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Abstract. Dynamically downscaled precipitation fields from

regional climate models (RCMs) often cannot be used di-

rectly for regional climate studies. Due to their inherent bi-

ases, i.e., systematic over- or underestimations compared to

observations, several correction approaches have been de-

veloped. Most of the bias correction procedures such as the

quantile mapping approach employ a transfer function that

is based on the statistical differences between RCM out-

put and observations. Apart from such transfer function-

based statistical correction algorithms, a stochastic bias cor-

rection technique, based on the concept of Copula theory,

is developed here and applied to correct precipitation fields

from the Weather Research and Forecasting (WRF) model.

For dynamically downscaled precipitation fields we used

high-resolution (7 km, daily) WRF simulations for Germany

driven by ERA40 reanalysis data for 1971–2000. The REG-

NIE (REGionalisierung der NIEderschlagshöhen) data set

from the German Weather Service (DWD) is used as grid-

ded observation data (1 km, daily) and aggregated to 7 km

for this application. The 30-year time series are split into a

calibration (1971–1985) and validation (1986–2000) period

of equal length. Based on the estimated dependence struc-

ture (described by the Copula function) between WRF and

REGNIE data and the identified respective marginal distri-

butions in the calibration period, separately analyzed for the

different seasons, conditional distribution functions are de-

rived for each time step in the validation period. This fi-

nally allows to get additional information about the range

of the statistically possible bias-corrected values. The re-

sults show that the Copula-based approach efficiently cor-

rects most of the errors in WRF derived precipitation for

all seasons. It is also found that the Copula-based correc-

tion performs better for wet bias correction than for dry bias

correction. In autumn and winter, the correction introduced

a small dry bias in the northwest of Germany. The average

relative bias of daily mean precipitation from WRF for the

validation period is reduced from 10 % (wet bias) to −1 %

(slight dry bias) after the application of the Copula-based

correction. The bias in different seasons is corrected from

32 % March–April–May (MAM), −15 % June–July–August

(JJA), 4 % September–October–November (SON) and 28 %

December–January–February (DJF) to 16 % (MAM),−11 %

(JJA), −1 % (SON) and −3 % (DJF), respectively. Finally,

the Copula-based approach is compared to the quantile map-

ping correction method. The root mean square error (RMSE)

and the percentage of the corrected time steps that are closer

to the observations are analyzed. The Copula-based correc-

tion derived from the mean of the sampled distribution re-

duces the RMSE significantly, while, e.g., the quantile map-

ping method results in an increased RMSE for some regions.
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1 Introduction

Most climate studies operate on a regional and local scale.

Global climate models (GCMs), however, provide climato-

logical information only on coarse scales, usually in a hori-

zontal resolution of 100–300 km. Since they are not able to

mimic the regional- and local-scale climate variability, fur-

ther refinement is necessary. For dynamical downscaling, re-

gional climate models (RCMs) are capable of bridging the

gap between large-scale GCM data and local-scale informa-

tion to conduct climate studies. Nevertheless, the RCM sim-

ulations usually do not agree well with observations even if

downscaled to high spatial resolutions (Smiatek et al., 2009;

Teutschbein and Seibert, 2010). Thus, they might not be use-

ful for deriving hydrological impacts on local scales directly

(Graham et al., 2007a, b; Christensen et al., 2008; Bergström

et al., 2001). Therefore, further bias correction is often re-

quired. The impacts of biases on hydrological and agricul-

ture modeling has been studied extensively (e.g., Kunstmann

et al., 2004; Baigorria et al., 2007; Ghosh and Mujumdar,

2009; Ott et al., 2013). Precipitation is an important pa-

rameter in climate studies (Schmidli et al., 2006). RCMs

tend to generate too many wet days with small precipita-

tion amounts (Schmidli et al., 2006; Ines and Hansen, 2006).

In addition, RCMs often contain under- and overestimations

of rainfall as well as incorrect representations of the sea-

sonality (Terink et al., 2010). Therefore, several bias cor-

rection methods have been developed. These methods range

from simple scaling approaches such as the linear scaling

approach (e.g., Lenderink et al., 2007) and local intensity

scaling (e.g., Schmidli et al., 2006) to methods like quan-

tile mapping (e.g., Ines and Hansen, 2006). Bias correction

techniques usually employ the use of a transfer function that

is based on the statistical differences between observed and

modeled climate variables to adjust the modeled data under

the assumption that these functions are stationary. A recent

overview of bias correction methods for hydrological appli-

cation is provided, e.g., by Teutschbein and Seibert (2012)

and Lafon et al. (2013).

In this study, a Copula-based stochastic bias correction

method is applied to correct each individual time step of a

RCM simulation. This is different to the traditional transfer

function-based statistical correction approaches. The strat-

egy of this method is the identification and description of

the underlying dependence structures between observed and

modeled climate variables (precipitation) and its application

for bias correction. It is known that the traditional measures

of dependence (e.g., Pearson’s correlation coefficient) can

only capture the strength of the linear dependence as a single

global parameter. Alternatively, Copulas are able to describe

the complex nonlinear dependence structure between vari-

ables (Bárdossy and Pegram, 2009). Based on the identified

dependence structure between observed and modeled precip-

itation and the identified respective marginal distributions, a

set of realizations is finally obtained through Monte Carlo

simulations.

Recently, Copulas are used for various applications in

hydrometeorology (e.g., Gao et al., 2007; Serinaldi, 2008;

van den Berg et al., 2011; Bárdossy and Pegram, 2012).

Copula-based bias correction techniques have been origi-

nally introduced by Laux et al. (2011) and Vogl et al. (2012),

and are extended in this study by investigating gridded

precipitation fields instead of individual and unevenly dis-

tributed stations. The Copula models are estimated for each

single grid cell instead of choosing the most dominant model

for the whole domain. Bayesian Information Criterion (BIC)

is implemented in addition to Kolmogorov–Smirnov test (K–

S test) for marginal distribution goodness-of-fit test, as the

large sample size makes the K–S test highly sensitive. The

performance of the correction method is analyzed for differ-

ent seasons to investigate seasonal variability. This study is

based on data for a 30-year time period (1971–2000) of high-

resolution (7 km) dynamical downscaled precipitation fields

using the Advanced Research Weather Research and Fore-

casting (WRF-ARW) model (Berg et al., 2013). REGNIE

data from the German Weather Service (DWD) were used as

the gridded observation data source. To achieve the same res-

olution, the REGNIE data are aggregated to 7 km. In the cal-

ibration period, only positive pairs (both REGNIE and WRF

data indicate precipitation) are used to calibrate the model.

