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Abstract. Hydrological functions of river basins are sum-

marized as collection, storage and discharge, which can be

characterized by the dynamics of hydrological variables in-

cluding precipitation, evaporation, storage and runoff. The

temporal patterns of each variable can be indicators of the

functionality of a basin. In this paper we introduce a mea-

sure to quantify the degree of similarity in intra-annual vari-

ations at monthly scale at different years for the four main

variables. We introduce this measure under the term of recur-

rence and define it as the degree to which a monthly hydro-

logical variable returns to the same state in subsequent years.

The degree of recurrence in runoff is important not only for

the management of water resources but also for the under-

standing of hydrologic processes, especially in terms of how

the other three variables determine the recurrence in runoff.

The main objective of this paper is to propose a simple hy-

drologic classification framework applicable to large basins

at global scale based on the combinations of recurrence in the

four variables using a monthly scale time series. We evaluate

it with lagged autocorrelation (AC), fast Fourier transforms

(FFT) and Colwell’s indices of variables obtained from the

EU-WATCH data set, which is composed of eight global hy-

drologic model (GHM) and land surface model (LSM) out-

puts. By setting a threshold to define high or low recurrence

in the four variables, we classify each river basin into 16 pos-

sible classes.

The overview of recurrence patterns at global scale sug-

gested that precipitation is recurrent mainly in the humid

tropics, Asian monsoon area and part of higher latitudes with

an oceanic influence. Recurrence in evaporation was mainly

dependent on the seasonality of energy availability, typically

high in the tropics, temperate and sub-arctic regions. Recur-

rence in storage at higher latitudes depends on energy/water

balances and snow, while that in runoff is mostly affected

by the different combinations of these three variables. Ac-

cording to the river basin classification, 10 out of the 16 pos-

sible classes were present in the 35 largest river basins in

the world. In the humid tropic region, the basins belong to a

class with high recurrence in all the variables, while in the

subtropical region many of the river basins have low recur-

rence. In the temperate region, the energy limited or water

limited in summer characterizes the recurrence in storage,

but runoff exhibits generally low recurrence due to the low

recurrence in precipitation. In the sub-arctic and arctic re-

gions, the amount of snow also influences the classes; more

snow yields higher recurrence in storage and runoff. Our pro-

posed framework follows a simple methodology that can aid

in grouping river basins with similar characteristics of wa-

ter, energy and storage cycles. The framework is applicable

at different scales with different data sets to provide useful

insights into the understanding of hydrologic regimes based

on the classification.

1 Introduction

The hydrological cycle, as one of the main Earth systems is

directly dependent on several periodical cycles with a variety

of frequencies. Rotation of the Earth on its own axis, rota-

tion around the Sun, rotation of the Moon around the Earth

and variations on the Earth’s axial tilt are the main cause for

temporal variations in the land surface and atmosphere. Vari-
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ations at seasonal scale are the most recognized patterns in

most hydrological processes playing important roles in wa-

ter resource management. Other climatological changes and

additional anthropogenic pressure also add to the complexity

of the hydrological cycle.

Regardless the complexity, the primary function of a

river basin in the hydrological cycle is simply characterized

with three main functions: collection, storage and discharge

(Black, 1997). The collection function describes the different

paths that supplied water from precipitation follows until it

reaches a storage component. This collected water is stored

at different states and locations within a basin. Water stor-

age, as the first-order state variable of river basins, represents

its hydrologic condition and serves as the link between col-

lection and discharge regulating the timing and amount of

collected water to be released. The discharge function refers

to the processes that release the stored water in the form of

evaporation back into the atmosphere or as runoff. Among

these functions, the prediction and understanding of the re-

lease as runoff has been of high importance to understand

water hazards and resource management. Nevertheless, as

runoff is highly dependent on the other two functions, un-

derstanding the dynamics of water collection and storage is

unavoidable in order to understand hydrological processes at

river basins.

The importance of storage dynamics has been highlighted

with emerging new concepts in watershed hydrology. Fill

and spill (Spence and Woo, 2003; Tromp van Meerveld and

McDonnell, 2006; Shaw et al., 2012), connectivity (McG-

lynn et al., 2013) and threshold (Fu et al., 2013; Ali et al.,

2013) are a few examples amongst various concepts of runoff

generation mechanisms highlighting the importance of water

storage and its capacity. Recent studies have demonstrated

similar concepts at multiple scales based on water balance

analysis (Sayama et al., 2011), combinations of soil mois-

ture and streamflow measurements (Sidle et al., 2000) and

numerical simulations (Graham et al., 2010). For larger river

basins, there are only a few studies that have identified wa-

ter storage dynamics at lake/wetland river systems (Spence,

2007; Spence et al., 2010). The stored water volume and its

partitioning are important also because they control on resi-

dence time and source areas (Sayama and McDonnell, 2009),

which ultimately influence on the sensitivity of the system to

climate change (Tague and Peng, 2013). Hence, storage dy-

namics should be incorporated as a fundamental metric for

catchment classifications and comparisons (Wagener et al.,

2007; McNamara et al., 2011).

Jothityangkoon and Sivapalan (2009) introduced a sim-

ple theoretical framework for classifying different hydrologic

regimes based on storage dynamics on different semi-arid

and temperate catchments. The framework shows temporal

patterns of storage change with periodic rainfall rate and con-

stant potential evaporation. The amount of runoff generated

is assumed to be varied significantly depending on water stor-

age being below or above the soil moisture at field capacity

and saturation. Therefore, with different balances in rainfall,

potential evaporation and the soil properties, other variables

including evaporation, storage and runoff exhibit different

temporal patterns, and these are further used for a hydrologic

regime classification. The assessment further explores the ef-

fects of storminess, seasonality and interannual climate vari-

ability and their effect on their proposed regimes. Other ex-

amples of different approaches for hydrological classification

include Weiskel et al. (2014) and the series of papers (Cheng

et al., 2012; Coopersmith et al., 2012; Yaeger et al., 2012;

Ye et al., 2012). Coopersmith et al. (2012) derived the clas-

sification using the aridity index, seasonality, precipitation

peak with respect to potential evaporation and the day of peak

runoff for 428 catchments in the United States. This classifi-

cation was further used to categorize hydrological change by

analyzing the conditions of the indicators (Coopersmith et

al., 2014). Berghuijs et al. (2014) utilized the seasonal water

balance and temporal interaction of variables to group catch-

ments across the United States.

For global scale, several studies have also assessed the

interaction of storage variables by using general circulation

models (GCMs). Delworth and Manabe (1988) explored the

relations between soil moisture and potential evaporation

and how these two interacted and affected climate. Further

they explored the relation of the persistence of soil wet-

ness with the persistence of relative humidity by comparing

their lagged autocorrelations (ACs) (Delworth and Manabe,

1989). Also at global scale, the interactions between runoff

processes, their feedback with the atmosphere and their ef-

fects on a simulated water cycle have been thoroughly stud-

ied by Emori et al. (1996). Macroscale effects of water and

energy supplies (Milly and Dunne, 2002) and their influ-

ence on river discharge have been also analyzed using ob-

served data and GCMs (Milly and Wetherald, 2002). For

river basin characterization with storage information, Ma-

suda et al. (2001) used basin and atmosphere budgets to eval-

uate water storage and described similarities among storage

patterns for major basins in the world. More recently Kim

et al. (2009) used two indices to quantify the significance

of different storage components in terrestrial water storage,

namely, subsurface storage, snow and river storage, and de-

scribed their behavior in 29 basins.

