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Abstract. Remote sensing, in situ networks and models are

now providing unprecedented information for environmen-

tal monitoring. To conjunctively use multi-source data nomi-

nally representing an identical variable, one must resolve bi-

ases existing between these disparate sources, and the char-

acteristics of the biases can be non-trivial due to spatio-

temporal variability of the target variable, inter-sensor differ-

ences with variable measurement supports. One such exam-

ple is of soil moisture (SM) monitoring. Triple collocation

(TC) based bias correction is a powerful statistical method

that is increasingly being used to address this issue, but is

only applicable to the linear regime, whereas the non-linear

method of statistical moment matching is susceptible to unin-

tended biases originating from measurement error. Since dif-

ferent physical processes that influence SM dynamics may be

distinguishable by their characteristic spatio-temporal scales,

we propose a multi-timescale linear bias model in the frame-

work of a wavelet-based multi-resolution analysis (MRA).

The joint MRA-TC analysis was applied to demonstrate

scale-dependent biases between in situ, remotely sensed and

modelled SM, the influence of various prospective bias cor-

rection schemes on these biases, and lastly to enable multi-

scale bias correction and data-adaptive, non-linear de-noising

via wavelet thresholding.

1 Introduction

Global environmental monitoring requires geophysical mea-

surements from a variety of sources and sensors to close the

information gap. However, different direct and remote sens-

ing, and model simulation can yield different estimates due

to different measurement supports and errors. Soil moisture

(SM) is one such variable that has garnered increasing in-

terest due to its influences on atmospheric, hydrologic, geo-

morphic and ecological processes (Rodriguez-Iturbe, 2000;

GLACE Team et al., 2004; Legates et al., 2011). It also rep-

resents an archetype of the aforementioned problem, where

in situ networks, remote sensing and models jointly provide

extensive SM information.

In situ networks usually provide point-scale measure-

ments; satellite retrieval of shallow SM at a mesoscale foot-

print of 10–50 km must resort to a homogeneity or dominant-

feature assumption, whereas modelled SM depends on the

simplified model parameterization, and the quality, resolu-

tion and availability of forcing data. Subsequently, the spatial

(lateral and vertical) variability of SM can lead to systemat-

ically different measurements regarded as biases. Descrip-

tive or predictive spatial SM statistics can be used to relate

point-scale to mesoscale estimates (Western et al., 2002), but

in situ data are often limited in describing the spatial het-

erogeneity of SM. However, without bias correction, it is

not possible to conduct meaningful comparisons between in

situ, satellite-retrieved and modelled SM for validation (Re-

ichle et al., 2004) and optimal data assimilation (Yilmaz and

Crow, 2013). Standard bias correction methods are now in-

creasingly being applied to SM assimilation in land models

(Reichle et al., 2007; Kumar et al., 2012; Draper et al., 2012),

numerical weather prediction (Drusch et al., 2005; Scipal

et al., 2008a) and hydrologic models (Brocca et al., 2012).

Reichle and Koster (2004) proposed matching statistical mo-

ments of the data, while linear methods based on simple re-

gression and matching dynamic ranges have also been con-

sidered (e.g. Su et al., 2013a). But these methods can induce

artificial biases in the signal component of the corrected data

as the error statistics were ignored; this also suggests a con-

nection that the issue of bias correction is inseparable from

that of error characterisation (Su et al., 2014a).

Triple collocation (TC) (Stoffelen, 1998), which is a form

of instrument-variable regression (Wright, 1928; Su et al.,
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2014a), is increasingly being used to address these issues in

oceanography (Caires and Sterl, 2003; Janssen et al., 2007)

and hydrometeorology (Scipal et al., 2008b; Roebeling et al.,

2013). In particular, it was used to estimate spatial point-to-

footprint sampling errors (Miralles et al., 2011; Gruber et al.,

2013), and correct biases in SM (Yilmaz and Crow, 2013).

Based on an affine signal model and additive orthogonal er-

ror model, it assumes that representativity differences are

manifested as additive and multiplicative biases. But these

assumptions may have limited validity, as the temporal be-

haviour of SM may vary across different spatial scales, driven

by a continuum of localised and mesoscale influences (e.g.

