temperature (top right),

soil temperature (bottom left) and in-canopy air temperature (bot-

tom right). Land surface temperature on the x axis came from

nadir observations by AATSR sensor on the Envisat satellite and

on the y axis came from daytime observations from the MYD11A1

MODIS product. The other temperatures were modelled by both

TSEB-2ART and DTD. Red colour indicates higher density of

points, blue colour lower density.

timating those temperatures. In the case of DTD, temper-

atures are not used directly during the flux estimation (the

time differential temperature observations are used), but are

derived as a final step when all the flux and resistance values

are already established using rearranged Eqs. (A27), (A29)

and (A33) from Guzinski et al. (2014). TSEB-2ART uses

the viewing geometry of the two observation angles within

a radiative transfer model framework to estimate TC and TS,

which, together with the resistances to heat transport, are

then used to calculate TAC and the fluxes using the TSEB

formulations (Nieto et al., 2013; Kustas and Norman, 1997;

Norman et al., 1995). In MIKE SHE, the temperatures, to-

gether with humidity, are derived by solving a set of 10 lin-

ear equations involving the resistances and AE as parameters,

after which the turbulent fluxes are derived (Overgaard and

Rosbjerg, 2005).

Despite those three different methods the correlation be-

tween the temperatures is quite high (Table 6) which is sur-

prising considering the much lower correlation between the

modelled turbulent fluxes. Again, this is probably caused by

the non-linearity between the gradient of temperatures and

the heat flux due to turbulence. It could also be due to the

heating effect that the interaction between soil temperature

and heat fluxes produces for the temperature of the air at the

canopy interface, when the resistances are configured in se-

ries. The highest correlation, above 0.93 for all the pairs, is

for TAC, and the lowest, ranging from 0.63 to 0.72, is for

TS. Overall the two remote sensing models have most similar

spatial patterns of TC and TAC, and MIKE SHE and TSEB-

2ART have most similar spatial pattern of TS.

Furthermore, since the TSEB-2ART model relies on the

differences observed between the nadir and forward LST of

AATSR in order to derive TC and TS, it is sensitive to er-

rors in the estimation of LST at the two viewing angles.

Those errors might be significant if, for example, atmo-

spheric water vapour is not properly characterized and ac-

counted for, due to the different optical path lengths of the

forward (VZA= 55◦) and nadir observations. Since the at-

mospheric path length of the forward view is longer, the a pri-

ori uncertainty in the estimation of forward LST is higher

than in the case of nadir LST. In Figs. 13 and 14 it can be

seen that this occurs in a number of cases, mostly leading

to severe underestimation of TC and TAC and overestimation

of TS when compared to the other models. This large bias

in TSEB-2ART estimated TC is also present in the statisti-

cal comparison in Table 6. It also appears that MIKE SHE

produces higher values at large magnitudes of TC (Figs. 12

and 13), although those difference are not severe. This rel-

ative overestimation of TC is reflected in MIKE SHE LST

scatter plots, which indicates that it happens at high LAI val-

ues when vegetation cover fraction is close to 1.

7.1.3 Differences due to the modelling approach

Although there are differences in the estimated tempera-

tures that could lead to larger unsystematic differences in the

fluxes estimates, it is likely that there are also other factors

contributing to the inconsistencies between fluxes. One of the

factors could be the methodology employed by the different

models for splitting of the available energy into the sensible

and latent heat fluxes and in particular the way they estimate

the resistances to heat and moisture transport. The two re-

mote sensing models ensure the land surface energy balance

by calculating latent heat flux as the residual of the other

fluxes, i.e. LE=AE−H (Norman et al., 1995). The hydro-

logical model, on the other hand, derives the latent and sensi-

ble heat fluxes concurrently (Overgaard and Rosbjerg, 2005).

In addition the resistance network for LE in MIKE SHE has

two extra resistance components compared to the resistance

network for H : the resistance to soil evaporation and the

stomata resistance to transpiration. Both of them depend on

the soil moisture as modelled by the hydrological component

of MIKE SHE. If the spatial patterns of the soil moisture es-

timated with MIKE SHE do not correspond closely to the

spatial patterns seen by the satellites this could lead to the

different spatial patterns of the estimated fluxes.

Another possible factor for the observed differences be-

tween the estimated fluxes could be the actual formulations
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Table 7. Statistical comparison between MIKE SHE, DTD and TSEB-2ART models for sensible and latent heat fluxes (H and LE), avail-

able energy (AE) and evaporative fraction (EF) for model runs with resistance equations taken from Choudhury and Monteith (1988).