Therefore, in the validation period only the days that belong

to positive pairs are corrected and the other days are kept the

same as the original WRF data. It is important to state that

this study focuses on the bias correction of the RCM simu-

lations of the past exclusively and does not deal with down-

scaling or bias correction of precipitation for future periods.

Application for future climate scenarios requires further ex-

tensions.

The article is structured as follows: in Sect. 2 the data sets

for this application are introduced. Section 3 briefly describes

the basic theory of Copulas and the procedure of Copula-

based conditional simulations to correct RCM precipitation.

Results of application of the Copula-based approach for Ger-

many are shown in Sect. 4, followed by the summary and

conclusions (Sect. 5).

2 Data

In this section the data sources which are used for the appli-

cation of the Copula-based bias correction method for grid-

ded data sets is described. The newly developed approach is

applied for Germany (Fig. 1) for a 30-year time period from

1971 to 2000. The RCM output, as well as the observational

data, that is used in this application are both gridded data

in 7 km spatial resolution and in daily scale. We split the 30-

year time series into a calibration (1971–1985) and validation

(1986–2000) period of equal length.
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Figure 1. Terrain elevation of Germany (digital elevation model).

The numbers represent the position of the four specific grid cells for

which the performance of the Copula-based algorithm is analyzed

in Fig. 13.

2.1 RCM data

Dynamically downscaled precipitation fields over Germany

from a RCM simulation (Berg et al., 2013) with the non-

hydrostatic WRF-ARW model (Skamarock et al., 2008) are

used. For this data set, the WRF-ARW simulations are forced

by ERA40 reanalysis data (Uppala et al., 2005) from 1971

to 2000 at the boundaries which implies large-scale circu-

lation close to observations. Due to the coarse resolution of

the GCM, a double-nesting approach is applied in Lambert

conformal map projection. The coarse nest extends over all

of Europe (42 km) and the fine nest covers Germany and the

near surroundings (7 km). The model uses 40 vertical lev-

els for both nests. For further details (e.g., parameterization

schemes) on the applied WRF-ARW setup, we refer to Berg

et al. (2013) and the references listed therein.

2.2 Observational data

As observations, we used the 1 km gridded daily data set

REGNIE (DWD, 2011) from the DWD. The REGNIE prod-

uct is available for the whole of Germany from 1951 to the

present and the number of underlying stations is approxi-

mately 2000 stations. The statistical gridding approach of

station data is based on the spatial interpolation of anoma-

lies compared to long-term mean values. For the background

climatological field a multi-linear regression approach is ap-

plied where the geographical position, elevation and wind ex-

posure of the stations are taken into account. For the calcu-

lation of the daily precipitation fields, station values are first

assigned to a grid point and divided by the background data

to calculate anomalies. The anomalies are spatially interpo-

lated using inverse distance weighted interpolations, and the

results are finally multiplied by the background field. For the

grid-cell-based bias correction, the 1 km REGNIE data set

is up-scaled and remapped to the 7 km WRF grid such that

precipitation amounts are conserved. Also, the time period is

kept the same as WRF output (1971–2000).

3 Methodology

In this section the fundamentals of Copula theory are briefly

summarized. Details about Copula theory are given, e.g., in

Nelsen (1999). The basis of the Copula-based bias correction

algorithm used in this study is a bivariate Copula model that

allows for modeling the dependence structure between WRF

and REGNIE data. The Copula model consists of two respec-

tive marginal distributions and a bivariate Copula function

and is then used to generate bias corrected WRF data by con-

ditional stochastic sampling. Details about the bias correc-

tion algorithm are described below. In the following section,

X and Y refer to REGNIE and WRF data sets, respectively.

3.1 Copula theory

Let (X, Y ) be a pair of random variates with a realization (x,

y) and the bivariate joint distribution FXY (x, y). Following

Sklar’s theorem (Sklar, 1959), a unique function C (Copula)

exists such that

F(x,y)= C (FX(x), FY (y)) x,y ∈ R
= C(u,v) u, v ∈ [0, 1], (1)

where u=FX(x) and v=FY (y).

The Copula functions provide a functional link between

the two univariate marginal distributions FX(x), FY (y). As

the Copula function allows for modeling the pure depen-

dence between the two variates X and Y , it is rather flexible

to describe their relationship with full freedom to the choice

of the univariate marginal distributions. This is especially ad-

vantageous in cases, where the dependence structure between

the variates is too complex to be modeled by a multivariate

Gaussian distribution, as it is often the case for hydromete-

orological variables (Salvadori and Michele, 2007; Dupuis,

2007).

3.2 Copula models

As a consequence of Sklar’s theorem, each complex and un-

known joint distribution FXY (x, y) can be estimated by as-

suming specific parametric functions for FX, FY and C in

Eq. (1). The bivariate Copula model of the variates X and

Y consists of two univariate parametric marginal distribu-

tions (FX(x) and FY (y)) and a theoretical parametric Copula

function Cθ (u, v) that can be estimated separately based on

www.hydrol-earth-syst-sci.net/19/1787/2015/ Hydrol. Earth Syst. Sci., 19, 1787–1806, 2015



1790 G. Mao et al.: Copula-based bias correction for RCM precipitation

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

x

y =
0 20 40 60 80

0

0.2

0.4

0.6

0.8

1

x

u

 

 

Theoretical
Empirical

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

y

v
 

 

Theoretical
Empirical

Observations

RCM

+

0.00

0.25

0.50

0.75

1.00

v

0.00 0.25 0.50 0.75 1.00

u

0
.5

1
.0

C
(u

,v
)

Figure 2. Visualization of a bivariate Copula model consisting of two marginal distributions and a theoretical Copula function that describes

the pure dependence.

the realizations x, y. Figure 2 visualizes the process of esti-

mating a Copula model with a bivariate exemplary data set,

i.e., realizations (x, y) of the two random variates X and Y .