The objective of the study is to propose a classification

framework for large river basins employing the temporal pat-

terns in precipitation, evaporation, storage and runoff utiliz-

ing a global data set. We follow the frameworks of Masuda

et al. (2001), Jothityangkoon and Sivapalan (2009) and Kim

et al. (2009) in terms of analyzing the temporal variations

of the four main hydrological variables in different clima-

tologies to find similarities and dependencies in runoff gen-

eration and variable interactions. Among a variety of met-

rics, this study focuses on recurrence of hydrologic variables

by defining it as the degree to which a monthly hydrolog-

ical variable returns to the same state in subsequent years.

The reason for choosing the recurrence as a metric is practi-
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Figure 1. Schematic representation of different levels of recurrence in runoff (Q) time series from Mekong and Grande river basins.

cal. The recurrence of runoff and the other three hydrological

variables are of high importance for a water management per-

spective. For example, Fig. 1 compares monthly runoff from

two different basins with high and low recurrence character-

istics. Although total runoff volume and the seasonality are

obviously dominant factors for water resource management,

and therefore many previous classification studies have fo-

cused on these metrics to represent them (Weingartner et al.,

2013), anthropogenic systems have already adapted to the lo-

cal hydrological regimes to some extent. Generally, it is more

challenging for water managers to handle a random pattern

with high fluctuations and different from past experiences,

such as floods and droughts happening at unexpected mag-

nitudes in unexpected seasons. The feature of our proposed

classification is to show which variables are recurrent or non-

recurrent and how different combinations of the recurrence

(i.e., our proposed river basin classes) are distributed in the

world.

Section 2 describes the data used in this study, followed

by the methodology to calculate recurrence and classifica-

tion of large river basins in the world in Sect. 3. Section 4

presents the results and regional characteristics of the basins.

In Sect. 5, we discuss the relationship between our classi-

fication and other metrics including aridity, seasonality and

phasing between water and energy cycles, as well as future

application of the proposed classification.

2 Data

This study uses the WATCH Forcing Data for the 20th Cen-

tury (WFD) and the WATCH 20th Century Model Output

from the Water Model Intercomparison Project (WaterMIP)

data sets provided by EU-WATCH. The forcing data are

based on the European Centre for Medium Range Weather

Forecasting (ECMWF) reanalysis ERA-40 data (Weedon et

al., 2010, 2011). The model output data set represents con-

temporary naturalized conditions, with no human interaction

such as reservoirs or agricultural withdrawals at 0.5◦ spatial

resolution (Haddeland et al., 2011). The EU-WATCH project

includes land surface models (LSMs) and global hydrolog-

ical models (GHMs) depending on models solving energy

balance or not.

1. Precipitation: precipitation is provided as part of the

WFD data set. LSMs require input rainfall and snowfall

independently provided by the WFD data set, whereas

GHMs use their own algorithms to separate rainfall and

snowfall, using total precipitation as input. Since the

partitions within the GHMs are not available in the pro-

vided EU-WATCH data set, this study used total precip-

itation for the classification as the aggregated variables

of rainfall and snowfall.

2. Evaporation: simulated evaporation for each model is

provided as total flux without the distinction of its

source (transpiration from vegetation, bare soil evapo-

ration, sublimation, etc.).

3. Runoff: simulated surface and subsurface runoff for

each model are provided independently. However, since

the partitions between surface and subsurface differ sig-

nificantly among models total runoff is used in this

study. River discharge is also provided for some mod-

els but for comparative purposes generated runoff from

land surface is selected for the classification.

4. Storage: storage is defined in this study as the total

amount of water held in a basin regardless its physical

state or location. Table 1 summarizes different storage

components aggregated to estimate the total storage. In

the discussion, further analysis is conducted by using

individual components to understand their influence.

The time period selected for the analysis is from 1979 to

2001 at a monthly scale. The original data including precipi-

tation, evaporation, storage and runoff were analyzed first to

test their recurrences, explained in the next section at each

grid cell. Then for the world’s largest 35 river basins (Fig. 2),

the variables are aggregated within the basin and their recur-

rences calculated to classify the basins.
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Figure 2. Location of the basins included in the analysis with an assigned identification number. The latitude reference lines identify the

latitudes that divide each of the regions geographically separating the basins.

3 Methods

3.1 Quantifying recurrence

This section introduces three metrics for evaluating recur-

rence, which include AC, fast Fourier transform (FFT inten-

sity) intensity and Colwell’s index of contingency (Colwell,

1974). In this study, since our interest is the recurrence of

monthly variable as defined above, we used a period of 12

months for each metric. The definitions are described below

and their characteristics are discussed in Sect. 5.2.

3.1.1 Lagged autocorrelation

A serial AC defined as (Eq. 1) describes the correlation of a

time series with time lag k:

rk =

N−k∑
i=1

(xi − x̄) (xi+k − x̄)

N∑
i=1

(xi − x̄)
2

, (1)

where rk is the AC coefficient for lag k, N is the total num-

ber of observations and x̄ is the mean. This AC calculation

loses intensity as the lag increases dying down to zero as it

approaches N . The AC can further be calculated in terms of

the covariance but this computation is considered as a bias

calculation of AC. In order to avoid the biased calculation

and still be able to calculate a correlation between partial

series with larger lags, this series can be assumed as a to-

tally separate series with different mean and variance and the

calculations can be computed as simple correlation with the

following equation

rk =

N−k∑
i

(
xi − x̄[i,N−k]

)(
xi+k − x̄[i+k,N ]

)
[
N−k∑
i

(
xi − x̄[i,N−k]

)2]1/2[
N∑
i+k

(
xi+k − x̄[i+k,N ]

)2]1/2
. (2)

For the recurrence measure with monthly time series, eval-

uating the AC of time lag 12 only is insufficient because it

would only take into account the recurrence in contiguous

years. We find it more appropriate to include the AC at other

multiples of 12. Given the length of the time series used in

this study, we decided to use the mean of AC from time lags

12, 24, 36, 48 and 60.

The results will be dependent also on the temporal resolu-

tion (e.g., daily or yearly time series). However, in this study

we decided to use a monthly resolution and look at yearly cy-

cles because 1 year is usually a unit at which most of human

activities and natural cycles repeat themselves.

3.1.2 Fast Fourier transforms

The other metric tested in this study is the FFT inten-

sity which can identify important periods based on a pe-

riodogram. The periodical part of a time series can be de-

scribed by the following equation

mτ = µ+

h∑
i=1

(
Ai cos

(
2πiτ

p

)
+Bi sin

(
2πiτ

p

))
, (3)
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wheremτ is the harmonically fitted mean,µ is the population

mean, Ai andBi are the Fourier coefficients, p is a period

(12 for monthly data) and h is the total number of harmonics

(usually p/2).

The Fourier coefficients are calculated as

Ai =
2

p

p∑
τ=1

x̄τ cos

(
2πiτ

p

)
, (4)

Bi =
2

p

p∑
τ=1

x̄i sin

(
2πiτ

p

)
. (5)

The intensity can be calculated from these parameters as

Ii = A
2
i +B

2
i . (6)

The FFT intensity is important for identifying the periodicity

at a particular frequency. A peak in the plot of intensity vs.

frequency (periodogram) identifies a frequency for which a

periodical pattern is found. For most hydrological data a peak

at a frequency equivalent to a year exists (i.e., 12 months for

monthly data, 52 weeks for weekly, and 365 for daily). If a

series follows a pattern similar to a sinusoidal function, the

intensity will be higher than a series departing from this pat-

tern. Additionally, if a series contains much noise the inten-

sity will also be reduced. Hence, a recurrent pattern shows

higher FFT intensity. Since the FFT intensity is sensitive to

the amplitude and magnitude we applied a standard normal-

ization. Discussion on the characteristics and capability of

FFT to measure recurrence is provided in Sect. 5.2

3.1.3 Colwell’s contingency index

Colwell (1974) introduced the indices of constancy and con-

tingency, which together form the index called predictability.

