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Abstract. Hydrological modeling can exploit informative

signatures extracted from long time sequences of observed

streamflow for parameter calibration and model diagnosis. In

this study we explore the diagnostic potential of hydrograph

partitioning for model calibration in mountain areas, where

meltwater from snow and glaciers is an important source for

river runoff (in addition to rainwater). We propose an index-

based method to partition the hydrograph according to dom-

inant runoff water sources, and a diagnostic approach to cal-

ibrate a mountain hydrological model. First, by accounting

for the seasonal variability of precipitation and the altitudi-

nal variability of temperature and snow/glacier coverage, we

develop a set of indices to indicate the daily status of runoff

generation from each type of water source (i.e., glacier melt-

water, snow meltwater, rainwater, and groundwater). Second,

these indices are used to partition a hydrograph into four

parts associated with four different combinations of domi-

nant water sources (i.e., groundwater, groundwater + snow

meltwater, groundwater + snow meltwater + glacier melt-

water, and groundwater + snow meltwater + glacier melt-

water + rainwater). Third, the hydrological model parame-

ters are grouped by the associated runoff sources, and each

group is calibrated to match the corresponding hydrograph

partition in a stepwise and iterative manner. Similar to use of

the regime curve to diagnose seasonality of streamflow, the

hydrograph partitioning curve based on a dominant runoff

water source (more briefly called the partitioning curve, not

necessarily continuous) can serve as a diagnostic signature

that helps relate model performance to model components.

The proposed methods are demonstrated via application of

a semi-distributed hydrological model (THREW, Tsinghua

Representative Elementary Watershed) to the Tailan River

basin (TRB) (1324 km2) in the Tianshan Mountains of China.

Results show that the proposed calibration approach per-

formed reasonably well. Cross-validation and comparison to

an automatic calibration method indicated its robustness.

1 Introduction

1.1 Background

Parameter calibration has been singled out as one of the ma-

jor issues in the application of hydrological models (John-

ston and Pilgrim, 1976; Gupta and Sorooshian, 1983; Beven

and Binley, 1992; Boyle et al., 2000). Commonly, one or

more objective functions are selected as criteria to evaluate

the similarity between observed and simulated hydrographs

(Nash and Sutcliffe, 1970; Brazil, 1989; Gupta et al., 1998;

van Griensven and Bauwens, 2003). As model complexity

increases, parameter dimensionality also increases signifi-

cantly, which makes it much more difficult to calibrate model

parameters manually. For this reason, automatic calibration

procedures have been developed to identify the optimal pa-

rameter set (Gupta and Sorooshian, 1985; Gan and Biftu,

1996; Vrugt et al, 2003a, b). However, due to limitations in

process understanding and measurement technologies, one

can find different parameter sets within a chosen space that

may acceptably reproduce the observed aspects of the catch-

ment system (Sorooshian and Gupta, 1983; Beven and Freer,

2001). This phenomenon, which has been called equifinal-

ity, causes uncertainty in simulation and prediction (Duan et
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al., 1992; Beven, 1993, 1996), and highlights the need for

methods that are powerful enough to diagnostically evalu-

ate and correct models, i.e., that are capable of indicating

to what degree a realistic representation of the real world has

been achieved and pointing towards how the model should be

improved (Spear and Hornberger, 1980; Gupta et al., 1998,

2008).

Traditional regression-based model evaluation strategies

(e.g., based on the use of mean squared error or Nash–

Sutcliffe efficiency (NSE) as performance criteria) are

demonstrably poor in their ability to identify the roles of var-

ious model components or parameters in the model output

(Van Straten and Keesman, 1991; Zhang et al., 2008; Gupta

et al., 2008; Yilmaz et al., 2008; Hingray et al., 2010), which

is due in part to the loss of meaningful information when pro-

jecting from the high dimension of the data set (like hydro-

graph) down to the low (often one) dimension of the mea-

surement (Yilmaz et al., 2008; Gupta et al., 2009). A diag-

nostic evaluation method should match the number of un-

knowns (parameters) with the number of pieces of informa-

tion by making use of multiple measures of model perfor-

mance (Gupta et al., 1998, 2008, 2009; Yilmaz et al., 2008).

One way to exploit hydrological information is to analyze

the spatiotemporal characteristics of hydrological variables

that can be related to specific hydrological processes in the

form of signature indices (Richter et al., 1996; Sivapalan et

al., 2003; Gupta et al., 2008; Yilmaz et al., 2008). Ideally,

a signature should represent some invariant property of the

system, be readily identifiable from available data, directly

reflect some system function, and be maximally related to

some structure or parameter in the model.

Attention to hydrological signatures, therefore, constitutes

the natural basis for model diagnosis (Gupta et al., 2008).

Placed in this context, the body of literature on the topic is

indeed large. Jothityangkoon et al. (2001) proposed a down-

ward approach to evaluate the model’s performance against

appropriate signatures at progressively refined timescale.

Signatures that govern the evaluation of model complexity

are the inter-annual variability, mean monthly variation in

runoff (called regime curve), and the flow duration curve

(FDC). Farmer et al. (2003) evaluated the climate, soil,

and vegetation controls on the variability of water balance

through four signatures: gradient of the annual yield fre-

quency graph, average yield over many years for each month,

FDC, and magnitude and shape of the hydrograph. Shamir et

al. (2005a) described a parameter estimation method based

on hydrograph descriptors (total flow, range between the

extreme values, monthly rising limb density (RLD) of the

hydrograph, monthly maximum flow, and negative/positive

change) that characterize dominant streamflow patterns at

three timescales (monthly, yearly, and record extent). Deten-

beck et al. (2005) calculated several hydrologic indices in-

cluding daily flow indices (mean, median, coefficient of vari-

ation, and skewness), overall flood indices (flood frequency,

magnitude, duration, and flood timing of various levels), low

flow variables (mean annual daily minimum), and ranges of

flow percentiles to study the relationship of the streamflow

regime to watershed characteristics. Shamir et al. (2005b)

presented two streamflow indices to describe the shape of

the hydrograph (RLD and declining limb density – DLD) for

parameter estimation in 19 basins of United States. Yadav et

al. (2007) used similarity indices and hydrological signatures

(runoff ratio and slope of the FDC) to classify catchments.

Westerberg et al. (2011) selected several evaluation points

on the FDC to calibrate models, and compared two selection

methods to evaluate their effects on parameter calibration.

Generally, the reported signatures have the following two

characteristics: (1) they concentrate on the extraction of

hydrologically meaningful information contained in hydro-

graphs, and (2) they focus on either an entire study period

or a special continuous section of the entire period. They

have occasionally considered temporal variability of runoff

components and dominance of different runoff sources dur-

ing different periods (e.g., the seasonal switching of runoff

sources discussed in Tian et al., 2012). However, a hydro-

graph could be dominated by various components or water

sources at different response times (Haberlandt et al., 2001;

Eder et al., 2005). With this in mind, a few studies have ex-

plored the use of hydrological information in time dimension

for stepwise calibration. For example, Schaefli et al. (2005)

presented a stepwise calibration method for seven parameters

in a high mountainous area: snow and ice melt degree-day

factors were conditioned by mass balance, slow reservoir pa-

rameters were determined by base flow, reservoir coefficients

were calibrated by summer runoff, and the direct runoff co-

efficient was used to control discharge during precipitation

events. Another notable example is Hingray et al. (2010),

in which the authors estimated the value of the snowmelt

degree-day factor in a mountain basin by progressively min-

imizing the differences between observed and simulated val-

ues of different magnitude hydrographs. There are also many

other follow up studies.

In mountain areas, streamflow is composed of both

snow/glacier meltwater and rainwater. The energy-based and

temperature-index models are two principal approaches to

simulate snow and glacier melt (Rango and Martinec, 1979;

Howard, 1996; Kane et al., 1997; Singh et al., 2000; Fierz et

al., 2003). To describe significant heterogeneity of tempera-

ture, precipitation, snow, and glacier, distributed hydrologi-

cal models are generally used for precipitation–runoff mod-

eling in mountain regions (Daly et al., 2000; Klok et al.,

2001). Also, the utilization of remote-sensing products of

precipitation and snow cover data in mountain runoff mod-

eling has become more popular in recent years (Swamy and

Brivio, 1997; Akyurek et al., 2011; Liu et al., 2012). Most

of these studies report sound simulation results. However,

the need to develop an appropriate calibration strategy for

precipitation–runoff modeling in mountain areas remains a

key issue for two reasons: first, hydrological processes are

usually more complex (with snow/glacier melt and possibly

Hydrol. Earth Syst. Sci., 19, 1807–1826, 2015 www.hydrol-earth-syst-sci.net/19/1807/2015/



Z. H. He et al.: Diagnostic calibration of a hydrological model 1809

soil freezing/thawing) than those in warmer areas, which im-

plies a larger dimension of parameter (RP) in the correspond-

ing hydrological model; second, the measured data set use-

ful for model identification is usually limited due to a sparse

gauge network. To address this problem, related studies are

putting effort into two particular directions of research. One

is to reduce the calibrated RP by estimating some of the pa-

rameters based on basin characteristics a priori. For exam-

ple, Gurtz et al. (1999) proposed a parameterization method

based on elevation, slope, and shading derived from basin

terrain. Gomez-Landesa and Rango (2002) obtained model

parameters of ungauged basins from gauged basins by basin

size, proximity of location, and shape similarities. Eder et

al. (2005) estimated most of the parameters a priori from

basin physiography before an automatic calibration is ap-

plied. The parameterization method may involve some un-

certainties but is useful for determining insensitive parame-

ters.