A scatter plot of the two realizations (x, y) is shown in

Fig. 2 (left panel). The Copula model for the data set consists

of two marginals and the theoretical Copula. Therefore, the

first step is to estimate the theoretical univariate distribution

functions for the two variates X and Y (see Fig. 2, middle

panel).

The next step is to estimate the theoretical Copula function

Cθ (see Fig. 2, right panel). Finally, the unknown joint distri-

bution FXY (x, y) is fully determined by the marginal distri-

butions and the Copula function, i.e., the dependence struc-

ture itself. Figure 2 visualizes the fact that different marginal

distributions and theoretical Copula functions can be com-

bined independently allowing to model highly complex in-

terdependencies between the variables X and Y . This is es-

pecially beneficial if these interdependencies are nonlinear,

asymmetric or the data show heavy-tail behavior.

3.3 Marginal distribution estimation

The Copula-based modeling of the dependence between X

and Y requires the fitting of suitable marginal distributions

for both data sets (REGNIE and WRF) for each grid cell.

Generally, both non-parametric and parametric fitting ap-

proaches for the local precipitation distribution are found

in the literature (Dupuis, 2007; Gao et al., 2007; Bárdossy

and Pegram, 2009; van den Berg et al., 2011). In this study

a parametric fitting of the precipitation distribution is ap-

plied also to allow for an illustration of the spatially dis-

tributed differences (provided as the fitted marginal distri-

bution family maps) between WRF and REGNIE. This gives

additional valuable information about differences in their sta-

tistical properties.

In this study, five different parametric distribution func-

tions are tested (Weibull, gamma, normal, generalized Pareto

and exponential). For all time series (REGNIE and WRF),

the parameters of the respective distribution functions are

estimated by a standard maximum likelihood estimation

(MLE). The goodness-of-fit is evaluated in a two-stage pro-

cess. Firstly, a K–S test is applied (Massey, 1951). As the K–

S test is highly sensitive due to the large sample sizes (Seri-

naldi, 2008), the null hypothesis (the sample comes from the

selected distribution) is rejected in some cases for all of the

candidates. In other cases there might be more than one pos-

sible candidate for the best fit. For that reason, all candidates

which are accepted by the K–S test are further inspected by

using the BIC (Weakliem, 1999). If all of the candidates are

rejected by the K–S test, only the BIC is relevant for the se-

lection of the best fit.

The BIC selects the optimum within a finite set of mod-

els. It is based on the likelihood function and deals with the

trade-off between the goodness-of-fit of the model and its

complexity:

BIC= k ln(n)− 2ln(L), (2)

where k denotes the number of the free parameters of the

model, n is the sample size and L is the maximized value of

the likelihood function of the estimated model. The smallest

value of the BIC suggests the best fitting distribution.

3.4 Copula function estimation

The Copulas from different families describe different de-

pendence structures. To increase the accuracy of the descrip-

tion of the dependence, different types of Copulas are con-

sidered, since one common Copula might be incapable of

capture the dependence structure for all grid cells over the

entire study area and for all seasons.
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Table 1. Theoretical Copula functions used in this study.

Copulas Cθ (u, v) Generator ϕθ (t) Parameter θ ∈

Clayton (u−θ + v−θ − 1)−
1
θ 1

θ (t
−θ
− 1) ]0, +∞[

Frank −
1
θ ln

(
1 +

(
e−θu− 1

) (
e−θv−1

)
e−θ − 1

)
− ln

(
e−θt − 1
e−θ − 1

)
] −∞, 0[& ]0, +∞[

Gumbel e−((− ln(u)θ )+ (− ln(v)θ ))
1
θ

(− ln(t))θ [1, +∞[

Gaussian 8R(8
−1(u), 8−1(v));R =

[
1 θ

θ 1

]
[−1, 1]

In this study, four different one-parametric Copulas (see

Table 1) are selected: the Gumbel Copula is able to describe

an upper tail dependence structure, while the Clayton Copula

allows one to express higher probability in the lower tail. The

Frank Copula exhibits no tail dependence, and the Gaussian

Copula describes a similar dependence as the Frank Copula,

but with slightly higher densities in the lower and upper tails

(Venter, 2002; Schmidt, 2007). For the Clayton Copula, the

formulas of positive and negative dependence are different.

The parameter θ can take values of−1<θ < 0 to model neg-

ative dependence. In that case the formula is

Cθ (u,v)=
[
max

(
u−θ + v−θ − 1,0

)]− 1
θ . (3)

For the data used in this study, negative dependences could

not be found. Therefore, it is θ ∈ [0,∞] and the Clayton Cop-

ula is defined as described in Table 1.

For the Copula goodness-of-fit test we closely follow the

approach as described in Laux et al. (2011) and Vogl et al.

(2012). For brevity it is briefly summarized.

Since the dependence structure, i.e., the theoretical Copula

function, between X and Y is in general not known in ad-

vance, the empirical Copula that can be calculated from the

data is analyzed (Deheuvels, 1979). Let {r1(1), . . ., r1(n)}

and {r2(1), . . ., r2(n)} denote the rank space values that

are derived from the fitted theoretical marginal distributions.

Then, the empirical Copula, a rank-based estimator of Cθ , is

defined as

Cn(u,v)= 1/n

n∑
t=1

1

(
r1(t)

n
6u,

r2(t)

n
6v

)
(4)

where u=FX(x), v=FY (y) and 1(. . . ) is denoting the indi-

cator function and n being the sample size. A visual inspec-

tion of Cn allows one to choose promising candidates out of

the set of available theoretical parametric Copula functions.

To estimate the unknown parameter θ ∈R for each candidate,

a MLE approach is used. To decide which Copula function

is able to describe the dependence structure best, different

goodness-of-fit tests (e.g., Genest and Rémillard, 2008; Gen-

est et al., 2009) are available. In this study the goodness-of-fit

test is based on the Cramér von Mises statistic (Genest and

Favre, 2007), where the empirical Copula Cn is compared to

the parametric estimate Cθ :

Sn = n

n∑
t=1

{Cθ (ut ,vt )−Cn (ut ,vt )}
2. (5)

The specific parametric bootstrap procedure to obtain the ap-

proximate P value is described by Genest et al. (2009).