These indices have been used to analyze physical and biolog-

ical temporal fluctuations. The index has been used widely in

the analysis of flowering trees (Colwell, 1974), variations in

river temperature (Vannote and Sweeney, 1980), variations

in flow velocity (Riddell and Leggett, 1981), rainfall distri-

bution at a yearly basis (Miller, 1984), periodicity analysis in

streamflow or rainfall data (Gan et al., 1991), classification

of flow regimes for environmental flow assessments (Zhang

et al., 2012) and description of waterholes in hydrological

regimes (Webb et al., 2012). Colwell (1974) defined pre-

dictability as the measure of the certainty of knowing a state

at a given time, being composed of the sum of two compo-

nents: constancy, which represent how uniform the state of

a variable is at different time cycles, and contingency, which

measures the degree to which state and time are dependent

on each other.

Calculation of the Colwell’s index requires first categoriz-

ing the continuous data to prepare a matrix. The columns of

the matrix represent time categories and rows represent the

states of a phenomenon. In this study the columns represent

different months and the rows represent ranges of standard

deviations, whose ranges are between ±4, which is equally

divided into 16 categories with intervals of 0.5σ .

Now let Nij be the number of times that a variable falls in

state i at time step j . The sum of all columns for each state i

is Xi , the sum of all rows for each time step j is Yi and the

total number is Z. Then contingency (M) of Colwell’s index

is defined as

M =
H(X)+H(Y)−H(XY)

logs
, (7)

where s is the number of rows, H(X),H(Y ) and H(XY ) are

defined as

H(X)=−
∑
j

Xj

Z
log

Xj

Z
, (8)

H(Y)=−
∑
i

Yi

Z
log

Yi

Z
, (9)

H(XY)=−
∑
i

∑
j

Nij

Z
log

Nij

Z
. (10)

Contingency becomes 1 if a variable is at the same state at

a particular time step, while the index becomes 0 if the oc-

currences in different time steps take place at the same state.

Contingency will be higher as more occurrences in a par-

ticular time happen in a particular state. If the values of a

variable in a given month are similar, they will fall under the

same state interval. This will be the case of variables with

high recurrence. Further discussion on the capacity of Col-

well’s index to represent the concept of recurrence is stated

in Sect. 5.2. For reference, the constancy (C) and predictabil-

ity (Pd) are defined as

C = 1−
H(Y)

logs
, (11)

Pd = 1−
H(XY)−H(X)

logs
. (12)

3.2 Hydrological classification

The variables considered in this study are precipitation P ,

evaporation E, runoff Q and storage S, which compose the

general‘ hydrological cycle and are the main components of

the water balance equation. At global scale or basin scale,

each of the four variables are identified as being of high or

low recurrence based on the description in previous sections.

The first-order division of the classification is whether runoff

has high or low recurrence, followed by precipitation, evap-

oration and storage. As a graphical guidance we introduce a
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Figure 3. Hydrological classification tree. Color codes indicate the colors used in further maps to identify the classes to which basins belong.

Dashed lines indicate paths into classes that were not found in the studied basins.

classification tree in Fig. 3. The figure shows the 16 possible

classes, and the combinations that were found and not within

the basins of this study. It is provided to be used as a guidance

to understand further figures. We used runoff as the first vari-

able for the classification as it is the main concern for water

resource management, and the other three variables are fur-

ther used to explain why the runoff in each basin or region

shows high or low recurrence. The value used for classifying

the basins as high or low recurrence was an AC of 0.75.

First we quantified recurrence at global scale except for

Greenland, where model performance was questionable due

to its particular conditions, and Antarctica, where the EU-

WATCH product was not cover. This global analysis was per-

formed for the given time series of each variable at each in-

dividual grid. The analysis for the world’s largest 35 basins

was performed for the time series of each variable consider-

ing the spatial average of the grids included within the limits

of the basin.

Among all the model output from EU-WATCH, we paid

particular attention to the WaterGAP model results because

it is the only model that includes a calibration module and is

closest to observations (Haddeland et al., 2011). Meanwhile,

all other model results are also analyzed to cover different

model behaviors and discuss model uncertainty (Sect. 5).

4 Results

In this section, we first describe the results of recurrence

based on AC from the WaterGAP model as the representa-

tive case. WaterGAP is selected here as it is the only model

with a simple calibration module and has better agreement

with observations (Haddeland et al., 2011). Autocorrelation

fits our goal as it precisely measures the degree of similarity

of each year when lagged by 12 months. Section 5 discusses

the differences in results for the other metrics and the rest of

the different models’ results. Figure 4 shows the global dis-
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Figure 4. Recurrence in main hydrological variables at global scale: (a) precipitation, (b) evaporation, (c) storage and (d) runoff. The map

identifies the areas with lowest recurrence (< 0.5), low recurrence (0.5–0.75) and high recurrence (0.75<). Reference latitude lines identify

the divisions in latitudinal regions where particular conditions and similarities were found to exist.

tribution maps of the recurrence (i.e., AC in this case) in the

four variables: precipitation, evaporation, storage and runoff.

From the recurrence calculated for each variable’s time se-

ries, each grid was identified with red for very low recurrence

(< 0.5), yellow for low recurrence (0.5–0.75) and green for

high recurrence (0.75–1.0). To explain the distribution of the

recurrences in the four variables, this paper uses the follow-

ing terms for different latitude zones for both hemispheres:

tropical (0–23.5◦), subtropical (23.5–35◦), temperate (35–

55◦) and sub-arctic and Arctic (55–90◦).

The precipitation in the tropical region is basically charac-

terized by the seasonality caused by the oscillation of the in-

tertropical convergence zone (ITCZ), and energy supply due

to the effects of the Earth’s tilt fluctuation. Because of this

seasonality, two bands between 5 and 23.5◦ for both hemi-

spheres show high recurrence in all variables, while they are

lower in general at the equatorial band between 5◦ S and 5◦ N

where there is no seasonality. The rest of the variables fol-

low generally the same pattern as precipitation although the

high recurrence areas of storage and runoff are comparatively

smaller than that of precipitation.

The subtropical region is mainly characterized by the lat-

itudinal desert belts. This region is characterized by low hu-

midity and general dryness in soil conditions. In this region,

precipitation events are typically sudden and intense without

following certain temporal patterns. During rainfall events

the other variables also behave similarly. Hence, all of the

four variables tend to have low recurrence. The Southeast

Asia monsoon area is an exception since its behavior is simi-

lar to the humid tropics area, therefore displaying high recur-

rence in all variables.

The temperate region also shows generally low recurrence

in precipitation due to continental climates or oceanic cli-

mates with no dry season. Eastern Asia is the only region

showing high recurrence due to the effects of the Asian mon-

soon. Evaporation in this region has high recurrence due to

seasonality with the exception of dry areas in Europe and

Asia. Storage has different geographic patterns throughout

the region. Runoff follows the same regionalization as stor-

age except for Europe with comparatively low recurrence in

general.