The second direction is to exploit hydrological informa-

tion from implicit measurement data. For instance, Dunn and

Colohan (1999) used baseflow data as an additional crite-

ria for model evaluation. Mendoza et al. (2003) exploited

recession-flow data to estimate hydraulic parameters. Stahl

et al. (2008) used glacier mass balance information com-

bined with stream hydrographs to constrain melt factors.

Huss et al. (2008) used annual ice volume change data for

optimizing melt and radiation factors, and glacier equilib-

rium line altitude for precipitation correction factors. Schaefli

and Huss (2011) integrated the seasonal information of point

glacier mass balance for model calibration by modifying the

GSM-SOCONT model. Jost et al. (2012) introduced glacier

volume loss calculated by high-resolution digital elevation

models (DEMs) to calibrate a hydrologic model. Knowledge

acquired from the aforementioned research indicates that the

use of additional information (e.g., baseflow, recession flow,

and glacier mass balance) can effectively help reduce param-

eter uncertainty.

However, glacier mass data and baseflow data are usually

not available in some mountain basins. In these cases, hydro-

graph partitioning is another possible way to exploit informa-

tion from available data. Information about dominant hydro-

logical processes contained in a hydrograph can be extracted

by hydrograph partitioning or separation: this has long been

a topic of interest in hydrology. Several different kinds of

methods have been proposed (Pinder and Jones, 1969; Mc-

Cuen, 1989; Nathan and McMahon, 1990; Arnold et al.,

1995; Arnold and Allen, 1999; Vivoni et al., 2007), which

can generally be classified into graphical methods, analyti-

cal methods, empirical methods, geochemical methods, and

automated program techniques (Nejadhashemi et al., 2009).

Most of them primarily focus on the partitioning of baseflow

and are not capable of identifying more than two compo-

nents. With the advent of isotope methods, multi-component

hydrograph separation models have been developed. How-

ever, these models need to run for an extended period of time

(usually a minimum of one hydrologic year) for the assump-

tion that the isotopes of components are conserved to hold

(Hooper and Shoemaker, 1986) and call for volumes of field

data that are seldom available in poorly gauged and difficult

to access mountain basins.

1.2 Objectives and scope

This paper explores the benefits of partitioning the hydro-

graph into several parts, each related to one combination of

dominant water sources for runoff generation. The parame-

ter group controlling each type of runoff generation is then

calibrated using the corresponding partitioning hydrographic

curves via a stepwise approach, and model deficiencies are

diagnosed by evaluating the model simulations associated

with each partitioning curve (as a diagnostic signature). We

demonstrate the potential of this approach in a mountain area

where streamflow is the result of complex runoff genera-

tion processes arising from combinations of storm events and

snow/glacier melt. The influence of each type of water source

(groundwater, snow meltwater, glacier meltwater, or rainwa-

ter) varies in time and can be determined by an analysis of

the dynamic spatiotemporal information in the available data

series.

The paper is organized as follows. Section 2 contains a de-

scription of the geographic and hydrological characteristics

of the study basin, including the main data sources and data

preprocessing. Section 3 details the proposed method of hy-

drograph partitioning and parameter calibration based on a

semi-distributed model coupled with the temperature-index

method. Section 4 presents the results and discusses the pos-

sible sources of uncertainty. Section 5 provides a summary

of this study and discusses further applications of the parti-

tioning strategy.

2 Study area and data

2.1 Overview of the study area

The study mountain area (Tailan River basin, TRB) is on the

south slope of the Tianshan Mountains (one of the highest

mountain areas in China) in the Xinjiang Uygur autonomous

region of China and extends from 41◦35′ to 42◦05′ N and

80◦04′ to 80◦35′ E, covering a drainage area of 1324 km2.

Elevation ranges from 1600 m to 7100 m a.s.l. with an av-

erage height of 4100 m a.s.l. Precipitation occurs mainly in

summer and rarely in winter, and winter precipitation always

comes in the form of snowfall. Snow coverage accumulates

in winter and ablates from spring into late summer when it

melts away completely; the snow coverage dynamics can be

obtained from MODIS data (see Fig. 4). The basin is highly

glacierized with approximately 33 % of the basin area cov-

ered by glacier ice (see Fig. 1). The glacier coverage stretches

from approximately 3000 to 7100 m a.s.l. and exists mainly

at an altitude range of 4000 to 5000 m a.s.l. Glacier melt and
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Figure 1. Location of the Tailan River basin in the Xinjiang Uygur autonomous region, China. Two automatic weather stations (TG is

the Tagelake automatic weather station (AWS) at 2381 m a.s.l. and XT is the Xiaotailan AWS at 2116 m a.s.l.) were set up in an upstream

mountain area in July 2011. Additionally, the BT is the Bingtan AWS (3950 m a.s.l.) located in the adjacent Kumalak River basin was used

to validate the estimated temperature lapse rates. The Tailan hydrologic station (THS) has gauged streamflow data at the catchment outlet

since 1957 (a). Glacier occupies approximately 33 % of the total basin area (b).

snowmelt form runoff as long as the temperature rises above

a certain threshold and provide the primary source of down-

stream discharge.

TRB is a heavily studied mountain watershed in north-

western China. The relevant literature (Kang et al., 1980;

Shen et al., 2003; Xie et al., 2004; Gao et al., 2011; Sun et al.,

2012) are reviewed below, and the main conclusions about

the hydrometeorological characteristics are summarized as

follows:

1. The climate presents strong altitudinal variability. The

mean annual precipitation in higher mountain areas is

approximately 1200 mm (Kang et al., 1980), while it is

approximately only 180 mm in the outlet plain area (Xie

et al., 2004). The mean annual temperature ranges from

below 0 ◦C in mountain areas to approximately 9 ◦C at

the basin outlet (Sun et al., 2012).

2. Meltwater is the principal source of streamflow. Snow

and glacier meltwater account for approximately 63 %

of the annual runoff (Kang et al., 1980). The contribu-

tion of rainwater is relatively lower and occurs mainly

in the storm rain period (SRP) (May to September) (Xie

et al., 2004). Groundwater baseflow is smaller but dom-

inates the streamflow in the winter (January, February

and December), during which either rainfall or melt

rarely occur (Kang et al., 1980).

3. The TRB river network is a simple fan system. Given

large topographic drop and moderate drainage area, the

runoff concentration time is no longer than 1 day (Xie

et al., 2004). Melting and falling water can quickly flow

into the main channel and reach the basin outlet.