3.5 Copula-based bias correction

The Copula-based bias correction applied for this study is

based on the estimation of a Copula model for each pair of

observed (X) and modeled (Y ) rainfall for each grid cell.

As soon as this Copula model (FX(x), FY (y) and Cθ (u, v))

is estimated, conditional random samples can be generated

through Monte Carlo simulations (Gao et al., 2007; Salvadori

et al., 2007). The procedure follows the algorithm detailed in

Laux et al. (2011) and Vogl et al. (2012) to generate pseudo-

observations conditioned on the modeled data. We purposely

conditioned the RCM data since the method is the first step

for correcting future climate projection (where no observa-

tions are available). This conditional simulation algorithm is

based on a conditional distribution of the form:

CU |V=v(u)= P [U ≤ u|V = v] =
∂C(u,v)

∂v
. (6)

The complete Copula-based bias correction algorithm con-

sists of the following steps:

1. estimate the theoretical marginal distributions FX(x)

and FY (y) for observation and RCM data, respectively;

2. transform the time series x1, · · ·, xn and y1, · · ·, yn to

the rank space by taking u=FX(x) and v=FY (y);

3. calculate the empirical Copula Cn(u, v) as a rank-based

estimator for the theoretical Copula function Cθ (u, v);

4. estimate the Copula parameter θ and perform goodness-

of-fit tests to identify the best theoretical Copula func-

tion Cθ (u, v);

5. calculate the Copula distribution conditioned on the

variate v representing the RCM time series in the rank

space;

www.hydrol-earth-syst-sci.net/19/1787/2015/ Hydrol. Earth Syst. Sci., 19, 1787–1806, 2015
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6. generate the pseudo-observations in the rank space for

each time step by using the conditional Copula distribu-

tion;

7. transform back the random samples to the data space by

using the integral transformation.

The Copula-based conditional simulation is the critical

step of this bias correction approach, as it forces a certain

variable (observation) to take a value when another variable

(RCM) is given. To assess the uncertainty associated with

this prediction, the conditional prediction process (step 6

and 7) must be repeated for a large number of times This

provides the possibility to obtain a large set of random re-

alizations and additionally gives the information of a prob-

ability density function (PDF) for each corrected time step.

From the PDF the spread of the distribution in form of the

inter-quantile range can, e.g., be provided as an additional

uncertainty criterion for the bias correction.

3.6 Correction strategy for continuous time series

The implementation of a bias correction for precipitation (a

discrete variable) is more complex than a bias correction of a

continuous variable, e.g., temperature. In general four cases

have to be distinguished, namely, (0,0), (0,1), (1,0) and (1,1),

where 0 denotes a dry day and 1 indicates a wet day (see

Fig. 3). A threshold of rainfall amount of 0.1 mm day−1 was

used to identify a wet day with respect to the usual precision

of rain gauges (Dieterichs, 1956; Moon et al., 1994). There-

fore, the four cases are defined as follows:

1. (1,1): REGNIE and WRF precipitation ≥ 0.1 mm;

2. (0,1): REGNIE< 0.1 mm, while WRF ≥ 0.1 mm;

3. (1,0): REGNIE≥ 0.1 mm and WRF< 0.1 mm;

4. (0,0): both REGNIE and WRF< 0.1 mm.

Different approaches exist in the literature to account for

the intermittent nature of rainfall. For example the truncated

Copula suggested in Bárdossy and Pegram (2009) and the

Copula-based mixed model described in Serinaldi (2008).

Both methods are able to produce time series that statistically

hold the same proportion of the four different cases (0,0),

(0,1), (1,0) and (1,1). These methods allow for the correc-

tion of the total number of dry days, but do not allow one to

correct individual events in the (0,1) and (1,0) cases.

In this study, we aim for an event-based correction as de-

scribed in the following: the Copula-based concept focuses

on the correction of the (1,1) cases, i.e., the positive pairs.

In order to generate a complete bias corrected time series of

WRF output, the events that are not covered by the (1,1) case

are left unchanged. For the (0,0) cases, there is no error. The

errors that come from the (0,1) and (1,0) cases are not cor-

rected by this method. To justify this strategy, we investigated

the proportion of the four cases in the study area (see Fig. 4):

Figure 3. Illustration of the four cases: (0, 0) indicates that both

REGNIE and WRF show no rain, (0, 1) stands for an observation

with no precipitation but the RCM model shows a rain event, while

(1, 0) indicates the opposite of (0, 1), (1, 1) implies that both are

wet.

the (1,1) cases take the highest proportion, followed by the

(0,0) cases. The proportion of both the (0,1) and (1,0) cases

are comparatively low. The average proportion of these cases

are 40 % for the (1,1) cases, 29 % for the (0,0) cases, 19 %

for the (0,1) cases and 12 % for the (1,0) cases.

4 Results

In this section, details about the estimated Copula models

are presented including information about the fitting of the

marginal distributions and the theoretical bivariate Copula

functions from the calibration period (1971–1985). Since the

estimated marginal distributions reflect the statistical char-

acteristics of RCM and observations, their differences are

analyzed spatially. The fitted Copula models are applied for

the validation period (1986–2000) to bias correct the WRF

precipitation. It is found that the dependence structures vary

intra-annually, therefore the performance of the algorithm is

analyzed separately for the different seasons.

4.1 Estimated marginal distributions

For both REGNIE and WRF data, five different distribution

functions are employed for each grid cell separately: general-

ized Pareto distribution (gp); gamma distribution (gam); ex-

ponential distribution (exp); Weibull distribution (wbl) and

normal distribution (norm). This guarantees the flexibility

in selecting the most appropriate distribution for each grid

cell. The goodness-of-fit tests (K–S test and the BIC; see

Sect. 3.3) reject the normal distribution in all cases, while the

generalized Pareto distribution is accepted most frequently

for both REGNIE and WRF (Fig. 5). The result shows a rea-

sonable agreement of selected marginal distribution between

REGNIE and WRF mainly in the eastern and southern parts
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(0,0) case (0,1) case

(1,0) case (1,1) case

Figure 4. The proportion of the four cases over the study area for the validation time period (from 1986 to 2000).

of Germany. The patterns of the selected types follow the to-

pography of Germany (see Fig. 1). In the northwest of Ger-

many, the Weibull distribution function prevails as well as in

the low mountain ranges. In general, this effect is stronger

for WRF while the patterns are more patchy for REGNIE.