Precipitation in the sub-arctic and arctic region shows low

recurrence except for some areas in North America and east-

ern Siberia. Evaporation exhibits the higher recurrence in this

area. The extent area of high recurrence in storage and runoff

is larger in this region mainly attributed to the amount of

snow.

By taking the spatial average of each variable inside the

35 largest river basins in the world, we calculated recurrence

and classified them following the tree illustrated in Fig. 3.

Figure 5 shows the result of the classification, which is de-

scribed below according to each latitude region. Figure 6 dis-

plays graphically the results of the calculations of recurrence

for each variable. The figure shows the results of the calcu-

lated recurrence from the WaterGAP model output and also

shows the maximum, minimum, mean and interquartiles of
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Table 1. Overview of models included in this research and their characteristics. Adapted from Haddeland et al. (2011) and Gudmundsson

et al. (2012a, b). Model names in bold are considered as LSMs. Precipitation input is either provided as total precipitation (P ) or as rainfall

(R) and snowfall (S) separately. Storage can be handled in models as ground moisture (GM), soil moisture (SM), surface storage (SS) and

snow water equivalent (SWE). Potential Evaporation (EP) is provided (yes) or not provided (no).

Model Name Precipitation Storage components Provided EP Reference

input

GWAVA P GM, SM, SWE No Meigh et al. (1999)

H08 R, S SM, SWE Yes Hanasaki et al. (2008)

HTESSEL R, S SM, SWE No Balsamo et al. (2009)

JULES R, S SM, SWE No Cox et al. (1999),

Essery et al. (2003)

LPJmL P GM, SM, SS, SWE Yes Bondeau et al. (2007),

Rost et al. (2008)

MATSIRO R, S SM, SWE No Takata et al. (2003),

Koirala et al. (2014)

MPI-HM P SM, SWE Yes Hagemann and Dümenil (1997),

Hagemann and Gates (2003)

WaterGAP P GM, SM, SS, SWE Yes Alcamo et al. (2003)

GWAVA: Global Water Availability Assessment; HTESSEL: Hydrology-Tiled ECMWF Scheme for Surface Exchange over Land; JULES:

Joint UK Environment Simulator; LPJmL: Lund–Potsdam–Jena managed Land; MATSIRO: Minimal Advanced Treatments of Surface

Interaction and Runoff; MPI-HM: Max Planck Institute – Hydrology Model; WaterGAP: Water – Global Assessment and Prognosis.
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Figure 5. Basin location map with identification by class. A threshold for defining high recurrence or low recurrence was set at 0.75.

Latitude regions were defined between the reference lines shown on the map for both hemispheres delimiting the tropical region between 0.0

and 23.5◦, subtropical region between 23.5 and 35.0◦, temperate region (35.0–55.0◦) and sub-arctic and Arctic regions (55.0<).
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Table 2. Summary of class characteristics.

Class Basins Region Characteristics Observations

QPES Amazon, Brahmaputra,

Changjiang, Ganges,

Mekong, Niger, Nile,

Yenisei

Tropics, subtropics (Asian mon-

soon) and sub-arctic (central

Eurasia)

Tropical and subtropical humid

basins;

snow dominated basins with high

recurrence in precipitation and high

precipitation during winter.

Variables follow the same pattern as precipitation fills storage and

storage further supplies runoff and evaporation in an equally re-

current pattern.

QPE Lena, Mackenzie Sub-arctic (western Eurasia and

central North America)

Snow dominated basins with small

precipitation in winter.

Precipitation is recurrent but concentrated in summer; winter

snow volume is not high enough to make storage recurrent. How-

ever, the amount of snow does generate a recurrent pattern in

runoff.

QPS Orinoco Tropics Equatorial basin with highly constant

evaporation pattern.

Precipitation, storage and runoff have a recurrent pattern, but the

constant high water and low energy supplies create a constant low

recurrence pattern in evaporation.

QES Ob, Volga Sub-arctic (central Asia) Snow dominated basins with low re-

currence in precipitation, water lim-

ited in summer and high precipitation

during winter.

Important amount of precipitation during winter creates a large

snow volume which creates a recurrent runoff pattern regardless

of the low recurrence in precipitation.

QE Yukon Sub-arctic (Alaska) Snow dominated basin with low re-

currence in precipitation, water lim-

ited in summer and rather low precip-

itation in winter.

Low precipitation in winter does not allow a recurrent pattern in

storage because of low snow volume; however, runoff is recur-

rent.

PES Tocantins, Zambezi Tropics (southern South Amer-

ica and Africa), Temperate (east-

ern Eurasian continent affected

by oceanic atmospheric flow)

Tropical humid basins with EP peaks

at different time as P

Desynchronization of the precipitation and EP cycles allows for

filling of storage and also emptying during rainy and dry seasons,

respectively. Runoff is only generated for extreme precipitation

due to lack of saturation in storage.

PE Amur, Congo, Huang

He, Okavango, Plata

Basins with high evaporative index

(0.7–0.8) with EP peaking at the

same time as P .

Runoff generation and storage change are highly limited by evap-

oration due to the synchronization of precipitation andEP storage

changes.

ES Columbia, Euphrates,

Mississippi, Syr Darya

Temperate (North America, Eu-

rope and central Asia)

South America

Mid-latitude basins with important

amount of precipitation in winter,

some influence of snow, and water

limited in summer.

Storage increases during winter regardless of the precipitation

pattern; however, snow volume is not such as to pass the pattern

onto runoff.

E Danube, Indus, Kolyma,

Nelson, Sao Francisco, St.

Lawrence

Winter storage dominated basins due

to the presence of snow with low stor-

age fluctuations;

tropical basin with no recurrent pat-

terns in precipitation but water avail-

ability restrained to one particular

season only.

Irregular or low precipitation patterns transmit directly on to other

variables, but evaporation is recurrent due to the seasonal avail-

ability of energy.

L Colorado, Darling,

Grande, Orange

Subtropics (desert belt) Arid basins Irregular precipitation transmits to other variables as isolated

events which are the only water available for any hydrological

process to take place.

L is low recurrence in all variables.

recurrence calculated using the other models. Table 2 sum-

marizes the characteristics of each class.

4.1 Tropical region (0.0–23.5◦)

The tropical region has the most diversity of classes. In this

region we found basins belonging to the QPES, QPS, PES,

PE and E classes. Mainly, there are two distinct patterns

observed in runoff. High recurrence in runoff takes place

in the most humid basins exemplified in Fig. 7a by QPES

and Fig. 7b by QPS. Consistent with the global analysis re-

sults, we found that precipitation is highly recurrent for these

classes due to a repeating pattern resulting from the oscilla-

tion of the ITCZ. Evaporation and storage are also highly

recurrent as they follow the same pattern as precipitation,

as can be seen in the Amazon time series in Fig. 8a. In the

Orinoco Basin evaporation is maintained rather constant as

the basin is energy limited and potential evaporation is con-

stant resulting in low recurrence in evaporation. Storage on

the other hand follows the same pattern as precipitation re-

sulting in a highly recurrent pattern.