2.2 Data & preprocessing

The Tailan hydrologic station (THS; 1602 m a.s.l.) is located

in the outlet of the watershed, where runoff, precipitation,

and temperature have been measured since 1957. To col-

lect temperature and precipitation data at a higher elevation,

two automatic weather stations (AWS; product type TRM-

ZS2) were set up in June 2011 (i.e.,the Xiaotailan AWS (XT

AWS), at 2116 m a.s.l., and the Tagelake AWS (TG AWS), at

2381 m a.s.l.). This relatively short record (from 1 July 2011

to 31 December 2012) was used to estimate the lapse rate

of precipitation and temperature (see below). The Bingtan

automatic weather station (BT AWS; 3950 m a.s.l.) located

in an adjacent catchment (Kumalak basin) was used to val-

idate the estimated temperature lapse rates. A DEM with

a spatial resolution of 30 m was provided by the Interna-

tional Scientific & Technical Data Mirror Site, Computer

Network Information Center of the Chinese Academy of Sci-

ences (http://www.gscloud.cn). Remotely sensed snow cover

area (SCA) data were downloaded from the MODIS website:

the MOD10A2 and MYD10A2 products were used, both of

which have a spatial resolution of 500 m and a temporal res-

olution of 8 days. Daily snow cover data were obtained by

linear interpolation of the 8-day data. The China glacier in-

ventory (CGI) (Shi, 2008) was used to derive glacier cover-

age in the TRB. In our experience, most of the snow melts

away after the warm summer period and the lowest snow/ice

coverage in the year should, therefore, be roughly equal to

the glacier coverage. Based on an analysis of filtered MODIS

SCA (see Sect. 2.2.3), the lowest values of snow/ice cover-

age in the study period (2003–2012) are almost the same,

Hydrol. Earth Syst. Sci., 19, 1807–1826, 2015 www.hydrol-earth-syst-sci.net/19/1807/2015/
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Figure 2. Evaluation of the estimated temperature lapse rate at the

BT station. The black solid line is the observed temperature series

at BT (Obs.tem); the red solid line is the estimated temperature by

monthly lapse rate (Mrate.tem). The red dotted line indicates the es-

timated temperature based on annual constant rate (Yrate.tem). The

goodness of fit between the observed and estimated temperature is

measured by RMSEM for monthly lapse rate and RMSEY for an-

nual constant rate, respectively. The temperature series in Septem-

ber and October are absent at BT.

which indicates that TRB glacier coverage is relatively sta-

ble during the study period. The DEM, river system, gauging

stations and glacier distribution are shown in Fig. 1.

2.2.1 Temperature lapse rate

Altitudinal distribution of temperature can be estimated

through the lapse rate (Rango and Martinec, 1979; Tabony,

1985). According to Aizen et al. (2000), rates of tempera-

ture decrease with increasing elevation are quite different in

various months, and ignoring this difference may lead to sig-

nificant errors in the simulation of snow accumulation and

melt. The lapse rate was therefore estimated for each month.

Temperature variations with altitude can be estimated by the

following equation

T = To+ Tp · (H −h), (1)

where To is the temperature value at low altitude (THS in

this study), Tp is the temperature lapse rate (usually nega-

Table 1. Estimated monthly temperature lapse rate in the TRB.

Temperature lapse

Month rate (◦C day−1/100 m)

January −0.38

February -0.38

March −0.66

April −0.76

May −0.80

June −0.78

July −0.82

August −0.86

September −0.66

October −0.60

November −0.54

December −0.30

Annual −0.62

tive), and H and h are the elevation values at high and low

positions, i.e., the mean elevation of two AWS and the el-

evation of THS, respectively. The values of Tp in different

months are obtained by minimizing the error function:

min : z=
∑

(Ti − (Toi + Tp · (H −h)))
2, (2)

where i indicates the ith day in the analyzed month, Ti is the

observed temperature in AWS, which is the mean value of

the TG AWS and XT AWS in this study.

The temperature series data from 1 July 2011 to 31 De-

cember 2012 at THS, TG AWS, and XT AWS were used

to estimate the temperature lapse rate. The results (Table 1)

indicate significant month-to-month variation ranging from

−0.30 ◦C 100 m−1 in December to−0.86 ◦C 100 m−1 in Au-

gust. To validate the temperature lapse rates, the estimated

and observed temperature data at BT AWS were compared

(Fig. 2). We also compared the estimated temperature by

an annual constant lapse rate (−0.62 ◦C 100 m−1, a similar

value to previous studies, e.g., Tabony, 1985; Tahir et al.,

2011). This constant value is optimized by the same method

in Eq. (2) but using all daily temperature measurements. Fig-

ure 2 indicates that the monthly lapse rate method performs

better than the annual constant rate method at the BT station

for all months throughout the year. Further, the temperature

curves estimated by monthly lapse rates for April to August

match the observed ones rather well. Note that the estimated

temperatures tend to underestimate observed ones for the rest

of the months, which, however, will not affect the melt runoff

significantly due to the general freezing condition during this

period.

2.2.2 Precipitation lapse rate

Based on the precipitation series measured at THS, the

monthly precipitation to annual precipitation ratio (Fig. 3)

for the study period (2003–2012) indicates that precipitation

www.hydrol-earth-syst-sci.net/19/1807/2015/ Hydrol. Earth Syst. Sci., 19, 1807–1826, 2015
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Figure 3. Proportion of monthly precipitation to annual amount

(2003–2012). The red line in each box represents the median value

for each month from 2003 to 2012. Red crosses indicate abnormal

values that exceed 1.5 times the inter-quartile range.

Table 2. Estimated weekly precipitation lapse rate in storm rain

months.

Precipitation lapse

Month rate (mm week−1/100 m)

May 1.63

June 1.69

July 3.14

August 2.40

September 2.28

occurs mainly in May to September. The lapse rate of precip-

itation was also estimated monthly, and a similar procedure

as temperature was applied. The difference is that the precip-

itation analysis was conducted at a weekly rather than daily

time step, and the maximum measured precipitation of the

two installed AWS was used instead of the mean value. The

analyzed period is limited to the SRP (May to September).

Other months are not included due to the relatively small

amount of precipitation. The weekly precipitation lapse rates

are listed in Table 2. Daily precipitation differences between

higher and lower altitudes can be estimated as the weekly

precipitation lapse multiplied by the ratio of daily precipita-

tion to the corresponding weekly amount in THS. The pre-

cipitation lapse rate was not validated against BT AWS be-

cause of significant differences in precipitation distribution

between the two basins (i.e., Tailan and Kumalak).

2.2.3 Filtering of MODIS snow cover area data

Snow cover extent was obtained from MODIS products. The

MOD10A2 and MYD10A2 products were downloaded from

http://reverb.echo.nasa.gov. In total, we obtained 460 8-day

images (two tiles, h23v04 and h24v04) from 2003 to 2012 for

Figure 4. Filtered MODIS 8-day snow-cover products (2004–

2005). The term mod is the snow cover area from MOD10A2 prod-

ucts, myd is MYD10A2 products, combined is the combined re-

sult from step1, spatial-comb from step2 and temporal-comb from

step3. See Sect. 2.2.3 for details.

each product. Given that the accuracy of the MODIS SCA

product is affected by cloud coverage to a significant de-

gree, the remotely sensed images should be filtered to avoid

the noise from clouds before using it for hydrological mod-

eling (Ackerman et al., 1998). The following three succes-

sive steps are adopted to filter the products based on previ-

ous reports (Gafurov and Bardossy, 2009; Wang et al., 2009;

Lopez-Burgos et al., 2013):

1. Satellite combination: the snow cover products of two

satellites, Terra (MOD10A2) and Aqua (MYD10A2),

were combined. As long as the value of a pixel is

marked as snow in either satellite, the pixel value is

marked as snow.

2. Spatial combination: inspecting the values of the nearest

four pixels around one center pixel marked as cloud, if

at least three of the four surrounding pixels are marked

as snow, the center pixel is modified as snow.

3. Temporal combination: if one pixel is marked as cloud,

its values in the previous and following observations

are investigated. If both of the two observed values are

snow, then the present value of the same pixel is snow.

As an example, the filtered results from 2004 to 2005 shown

in Fig. 4 demonstrate a significant reduction in fluctuation of

the SCA products. We find that the lowest values of snow/ice

coverage in all years (2003–2012) are relatively stable (from

2003 to 2012 are 35, 34, 39, 36, 37, 34, 41, 35, 38, 39 %,

showing no obvious trend), which is close to the glacier cov-

erage area (33 %) derived from the CGI data mentioned in

Sect. 2.2. As mentioned before, MODIS snow/ice covered

area in late summer is mainly composed of glacier coverage
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Figure 5. Altitudinal Cumulative Melt Curve: (a) cumulative

monthly snowmelt area distribution by elevation (2003–2012); (b)

cumulative monthly glacier melt area distribution by elevation

(2003–2012). The snowmelt areas in December and January and the

glacier melt areas in November, December, January, and February

are zero and are not shown in this figure.

when the snow has been melt away completely. The filtered

results indicate a relatively stable coverage of glacier in TRB.

2.2.4 Altitudinal cumulative melt curve

The daily temperature of each cell in MODIS SCA images

can be estimated by a temperature lapse rate based on its el-

evation and daily temperature measured at THS. As long as

the temperature exceeds a specific threshold value for melt

(assumed to be 0 ◦C in this study), a given cell was labeled

as an active cell in terms of melt. The land cover type for each

cell was classified into glacier, snow, and other land cover ac-

cording to the CGI and MODIS SCA product. To obtain the

area covered by snow only, we subtracted the glacier area in

CGI from the SCA (a similar procedure can be found in Luo

et al., 2013). When a glacier or snow cover cell is active, it

is labeled as a melt cell, and the melt area is computed as the

number of active cells multiplied by the area of a cell.