Statistics used: correlation coefficient (r), root mean square difference (RMSD), systematic and unsystematic root mean product differences

(RMPDs and RMPDu respectively), the percentage of mean square difference (MSD) attributed to systematic and unsystematic mean prod-

uct differences (MPD) (MPDs/MSD and MPDu/MSD respectively) and bias. The statistics for H , LE and AE are in Wm−2, with the

exception of MPDs/MSD and MPDu/MSD, which are percentages. The statistics for EF are unitless, with the exception of MPDs/MSD

and MPDu/MSD, which are percentages.

r RMSD RMPDs RMPDu MPDs/MSD MPDu/MSD Bias

MIKE SHE–DTD

H 0.38 84 30 78 13 87 30

LE 0.52 115 58 100 26 74 −58

AE 0.97 36 28 23 59 41 −27

EF 0.17 0.23 0.11 0.20 22 78 −0.11

MIKE SHE–TSEB-2ART

H 0.30 80 6 80 1 99 −2

LE 0.57 85 11 84 2 98 1

AE 0.95 34 5 34 2 98 −3

EF 0.23 0.18 0.02 0.18 1 99 0.00

TSEB-2ART–DTD

H 0.29 86 23 83 7 93 22

LE 0.63 119 88 80 55 45 −87

AE 0.94 71 61 36 75 25 −61

EF 0.22 0.21 0.11 0.18 29 71 −0.11

used for resistances of heat transfer between the soil, veg-

etation, in-canopy air and above-canopy air. While the two

remote sensing models use equations based on Norman et al.

(1995), the hydrological model uses equations suggested by

Choudhury and Monteith (1988). To evaluate whether those

different formulations could be the reason for the fluxes esti-

mated with the remote sensing models being more similar to

each other than to the fluxes estimated with the hydrological

model, it was decided to run the remote sensing models with

the resistance equations taken from Choudhury and Monteith

(1988).

The results are presented in Table 7. The correlation be-

tween the turbulent fluxes produced by all model pairs has

decreased when compared to results in Table 2. This is sur-

prising, as it could be expected that using the same resistance

formulations would increase the correlation between the re-

mote sensing models and the hydrological model. There was

also a small increase in RMSD (with the exception of the

MIKE SHE–TSEB-2ART H comparison). In addition, the

number of valid pixels has been reduced from over 95 000 to

over 83 000. This could indicate that the Norman et al. (1995)

resistance formulations produce more realistic values than

the Choudhury and Monteith (1988) formulations, which

would point to the possibility of updating the equations used

in the SW–ET module of MIKE SHE. Even when using the

Choudhury and Monteith (1988) resistance formulations, the

LE modelled with DTD and TSEB-2ART has the highest cor-

relation. However, in the case of H , MIKE SHE and DTD

produced the most correlated flux estimates, while the cor-

relation of EF was very similar between the MIKE SHE–

TSEB-2ART and DTD–TSEB-2ART model pairs.

Finally, Fig. 15 illustrates the effect of modifying the RS

formulation in the DTD, as proposed in Eq. (4). The RS val-

ues estimated with DTD and TSEB-2ART are compared for

all the pixels where the flux comparison was performed. In

this case, the TSEB-2ART derived RS can be thought of

as the “true” value, since it uses the original RS equation

(Eq. 3), with TS and TC derived directly through the inver-

sion of the RTM. The overestimation of RS by DTD, visi-

ble as a “bubble” in the left panel for DTD RS values be-

tween 150 and 200 sm−1, is due to misparametrization of

the differences between the canopy and soil temperatures in

the original DTD formulation, and is mostly present in the

coniferous forest. In the right panel this overestimation is

less pronounced, indicating that the newRS equation is better

at parametrizing this temperature difference. The correlation

parameter between the two resistances has increased from

0.62 in the case of the old formulation to 0.68 in the case of

the new one, while the RMSD has decreased by around 15 %,

from 36 to 31 sm−1.