More than half of the basins in the tropics exhibit a low

recurrence pattern in runoff. These basins are exemplified by

PES and PE in Figs. 7 and 8. These basins are drier, with

less runoff ratio, than basins with recurrent runoff and water

limited in some periods of the year. Precipitation shows high

recurrence due to the availability of moisture being related

to the ITCZ. In these classes evaporation follows the same

pattern as precipitation, following the moisture availability

pattern. Storage has high recurrence in PES basins mainly

because they are characterized by peaks in precipitation and

potential evaporation taking place at a different time of the

year as seen on the Zambezi River’s climatology in Fig. 7. As

a result the storage fluctuates largely because the soil mois-

ture component fills in the wet season and nearly dries in the
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Figure 6. Radar charts depicting the results of recurrence for each variable in each individual basin. Results from the WaterGAP model are

highlighted in red, the model mean is shown as a solid black line, the interquartile is shaded in gray, and the max. and min. values are shown

with a dashed black line.

dry season (Fig. 8c and storage component climatology of

Zambezi Basin in the Supplement). This creates a strong sea-

sonal pattern in total storage leading to high recurrence. The

PE class is characterized by the peaks of potential evapora-

tion and P peaking at the same time (Fig. 7d: PE). Compared

to Amazon, average precipitation is much lower but poten-

tial evaporation is almost the same. The Congo Basin can be

energy limited (P >ET−EP) in the wet season; therefore,

regardless of the amount of precipitation, evaporation will

reach its potential creating a more recurrent pattern in evap-

oration. The anomalies in precipitation directly transfer to

storage and runoff variations, and since runoff ratio (Q/P )

and storage change ratio (1S/P ) are much smaller, these

anomalies are larger relative fluctuations to these variables;

hence, recurrence in storage and runoff patterns is low. Sao

Francisco Basin is an exception in this region consisting only

of recurrent evaporation. This type of basin is mainly seen in

the temperate region and is explained in detail in Sect. 4.3.

4.2 Subtropical region (23.5–35.0◦)

In subtropical region, mainly two patterns of classes are ob-

served. On the one hand, QPES river basins are located in

Southeast Asian monsoon, where similar behaviors are ob-

served as the same class river basins in tropical region. On the

other hand, we can observe the basins that are extremely dry,

represented by Orange Basin in Fig. 7. In the latter basins, all

variables follow the patterns of precipitation being, sudden,

abrupt and lacking any defined temporal distribution, leading

to class L (i.e., none of the variables are recurrent). The Indus

River basin is an exception in this region belonging to the E

class.

4.3 Temperate region (35.0–55.0◦)

In the temperate region there are three particular classes ob-

served: PE, ES and E. All of these classes have low recur-

rence in runoff and high recurrence in evaporation due to the

seasonality in energy supply.

Basins located in eastern Asia belong to the PE class as

explained previously in the tropical region section. The rea-

sons why this class takes place in the temperate region are

the same as that for the tropical region, i.e., the reason for re-

currence in precipitation is coming from the moisture supply

following the Asia monsoon pattern.

A dominant class in this region is the ES class exempli-

fied by the Mississippi Basin in Fig. 7. In this type of basin

the precipitation pattern is not recurrent without a distinct

dry season. Storage is recurrent in these basins as a result of

the energy balance characteristics. Due to the limited energy

during the winter season, precipitation is directly transferred

to storage increase. During summer, the basins in this class

are characterized by being water limited, and therefore most

of the precipitated water is evaporated allowing for storage
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Figure 7. Variable climatologies for selected basins for each class and region. The charts present a particular basin for each of the 10 classes

found sorted by region. Comparable axis of precipitation, evaporation, runoff and potential evaporation are shown on the left vertical axis

and storage axis is shown on the right vertical axis.

to decrease. In these basins there is some influence of snow;

however, the amount of snow is not as high enough to create

a recurrent runoff pattern.

Another group in the temperate region is characterized

by recurrence in evaporation only as is exemplified by the

Danube River basin. In these basins, precipitation has a pat-

tern of low recurrence that transfers to the variables of stor-

age and runoff. As compared to the Mississippi, the Danube

River basin is not energy limited during summer. This cre-

ates a pattern whereby the anomalies and low recurrence of

precipitation also transfer to storage thereby reducing its re-

currence.

4.4 Sub-arctic and Arctic region (55.0–90◦ (N/S))

In the sub-arctic region we found basins belonging to the

QPES, QPE, QES, QE and E classes. As in the temperate

region, evaporation is recurrent due to the seasonality of en-
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a) Amazon - QPES b) Orinoco - QPS 

c) Zambezi - PES d) Congo - PE 
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Figure 8. Monthly time series of selected basins in the tropics from each class: (a) Amazon – QPES, (b) Orinoco – QPS, (c) Zambezi – PES,

(d) Congo – PE. The graphs exemplify time series with high or low recurrence depending on the classification. The averaged AC coefficient

is provided in the top right corner of each graph.

Table 3. Component contribution ratio (CCR) for basins located in

the sub-arctic region. The CCR is calculated as in Kim et al. (2009).

Basin Ground moisture Soil moisture Surf storage SWE

Yenisei 0.056 0.095 0.247 0.602

Lena 0.021 0.076 0.391 0.512

Mackenzie 0.077 0.135 0.109 0.679

Ob 0.077 0.225 0.112 0.586

Volga 0.083 0.271 0.145 0.501

Yukon 0.059 0.052 0.312 0.577

Kolyma 0.011 0.034 0.322 0.633

ergy supply. All of the basins in this region except Kolyma

have recurrent runoff. The runoff pattern is dominated by

snowmelt taking place similarly year after year as observed

in the sudden peak in runoff during spring (Fig. 7h–j).

Basins belonging to the QPES and QPE classes have high

recurrence in precipitation due to moisture inflow from the

ocean (Figs. 4a and 5). The recurrence in storage is de-

pendent on the amount of snow. The climatologies of these

basins (Fig. 7h–j) show that storage peaks during the win-

ter months due to the accumulation of snow. Figure 9 shows

the climatology of storage in these basins further subdivided

into the volume of the different components. Table 3 shows

the component contribution ratio (CCR) (Kim et al., 2009)

describing the contribution of each storage variation to the

variation of total storage. As it can be seen, in these basins

the highest contribution takes place from snow. The Water-

GAP model in particular has a small groundwater tank which

includes only the dynamical part making it small in volume

and contribution. Figures 10 and 11 show the snow water

equivalent (SWE) and seasonal precipitation amounts. From

these two figures, we can observe that basins with higher

snow accumulation have higher recurrence both in storage

and runoff.

Basins without recurrent runoff (QES and QE) are basins

located on continental areas experiencing precipitation pat-

terns with no defined dry period. From Figs. 9, 10 and 11 we

can also conclude that storage is recurrent for these basins

depending on the amount of snow; higher SWE and winter

precipitation are linked to higher recurrence. For this region,

the recurrence in storage and runoff is independent from the

recurrence in precipitation but it is dependent on the precipi-

tation and snow amounts.
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Figure 9. Climatology of storage and the various storage compo-

nents for sub-arctic basins.
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Figure 10. Snow water equivalent seasonality of sub-arctic basins.

5 Discussion

5.1 Characteristics of recurrence measured by AC

5.1.1 Recurrence vs. seasonality

This section discusses the characteristics of recurrence mea-

sured by AC from monthly variables with the lags of 12

month multiples. First, we compare the recurrence and

seasonality, following the definition of Walsh and Lawler
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Figure 11. Seasonal precipitation climatology of sub-arctic basins.