Organizing the melt area by elevation from low to high

and summing the melt area at each elevation, we can get

the altitudinal cumulative melt curve, which can be used to

describe the spatiotemporal distribution of melt area. The

altitudinal cumulative melt curves calculated from 2003 to

2012 for all months (Fig. 5) show that melt mainly occurs

from May to September, which coincides with the precipita-

tion period. Snowmelt starts at an elevation of approximately

1650 m a.s.l., while glacier melt starts at an elevation of ap-

proximately 2950 m a.s.l., which has an important implica-

tion for hydrograph partitioning.

3 Methodology

Theoretically, every drop of water in the streamflow comes

ultimately from precipitation. Practically, we can consider

water sources for runoff generation in mountain areas as

mainly consisting of meltwater from snow and glacier, rain-

water, and groundwater. Groundwater at the basin scale is

recharged by direct infiltration and run-on infiltration of

meltwater or rainwater, and it is mainly discharged as base-

flow via a subsurface flow path (especially in mountain ar-

eas where the large elevation gradient favors baseflow dis-

charge). For the purpose of hydrograph partitioning, we can

consider recharge to be a separate water source for stream-

flow, independent of meltwater and rainwater, which princi-

pally forms the baseflow part of a hydrograph. The remain-

ing part of a hydrograph is principally formed by meltwater

and rainwater via surface flow path (Blöschl et al., 2013).

We develop three indices to indicate the water sources for

runoff generation at the daily timescale. The hydrograph is

further partitioned into several sub-parts based on the in-

dices’ values. Each sub-part is dominated by one or more

water sources for runoff generation. With the partitioning

hydrographic curves, the parameters of hydrological mod-

els are correspondingly grouped by runoff sources and cal-

ibrated in a stepwise fashion. We use the Tsinghua Repre-

sentative Elementary Watershed (THREW) model coupled

with a temperature-index module as an exploratory tool. To

better demonstrate usefulness of the proposed methods, only

the runoff generation related parameters, which are also sig-

nificantly sensitive parameters (see Sect. 4.6), are calibrated.

Other insensitive parameters are fixed at their initial values,

specified a priori from the literature or by expert knowledge.

3.1 An index-based method for hydrograph

partitioning

In mountain areas, the relative contribution of different

runoff water sources to the total streamflow varies through-

out the year (Martinec et al., 1982; Dunn and Colohan, 1999;

Yang et al., 2007). For rainwater sources, Fig. 3 shows that

precipitation in TRB presents strong seasonality and is pri-

marily concentrated (more than 76 %) in the SRP from May

to September. During the relatively dry period from October

to April, mean precipitation gauged at the THS is just 43 mm,

while precipitation in higher mountainous regions is mainly

snowfall. Therefore, surface runoff induced by rainwater can

rarely occur during relative dry period. It is reasonable to as-

sume that the rainwater source can only contribute to the sur-

face runoff part of a hydrograph on the same day during the

SRP (May to September) except for the baseflow occurring

much later.

For the meltwater sources, the altitudinal cumulative melt

curves (Fig. 5) show that the areas experiencing glacier melt

and snowmelt change significantly with elevation. Melting

of glacier and snow begins at different elevations in different
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months, i.e., glacier melt can only occur in the areas higher

than 2950 m (the lower elevation limit of glacier coverage),

while snowmelt can occur in areas higher than 1650 m. It

can be deduced that snowmelt generally occurs at lower el-

evations than glacier melt. Remember that temperature de-

creases with increase in altitude. There should exist a period

of time during which temperature at 1650 m is higher than

the snowmelt threshold, while temperature above 2950 m is

lower than the glacier threshold and thus snowmelt occurs

but glacier melt does not.

The groundwater source should be a dominant source for

the baseflow part of a hydrograph and, of course, it domi-

nates the recession limb of a hydrograph (part of a baseflow

partition) when no rainfall or melting occurs.

Based on the above physical understanding, we can parti-

tion the hydrograph using the following three indices:

1. Date index (Di): Di is used to distinguish the dates on

which rainfall and thus possible rainwater direct runoff

processes occur. For simplicity, in this study we use Di
to distinguish the dry period and the SRP and assume

no rainfall runoff in the dry period, i.e.,

Di =


1, for days in SRP

from May to September

0, for days in the relative dry period

from October to April.

(3)

2. Snowmelt index (Si): Si indicates whether snowmelt

possibly occurs on a given day:

Si =


1, for days when temperature at

altitude 1650 m is higher than 0 ◦C

0, for other days.

(4)

3. Glacier melt index (Gi): Gi is used to identify days

when glacier melt possibly occurs:

Gi =


1, for days when temperature at

altitude 2950 m is higher than 0 ◦C

0, for other days.

(5)

The hydrograph is then partitioned according to the

three indices by using the following rules:

Q=


QSB for Si = 0,Gi = 0, and Di = 0
QSB+QSM for Si = 1,Gi = 0, and Di = 0
QSB+QSM+QGM for Si = 1,Gi = 1,

and Di = 0
QSB+QSM+QGM+QR for Di = 1,

(6)

where Q is the overall streamflow series, QSB stands for the

baseflow generated by groundwater source, QSM for snow

meltwater runoff,QGM for glacier meltwater runoff, andQR

for rainwater direct runoff. The partitioning principles are de-

scribed as follows:

1. Groundwater is the dominant component (Q=QSB)

when both meltwater and rainwater direct runoff do

not occur. This condition requires Si = 0, Gi = 0, and

Di = 0.

2. Snow meltwater and groundwater are the dominant

components (Q=QSB+QSM)when the temperature is

higher than 0 ◦C at 1650 m a.s.l. and lower than 0 ◦C at

2950 m a.s.l. (requires Si = 1, Gi = 0, and Di = 0).

3. Snow meltwater and glacier meltwater coupled with

groundwater dominate (Q=QSB+QSM+QGM) on

days when the temperature at 2950 m a.s.l. exceeds 0 ◦C

in October to April. This means Gi = 1, Di = 0, and

Si = 1, noting that Si must be equal to 1 when Gi = 1

for the decreasing nature of temperature along altitude.

4. Finally, all sources are mixed (Q=QSB+QSM+

QGM+QR) for other days in the SRP (May to Septem-

ber, Di = 1). Each category contains days that could be

continuous or discontinuous in time and could lie within

different weeks due to temporal variability of precipita-

tion and temperature.

3.2 Tsinghua representative elementary watershed

hydrological model

The THREW model used for the hydrological simulation in

this study, has been successfully applied in many watersheds

in both China and the United States (see Tian et al., 2008,

2012; Li et al., 2012; Liu et al., 2012), including application

to a high mountainous catchment of Urumqi River basin by

Mou et al. (2008). The THREW model adopts the Represen-

tative Elementary Watershed (REW) approach to conceptu-

alize a watershed, where REW is the sub-catchment unit for

hydrological modeling. The study basin was divided into sev-

eral units (REW) based on a DEM. Sub-catchment units were

further divided into a surface and subsurface layer, each layer

containing several sub-zones. The subsurface layer is com-

posed of two zones: saturated zone and unsaturated zone,

and the surface layer consists of six zones: vegetated zone,

bare soil zone, snow covered zone, glacier covered zone, sub-

stream-network zone, and main channel reach; see Tian et

al. (2006) for further details.

The main runoff generation processes simulated by the

THREW model include rainfall surface runoff, groundwater

baseflow, snowmelt, and glacier melt. Rainfall surface runoff

is simulated by a Xinanjiang module, which adopts a water

storage capacity curve to describe non-uniform distribution

of water storage capacity of a sub-catchment (Zhao, 1992).

The storage capacity curve is determined by two parame-

ters (spatial averaged storage capacity WM and shape coef-

ficient B). Rainfall surface runoff forms on areas where stor-

age is replete. Replete areas are calculated by the antecedent

storage and current rainfall. The saturation excess runoff is

computed based on water balance. The remainder of rainfall
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can infiltrate into soil and become additional contributions to

groundwater. Groundwater forms baseflow that is separately

calculated by two coefficients: KA and KD. KA and KD are

outflow coefficients of groundwater storage. Their sum deter-

mines the flow rate of groundwater baseflow and their ratio

(KD/KA) dominate the proportion of free groundwater stor-

age. Infiltration and storage should have effects on the cal-

ibration of the two parameters. The Xinanjiang module has

been successfully applied to the Qiedeke, Kaidu, Manasi, and

Kahai basins in the Tianshan Mountains by different authors

(Jiang, 1987; Yang et al., 1987; Mu and Jiang, 2009), which

indicates its applicability in our study area.