The coincidence between REGNIE and WRF marginals is

shown in the confusion matrix. Each row of the matrix repre-

sents the distribution types of REGNIE, while each column

represents that of WRF (in %). The major diagonal shows the

fraction of concurring marginal types. The confusion matrix

for the calibration period is shown in Table 2. It is found that

for 42 % of grid cells, the generalized Pareto distribution is

selected for both data sources concordantly. For the Weibull

distribution this holds true for 16 % of the grid cells. Since

the total number of grid cells where gamma and exponential

distribution are fitted is very low, the percentage of hits in the

diagonal of the confusion matrix is small. Summing up the

major diagonal gives a measure for the overall agreement.

For the complete calibration series about 59 % correspond.

The failures of 21 % of grid cells, where REGNIE follows the

generalized Pareto distribution and WRF follows the Weibull

distribution, are predominately located in the northwest of

Germany (Fig. 5).

In order to assess the annual variability in the precipitation

time series, the marginal distributions are estimated for the

different seasons (spring – MAM, summer – JJA, autumn –

SON, winter – DJF).

For both REGNIE and WRF data, the seasonal represen-

tation of the different distribution types is shown in Fig. 6. It

indicates that the choice of the optimal marginal distribution

clearly depends on the season. In WRF, the winter (summer)

season is dominated by exponential (generalized Pareto). The

differences for REGNIE are not that obvious since the dom-

inant distribution type is the generalized Pareto distribution

for all seasons. For WRF data the effect of the underlying

elevation on the identified distribution type is most promi-

nent during winter and fall. In the low mountain regions the

favorite marginal distribution change from fall (Weibull, gen-

eralized Pareto) to winter (exponential, Weibull).
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Figure 5. Estimated marginal distributions of precipitation for Germany for both REGNIE (left panel) and WRF (right panel). The results

are shown for the calibration period (1971–1985) and positive pairs only.

Table 2. Confusion matrix between REGNIE and WRF for the dif-

ferent distribution types.

WRF

gp gam exp wbl

R
E

G
N

IE

gp 42.04 % 1.27 % 1.55 % 20.79 %

gam 4.92 % 0.5 % 0.18 % 2.44 %

exp 0.27 % 0 % 0 % 0.23 %

wbl 7.14 % 1.94 % 0.79 % 15.93 %

The seasonal confusion matrices are shown in Table 3. The

results indicate the best agreement between WRF and REG-

NIE (approximately 56 % of the grid cells) in summer, while

in wintertime only approximately 30 % of the types agree.

As mentioned above in Sect. 3.3 the goodness-of-fit tests

follow a two-step process due to the fact that the K–S test

is highly sensitive to large sample sizes. For the annual

marginal distribution identification for 99 % of the grid cells,

the K–S test fails and only the BIC is used for REGNIE,

while the number for WRF is 68 %. Since the sample size

is reduced in seasonal analysis, the failures of K–S test are

decreased dramatically. The results are shown in Table 4.

4.2 Identified Copula functions

For each grid cell the theoretical Copula function, which

characterizes the dependence structure between REGNIE

and WRF data, is identified separately. Four Copulas (Clay-

ton, Frank, Gumbel and Gaussian) are investigated by apply-

ing the goodness-of-fit tests described in Sect. 3.4. Figure 7

shows the results of the goodness-of-fit tests for the calibra-

tion period for the complete study area. It is found that for

most of the grid cells in the study area, the Frank Copula can

capture the dependence structure best, while for the northeast

of Germany the Clayton Copula provides the best fit. In total

the dependence structure of 72 % of the grid cells is modeled

Table 3. Seasonal confusion matrix of fitted REGNIE and WRF

precipitation distribution.

MAM WRF

gp gam exp wbl
R

E
G

N
IE

gp 39.57 % 0.29 % 25.68 % 3.89 %

gam 2.32 % 0.12 % 1.32 % 0.18 %

exp 2.68 % 0.02 % 3.03 % 0.14 %

wbl 8.88 % 0.56 % 7.81 % 3.51 %

JJA WRF

gp gam exp wbl

R
E

G
N

IE

gp 42.3 % 0.09 % 0.39 % 11.58 %

gam 0.72 % 0.14 % 0.04 % 0.83 %

exp 1.74 % 0 % 0 % 0.81 %

wbl 26.4 % 0.62 % 0.61 % 13.73 %

SON WRF

gp gam exp wbl

R
E

G
N

IE

gp 35.43 % 0.08 % 6.36 % 18.83 %

gam 1.55 % 0.29 % 0.95 % 1.14 %

exp 0.51 % 0 % 0.15 % 0.41 %

wbl 11.23 % 0.29 % 4.88 % 17.9 %

DJF WRF

gp gam exp wbl

R
E

G
N

IE

gp 8.92 % 1.25 % 24.66 % 7.12 %

gam 2.18 % 0.27 % 7.65 % 1.21 %

exp 1.44 % 0.48 % 8.08 % 1.12 %

wbl 6 % 0.89 % 16.42 % 12.31 %
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Figure 6. Estimated marginal distribution of precipitation for the different seasons for REGNIE (left column panels) and WRF (right column

panels) in Germany. The results are shown for the calibration period (1971–1985) for positive pairs only. Spring (MAM), summer (JJA),

autumn (SON) and winter (DJF) are illustrated from top to bottom.
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Figure 7. Identified Copula functions between REGNIE and WRF

precipitation in the calibration period (1971 to 1985) with positive

pairs.

by the Frank, 20 % by the Clayton, 7 % by the Gaussian and

only 0.09 % by the Gumbel Copula.

