

Supplement of

Estimation of temporal and spatial variations in groundwater recharge in unconfined sand aquifers using Scots pine inventories

P. Ala-aho et al.

Correspondence to: P. Ala-aho (pertti.ala-aho@oulu.fi)

Supplement

Equations used in calculating different components of evapotranspiration

Transpiration:

$$L_{\nu}E_{tp} = \frac{\Delta R_n + \rho_a \cdot c_p \frac{(e_s - e_a)}{r_a}}{\Delta + \gamma \left(1 + \frac{r_s}{r_a}\right)} \tag{A1}$$

where R_n is net radiation, ρ_a is air density, c_p is the specific heat of air, e_s is the vapor pressure at saturation, e_a is the actual air vapor pressure, r_a is the aerodynamic resistance, Δ is the slope of the saturated vapor pressure-temperature curve, γ is the psychrometer constant, and r_s is surface resistance.

The aerodynamic resistance (r_a) for transpiration was calculated as:

$$r_a = \frac{ln\left(\frac{z_{ref} - d}{z_0}\right)}{k^2 \cdot u} \tag{A2}$$

where z_{ref} is the reference height of the measurements, d is the displacement height, z_0 is the roughness length, k is von Karman's constant, and u is wind speed.

Surface resistance (rs) was estimated with Eq. 6:

$$r_{\rm S} = \frac{1}{\max(LAI \cdot g_{ij} 0.001)} \tag{A3}$$

where g_l is the leaf conductance given by the Lohammar equation (see e.g. Lindroth, 1985).

Soil evaporation:

$$L_{\nu}E_{tp} = \frac{\Delta(R_n - q_h) + \rho_a \cdot c_p \frac{(e_s - e_a)}{r_{as}}}{\Delta + \gamma \left(1 + \frac{r_{ss}}{r_{as}}\right)}$$
(A4)

where q_h is the soil surface heat flux, r_{as} is the aerodynamic resistance of soil, and r_{ss} is the surface resistance of soil.

The aerodynamic resistance of the soil (r_{as}) is calculated as Eq (8):

$$r_{as} = r_{alai} \cdot LAI + \frac{1}{k^2 \cdot u} \cdot ln\left(\frac{z_{ref} - d}{z_{0M}}\right) \cdot ln\left(\frac{z_{ref} - d}{z_{0H}}\right) \cdot f(R_{ib})$$
(A5)

where r_{alai} is an empirical parameter, z_{0M} and z_{0H} are surface roughness lengths for momentum and heat, respectively, and $f(R_{ib})$ is a function governing the influence of atmospheric stability.

The surface resistance for soil (r_{ss}) is given by:

$$r_{ss} = \frac{r_{\Psi} \cdot log(\Psi_s - 1 - \delta_{surf});}{r_{\Psi}(1 - \delta_{surf});} \qquad \qquad \Psi_s > 100 \tag{A6}$$

where r_{Ψ} is an empirical coefficient, Ψ_s is the water tension in the uppermost soil layer, and δ_{surf} is the mass balance at the soil surface (see Jansson and Karlberg, 2004).

Lake evaporation:

$$E_{lake} = K_E \cdot v_a \cdot (e_s - e_a)$$

where K_E is mass transfer coefficient $[ML^{-1}T^{-2}]$, v_a is wind speed $[LT^{-1}]$, $e_s [ML^{-1}T^{-2}]$ is saturated vapor pressure at lake water surface temperature, and $e_a [ML^{-1}T^{-2}]$ is air vapor pressure. The mass transfer coefficient (K_E) represents the efficiency of vertical water transport from the evaporating surface and it can be treated as a function of lake size:

$$K_E = 1.69 \times 10^{-5} \cdot A_L^{-0.05}$$

(A8)

(A7)

where A_L is lake surface area [km²]

The groundwater recharge study area has lakes of variable size, from less than 1 ha to 25 ha (Fig. 1). Lake size variability was included in the total recharge calculation by randomly selecting a A_L value (from the range 1-25 ha) in Eq. (8) when calculating lake evaporation, and thereby groundwater recharge in model cells with lakes.