For the simulation of melt processes in this study,

the THREW model was modified to couple with the

temperature-index method, given the easy accessibility of

air temperature data and generally good model performance

of the temperature-index model (Hock, 2003; Singh et al.,

2000). Snowmelt and glacier melt are simulated using sepa-

rate degree-day factors (snowmelt degree-day factor Ds and

glacier melt degree-day factor Dg). Glacier melt only oc-

curs in glacier areas according to CGI, which remains sta-

ble during the study period (2003–2012; see discussion in

Sect. 2.2.3). Precipitation in the snow and glacier zone is di-

vided into rainfall and snowfall according to two threshold

temperature values (0 and 2.5 ◦C are adopted in this study ac-

cording to Wu and Li, 2007), i.e., when temperature is higher

than 2.5 ◦C, all precipitation is rainfall, when temperature is

lower than 0 ◦C, all precipitation is snowfall, and when tem-

perature falls between the two thresholds, precipitation is di-

vided into half rainfall and half snowfall (a simple division

scheme adopted here). Rainfall on glacier areas forms runoff

and flows into the stream network directly without infiltration

into soil. The snow water equivalent (SWE) on glacier areas

is updated by combining snowfall and snowmelt, and for sim-

plicity, snow is assumed to cover all glacier areas when the

corresponding SWE is not zero. Snowmelt in glacier areas

is simulated using snow degree-day factor Ds until it melts

away completely. The snow cover area in a non-glacier area

is updated using MODIS data. To be noted, snowfall in each

sub-catchment is calculated according to the daily precipita-

tion and temperature, and snowmelt is simulated using the

degree-day method. However, the SWE in the snow cover

zone (non-glacier area) is not computed. The existing snow

cover in each sub-catchment is only determined by MODIS

snow image. When the MODIS image indicates the existence

of snow cover and at the same time the daily temperature

is higher than 0 ◦C, then snowmelt will occur; otherwise,

snowmelt will not occur. The identification of snow cover

by the MODIS image is in accordance with the fact that the

partitioning of a snowmelt dominant hydrograph is based on

MODIS snow products. If the existence of snow cover is de-

termined by the SWE, the temperature parameters to calcu-

late snowfall can have significant effects on the estimation of

the degree-day factor for snowmelt. To partly reduce this ef-

fect, we calibrate the degree-day factor for snowmelt on the

basis of MODIS snow cover products. Although in this way,

the water balance of snow cover is not taken into account

in the snow cover zone: it should not impact the calibration

of the degree-day factor for snowmelt. Since MODIS SCA

products (i.e., MYD10A2) have been available since 2003,

the model simulation period is from 2003 to 2012, of which

2003–2007 is for calibration and 2008–2012 is for evalua-

tion. The time step for simulation is daily.

3.3 Stepwise calibration of grouped parameters on

partitioning curves

Model parameters are grouped a priori according to their

connection with causal physical mechanisms (see Table 3).

According to Xie et al. (2004) and Kang et al. (1980), param-

eters that control groundwater baseflow, snowmelt, glacier

melt, and rainwater surface runoff should be the most sensi-

tive parameters for the runoff simulation (also see our sensi-

tivity analysis in Sect. 4.6). These parameters are subjected to

calibration in this study. They are related to the correspond-

ing hydrograph parts and then calibrated in a stepwise man-

ner. First, groundwater baseflow parameters (KA and KD)

are estimated based on the QSB part of the hydrograph. Sec-

ond, the snowmelt degree-day factor (Ds) is calibrated on the

QSB+QSM part. Third, glacier melt degree-day factor (Dg)

is determined according to the QSB+QSM+QGM part. Fi-

nally, rainfall surface runoff parameters (B, WM) are cali-

brated on days when Di equals to 1, i.e., the QSB+QSM+

QGM+QR part of hydrograph.

In each step, only the specific parameter group is sub-

jected to calibration. The parameters determined in the pre-

vious steps are kept constant, and all other parameters that

will be calibrated in the next steps adopt their initial val-

ues. As the simulation in each step can, to some degree, be

affected by the initial conditions produced in the preceding

step, an iterative procedure is implemented to progressively

minimize this influence. The parameter groups are first cal-

ibrated based on the corresponding hydrograph parts, and

then the stepwise sequence is repeated until the calibrated

parameters converge, i.e., the difference in parameter val-

ues between two contiguous iterations is less than 10 %. In

each calibration step, we use RMSEln (Eq. 7, emphasizing

low flow) or RMSE (Eq. 8, emphasizing high flow) as an

objective function for parameter optimization. The remain-

ing, insensitive, parameters are determined a priori accord-

ing to previous modeling experience (mainly from Sun et al.,

2012) and listed in Table 3. The initial values of the cali-

brated parameters are also determined a priori according to

Sun et al. (2012) and Tian et al. (2012).

The overall streamflow can be simulated with all calibrated

parameters, which is evaluated with the NSE and NSEln

(logarithm Nash criterion) values. Given that it is relatively

easier to obtain high-evaluation merit values in snowmelt-

driven basins due to strong seasonality of streamflow, we

further adopt a simple benchmark model (the inter-annual
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Table 3. Grouped parameters in the THREW model. Parameters subjected to calibration are highlighted in bold.

Category Symbol Unit Description Value

Subsurface Ku
s m s−1 Saturated hydraulic conductivity for u-zone 1.25× 10−5

Ks
s m s−1 Saturated hydraulic conductivity for s-zone 1.25× 10−5

KA – Coefficient used to calculate subsurface flow Calibrated

KD – Coefficient used to calculate subsurface flow Calibrated

Routing nt – Manning roughness coefficient for hillslope, ob-

tained from the literature according to land use and

vegetation type

1.50× 10−1

nr – Similar to nt, roughness coefficient for channel 3.00× 10−1

Infiltration αEFL – Spatial heterogeneous coefficient for exfiltration

capacity

1.00× 100

αIFL – Spatial heterogeneous coefficient for infiltration

capacity

1.50× 100

Interception Fmaxb m Ground surface depression storage capacity 0.00× 100

αvb m Maximum rainfall depth a single leaf can intercept

and hold

1.00× 10−5

Rainfall runoff B – Shape coefficient to calculate the saturation ex-

cess runoff area from the Xinanjiang model

Calibrated

WM cm Spatial averaged tension water storage capacity

in the Xinanjiang model

Calibrated

Melt Dg mm ◦C−1 day−1 Glacier melt degree-day factor Calibrated

Ds mm ◦C−1 day−1 Snowmelt degree-day factor Calibrated

mean value for every calendar day) to evaluate the perfor-

mance of the proposed method by subtracting streamflow

seasonality. This benchmark model is proposed by Schae-

fli and Gupta (2007) for basins having a relatively constant

seasonality. The improvement of a model compared to the

benchmark model is quantified by the BE index; see Eq. (9)

for detail.

RMSEln=

√√√√1

n

n∑
i=1

(logQobs(i)− logQsim(i))2 (7)

RMSE=

√√√√1

n

n∑
i=1

(Qobs(i)−Qsim(i))2 (8)

BE= 1−

n∑
i=1

(Qobs(i)−Qsim(i))
2

n∑
i=1

(Qobs(i)−Qben(i))2
(9)

4 Results and discussion

4.1 Partitioning hydrographic curves

The hydrograph from 2003 to 2012 was partitioned based

on Eq. (6). In total, we obtained four kinds of partitioning

Figure 6. Hydrograph partition in 2003. QSB stands for subsur-

face baseflow generated by groundwater, QSM and QGM for snow

meltwater and glacier meltwater, respectively, andQR for rainwater

direct runoff.

curves, i.e., the QSB part, the QSB+QSM part, the QSB+

QSM+QGM part and theQSB+QSM+QGM+QR part. As an

example, the partitioning curves in 2003 are shown in Fig. 6,

in which the melting period ranges from late February to late

November (labeled as red and green dots). Snowmelt (red

dots) starts in February and ends in November, while glacier

melt (green dots) starts later (March) and stops earlier (Octo-

ber). This melt situation agrees well with the previous studies
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Table 4. Calibrated parameters by the stepwise and automatic meth-

ods.

Stepwise Automatic

Parameter Calibrated Calibrated

KA 1.1 5.6

KD 0.002 99.1

Ds (mm ◦C−1 day−1) 2.5 2.03

Dg (mm ◦C−1 day−1) 7.2 7.52

WM (cm) 10.5 11.9

B 0.80 0.62

of Kang et al. (1980) and Sun et al. (2012). Hydrograph parts

dominated by groundwater sources mainly fall into Decem-

ber, January, and February and are denoted by black dots.