In order to assess the annual variability of the dependence

structures between REGNIE and WRF precipitation time

series, the Copula functions are identified for the different

seasons separately. The corresponding results are shown in

Fig. 8.

While for spring, autumn and winter the Copulas that

have no pronounced tail dependence (the Frank and

Gaussian Copula) dominate (spring 49 % (Frank)+ 22 %

(Gaussian)= 71 %, autumn 53 %+ 24 %= 77 % and winter

63 %+ 28 %= 91 %), in summer the Clayton Copula pro-

vides the best fit for most of the grid cells (62 %). For all sea-

sons the Gumbel Copula is only selected for few grid cells

with a maximum number of hits in spring (5 % of the grid

cells). In general the differences are most prominent for win-

ter and summer (see Fig. 8).

4.3 Validation of the Copula-based bias correction

Based on the estimated Copula model (parametric marginal

distributions and theoretical Copula functions), the condi-

tional distribution of REGNIE conditioned on WRF is de-

rived for each grid cell separately (see Sect. 3.5). To gen-

erate bias-corrected WRF precipitation, random samples of

possible outcomes are drawn from this conditional distribu-

tion. We use a sample size of 100. The result can be inter-

preted as an empirical predictive distribution for corrected

WRF (pseudo-observations) that is determined for all condi-

tioning WRF precipitation values for each time step. While

this stochastic bias correction method gives a full ensemble

and the empirical predictive distribution of corrected WRF

Table 4. The proportion of grid cells for both REGNIE and WRF

that K–S test failed and only BIC is used in goodness-of-fit proce-

dure.

Spring Summer Autumn Winter

REGNIE 25.83 % 10.86 % 38.38 % 56.13 %

WRF 0.31 % 10.61 % 12.26 % 3.88 %

precipitation, for practical reasons one can choose, e.g., the

expectation, median or mode to get single corrected values.

This can be regarded as a Copula-based regression by taking

such a typical value as the estimator of the derived empirical

predictive distribution of corrected WRF precipitation. It is

noted that this typical value (e.g., the mean) can also be di-

rectly derived from the analytical Copula-based conditional

distribution (mean regression curve, Nelsen, 1999).

Figure 9 exemplarily shows WRF (red), REGNIE (green)

and the bias-corrected WRF (blue) data for pixel 1 in Fig. 1

during wintertime 1986–1987 (positive pairs only). The box

plot visualizes the spread of the generated random sample

(100 members) indicating the uncertainty of the predicted

bias-corrected precipitation, while the blue line shows the

median of the respective empirical predictive distribution.

It can be seen from Fig. 9 that for most of the time steps

the proposed Copula-based approach can successfully cor-

rect for biases in the modeled precipitation compared to ob-

served values.

To investigate the spatial performance of the correction al-

gorithm, the relative bias of RCM modeled mean daily pre-

cipitation (WRF) compared to gridded observations (REG-

NIE) is compared to that of the bias-corrected model data

(B. C. WRF) for Germany.

A comparison of corrected WRF data derived by the ex-

pectation, median and mode of the predictive distribution

with observations indicates that the correction performs best

for the expectation value (see Fig. 10). Both simulations

based on the median and the mode tend to underestimate the

precipitation values, thus causing a dry bias over the domain.

Therefore, in the following, the results are shown and ana-

lyzed for the mean only.

Figure 11 (left panel) shows the bias between REGNIE

and WRF, indicating wet biases in most of the study area.

These wet biases are most prominent in high elevation areas

following the topography of Germany. Wet biases are also

detected in the northeast of Germany, where the elevation is

low. Dry biases are found in the alpine and pre-alpine ar-

eas in the southeast of Germany as well as in the west of

Germany. After the application of the Copula-based correc-

tion algorithm, the wet biases are corrected for most of the

domain, except for a very small region in the northeast (see

Fig. 11, right panel). It is also found that the dry bias can also

be significantly reduced, but small dry biases are introduced
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MAM JJA

SON DJF

Figure 8. Fitted Copula functions between REGNIE and WRF precipitation (calibration period (1971–1985), positive pairs only). The

Copulas are identified for the different seasons (spring – MAM, summer – JJA, autumn – SON, winter – DJF).
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Figure 9. Comparison of bias-corrected WRF data (blue) with the

original WRF data (red) and REGNIE (green) in winter 1986–1987

(positive pairs only) for pixel 1 in Fig. 1. For each time step 100 re-

alizations are drawn from the conditional distribution visualized by

the box whiskers (boxes are defined by the lower quartile Q1 and

the upper quartileQ3). The length of the whiskers is determined by

1.5 · (Q3−Q1) and outliers, i.e., data values beyond the whiskers

are marked by crosses.

in some areas in the west of the domain. The average of the

bias for the whole study area is reduced from 10 to −1 %.

A performance analysis with respect to seasonal variations

is shown in Fig. 12. It shows that the relative bias is even

larger for different seasons. Figure 12 (left panel) shows the

relative bias between uncorrected WRF mean daily precip-

itation and the REGNIE data set for the different seasons

(MAM, JJA, SON, DJF, from top to bottom). The WRF

model tends to generate too much precipitation in spring and

winter for the majority of grid cells in the study area. For

summer and autumn, there are also regions found where the

model is too dry. These regions are mostly located in the

north and in the south of Germany. This effect is found to

be strongest in summer, while in autumn areas with an over-

estimation of precipitation are still found in the northeast and

southwest of Germany. In all cases, the bias is influenced by

the underlying terrain showing an overestimation especially

in regions with higher altitude. The average of the bias from

spring to winter are 32, −15, 4 and 28 %, respectively. Fig-

ure 12 (right panel) shows the relative bias between corrected

WRF mean daily precipitation and the REGNIE data set for

the different seasons (MAM, JJA, SON, DJF, from top to bot-
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Figure 10. Relative bias map of mean daily precipitation for Copula-based correction by taking the expectation (left panel), median (middle

panel) and the mode (right panel) as the estimator of the sampled distribution. The results are based on the validation period 1986–2000.

Figure 11. Relative bias of mean daily precipitation for uncorrected (left panel) and corrected WRF precipitation field (right panel). The

results are based on the validation period 1986–2000.

tom panels). It can be seen that the Copula-based correction

efficiently removes most of the biases indicating a compa-

rable performance for all seasons. Figure 12 especially for

spring and winter indicates that the correction is tending to

be more suitable to correct for overestimation of the rainfall.