7.2 Temporal patterns

Both remote sensing models are reasonably accurate in

matching MIKE SHE catchment-wide estimates of evapo-

transpiration, with the seasonal curve clearly visible for both

models (Fig. 5) and reflecting the MIKE SHE seasonality

well. The DTD model tends to produce larger latent heat

fluxes before and after the growing season. This is probably

due to the larger magnitude of AE estimated by this model

(see Table 2), which is mostly assigned to LE, as it is cal-

culated as a residual of the surface energy balance. On the

other hand TSEB-2ART matches MIKE SHE fluxes quite
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Figure 15. Density scatter plot of over 95 000 points comparing re-

sistance of heat transfer from the soil surface (RS) modelled by the

TSEB-2ART and DTD. In the left panel the original DTD formu-

lation is used (Norman et al., 2000) and in the right panel the new

formulation is used (Eq. 4). Red colour indicates higher density of

points, blue colour lower density.

well during that period. During the growing season there is

the largest mismatch between LE modelled by the remote

sensing models and the hydrological model. This is partly

due to the fluxes having the largest magnitude during this

time, but also due to LAI having a large value which blocks

the temperature signal from the soil surface (see Sect. 7.1.1)

Figure 5 also highlights another weakness of the remote

sensing models, namely that they only produce results on

clear sky days. The great majority of latent heat fluxes es-

timated by the remote sensing models, and by the hydrolog-

ical model on the same dates as the remote sensing mod-

els, lie above the line representing an average, all-weather

ET for a particular DOY for all the years under study. This

is also true when considering an 8-year averaged potential

ET. The reason is because in the Skjern River environment

the evapotranspiration is mainly driven by availability of en-

ergy (and not of water), and therefore on clear sky days the

evapotranspiration will be higher than average. This has to

be taken into account when extrapolating temporal patterns

of evapotranspiration derived purely by the remote sensing

input based models.

There are a couple of cases where the clear sky evapotran-

spiration modelled by MIKE SHE is much below the average

line, even though the remote sensing models estimate much

higher latent heat fluxes on those days. This most probably

corresponds to days with soil drier than normal and could in-

dicate: (1) a problem of the hydrological model in estimating

the moisture of the upper layer of the soil or of the root zone

during dry conditions, or (2) be related to uncertainties in the

interpolated rainfall data due to omission by the rain gauges

of local convective rainfall during the summer period.

8 Conclusions and outlook

Two remote sensing models and one hydrological model

were run over an area covering a river catchment in west-

ern Denmark and the spatial and temporal patterns of the

modelled evapotranspiration were compared. The spatial pat-

terns of latent and sensible heat fluxes as well as EF produced

by the remote sensing models were more strongly correlated

with each other than the patterns produced by either of the

remote sensing models compared to the hydrological model.

This was the case even though the two remote sensing mod-

els use both different data (MODIS and AATSR LST) and

different approaches to estimating the fluxes and, addition-

ally, those estimates were produced at different time of the

day, due to different overpass times of satellites. This indi-

cates that the remote sensing models might contain some ad-

ditional information that is not currently present in the hy-

drological model. At the same time, the temporal patterns

of evapotranspiration produced by both of the remote sens-

ing models and the hydrological model were strongly cor-

related, with relatively small RMSD and small bias. Those

observations would appear to support the hypothesis that

the remote sensing models would better represent the spatial

patterns of evapotranspiration present throughout the catch-

ment, while the hydrological model would better represent

the catchment-wide evapotranspiration.

This points towards a possibility of using the remotely

sensed evapotranspiration to improve the spatial accuracy

of distributed, physically based hydrological models. This

could be achieved either through using the estimated latent

heat flux as one of the calibrating parameters or through data

assimilation during the model run. Certain attempts at in-

corporating spatial distributed data derived through remote

sensing into hydrological models, either through data as-

similation or calibration, have already been made but they

were mostly focused on soil moisture (e.g. Draper et al.,

2011; Corato et al., 2013), LST (Stisen et al., 2011a; Ri-

dler et al., 2012) or LAI (Boegh et al., 2004). Pipunic et al.

(2008) have looked at assimilating simulated H and LE esti-

mates into a land surface model, however this was done with

a one-dimensional single column model, i.e. without consid-

ering spatial patterns. Others have assimilated ET maps into

distributed hydrological models but the impact of that as-

similation was inconclusive (Pan et al., 2008; Schuurmans

et al., 2011). Therefore, further studies are needed to es-

tablish whether ET, and in particular its spatial distribution,

would bring any additional information beyond what is pro-

vided by soil moisture or LST estimates alone. In the case

of MIKE SHE it might also be useful to use the TC, TS and

TAC estimates from the remote sensing models to constraint

the number of unknowns that need to be addressed in the

model. Methodologies for validating the accuracy of spatial

patterns at the catchment scale, while at the same time re-

maining independent of the model used, would also have to

be investigated.
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