(1981):

SI=
1

R

12∑
n=1

∣∣x̄n− R̄/12
∣∣ , (13)

where x̄n is the mean rainfall of month n and R̄ is the annual

mean of a hydrological variable. Hence, the seasonality mea-

sures the degree to which each monthly variable of a regime

curve deviates from the overall annual mean. Seasonality is

essentially different from the recurrence which, as defined

above, measures the degree to which a monthly hydrolog-

ical variable returns to the same state in subsequent years.

Figure 12 displays the relationship between recurrence and

seasonality for all the time series in the study, including each

variable from every basin. The figure suggests that generally

higher seasonal variability tends to have higher recurrence.

This is because if a variable has strong seasonality, the influ-

ence of the deviation from the climatology has comparatively

less impact on the AC. Appendix A shows the distribution of

seasonality and recurrence in all variables.

Nevertheless, there are exceptions where variables are

highly seasonal but not recurrent. For example, Fig. 13 shows

the monthly average precipitation in Ob and Yenisei. The two

basins are located in the same latitudinal region sharing their

borders. The climatologies of the both basins are similar with

comparable magnitudes at all months. However, the year to

year variability in the both basins are different: Ob shows

higher variations than Yenisei. Therefore, the precipitation

in Ob has lower recurrence (0.65) than that in Yenisei (0.88).

Similar cases can be observed when comparing the clima-

tologies shown in Fig. 7 and the measure of recurrence pre-

sented in Fig. 6, and in previous work (e.g., Kim et al., 2009)

where storage climatologies show strong seasonality but the

yearly time series does not behave in a recurrent manner.

To further explain the difference between recurrence and

seasonality, we use Fig. 14 to show several examples. Case 1

represents a repeating sinusoidal pattern with small ampli-

tude resulting in low seasonality and high recurrence. Case 2,

is a randomly generated series without seasonality and low
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Figure 12. Relationship between recurrence and seasonality from

all of the time series corresponding to each variable in each basin.

recurrence. Case 3 and case 4 are precipitation of Yenisei

and Ob with similar seasonality and high recurrence in Yeni-

sei and low recurrence in Ob as discussed above. Case 5 is a

sinusoidal pattern repeating the exact same values and show

high seasonality and recurrence. Case 6 adds a decreasing

trend to the case 5, but it keeps similar seasonality and recur-

rence. In summary, seasonality is calculated from the clima-

tology of a variable which results from a long-term average,

while recurrence measures the year to year variability of the

monthly pattern of a variable. Recurrence is an additional

feature of temporal patterns of basins providing different in-

formation than seasonality.

5.1.2 Recurrence vs. aridity

Recurrence in runoff and storage also has some relation with

the aridity of a basin as well as the timings of energy and

water availability. These basin characteristics are essential in

determining the basins’ functionality as they are a descrip-

tor of how much water from precipitation is transferred to

evaporation, storage change or runoff, and they have been

included as classification indices in previous works such

as Jothityangkoon and Sivapalan (2009), Coopersmith et al.

(2012, 2014) and Berghuijs et al. (2014). Figure 15 shows

the relations between aridity, timing of peaks in precipita-

tion (water supply) and EP (energy supply) with recurrence

in runoff and precipitation by region.

Figure 15a and b show that in humid basins, where the

runoff ratio and the storage change ratio are high, runoff and

storage follow the patterns in precipitation. Drier basins have

low recurrence in runoff (classified as PES, PE, ES or E), es-

sentially due to the high sensitivity of runoff to precipitation

under smaller runoff ratios. For example, the case of Amazon

and Congo, aforementioned in Sect. 4.1, has a difference in

recurrence of storage and runoff. For precipitation, both vari-

ables have similar relative variations but the total precipita-

tion in Congo is about 70 % of the precipitation in Amazon.

Additionally, the runoff ratio is smaller in Congo (0.4) than

Figure 13. Seasonal climatologies of precipitation in Yenisei and

Ob river basins (a), long-term mean (b), and (c) 23-year precipita-

tion in Yenisei and Ob river basins. (b) and (c) show the minimum,

maximum quartiles and mean for each month.

in Amazon (0.45). The physical meaning of this aspect is that

there is less water volume in Congo transferring from precip-

itation into storage fluctuation and runoff generation. Hence,

the same anomalies in precipitation have a larger impact in

Congo than in Amazon. Furthermore, recurrence of storage

and runoff also depends on the timing of P and EP peaks. As

Fig. 15c and d indicate, the recurrence becomes higher if P

and EP are out of phase (> 2 months).

5.2 Recurrence measured by FFT intensity and

Colwell’s contingency compared to AC

The proposed indices to measure recurrence are lagged AC,

FFT intensity and Colwell’s indices. For most of the cases,

the basins that show higher AC also have higher values of

FFT intensity and Colwell’s predictability. However, it is to

be noted that some basins showing lower AC and FFT inten-

sity have high Colwell predictability, especially in dry condi-

tions. For example, in the arid basins where all the variables

are low most of the time except for abrupt peaks, AC and

FFT intensity are low, while Colwell’s constancy and pre-

dictability are high. However, these basins are rather low in

Colwell’s contingency (Table 4). Contingency measures the

degree to which state and time are dependent on each other,

measuring the degree to which a particular state takes place
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Table 4. Results of Colwell’s indices (constancy – C, contingency –

M and predictability – Pd) for all variables in arid basins. Constancy

has high values due to variables being constantly low, increasing the

total predictability index.

Basin Variable C M Pd

Colorado P 0.303 0.110 0.413

E 0.284 0.265 0.549

Q 0.433 0.115 0.548

S 0.302 0.209 0.511

Darling P 0.300 0.073 0.373

E 0.297 0.209 0.506

Q 0.380 0.179 0.559

S 0.291 0.170 0.461

Grande P 0.320 0.173 0.493

E 0.320 0.207 0.527

Q 0.432 0.089 0.521

S 0.297 0.077 0.374

Orange P 0.339 0.176 0.515

E 0.311 0.202 0.513

Q 0.507 0.067 0.574

S 0.365 0.077 0.442

at a particular time. For this reason Colwell’s contingency

results are highly consistent with the results of AC and FFT

intensity. Colwell’s contingency is not only consistent with

the other indices but also adequate for measuring recurrence

as defined above. Table 5 shows the classification of each

basin using the different metrics.

Figure 16 shows the correlation between AC and FFT in-

tensity and AC and Colwell’s contingency from the Water-

GAP model. All indices correlate well although there are par-

ticular cases that deviate from the regressions. As mentioned

in the methodology section, the threshold selected for AC

was 0.75. For FFT intensity and Colwell’s contingency mea-

sures thresholds of 150 and 0.25 were selected to minimize

the number of basins categorized as different classes. Table 5

shows the classification of basins from different metrics.

The FFT procedure is used to represent a time series by fit-

ting a sine and cosine function; therefore, the FFT intensity

will be higher for variables following a sinusoidal pattern.

Figure 17 exemplifies the different periodogram with their

respective partial time series and climatology. Figure 17a

shows the example of evaporation in Changjiang for which

a highly sinusoidal pattern indicates high AC and FFT inten-

sity. Figure 17b shows an example of low recurrence with

low AC and FFT intensity. However there are two examples

where the FFT intensity value indicates low recurrence while

AC indicates high recurrence. First, Fig. 17c (Congo evapo-

ration) shows a bimodal pattern which has a high AC but low

FFT intensity; since the peaks in evaporation appear at dif-

ferent frequencies, the intensity at a period of 12 months be-

comes weaker and other high intensities appear at different

frequencies. The second example shown in Fig. 17d, takes

Table 5. Classification using different metrics, autocorrelation

(AC), Colwell’s contingency (M) and fast Fourier transforms (FFT).