The underestimation of precipitation, that is most prominent

in summer, however, is still significantly reduced. In autumn

and winter the Copula-based correction reduces the rainfall

amounts too much for the west of Germany, introducing a

small dry bias in that region. The average bias are reduced

to 16, −11, −1 and −3, respectively, for different seasons

from spring to winter.

In the following, it is further analyzed how well the model

can reproduce the intra-annual variability of observed pre-

cipitation and how the performance for the different seasons

is influenced by the Copula-based correction algorithm.

To investigate typical situations in detail, the results are

shown for four specific grid cells in the study area (see

Fig. 1): grid cells 1 and 3 are selected as they show the high-

est wet bias between WRF and the REGNIE. Grid cell 2 is

located in the region where a dry bias was generated by the

WRF in summer and autumn and a wet bias was generated

in winter. Grid cell 4 represents a case where the agreement

between uncorrected model data and REGNIE observations

is already good (see Fig. 12).

Figure 13 shows mean monthly precipitation derived for

the validation period (1986–2000) for the selected grid

cells 1–4 (see Fig. 1 for their exact locations). The number

of the respective grid cell is noted in the upper left corner.

The results for grid cell 1 in Fig. 13 confirm the fact that

the RCM model results strongly overestimate the precipita-

tion amount in that case. The annual variability of the obser-

vations is in general reproduced, except for a strong increase

of the mean precipitation in August that is not found in the

observations. This behavior is found also for grid cell 3 in-

dicating a relatively too dry summer season. For grid cells 1

and 3, the Copula-based correction is found to be able to cor-

rect for the overestimation of precipitation amounts as well as

for the effect of a too strong decrease of precipitation in Au-

gust. However, the correction is introducing a slight under-
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Figure 12. Relative bias between uncorrected (left panels) and corrected (right panels) WRF mean daily precipitation and the REGNIE data

set in Germany for the different seasons (spring – MAM, summer – JJA, autumn – SON, winter – DJF, from top to bottom). The results are

derived for the validation time period (1986–2000).
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Figure 13. Comparison of bias-corrected WRF mean monthly precipitation (blue) with REGNIE (green) and original WRF data (red) for the

selected four pixel 1–4 in the validation period from 1986 to 2000. The number of the respective grid cell is noted in the upper left corner of

each plot.

estimation mainly during summer and autumn instead. For

grid cell 2, the correction shows a good performance by de-

creasing the rainfall amounts when the RCM is overestimat-

ing, and increasing the amounts when the RCM has under-

estimated it. The correction reduced the wet bias efficiently,

while the dry bias is corrected less efficiently. The effective-

ness of this correction is also highlighted by an analysis of

the results for grid cell 4. Even if the performance of WRF

was already satisfactory, the algorithm was still able to fur-

ther improve the results.

Finally, in order to investigate the spatial coherence of

the bias-corrected precipitation fields, the sequence of three

selected days (from 9 to 11 January 1986) are exemplarily

shown in Fig. 14. The left column from top to bottom are the

observed precipitation fields for these 3 days. In the middle

are the uncorrected (original) WRF simulated precipitation

fields and the right column indicates the bias-corrected WRF

precipitation fields: while correcting the absolute precipita-

tion values, the spatial coherence of the precipitation patterns

are retained after the application of the bias correction.

4.4 Comparison of Copula-based bias correction to the

quantile mapping method

The quantile mapping method is often used in bias correc-

tion of RCM derived precipitation (Dosio and Paruolo, 2011;

Gudmundsson et al., 2012). This method corrects the bias

by rescaling the values of the RCM so that the distribution

of the RCM matches that of the observations. It corrects all

moments of the RCM precipitation distribution under the as-

sumption of a perfect dependence among the ranks. This full

dependence assumption is limited: in our study area, the rank

correlation between the data sets varies between 0.3 and 0.6

(see Fig. 15).

The quantile mapping correction has been performed for

comparison to the Copula-based approach. The RMSE be-

tween the observed (REGNIE) and bias-corrected modeled

data is calculated for both the Copula-based correction and

the quantile mapping method. The original RMSE (between

REGNIE and WRF) is also computed as a reference. For

the Copula-based approach, we calculated the RMSE for

all the simulations with respect to the mean, median and

mode value. The changes of the RMSE by different correc-

tions over the study area are shown in Fig. 16. The Copula-

based correction derived from the mean regression reduces

the RMSE significantly with an average of −12 % over the

domain. The Copula-based correction derived from the me-

dian also reduces the RMSE, but to a lesser degree. The cor-

rection derived from Copula-based mode regression reduces

the RMSE, but results in an increase of the RMSE in some

regions. The same holds true for the quantile mapping ap-

proach. This is in agreement with our previous results (see

Fig. 10) that the Copula-based correction derived from the

mean regression performs best. Therefore, in the following

analyses, the results focus on the Copula-based mean regres-

sion approach.

To further assess the performance of the Copula-based

method, additional performance measures are analyzed. The

RMSE for different magnitudes of observed precipitation

(i.e., a quantile RMSE analysis) is done for the selected four
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REGNIE WRF B.C. WRF

Figure 14. Daily precipitation fields over Germany for three consecutive days from 9 to 11 January 1986.

grid cells (see Fig. 1). The results from the validation pe-

riod are shown in Fig. 17. The RMSE in different quantiles

are represented by RMSE0.1, RMSE0.2, . . . , RMSE1.0, while

the subscript indicates the magnitude level. RMSE0.1 eval-

uates the errors in the dry part of the observation distribu-

tion, implying the (0,1) errors. From RMSE0.2 to RMSE1.0

the RMSE are calculated for equally spaced probability in-

tervals of the observed empirical distribution of wet days.

For example, RMSE1.0 indicates the errors in the magnitude

of the 10 % highest events. As it can be seen from Fig. 17,

the Copula-based correction performs equally or even better

in terms of the RMSE in most of the quantiles.
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Figure 15. The rank correlations between RCM and REGNIE pre-

cipitation over the domain in the validation period from 1986 to

2000.