Entin et al., 2000; Mittelbach and Seneviratne, 2012). Specif-

ically, the coupling of SM with precipitation and evapora-

tive losses (controlled by temperature, humidity, wind speed)

varies across spatial scales. This can be more pronounced

at places where surface hydrological features (e.g. topog-

raphy, infiltration rate and storage capacity) are highly het-

erogeneous. Thus, the biases are likely to be non-systematic

across short and long timescales on different spatial scales

and errors are non-white, undermining the utility of the affine

model. One possible remedy is to apply bias correction, ei-

ther TC or statistical-moment matching, only to anomaly

time series (Miralles et al., 2011; Liu et al., 2012; Su et al.,

2014a), but it remains unclear how these methods affect the

signal and noise components in the corrected data. Alterna-

tively a moving time window can be used to examine the

time-varying statistics of time series (Loew and Schlenz ,

2011; Zwieback et al., 2013; Su et al., 2014a).

Given the possible (time)scale dependency in biases and

errors, we propose an extension to TC analyses to in-

clude wavelet-based multi-resolution analysis (MRA) (Mal-

lat, 1989) as a framework to (1) provide a fuller description

of the temporal scale-by-scale relationships between coinci-

dent data sets; (2) study the influence of various prospec-

tive bias correction schemes; and (3) achieve multi-scale bias

correction. To avoid excessive changes in the noise charac-

teristics upon correction, TC can be further combined with

the wavelet thresholding (Donoho and Johnstone, 1994) to

(4) achieve non-linear, data-adaptive de-noising, with con-

trast to existing linear schemes (Su et al., 2013b). The tech-

niques were applied to SM data from an in situ probe, satel-

lite radiometry and land-surface model, but the proposed

methods are generally enough to be applied to other geophys-

ical variables.

The paper is organised as follows. Section 2 presents the

study area over Australia and the SM data sets used in our

pilot studies. Section 3 explains the theoretics behind MRA

and applies it to SM, following by examination of scale-

by-scale statistics in Sect. 4. Section 5 presents a new joint

MRA-TC analysis framework, which is then applied to ex-

amine the influence of different bias correction schemes in

Sect. 6. Importantly, both Sects. 4 and 6, using wavelet cor-

relation, wavelet variance and scale-level TC analyses, pro-

vide evidence to support the need to extend traditional bulk

and anomaly based analyses. Section 7 demonstrates the use

of wavelet thresholding to de-noise satellite SM. Section 8

offers our concluding remarks.

2 Study areas and data sets

We consider in situ, satellite-retrieved and modelled SM

over Australia. For an in-depth study, we consider point-

scale and pixel-scale SM estimates at K1 monitoring site

(147.56◦ longitude, −35.49◦ latitude) situated at Kyeamba

Creek catchment, southeastern Australia (Smith et al., 2012;

Su et al., 2013a). The in situ SM (INS as shorthand) was

sampled at 30 min intervals, 0–8 cm depth using a time-

domain interferometer-based Campbell Scientific 615 probe

during November 2001–April 2011. The region experiences

a temperate (Cfb) climate characterised by seasonally uni-

form rainfall but variable evapotranspiration forcing, so that

SM varies between dry in summer (December–February) to

wet in winter (June–August). The creek is located on gentle

slopes with rain-fed cropping and pasture, and the soil varies

from sandy to loam. Figure 1 illustrates the land cover, ele-

vation, monthly rainfall accumulation (from 2002 to 2011),

and clay content over the region.

The satellite SM was retrieved by AMSR-E (Advanced

Microwave Scanning Radiometer for Earth Observing Sys-

tem; AMS) of the AQUA satellite. The retrieval is based

on an inversion of the forward radiative transfer model of a

vegetation-masked soil surface, relating observed brightness

temperature to soil dielectric constant estimates. A dielectric

mixing model is then used to related the dielectric constant to

volumetric SM. The combined C/X-band 1/4◦× 1/4◦ grid-

ded, half-daily (∼ 1.30 a.m./p.m. LT – local time) version 5

product (July 2002–October 2011) is based on the Land Pa-

rameter Retrieval Model (Owe et al., 2008). C-band (X-band)