Basin AC M FFT

Amazon QPES QPES QPES

Amur QPE QPE QPE

Brahmaputra QPES QPES QPES

Changjiang QPES QPES QPES

Colorado L E S

Columbia ES ES ES

Congo PE PE L

Danube E E ES

Darling L L L

Euphrates ES PES QPES

Ganges QPES QPES PES

Grande L L L

Huanghe PE PE PE

Indus E E L

Kolyma E QE E

Lena QPE QPE PE

Mackenzie QPE QPE PES

Mekong QPES QPES QPES

Mississippi ES ES ES

Nelson E E PES

Niger QPES QPES QPES

Nile QPES QPES QPES

Ob QES QES ES

Okavango PE PE PE

Orange L L L

Orinoco QPS QPS QPES

Plata PE PE PES

Sao Francisco E E PES

St. Lawrence E E ES

Syr Darya ES ES ES

Tocantins PES PES QPES

Volga QES QES ES

Yenisei QPES QPES PES

Yukon QE QE QE

Zambezi PES PES PES

place with basins in the sub-arctic region where the highest

volume in runoff comes from snowmelt in early spring, but

the peak in precipitation takes place during summer, creat-

ing a lump in the recession of the runoff climatology. This

second lump reduces the intensity at a period of 12 months

and increases other frequencies seen on the periodogram. For

both of these cases with deviations from a sinusoidal func-

tion, AC better represents the concept of recurrence because

if the same pattern repeats, independent of the shape of the

pattern, AC at lag multiples of 12 will be higher.

Colwell’s contingency also has high correlation with AC.

However, Colwell’s index is mainly used for qualitative de-

scriptions in ecological sciences but it is adjustable to time

series when variable intervals are used as states. Limitations

of the use of Colwell’s index for hydrological time series

have been extensively discussed by Gan et al. (1991) and in-
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Case Seasonality
Standard

Deviation
Recurrence (AC)

Case 1 0.031 0.14 1.000

Case 2 0.242 2.53 0.093

Case 3 0.410 2.15 0.843

Case 4 0.410 2.22 0.690

Case 5 0.622 2.82 1.000

Case 6 0.789 3.38 1.000

Figure 14. Schematic time series representing different levels of recurrence, variability and seasonality.

clude the dependence of the results on the amount of classes

selected, and the tendency for higher values in contingency

with shorter record lengths. These are the intrinsic limitations

of Colwell’s index with the discretization of data.

5.3 Result dependency on model structure

Model differences and uncertainties have been widely dis-

cussed in literature about model intercomparison (e.g., Had-

deland et al., 2011). Main differences among the models are

attributed to evaporation and snow modules, as well as their

storage components. Here we briefly discuss how the model

structural differences affect the results in the calculation of
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Figure 15. Relation of Aridity and Timing of peaks and recurrence in runoff. (a) Timing of P and EP with recurrence in runoff, (b) relation

of timing of peaks in P and EP peaks and recurrence in storage, (c) relation of aridity and recurrence in runoff., and (d) relation between

aridity and recurrence in storage.

Figure 16. Comparison of AC with Colwell’s contingency (M), and FFT intensity.
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a) Changjiang Evaporation 
d) Yenisei Runoff c) Congo Precipitation b) Orange Storage 

AC=0.983 

M=0.497 

FFT intensity=191 

AC=0.132 

M=0.077 

FFT intensity=77 

AC=0.888 

M=0.353 

FFT intensity=142 

AC=0.824 

M=0.299 

FFT intensity=129 

Figure 17. Examples of variables with different results in FFT intensity. (a) Changjiang’s evaporation, (b) runoff in Yenisei, (c) precipitation

in Congo and (d) storage in Orange.

recurrence. Figure 18 shows the box plots containing the

ranges of recurrence for every variable in all basins by the

eight different models.

Marginal differences on recurrence are found in most of

the tropical humid basins in the QPES class. Larger differ-

ences are observed in storage variables in these basins. For

the case of the Brahmaputra GWAVA and the MPI-HM mod-

els are outliers in the recurrence of storage computing 0.03

and 0.55, respectively, while other models range between

0.92 and 0.96. Haddeland et al. (2011) highlighted the over-

estimation of evaporation in this basin by MPI-HM due to

the use of the Thornthwaite evaporation scheme. This leads

to higher interannual variations on storage components due

to higher evaporation. In the case of GWAVA, the storage se-

ries for this basin shows a cyclic increase in storage until it

is abruptly decreased to a lower volume. This pattern is only

observed in the snow component of storage which is highly

overestimated in GWAVA as compared to other models. The

MATSIRO model has a deep groundwater tank which in gen-

eral generates less seasonal variation in runoff (Haddeland et

al., 2011). This has an effect on the recurrence calculation

and in many basins recurrence in runoff changes from high

on all models to low in MATSIRO.

Models in the temperate zone show larger differences

mostly in runoff and storage recurrence. This is due to the

variety of climatologies that are present in this zone and

the presence of snow. Snowfall is treated differently in each

GHM, with different thresholds for snowfall, and among all

models there are different melting schemes. These differ-

ences mainly affect basins that are around the threshold zone

between 0 and 1 ◦C where precipitation is partitioned be-

tween snow or rain and melting processes start (Haddeland

et al., 2011). Despite these large differences, most models

indicate the same class for most basins. In sub-arctic basins,

where the influence of snow is much more important, the

differences are low but the WaterGAP represent the lowest

recurrent pattern of all models. This is possibly due to the

degree day method. Temporal and spatial variations in snow

content are larger in the WaterGAP model decreasing recur-

rence. However, the relation of storage recurrence and snow

amount is kept as basins with higher snow content also ex-

hibit higher recurrence.

Finally, arid basins have wide uncertainty due to the dif-

ferences in partition between evaporation and runoff in each

model. MATSIRO is an outlier in having high recurrence in

evaporation. When inspecting the time series of storage for

these catchments, a marked decreasing trend was found. This

can be partially attributed to the deep groundwater tank that

keeps water available for evaporation despite the lack of wa-

ter supply through precipitation. Evaporation follows a sea-

sonal cycle in MATSIRO with increasing recurrence.

The two models with storage subdivided in more compo-

nents are WaterGAP and LPJmL featuring mainly a ground-

water and a surface storage tank. The groundwater stores

water infiltrated from soil moisture deeper underground and

drains directly into a lake tank. This groundwater compo-

nent represents a small volume only simulating a dynamical

part of the groundwater that actually exists in a basin. Deep

groundwater is not represented by these two models. The sur-

face water storage component includes tanks for lakes, wet-

lands and river channels. These tanks receive as input direct

runoff, flow from the groundwater tank and direct precipita-

tion. The outflow from the surface water component is given

by discharge onto a downstream cell. Due to the inclusion

of a river channel tank, the possibility that our results are af-

fected by the time lag in lengthy river channels exists. How-

ever, among the difference in the results shown in Figs. 6 and

18 there were no differences that could be attributable to the

Hydrol. Earth Syst. Sci., 19, 1919–1942, 2015 www.hydrol-earth-syst-sci.net/19/1919/2015/



R. Fernandez and T. Sayama: Hydrological recurrence as a measure for large river 1937

QPES-Amazon PE-Amur QPES-Brahmaputra QPES-Changjiang L-Colorado 

ES-Euphrates ES-Darling E-Danube PE-Congo ES-Columbia 

QPES-Ganges L-Grande PE-Huang He E-Indus E-Kolyma 

E-Nelson ES-Mississippi QPES-Mekong QPE-Mackenzie QPE-Lena 

QPES-Niger QPES-Nile QES-OB PE-Okavango L-Orange 

ES-Syr Darya E-St. Lawrence E-Sao Francisco PE-Plata QPS-Orinoco 

PES-Tocantins QES-Volga QPES-Yenisei QE-Yukon PES-Zambezi 

Figure 18. Model differences. Box plots show the recurrence measure for each variable in each basin displaying an interquartile uncertainty

band, WaterGAP marked by the red spot, the mean highlighted by the black mark and the maximum and minimum values.

time lag due to the length of the river. Further analysis should

be performed in order to understand the effects of the inclu-

sion of river channel storage in the measures of recurrence.