The rainwater surface runoff occurs in the SRP only (May to

September, denoted by blue dots). The total number of days

of the QSB+QSM part in the period from 2003 to 2007 is

365, and that of theQSB+QSM+QGM part is 249, while the

QSB+QSM+QGM+QR part occupies 765 days. The num-

bers of non-melt days (i.e., theQSB part, due to glacier melt,

generally occurs in theQSB+QSM+QGM+QR part) in each

year of this 5 year period is 114, 80, 89, 96, and 68; corre-

spondingly, the mean temperatures in those years gauged at

the THS are 8.9, 10.1, 9.9, 10.4, and 11.3 ◦C. A lower mean

annual temperature causes a longer non-melt period in that

year and vice versa. Note that the partitioning curves can be

discontinuous in time due to the spatiotemporal variability of

temperature.

4.2 Model calibration by the stepwise method

The six key parameters (KA, KD, Ds, Dg, WM, and B) were

initially calibrated by the proposed stepwise and iterative

method. To focus on baseflow generated by the groundwa-

ter source during the QSB period, the RMSEln metric that

emphasizes low flow is chosen as the evaluation criterion for

the calibration of parameters KA and KD. Conversely, high

flow is our focus for the remaining periods (QSB+QSM,

QSB+QSM+QGM,QSB+QSM+QGM+QR) and the RMSE

metric is chosen as the evaluation criterion for calibration

of parameters Ds, Dg, and WM and B. To deal with inter-

action between steps, an iterative calibration approach was

adopted. A total of five iterations were implemented until the

parameter estimates became stable; the simulation of each

kind of partitioning curve in each step of the last iteration is

presented in Fig. 7. The calibrated parameters are shown in

Table 4 and the evaluation merits are listed in Table 5.

Figure 7a shows that the magnitude of baseflow in theQSB

part was captured well at most of the times. The RMSEln

merit is 0.302 m3 s−1, and the parameters KA and KD are

1.1 and 0.002, respectively. Streamflow in the QSB+QSM

part is dominated by both snow meltwater and groundwa-

ter. Figure 7b shows that melt peak flow events have also

been captured well by a calibratedDs as 2.5 mm ◦−1C day−1

after the determination of KA and KD in the first step. For

theQSB+QSM+QGM part, glacier meltwater began to con-

trol the streamflow in combination with snow meltwater and

groundwater. Snowmelt and baseflow were determined a pri-

ori by previously calibrated parameters. The remaining resid-

ual between the simulated and observed discharge can be

attributed to glacier melt alone, which was thus used for

the calibration of glacier melt factor Dg. The RMSE value

for this hydrograph partition was optimized as 4.784 m3 s−1

and we obtained a sound simulation by a calibrated Dg as

7.2 mm ◦C−1 day−1as shown in Fig. 7c. During the SRPs

(QSB+QSM+QGM+QR part), rainwater direct runoff is

an additional important component of river runoff. Similarly,

parametersWM andB can be calibrated separately after a pri-

ori determination of melt runoff and groundwater baseflow.

The simulated RMSE value in this period is 12.650 m3 s−1,

with calibrated WM = 10.50 cm and B = 0.80. The overall

daily streamflow simulation is obtained by combining the

four partitions together (see Fig. 8a). The corresponding NSE

index is 0.881 and NSEln is 0.929. Generally, the results sug-

gest a sound simulation compared to the observation.

To be noted, the calibrated values of melt degree-day fac-

tors Ds (2.5 mm ◦C−1 day−1) and Dg (7.2 mm ◦C−1 day−1)

are similar to the values obtained in other studies in the Tain-

shan area, e.g., Ds is calibrated as 2.5 mm ◦C−1 day−1 by

Liu et al. (2012), and Ds and Dg are estimated as 3.1 and

7.3 mm ◦C−1 day−1, respectively, based on observed mass

balance data by Liu et al. (1999), which indicates the robust-

ness of our calibration method.

4.3 Comparison to automatic calibration method

For comparison, we also carry out an automatic calibra-

tion with the help of the ε-NSGAII algorithm, an optimiza-

tion method developed by Deb et al. (2002) and Kollat and

Reed (2006). The six parameters were calibrated together

and evaluated by the NSE value of the overall hydrograph.

The run time of the automatic algorithm is about 5 weeks

(840 h on a desktop equipped with an Intel Core i7 CPU with

2.8 GHz). The NSE value for the final optimized parameters

is 0.868, and the NSEln value is 0.846 (Fig. 8b), both of

which are lower than the values obtained by the proposed

stepwise method. The parameters calibrated by ε-NSGAII

are listed in Table 4, and are different from those calibrated

by the stepwise method. Specifically, the snowmelt degree-

day factor (Ds) and groundwater baseflow parameters (KA

and KD) obtained by ε-NSGAII are 2.03 mm ◦C−1 day−1

and 5.6 and 99.1, respectively. The evaluation merits of

RMSE and RMSEln for each partitioning curve are also

shown in Table 5. In general, the simulation by the automatic

algorithm is not as good as that by the stepwise method, es-

pecially for the low and middle flow partitions (QSB+QSM

andQSB+QSM+QGM). This may be due to the tendency of

NSE-based automatic calibration to emphasize high flows.
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Figure 7. Stepwise calibration of grouped parameters on partitioning curves. (a) Partitioning curves after calibratingKA andKD onQSB. (b)

Partitioning curves after calibratingDs onQSB+QSM. (c) Partitioning curves after calibratingDg onQSB+QSM+QGM. (d) Partitioning

curves after calibratingWM and B onQSB+QSM+QGM+QR. The goodness of fit between observed and simulated discharge is measured

by RMSEln (for the QSB part) or RMSE (for other parts).

Figure 8. Simulation of daily streamflow by different methods from 2003 to 2007. (a) by the proposed stepwise method, (b) by the automatic

calibration method, and (c) by the benchmark model. The performance of the simulations is measured in NSE, NSEln, and RMSE.
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Table 5. Evaluation merits for the stepwise and automatic calibration methods.

Calibration period Evaluation period

Automatic Stepwise Benchmark Stepwise Benchmark

Merits method method model method model

RMSEln (QSB, m3 s−1) 0.352 0.302 – 0.213 –

RMSE (QSB+QSM, m3 s−1) 2.807 1.811 – 1.762 –

RMSE (QSB+QSM+QGM, m3 s−1) 6.079 4.784 – 4.558 –

RMSE (QSB+QSM+QGM+QR, m3 s−1) 13.245 12.650 – 16.727 –

NSE 0.867 0.881 0.815 0.752 0.577

NSEln 0.841 0.929 0.923 0.894 0.844

RMSE (m3 s−1) 8.990 8.459 10.534 11.021 14.381

BE 0.271 0.355 – 0.413 –

To make a further evaluation, a benchmark model sug-

gested by Schaefli and Gupta (2007) is used for the com-

parison, which simply simulates daily runoff as the inter-

annual daily mean value. Simulation results by the bench-

mark model are shown in the Fig. 8c, which shows the NSE

value as 0.815 and NSEln value as 0.923. The high NSE

and NSEln values can be attributed to the strong season-

ality of stream discharge in the study basin (Schaefli and

Gupta, 2007). The BE index (Eq. 9, see Table 5) is used

to measure the improvement of simulations by the calibra-

tion methods compared to the benchmark model. A positive

value for BE means that the evaluated method outperforms

the benchmark model. Figure 8 shows the simulations of

daily streamflow by the three methods (Fig. 8a by stepwise

calibration method, Fig. 8b by automatic calibration method,

and Fig. 8c by benchmark model), which shows better sim-

ulation by the two calibration runs with the THREW model

than the benchmark model (BE values are both positive). The

stepwise calibration run obtained a BE value of 0.355, while

the BE of the automatic calibration run is 0.271. The bench-

mark model describes the mean value of daily discharge on

each calendar day. The higher the BE value is, the better the

seasonal variability of the hydrograph is captured by the eval-

uation method. The higher BE value in the stepwise calibra-

tion method can be attributed to the better simulation of mid-

dle and low flows which are dominated by groundwater and

meltwater (Fig. 8a). However, BE values simulated by two

calibrated parameter sets are both relatively low, which is at-

tributed to the poor mimic of the (rapidly rising and falling)

peaks.

Note that the automatic calibration method based on the

NSE value of the overall hydrograph adopts 1-D measure-

ment information to optimize four parameter groups. Ben-

efitting from the partitioning curves, however, the stepwise

calibration method increases the dimension of hydrological

signature to four. The signature dimension is now equal to

the number of parameter groups, and the grouped parame-

ters can be optimized according to their corresponding runoff

components separately. A sound simulation of the overall

hydrograph is obtained by the reasonable reproduction of

the separate partitioning curves. Therefore, parameters cal-

ibrated by the stepwise method are inclined to have a more

explicit physical basis.