has a shallow sampling depth of ∼ 1–2 cm (∼ 5 mm), al-

though it is mostly C-band data over Australia due to rela-

tively small radio frequency interference. Given the 1–2 day

revisit times of the satellite, there is a significant number of

missing values in the AMS data. However, we found that

(not shown) over 99 % (95 %) of the gaps over Australia

are ≤ 1.5 day (≤ 1 day) long. For use in wavelet analysis

(Sect. 4), a one-dimensional (1-D in time) interpolation al-

gorithm (Garcia, 2010) based on discrete cosine transform

(Wang et al., 2012) was applied to infill gaps of lengths

≤ 5 days in AMSR-E. Other interpolation methods were tri-

alled; e.g. linear interpolated AMSR-E shows great similari-

ties to the DCT interpolated data, while cubic spline interpo-

lation leads to spurious peaks.

The modelled SM is taken from MERRA (Modern Era

Retrospective-analysis for Research and Applications) –

Land produced by the Catchment land surface model GEOS

version 5.7.2. The MERRA atmospheric re-analysis is driven

by a vast collection of in situ observations of atmospheric and

surface winds, temperature, and humidity, and remote sens-
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Figure 1. Spatial variability of land surface and rainfall over

Kyeamba Creek. The cross denotes the location of the K1 moni-

toring station, and the dashed (solid) box is the pixel area of AMS

(MER).

ing of precipitation and radiation (Rienecker et al., 2011).

The MERRA land-only fields were post-processed by reinte-

grating a revised Catchment model with more realistic pre-

cipitation forcing to produce the MERRA-Land (MER as

shorthand) data set (Reichle et al., 2011). The resultant SM

field corresponds to the hourly averages of the uppermost

layer (0–2 cm) and is gridded on a 2/3◦× 1/2◦ grid.

The three data are co-located spatially via nearest neigh-

bour and temporally at around the satellite overpass times of

1.30 a.m./p.m. LT. Their time series are plotted in blue in the

first panels of Fig. 2. While co-located, the three methods ob-

served SM dynamics over different locations and areas of the

catchment (Fig. 1), due to differences in their pixel resolu-

tions and alignments.

Continental-scale AMS and MER data over Australia are

also considered. The continent has great variability in cli-

matic and land surface characteristics. Most of the northern

regions experience a tropical savannah (Aw) Köppen–Geiger

climate as classified by Peel et al. (2007), central Australia

is largely arid desert (BWh), and eastern mountainous ar-

eas have a temperate climate with no dry seasons (Cf). The

southwestern regions similarly have a temperate climate, but

with dry summers (Cs). These temperate regions have higher

vegetation compared to the tropical north with moderate veg-

etation cover.

3 Multi-scale decomposition of soil moisture

The observed Kyeamba SM (denoted by blue curves p in

Fig. 2) exhibits a long-term cycle of wet and dry years due

to the El Niño–Southern Oscillation and seasonal and diur-

nal cycles originating from the fluctuations in vegetation and

solar radiation, and experiences transient decay from various

loss mechanisms, and abrupt increase from individual rain-

fall events. Their influences on observed SM can vary with

the measurement methods. To unravel these differences, we

turn to wavelets as the analysing kernels to study variability

on individual broad-to-fine timescales. The scale under in-

vestigation is temporal for the rest of the paper, unless stated

otherwise.

The 1-D orthogonal discrete wavelet transform (DWT) en-

ables MRA of a time series p(t) of dyadic lengthN = 2J and

a regular sampling interval 1t by providing the mechanism

to go from one resolution to another via a recursive function

p
(a)
j−1(t)= p

(a)
j (t)+pj (t), (1)

with an expectation value E(p
(a)
j )=E(p)=p

(a)
J (t)=µp

and E(pj )= 0, where the superscript (a) labels approxi-

mated representations. The integer j ∈ [1, J ] labels the scale

of analysis, with j = 1 (J ) denoting the finest (coarsest)

scale, and serves to define a spectral range in a spectral

analysis. The recursion therefore relates an approximation or

coarse representation p
(a)
j of the signal at one resolution to
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Figure 2. MRA of INS, AMS and MER SM at Kyeamba. p denotes the original time series, pj the detail time series, and p
(a)
j

the approxi-

mation time series. Grey shadings are > 5 day data gaps, red dots superimposed in p
(a)
6

are monthly means of p, and magenta lines are trend

lines fitted to p
(a)
8

.