5.4 Future application of the classification framework

By deriving the classification framework based on recur-

rence, we were able to discuss the interactions among the hy-

drologic variables affecting their temporal pattern. As one of

future applications of the proposed classification, we would

like to analyze the impact of projected climate change on

hydrologic variables depending on the classes in a mech-

anistic way. A mechanistic approach to analyze hydrolog-

ical changes is climate elasticity quantification of runoff

(Sankarasubramanian et al., 2001; Yang and Yang, 2011;

Vano et al., 2012). We believe that sensitivity studies could be

further enhanced with this kind of classification highlighting

dominant hydrologic processes, especially by incorporating

a storage component.

The inclusion of storage, as well as to explain its tem-

poral variations, is one of the features of this study. The

approach adds to previous studies that have identified stor-

age as an important component for runoff generation (Black,

1997; Sayama et al., 2011) and highlighted its interaction

with precipitation and evaporation temporal patterns (Joth-

ityangkoon and Sivapalan, 2009). Our classification remarks

on how storage is controlled and how it controls runoff in dif-

ferent classes. We identified that for particular classes; the ef-

fects of precipitation and potential evaporation transfer more

directly to runoff, while in other classes runoff is buffered

by storage. Our framework can be utilized as a bench state of

basins and analyze the shifts in classes or changes in the tem-

poral variations due to hydrological change, similar to Coop-

ersmith et al. (2014). For this type of study, EU-WATCH pro-

vides excellent data sets for the 20th century and projections

into the 21st century to analyze the change in temporal pat-

terns under different conditions.
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6 Conclusions

This paper presented a framework of hydrologic classifica-

tion applicable to large-scale river basins based on monthly

temporal variations of precipitation, evaporation, storage and

runoff. The classification was derived from the concept of

hydrological recurrence as a metric defined as the degree to

which a monthly hydrological variable returns to the same

state in subsequent years. The recurrence was measured us-

ing the mean of autocorrelations (AC) with the multiples of

12 to 60 month lags, the intensity of fast Fourier transforms

(FFT intensity) and Colwell’s contingency index. These mea-

sures were calculated at global gridded scale (0.5◦) and at the

35 largest basins of the world based on the model forcing or

output of the EU-WATCH data set.

The recurrence of individual variables is generally dif-

ferent in different latitudinal regions. For the recurrence in

precipitation, the seasonality of moisture plays an important

role, while for that in evaporation, the effect of seasonality in

energy is more dominant. Storage recurrence is more depen-

dent on the seasonality of moisture in the tropics and snow at

higher latitudes. Finally, all combinations control the charac-

teristics of the recurrence in runoff.

According to our proposed classification, which results in

16 possible classes from the combinations of high or low re-

currence of the four variables, only 10 classes are present

from our study of river basins. In the tropical region, essen-

tially recurrence in runoff and storage is dependent on arid-

ity. Humid basins are highly recurrent in all variables. Drier

basins have low recurrence in runoff, but storage recurrence

is dependent on the timing of the peaks in precipitation and

EP.

In the temperate region, evaporation is always recurrent

due to high seasonality, while precipitation shows low recur-

rence in this region, due to basins’ aridity. In these basins,

the timing of peaks between P and EP also influence the re-

currence in Q and S.

In the sub-arctic region, evaporation is again highly recur-

rent due to extreme seasonality. Precipitation is recurrent in

areas with oceanic currents influences. Recurrence in storage

is in the basins with larger amounts of snow, whose melting

processes dominate the patterns of runoff. As a result, the

runoff recurrence is high in this region, while the storage re-

currence varies in different areas. Therefore, the river basins

are mainly classified into QPES, QPE, QES or QE depending

on their combinations.

The above results were primarily obtained based on the

analysis of AC metric with WaterGAP model output. How-

ever, the other two metrics, FFT intensity and Colwell’s con-

tingency, and other eight models also essentially showed con-

sistent results.

Overall the presented approach is an attempt to define

basin similarity accounting for the temporal patterns of wa-

ter balance components. River basins in the different classes

are likely to behave differently even under similar changes

in climate control. The same framework may be applied to

long-term time series data from different sources including

GCM future projections. Furthermore, by using long-term

time series broken down into partial time series, the proposed

framework may identify a hydrologic regime shift from one

class to another, as well as the characteristics of hydrologic

sensitivity in different classes. For this kind of study, EU-

WATCH provides useful data sets for projecting future hy-

drologic variables.

Finally, there are several limitations that are intrinsic to

the classification framework. Although, some of the combi-

nations that were not found are considered not feasible (e.g.,

only recurrent runoff), there are other classes that may be

found if the sample of basins is further extended. The clas-

sification also considers no landscape controls in the hy-

drological processes, effects of land use and human inter-

actions, as well as other important factors, that also domi-

nate and influence the temporal variability of hydrological

variables. The framework currently uses the spatial average

of large river basins, leaving aside heterogeneity in climatic

and geographic characteristics. Downscaling to smaller sub-

basins can bring insights not only on the behavior at smaller

scale but also on how the different sub-basins add up to cre-

ate a general pattern in the large-scale basins. Even though

the presented method is not a definite and only classification

framework, the analysis comparing different classes provides

useful insights into the functions of large river basins in the

world.
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Appendix A: Spatial comparison of recurrence and

seasonality

Figure A1 shows the recurrence and seasonality for each

variable in each basin. Precipitation shows high recurrence

in most of South America, most of Africa, Southeast Asia,

and the majority of basins in eastern Asia as displayed in

Fig. A1a. In Fig. A1b, it can be noted that seasonality is

not that strong for the majority of the basins, aside from a

few basins in Africa and the Ganges in Southeast Asia. Fig-

ure A1c and A1d show the recurrence and seasonality of

evaporation, respectively. Evaporation is the most recurrent

variable; however, the seasonality is low except for the sub-

arctic basins. Runoff is mostly recurrent in some basins of the

sub-arctic region and some basins in the tropics and South-

east Asia (Fig. A1e), whereas it does not display seasonality

except for in the Ganges and Lena basins (Fig. A1f). Finally,

storage is a recurrent variable in some basins of South Amer-

ica, Africa and Asia as can be seen from Fig. A1g. In the case

of storage it does not display significant seasonality around

the world (Fig. A1h).
Figure A1. (a) Recurrence of precipitation, (b) seasonality of pre-

cipitation, (c) recurrence of evaporation, (d) seasonality of evapo-

ration, (e) recurrence of runoff, (f) seasonality of runoff, (g) recur-

rence of storage, (h) seasonality of storage. Recurrence and season-

ality use the same color scale.
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