Furthermore, we also investigated the percentage of the

corrected time steps that are closer to the observations com-

pared to the quantile mapping method. The results are shown

in Fig. 18. The values indicate the percentage of the suc-

cessful corrections (i.e., closer to the observations) by the

two bias correction methods. It can be seen that the results

of the quantile mapping correction strongly depends on the

rank correlation (see Fig. 15), while the Copula-based cor-

rection provides a stable correction efficiency over the entire

domain. The average percentages of the successful correc-

tion are 55 % for the Copula-based correction and 46 % for

the quantile mapping correction, respectively.

5 Summary and conclusions

In this study, a Copula-based stochastic bias correction tech-

nique for RCM output is introduced. The strategy of this

method is the identification and description of underlying

dependence structures between RCM and observed precip-

itation and its application for bias correction. Copulas are

able to capture the nonlinear dependencies between variables

(between RCM and gridded observed precipitation) includ-

ing a reliable description of the dependence structure in the

tails of the joint distribution. This is not possible, e.g., by

using a Gaussian approach or methods based on the Pear-

son’s correlation coefficient. Yet, another albeit more practi-

cal advantage of this approach is that the univariate marginal

distributions can be modeled independently from the depen-

dence function, i.e., the Copula. This provides more flexi-

bility to construct a correction model by combining differ-

ent marginal distributions and Copula functions, as many

parametric univariate distribution and theoretical Copulas are

available.

The conditional distribution derived from fitted Copula

model forms the basis of the correction procedure. It pro-

vides the possibility to access all the possible outcomes of

the corrected value and additionally gives the information of

a PDF for each corrected time step.

This study is an extension of the two former studies of

Laux et al. (2011) and Vogl et al. (2012) by applying the

Copula-based bias correction technique to high-resolution

RCM precipitation output and a gridded observation prod-

uct. Compared to those two studies, this study is based on

the following framework:

– The grid cell base is worked on and the Copula model

(marginal distributions and Copula function) is esti-

mated for each grid cell separately rather than selecting,

e.g., the most dominant model. Therefore, the statisti-

cal characteristics of observed (REGNIE) and modeled

data (WRF) and their dependence structure are visual-

ized spatially and analyzed for the first time.

– The BIC, as well as the K–S test, is implemented for the

marginal goodness-of-fit test. From previous studies we

found that very large sample sizes may bias the result of

the K–S test, leading to the rejection of the null hypoth-

esis (the sample comes from the selected distribution)

most of the time.

– The Copula model is estimated for every season sep-

arately. Thus, different precipitation geneses types are

not masked by the same models. This, in general, leads

to stronger dependencies and more robust models.

Positive REGNIE and WRF pairs of 15-year daily precipi-

tation in the calibration period (1971–1985) are used to es-

tablish the Copula models. The results indicate discrepan-

cies between the fitted marginal distributions of REGNIE

and WRF-EAR40. The estimated marginal distributions for

WRF show distinct spatial (strongly related to the orography

of the domain) and seasonal patterns (clear differences be-

tween summer and winter, similar patterns for spring and fall

season). The distributions are more scattered for the REG-

NIE data.

For the dependence function it was detected that the fit-

ted Copula families vary both in space and time (seasonally).

The fact that different dependence structures exist for the dif-

ferent seasons indicates that the method corrects for differ-

ent dominating precipitation types, i.e., convective and strat-

iform precipitation.

The assumption of this approach is that the dependence

structure between observed and modeled precipitation is sta-

tionary over the period of interest. For the investigation of

the spatial performance, the Copula correction based on the

mean value is applied. The validation results show that the

proposed approach successfully corrected the errors in RCM
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Copula (mean regression) Copula (median regression)

Copula (mode regression) Quantile Mapping

Figure 16. The changes of the RMSE in the validation period (1986–2000) by different bias correction methods. The green color indicates a

decrease of the RMSE, while the ocher color implies an increase of the RMSE.

derived precipitation. It is also found that the correction

method performs better for overestimation than for underesti-

mation. By investigating the spatial coherence, the proposed

method is found to be able to preserve the spatial structure

of the WRF model output. This is due to the fact that the

Copula-based approach is conditioned on the WRF simula-

tion. The method adjusts the value of the WRF precipitation

according to the fitted Copula model. Even though the Cop-

ula models are estimated for each grid cell, the spatial co-

herence is captured by the Copula model as both the Copula

families as well as the marginal distributions are also spa-

tially clustered.

When comparing to the quantile mapping correction, the

Copula-based method has an improved performance in re-

ducing the RMSE. It is also found that the Copula-based

method allows for a better correction with respect to the per-

centage of the time steps that are closer to the observations

after the correction. The Copula-based method is able to pro-

vide a stable correction efficiency over the entire domain,

even if the rank correlations between the RCM and observed

precipitation are low.

Apart from traditional approaches, such as the quantile

mapping which is based on a bijection transfer function, the

Copula-based stochastic bias correction technique provides

the information of the full PDF for each individual time step.

This additionally provides a quality criterion for the bias cor-

rection, e.g., expressed as the spread of the PDF in form of

the inter-quantile range. Subsequent modelers using RCM

derived precipitation data are potentially enabled to make use

of the full PDF, especially if they are interested in other sta-

tistical moments or in estimating uncertainties arising from

this approach.

In this study, the Copula-based bias correction is only ap-

plied for past precipitation time series. The method would

need further modifications if applied to future climate sce-

narios. A suitable algorithm must be able to reflect changes

in the marginal distributions as well as the joint distributions,
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Figure 17. The root mean square errors (RMSE) and the root mean square errors for specific probability intervals (RMSE0.1,

RMSE0.2, . . . , RMSE1.0) for different methods. The selected four pixels are the same as in Fig. 13. The black solid line indicates the

errors without correction. The results are derived from the validation period from 1986 to 2000.

Figure 18. The percentage of the corrections that are closer to the observations. Left panel: Copula-based correction (mean regression); right

panel: quantile mapping correction. The results are derived from the validation period from 1986 to 2000.

taking into account possible non-stationarity of precipitation

time series.
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