that at a higher resolution p
(a)
j−1 by adding some fine-scale

detail denoted by pj . The end of the recursion chain leads

to reconstruction of the original time series with the equality

p
(a)
0 (t)=p(t), and a multi-resolution decomposition of p as

p(t)= p
(a)
j0
(t)+

j0∑
j=1

pj (t) (2)

=

nj0∑
k=1

p
(a)
j0k
φjk(t)+

j0∑
j=1

nj∑
k=1

pjkψjk(t) (3)

under j0 levels of decomposition. Loosely speaking, for

a half-daily time series, the detail time series pj for

j = 1, 2, 3, . . . corresponds to (fine-scale) dynamics observed

on 1 day (1 d), 2 d, 4 d, etc., timescales, while the approxima-

tion time series p
(a)
j for j = 1, 2, 3, . . . contains (broad-scale)

dynamics on scales longer than 1 d, 2 d, 4 d, etc.

In Eq. (3), each of these components is further decom-

posed into a linear summation of nj =N/2
j number of ba-

sis functions φjk and ψjk with scale of variability 2j 1t and

temporal location k 2j 1t . The weighting or wavelet coeffi-

cients, determined via DWT of p, measure the similarity be-

tween p and the bases via the inner products p
(a)
jk ≡〈p, φjk〉

and pjk ≡〈p, ψjk〉. Hence the coefficients indicate changes

on a particular scale and location, and enable the above

scale-by-scale decomposition. Note that the bases are de-

fined in L2(R) space and satisfy orthonormality conditions

prescribed by 〈φjk, φj ′k′〉= δjj ′ δkk′ , 〈ψjk, ψj ′k′〉= δjj ′ δkk′ ,

〈φjk, ψj ′k′〉= 0, where δ is the Kronecker delta function. For

detailed expositions of the mathematical theory of wavelets

and MRA, consult Daubechies (1992) and Mallat (1989).

The detail and approximated time series of Kyeamba’s SM

are illustrated in subsequent panels of Fig. 2, analysed using

the Daubechies D(4) wavelet for j0= 8. On the finest scales

j = 1–2 (1–2 d), the details show variability due to rainfall

wetting, and over the next set of scales j = 2–5 (2–16 d) they

describe transient moisture loss. The p
(a)
6 (≥ 32 d) compo-

nent accounts for several scales of fluctuations over seasonal,

inter-annual, and long-term timescales. For comparison, the

standard monthly average analyses of the original time se-

ries p are superimposed on p
(a)
6 (red dots).

The differences between the details of the three SM are

apparent on the finest scales, with AMS and MER showing

greater variability and amplitude compared to INS. However,

the similarity of their temporal patterns, in both details and

approximations, grows with increasing scales j > 3 (see also

Fig. 3). Fitting a trend line to their coarsest scale approxi-

mation series suggests p
(a)
8 that the trends (magenta lines)

in the three data show different gradients, with the trend in

INS showing the smallest positive gradient. The differences

in dynamic ranges of their detail and approximation time se-

ries, together with their mismatch in shape and trend, are in-

dicative of multiplicative biases and noise.
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Figure 3. Comparisons of correlation R and SD between INS, AMS and MER at scale levels. (a) compares the correlation between their

detail time series pj , and (b) compares between their approximation time series p
(a)
j

. Scale j > 8 corresponds to p
(a)
8

, and “All” refers to

statistics of the original time series.

4 Multi-scale statistics

MRA enables direct comparisons between any two represen-

tations p={X, Y } of a given variable f (e.g. SM) on vari-

ous temporal scales independently, owing to the orthonormal

properties of wavelet bases. It also offers an additional de-

gree of freedom in temporal positions (using the index k) to

allow better representation of local variability. By subsetting

the wavelet coefficients over certain range of k values, non-

stationary statistics can also be examined. However, in this

work, we consider only variability across j and assume sta-

tionarity on each scale. Pearson’s linear correlation R and

variance analyses (see Appendix A) are performed on the

Kyeamba’s INS, AMS and MER SM (as p in Eq. 2) de-

tail (pj ) and approximation (p
(a)
j ) time series in Fig. 3. The

strength of MRA is that since the detail time series pj on

a given scale j does not contain variations on timescales

greater than j , the weak-sense stationarity conditions can be

better met.