In regards to computation efficiency, the stepwise calibra-

tion required 385 runs of the model to be completed, with

each model run taking about 1.5 min and the total compu-

tation time being about 10 h. In contrast, the state-of-the-art

automatic calibration algorithm required about 5 weeks of

CPU time consumption on a desktop equipped with an Intel

Core i7 CPU and 2.8 GHz. The comparison indicates that the

stepwise calibration method is both more physically based as

well as more computationally efficient.

It is worth noting, the performance of the automatic cali-

bration algorithm can increase if the algorithm keeps on run-

ning, and even be higher than that of the stepwise calibration

method. The comparison here is intending to show that the

stepwise calibration method based on hydrograph partition

can achieve considerable performance more effectively. The

automatic algorithm here treats all the parameters equally

during the calibration period. Each parameter should be op-

timized when searching for the optimal parameter set. This

searching algorithm hampers the efficiency of the calibra-

tion procedure without identifying the dominant sub-periods

for different parameters. In the stepwise calibration method,

only parameters that are responsible for the simulation of cor-

responding hydrograph partition are optimized in each step.

Furthermore, the calibration of the parameter by this method

reflects the role of each parameter for the basin runoff gener-

ation.

4.4 Evaluation for the stepwise calibration method

The parameter set calibrated by the stepwise method is ap-

plied to the evaluation period (2008–2012), and the daily dis-

charge simulation is shown in Fig. 9a. The evaluation mer-

its are listed in Table 5. The NSE, NSEln, and RMSE val-

ues for the whole period indicate sound evaluation results

but generally lower performance compared to calibration pe-
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Figure 9. Evaluation of the stepwise calibration method. (a) discharge simulation in evaluation period 2008–2012 using the stepwise cali-

brated parameters in calibration period 2003–2007. (b) discharge simulation in evaluation period 2008–2012 by the benchmark model. (c)

Cross-validation simulation of daily discharge in 2003–2007. x coordinate presents the simulated daily discharges by parameters calibrated

in the period 2003–2007. y coordinate presents the simulated daily discharges by parameters calibrated in the period 2008–2012. (d) Cross-

validation simulation of daily discharge in 2008–2012. x coordinate presents the simulated daily discharges by parameters calibrated in the

period 2008–2012. y coordinate presents the simulated daily discharges by parameters calibrated in the period 2003–2007.

riod. However, the evaluation results by the stepwise method

are still significantly better than the benchmark model, which

obtained a NSE value as low as 0.577 (Fig. 9b and Table 5).

The BE value in evaluation period by the stepwise calibration

method is 0.413. Furthermore, from the partition perspective,

the RMSEln and RMSE values for four partitions in Table 5

show that the low flow simulations (QSB, QSB+QSM, and

QSB+QSM+QGM parts) are pretty good and even outper-

form the calibration simulations. The high flow simulation

(QSB+QSM+QGM+QR part) is, however, insufficient, with

RMSE 16.727 m3 s−1 (compared to 12.65 m3 s−1 in calibra-

tion period). The lower performance of overall evaluation

should be attributed to the insufficiency in storm rain days,

especially for some extreme storm events in the summer of

2010 (see Fig. 9a). The underestimation of these events is

likely due to inadequate observations of rainfall, which are

principally due to the strong spatial variability of rainfall in

mountainous areas. It is widely acknowledged that the ex-

treme runoff events are difficult to capture in mountain areas,

where gauged stations are scarce, on the daily scale (Aizen

et al., 2000; Jasper et al., 2002). However, the accuracy of

our results is similar to Li and Williams (2008) (used the

SRM model) and Liu et al. (2012) (who used the MIKE-SHE

model) who performed similar work in a basin that is close to

TRB in the Tianshan Mountains. Their Nash values for daily

discharge varied from 0.51 to 0.78, and also failed to simu-

late the peak flows in summer. They also attributed the low

efficiency to the heavy precipitation.

To further evaluate the robustness of the stepwise calibra-

tion method based on partitioning curves, cross-validation

was implemented. The hydrograph in the evaluation pe-

riod was partitioned based on dominant runoff sources, as

was done in the calibration years 2003–2007. We calibrated

the model to 2008–2012 and evaluated it for 2003–2007.

The new calibrated parameter values are KA = 0.9, KD =

0.003,Ds = 2.2 mm ◦C−1 day−1,Dg = 7.4 mm ◦C−1 day−1,

WM = 10.2 cm, and B = 0.77, which are similar to the val-

ues calibrated in 2003–2007 and listed in Table 4. The NSE,

NSEln, and RMSE values for the calibration period 2008–

2012 and the evaluation period 2003–2007 are 0.757, 0.900,

10.892 m3 s−1 and 0.883, 0.910, 8.589 m3 s−1, respectively,

using this new calibrated parameter set. The simulations of

the two periods by cross-validation are presented in Fig. 9c–

d, which show similar performance by two calibrated param-

eter sets and further demonstrates the robustness of the pro-

posed stepwise calibration method.

4.5 Sensitivity analysis on the index-based partitioning

method

The stepwise calibration method relies heavily on the hy-

drograph partition for different runoff components. The in-
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dices defined in Sect. 3.1 are key to identifying the dominant

days for meltwater and rainwater. The definitions for eleva-

tion bands for the 0 ◦C isotherm and for storm rain days in

the year producing rainwater runoff should have significant

influence on the parameter calibration. In this study, the el-

evation band of 0 ◦C isotherm for snowmelt is fixed and de-

fined as 1650 m. This value should have minimal effect on the

snowmelt simulation, as the occurrence of snowmelt is actu-

ally determined by the MODIS snow cover data. The glacier

cover area is assumed as constant, which is very rough as we

have only one CGI data. In this section, we define different

elevation bands of 0 ◦C isotherm for glacier to analyze the

effect of glacier area variation on the model calibration. We

also select different seasons as the SRP to analyze its sensi-

tive effect.

According to the CGI data, the glacier area extends from

the altitude of 2950 m in 2002. Considering the possible

variability, we define four different lowest elevation bands

for the glacier area (LEGs), i.e., −500 m (2450 m), −200 m

(2750 m), +200 m (3150 m), and +500 m (3450 m). As an

example, various hydrograph partition patterns in year 2003

are shown in Fig. 10. For the SRP, new seasons are defined

as April to October, April to September, May to October,

and June to August compared to the benchmark period May

to September. A new hydrograph partition pattern in year

2003 is also shown in Fig. 10. The left column in Fig. 10

shows that the QSB+QSM+QGM partition becomes longer

while the QSB+QSM partition becomes shorter when the

LEG is lower. Therefore, glacier melt starts earlier and ends

later in the years with lower LEGs. In the right column, the

QSB+QSM+QGM partition becomes longer with the shorter

SRP, while the variation of the QSB+QSM partition can be

negligible. Parameters were re-calibrated according to the

new partition curves, and the results are shown in Table 6,

indicating the increase of degree-day factor for glacier melt

(Dg) with the increase of the LEG. The value of Dg is also

found to become higher when the SRP falls in the warmer

months. The variation of LEG imposes significant impacts

on the calibration of Dg, with a result ranging from 5.8 to

8.0 mm ◦C−1 day−1, while the variation of the SRP princi-

pally impacts the calibration of parameter WM, with a result

ranging from 8.2 to 10.5 cm. However, the NSE values (see

Table 6) for different settings show minimal differences. This

can be attributed to the fact that parameters are optimized

on separate partitioning curves in the stepwise calibration

method. Each hydrograph partition can be well simulated by

adjusting the parameter values. The partition patterns can in-

fluence the value of parameters significantly but only slightly

influence the discharge simulation. Among various LEGs,

the setting of 2950 m leads to the highest NSE value. The

glacier melt degree-day factor (Dg) calibrated with this LEG

is 7.2 mm ◦C−1 day−1, which is very close to the value esti-

mated as 7.3 mm ◦C−1 day−1 by Liu et al. (1999), in which

the Dg is estimated according to the observed glacier mass

balance data in the Tianshan area. This can further demon-

strate the reasonability of the assumption in Sect. 3.2 that

the glacier area is stable and its lowest elevation is fixed at

2950 m during the study period. For the various SRPs, when

the May to October period is adopted, the discharge simula-

tion is slightly better than the benchmark setting of the SRP,

i.e., May to September. This phenomenon seems to indicate

the importance of precipitation measurement as discussed in

Sect. 4.4. Given that the hydrograph partition in Fig. 6 is on

the basis of setting the SRP as May to September, some small

rain events in April are not taken into account. Sensitive anal-

ysis in Table 6 indicates that taking these events into account

(i.e., defining SRP as April to October and April to Septem-

ber), the calibrated value of parameter WM can be signifi-

cantly different. With the help of more advanced precipita-

tion measurement, the SRP can be determined more precisely

to improve the model simulation.