Before proceeding, we recall that weak R indicate the

presence of noise and/or the presence of non-linear corre-

lation between any pairs of the data, while differences in

standard deviation can also indicate the presence of noise,

but also an extraneous signal and/or multiplicative bias. Typ-

ically one invokes a linearity assumption and assumes an

affine relation between the signal components of the differ-

ent data and an additive noise model (more later in Sect. 5),

so that the differences between the data are attributed only

to an overall additive bias E(X)−E(Y ), multiplicative bi-

ases, and noise. While we adopt this simplistic viewpoint

here, its limitations to properly account for variable lateral

and vertical measurement supports should be noted. For in-

stance, short-timescale SM dynamics show increasing atten-

uation in amplitude, but are also delayed in time in deeper

soil columns (e.g. Steelman et al., 2012). Additionally, SM is

physically bounded between field capacity and residual con-

tent and these thresholds can vary with soil texture, location

and depths. These effects can give rise to temporal autocor-

relation in errors and undermine the linearity assumption be-

tween coincident measures. Finally, the non-stationary char-

acteristic of noise in satellite SM (Loew and Schlenz , 2011;

Zwieback et al., 2013; Su et al., 2014a) due to e.g. dynamical

land surface characteristics such as soil moisture (Su et al.,

2014b), is not treated here.

With these considerations, we first examine the corre-

lations between the three data. For the detail time se-

ries (Fig. 3a), their correlations are lowest on the finest

scales (R< 0.2) but generally improves with scale (R> 0.5),

as noted previously. There is however no data pair that

shows consistently higher R than other pairs: R(INSj ,

AMSj )>R(INSj , MERj ) on coarser scales j = 4–6, 8,

whereas R(INSj , MERj ) is highest on other scales. Com-

paring their approximation time series (Fig. 3b), R between

AMS and MER are higher than the other two pairs, ranging

from (j = 2) 0.8 to 0.92 (j = 8), largely due to the strong cor-

relation between their respective p8 and p
(a)
8 . In other words:

on one hand, AMS and MER both show skill in representing

some aspects of the in situ SM temporal variability; on the

other hand, stronger AMS-MER correlations on the coars-

est (temporal) scales and their mesoscale spatial resolutions

would indicate lesser representativeness of in situ measure-

ment on these spatio-temporal scales.

Furthermore, we observe that R(p
(a)
j , q

(a)
j ) reduces with

decreasing j as more components are added to the recon-

struction of p
(a)
j and q

(a)
j . The inclusion of noisy AMS1 in

the makeup of AMS leads to a drop in R(INS, AMS) and

R(AMS, MER). Aside from including more noise in the

approximation time series, adding components with differ-

ent multiplicative biases (more later in Sect. 6) can also di-

minish the correlations. The scale dependence of multiplica-

tive biases and added noise can contribute to the contrasting

results of applying TC to raw versus anomaly SM time se-

ries in Draper et al. (2013). In particular, given the presence

of noise in pj for j ≥ 7, error analysis of the anomaly SM

(i.e. in pj for j ≤ 6) will under-estimate the total error in the

raw data p.

Next, Fig. 3c plots their wavelet spectra that de-

compose total variance var(p) into individual scales
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Figure 4. Difference in SD (in units of m3 m−3) and correlation R between AMS and MER for (a, e) all and (rest) on selected timescales.

var(pj )≡ std(pj )
2. The three data show clear differences in

their standard deviation (SD) profile, both in the fine and

coarse scales. As already noted, both noise and/or multiplica-

tive biases are possible contributing factors such that noise

can inflate the variance, while biases can cause suppression

or inflation. Following the visual inspection of Fig. 2 and

the noted weak correlations R(INSj , AMSj ) and R(INSj ,

MERj ) at small j , it can be argued that there is significant

noise in AMS (for j = 1–3) and MER (j = 1). This in turn

leads to their larger SD cf. INS. On coarser scales where

R values are significantly higher, the differences in SD may

be attributed more to multiplicative biases. For instance for

their p8 and p
(a)
8 components, AMS and MER shows larger

SD and thus positively biased relative to INS.

Figure 4 extends the variance and correlation analyses be-

tween AMS and MER to the Australian continent using their

coincident data from the period July 2002–October 2011.

The spatial maps of SD differences (1SD) and correlations

show significant variability in the statistics with timescales

and spatial locations. On the finest scale j = 1, the similar-

ity between the difference map (Fig. 4a) and the TC-derived

error map of AMSR-E (see Fig. 6a in Su et al., 2014a) in

terms of spatial variability and the low AMS-MER correla-

tions (Fig. 4f) support our observation that the detail time

series AMS1 is noise dominated. Weak negative correlation

between AMS1 and MER1 can also be observed over arid re-

gions. By contrast, owing to the strong correlation R∼ 0.6–

0.9 (Fig. 4g and h) on the coarse scales, the causes of 1SD

(Fig. 4c and d) are related to biases. In particular, at j > 8,

the 1SD map in Fig. 4d also suggests a possible association

between biases and climatology or land cover characteristics,

with negative biases dominating northern tropical (Aw) and

semi-arid (BS) regions, and positive biases in temperate, veg-

etated regions (Cs and Cf) over southeastern and southwest-

ern Australia. The visual comparisons between scale-level

1SD and bulk 1SD enable stratification of the continent to

central arid regions of higher noise identified in j = 1 and 2

and temperate (tropical) regions, with a positive (negative)

bias seen on coarser scales.

5 Joint MRA-TC analysis

In order to quantify observed differences between the data,

we propose a scale-dependent linear model: a multi-scale

(MS) model that distinguishes the signal components of the

two data X and Y via an overall additive bias and a set of

positive scaling coefficients αp,j , α′p, and assumes an addi-

tive and zero-mean independent but non-white noise model

εp(t). Focusing on the zero-mean signal and noise compo-

nents, the “structural relationship” model reads

p′(t)= α′pf
′(t)+ ε′p(t), (4)

pj (t)= αp,jfj (t)+ εp,j (t), (5)

for p′=p
(a)
j0
−E(p) and f = f ′−E(f ), where the signal

and noise components have been decomposed into their

multi-resolution forms. The standard assumptions of or-

thogonal and mutually uncorrelated errors are used, so that

the covariance cov(fj , ep,j )= 0, cov(f ′, e′p)= 0, cov(ep,j ,

eq,j )= 0, cov(ep,j , e′q )= 0 and cov(e′p, e′q )= 0 for p 6= q,

p, q,∈ {X, Y }. The differences in the values of the scal-

ing coefficients between data, i.e. αX,j 6=αY,j , signify multi-

plicative biases on individual scales. To see this, we express

their mean-squared deviation MSD≡E[(Y −X)2] in terms

of variables in Eqs. (4) and (5) to arrive at
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MSD= (µX −µY )
2
+

J∑
j

[(
αY,j −αX,j

)2
var
(
fj
)

+var
(
εX,j

)
+ var

(
εY,j

)]
. (6)

The first term is the additive bias, and the summation con-

sists of scale-specific multiplicative biases proportional to

(αX,j −αY,j )
2 and noise contributions from each datum. The

interpretation of the discrepancies betweenX and Y can vary

depending on the time period of the data and the analysis, and

the adopted signal/noise model. By using the entire 9 year

record of INS, AMS and MER data in MRA, the MS model

does not observe a time-varying additive bias (e.g. from using

the moving-window approach of Su et al., 2014a) or autocor-

related errors (from using the lagged covariance in Zwieback

et al., 2013). Rather, MRA and the MS model enable a de-

scription of the systematic differences based wholly in terms

of multiplicative biases at individual timescales, and the ran-

dom differences in terms of additive noise. Specifically, this

contrasts with the short time-window approach (e.g. ≤ 32 d),

where multiplicative biases existing on coarse scales (p
(a)
6 )

will manifest as both time-varying additive and multiplica-

tive biases.

Importantly, the model allows for different scaling co-

efficients between scales, i.e. αp,j 6=αp,j ′ for j 6= j ′, as a

form of non-linearity with f . The equality αp,j =α
′
p =αp

is therefore a special case of (bulk) linearity. As our focus

of the above model is the multiplicative biases and noise, for

convenience of notation, we remove the mean of theX and Y

prior to MRA and bias correction. Furthermore, without the

loss of generality, we choose X as the reference henceforth

and let αX,j , α′X = 1.