To evaluate the relative dominance of multiple runoff com-

ponents on the total runoff, we compute their contributions

to total runoff by various LEGs and SRPs in Fig. 11. The

mean contributions of every runoff component are as follows:

groundwater contributes 17 %, snow meltwater contributes

16.5 %, glacier meltwater contributes 40 %, and rainwater

direct runoff contributes 26.5 %. Total meltwater (snowmelt

and glacier melt) occupies approximately 56.5 % and is close

to the ratio of 63 % suggested by Kang et al. (1980).

4.6 Sensitivity analysis on parameters

The number of parameters to be calibrated is determined by

the parameter sensitivity and a priori analysis. To evaluate

the effect of different parameters on the simulation of differ-

ent hydrograph partitions, we implemented a simple param-

eter sensitivity procedure that is carried out by a one-at-a-

time approach. Parameters from different groups in Table 3

are selected for sensitivity analysis, including saturated hy-

draulic conductivity for unsaturated zone Ku
s , saturated hy-

draulic conductivity for saturated zone Ks
s , subsurface flow

coefficient KA and KD, manning roughness coefficient for

hillslope nt, spatial heterogeneous coefficient for infiltration

capacity αIFL, ground surface depression storage capacity

Fmaxb, shape coefficient to calculate the saturation excess

runoff area from the Xinanjiang model B, spatially averaged

tension water storage capacity in the Xinanjiang model WM,

glacier degree-day factor Dg, and snowmelt degree per day

factor Ds. Parameters varied from −50 to +50 % of the cali-

brated values using the stepwise method in Table 4. The rel-

ative change (RMS) of simulated measurement merits (RM-

SEln or RMSE) for different hydrograph partitions are used

to evaluate the sensitivity (Eq. 10), where MS is the value

of measurement merits by the calibrated parameter, MS+ is

the merits value obtained by the parameter+50 % of the cal-

ibrated one, and MS− is the merits value obtained by the

parameter −50 % of the calibrated one. The sensitivity sim-

ulation results are shown in Table 7, which demonstrates the

dominant control of parameter KA,KD,WM,B,Ds, and Dg.
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Figure 10. Sensitivity analysis for the hydrograph partition. The first column is the hydrograph partition pattern using different lowest

elevation bands of the glacier area (LEGs). The second column is the hydrograph partition pattern using different storm rain periods (SRPs).

Table 6. Sensitive analysis of the calibrated parameters on lowest elevation band for glacier area (LEG) and storm rain period (SRP). NSE is

the Nash–Sutcliffe efficiency value for the calibration period.

LEG (m a.s.l.) Ds (mm d−1 ◦C−1) Dg (mm d−1 ◦C−1) WM (cm) B KA KD NSE

3450 2.2 8.0 10.1 0.70 0.7 0.002 0.870

3150 2.5 7.9 10.1 0.75 0.7 0.002 0.871

SRP: 2950 2.5 7.2 10.5 0.80 1.1 0.002 0.881

May To Sep 2750 3.0 6.8 10.2 0.75 1.0 0.002 0.880

2450 2.8 5.8 10.0 0.78 0.8 0.002 0.876

SRP Ds (mm d−1 ◦C−1) Dg (mm d−1 ◦C−1) WM (cm) B KA KD NSE

Jun to Aug 2.9 7.5 8.2 0.75 0.9 0.002 0.871

May to Oct 2.8 6.9 9.4 0.76 0.8 0.002 0.882

LEG: May to Sep 2.5 7.2 10.5 0.80 1.1 0.002 0.881

2950 m Apr to Sep 2.2 7.1 8.3 0.75 0.9 0.002 0.878

Apr to Oct 2.6 6.9 9.4 0.77 1.1 0.002 0.881

Some parameters have significant effects on simulation of

multi-hydrograph partitions. For example, parameters con-

trolling the QSB+QSM+QGM+QR period can also have

significant effect on the other periods. To minimize this inter-

action, iterative calibration was implemented in the calibra-

tion procedure. The number of calibrated parameters is de-

termined as six, which control the main runoff components

(i.e., groundwater baseflow, snowmelt, glacier melt, and rain-

water direct runoff). Note that the low dimension of parame-

ter calibration should not account for the low efficiency of

peak flow simulation, referring to the similar study in the

Tianshan Mountains by Li and Williams (2008) and Liu et

al. (2012), in which the models have a higher parameter di-

mension (higher than six), and the peak flow simulations are

still inadequate.

RMS =

∣∣∣∣MS+−MS−

MS

∣∣∣∣× 100% (10)

5 Summary and conclusion

This study proposes a diagnostic calibration approach to ex-

tract hydrological signatures from available data series in a

mountain area, which can be further used to partition the

hydrograph into dominant runoff sources. The parameters
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Table 7. RMS (%) for parameter sensitivity (RMS values indicating the most sensitive parameters are labeled in bold).

Subsurface Routing Infiltration Interception Rainfall runoff Melt

Merits Ku
s Ks

s KA KD nt αIFL Fmaxb WM B Ds Dg

RMSEln

(QSB) 9.70 11.14 38.44 44.39 15.70 0.12 0.08 1.07 18.51 7.53 2.88

RMSE

(QSB+QSM) 0.32 0.40 11.91 0.06 9.35 0.47 0.14 8.27 25.14 51.22 0.69

RMSE

(QSB+QSM+QGM) 0.22 0.21 0.62 0.64 10.00 0.17 0.25 7.92 0.29 26.28 40.79

RMSE

(QSB+QSM+QGM+QR) 0.17 0.85 0.57 0.97 1.84 0.08 0.06 19.35 22.48 10.78 11.57

Figure 11. Sensitivity analysis on the contributions of different

runoff sources to total runoff. (a) is the contribution pattern under

different lowest elevation bands of glacier area (LEGs), where the

storm rain period (SRP) is fixed as May to September. (b) is the

contribution pattern under different SRPs, where the LEG is fixed

as 2950 m. The red line stands for the mean contribution for each

runoff source, and the top/bottom end of each plot presents the high-

est/lowest contribution ratio. SB is groundwater baseflow, SM is

snowmelt, GM is glacier melt, and R is rainwater direct runoff.

of a hydrological model were grouped according to runoff

sources and then related to the corresponding hydrologic par-

titioning curve. Each parameter group was calibrated to im-

prove the simulation of the corresponding partitioning curve

in a stepwise way. In this way, the dimension of the hydro-

logical signature is expanded to equal the number of param-

eter groups. The parameter uncertainty due to interaction of

parameters is reduced via an iterative calibration procedure.

Application to a mountain watershed in the Tianshan Moun-

tains in northwestern China showed that the approach per-

formed reasonably well. Cross-validation and comparison to

an automatic calibration method indicated its applicability.

Note that a semi-distributed hydrological model was uti-

lized to illustrate the proposed diagnostic calibration ap-

proach in the high mountainous TRB. Glacier mass balance

is not simulated in the model and the glacier coverage was

kept fixed during the study period, which can be subject to

significant change in the context of global warming. Accord-

ing to existing studies (Stahl et al., 2008; Schaefli and Huss,

2011; Jost et al., 2012), glacier mass balance data were useful

to constrain the parameter uncertainty for hydrological mod-

eling in a glaciered basin. While arguing that our assumption

of unchanged glacier coverage will not weaken the impor-

tance of the proposed approach, we acknowledge that an im-

proved model coupled with glacier mass balance equations

will improve the accuracy of hydrological simulation aided

by glacier mass balance observations. This is left for future

research.

A prerequisite for the proposed approach is hydrograph

partitioning based on dominant runoff sources. The key to

the partition procedure is to identify the functional domain of

each runoff source from signature information extracted from

easily available data. A partition can be achieved in which

the relative roles of different runoff components in the basin

runoff vary significantly with time. The mountain watershed

is an area in which the runoff source can be separated by the

combination of topography, ground-gauged temperature and

precipitation, and remotely sensed snow and glacier cover-

age. Other areas with strong temporal variability of catch-

ment wetness along with precipitation (e.g., monsoon zones)

could also be suitable for the proposed approach. The Dunne

runoff is prone to dominate the hydrograph when the catch-

ment is wet and it could switch to Hortonian runoff rapidly

under the combination of high evaporative demand and less

precipitation, as shown by Tian et al. (2012) in the Blue River

basin of Oklahoma. This is, however, also left for future re-

search.
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