By using a third independently derived representation (Z)

of f , TC enables estimation of the required scaling coeffi-

cients and noise std(εp,j ) (Appendix B). As we will see later,

these estimates are needed for bias correction and de-noising.

Within the operating assumptions of TC, TC estimates are

unbiased and consistent; that is, the estimated α̂Y,j =αY,j as

the asymptotic limit. However, TC’s superiority is dependent

on the availability of a strong instrument and a large sam-

ple for statistical analyses (Zwieback et al., 2012; Su et al.,

2014a). Standard linear estimators, namely ordinary least-

square (OLS) regression and variance matching (VAR), can

be considered as substitutes, although they are biased estima-

tors of α when X and Y are both noisy (Yilmaz and Crow,

2013; Su et al., 2014a), e.g. OLS yields α̂Y,j <αY,j . In sum-

mary, we propose that combining these estimators with MRA

via the MS linear model enables investigation into the distri-

bution of the multiplicative biases and additive noise over j ,

and their response to various bias correction schemes.

6 Multi-scale analysis of bias correction

Consider now the bias correction of Y to produce a cor-

rected datum Y ∗ that “matches” X. Different interpretations

of a “match” and assumptions about signal and noise statis-

tics lead to different bias correction schemes. To describe

matching, there are different choices of optimality criterion.

The first is based on matching the statistics of the signal-

only component of Y ∗ to that of X. This approach requires

consistent estimation of slope parameters α’s and the resul-

tant statistics of X and Y ∗ may differ due to different noise

statistics. The second is based on the matching of the statis-

tical moments between Y ∗ and X (e.g. VAR matching), al-

though the statistics of their constitutive signal components

may differ for the same reason. The third is based on the

minimum-variance principle of minimizing the least-square

difference between Y ∗ and X (i.e. the OLS estimation), but

as already noted, the estimator becomes inconsistent when

there are measurement errors in X and Y .

Following our theoretical model in Sect. 5, we define our

optimality criterion based on the first criterion of matching

the first two moments of the signal components in X and Y

so that Y ∗ is suitable for bias-free data assimilation. In partic-

ular, Yilmaz and Crow (2013) have shown that residual mul-

tiplicative biases due to a sub-optimal bias correction scheme

will cause filter innovations to contain residual signal and

sub-optimal filter performance. Thus, within the paradigm of

the MS model, our goal of bias correction is to minimise the

difference |αY ∗,j − 1| for αX,j = 1, so that the multiplicative

bias terms in Eq. (6) are eliminated.

– Bulk linear rescaling assumes bulk linearity between X

and Y so that the correction equation is

Y ∗ =
Y

α̂Y
, (7)

where α̂Y is given by TC for our objective. When the

bulk linearity is satisfied, this approach ensures that the

statistical properties (SD and higher moments) of the

signal components in X and Y ∗ are identical. Linear

rescaling using α̂Y values estimated by OLS and VAR

matching have previously been considered by e.g. Su

et al. (2013a); but due to error-in-variable biases, they

can induce artificial biases in the signal component of

Y ∗ even if the bulk linearity condition is valid.

– Bulk cumulative distribution function (CDF) matching

assumes non-linearity between X and Y and transforms

Y ∗ so that (Reichle and Koster, 2004)

cdf
(
Y ∗
)
= cdf(X), (8)

where cdf(◦) computes the CDF. This ensures that the

mean, SD, and higher statistical moments of X and Y ∗

are identical, but the statistical properties of their sig-

nal and noise components that make up X and Y ∗ are
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not necessarily identical. In particular, when the relative

signal and noise statistics in the two data are different,

CDF matching leads to artificial biases between the sig-

nal components in X and Y ∗. As with VAR matching of

first two moments, the CDF counterpart is expected to

contain extraneous contribution of the noise variances in

the mapping of the second moment, as well as at higher

moments (Su et al., 2014a). The issue can be exacer-

bated by variable signal and noise statistics on different

scales.

– Anomaly/seasonal (A/S) linear rescaling allows biases

between X and Y to be different on two scales of vari-

ation. In practice, the useful information content in ob-

servations is primarily based on their representation of

anomalies, where observations are assumed in a partic-

ular land surface model’s unique climatology (Koster

et al., 2009). The correction is therefore limited to the

anomalies, although other components (e.g. seasonal

fluctuation and long-term trend) may be preserved to

validate model prediction. Here the linear correction us-

ing TC estimator is applied to match the characteristics

of each component – anomaly (i=A) and seasonal (S)

– separately, so that the corrected Y has the form

Y ∗ = Y ∗S +Y
∗

A, (9)

with Y ∗i =Yi/α̂Yi for i ∈ {S,A}. In one approach, pS

is computed using moving window averaging of multi-

year data within a window size of 31 days centered on

a given day of year (Miralles et al., 2011; Su et al.,

2014a), so that inter-annual cycles and long-term trends

are retained in pA. In an alternative approach (Albergel

et al., 2012), a sliding 31 day window is used such that

pA≈

6∑
j=1

pj for half-daily time series. In this work, the

former, more conventional approach was taken.

– A/S CDF matching applies CDF matching to anomaly

and seasonal components separately as per Eq. (9) but

with cdf(Y ∗i )= cdf(Xi). The application of CDF match-

ing to the anomaly component of soil moisture data was

considered by Liu et al. (2012).

– Multi-scale (MS) rescaling is the direct consequence of

the MS model where information in Y is rescaled at in-

dividual scales,

Y ∗ =
Y ′

α̂′Y
+

j0∑
j=1

Yj

α̂Y,j
. (10)

In relation to Eq. (6), this approach obviously elimi-

nates that the multiplicative terms in the summation.

The bulk and A/S linear correction schemes can be con-

sidered as special cases of MS rescaling where informa-

tion from multiple scales are aggregated and corrected

jointly. Other aggregations of the information from dif-

ferent subsets of scales are also possible, but they will

similarly be conceived based on one’s understanding or

assumptions of the underlying specific processes driv-

ing SM dynamics. Investigations into suitable aggre-

gations are beyond the scope of this work, hence we

implemented the most elaborate decomposition. If joint

linearity exists between two or more scales, their αY,j
values will be similarly valued for use in Eq. (10).

For illustrations, we correct the biases in AMS and MER

SM with respect to INS SM at Kyeamba using the above

five schemes. Using the above notations, AMS and MER are

treated as Y , the corrected AMS∗ and MER∗ as Y ∗, and INS

as X. MRA-TC was applied to observe their consequences

in Fig. 5. In the upper panel, estimated α̂Y,j and α̂Y ∗,j val-

ues provide diagnostics for detecting the presence of multi-

plicative biases before and after application of the correction

schemes. The lower panel plots the SD of Yj and Y ∗j and their

associated noises εY,j and εY ∗,j . The values of the scaling co-

efficients αY,j (before correction) and αY ∗,j (after), and the

noise std(εY,j ) and std(εY ∗,j ) were estimated using TC. But

where TC estimates could not be retrieved (for j = 1–2) due

to negative correlation amongst the data triplet (e.g. resulting

from significant noise and weak instrument), OLS-derived

(under) estimates serve as a guide for the above diagnostic

purposes. Similarly, the total SD is a guide for noise SD in

these cases.

Figure 5a shows the MRA of the biases and noise in the

pre-corrected data Y . There is considerable variability in α̂Y,j
across the scales, ranging from 0.5 to 1.8 for AMS, and from

0.5 to 1.4 for MER. In particular, their α̂′Y and α̂Y,8 deviate

significantly from 1, and are responsible for the larger SD

(cf. INS) observed in Fig. 3c. Biases also exist on almost

all other scales of AMS and MER. In the lower panel, the

values of std(εY,j ) relative to std(Yj ) indicate the dominance

of noise in the small scales j = 1–3. This explains the low

R values between AMS (and MER) and INS in Fig. 3a. Fur-

thermore, the signal-to-noise ratios are variable with scales

and data sets, highlighting the importance of using a cor-

rection scheme that takes the signal-vs.-noise statistics into

considerations. The TC-based scheme is limited to the linear

case, and the CDF scheme ignores such a variability.

The MRA of the corrected data Y ∗ are shown in Fig. 5b–f.

In addition we assess the level of agreement between cor-

rected AMS∗ and INS time series in Table 1 using their root-

mean-squared deviation (RMSD) and correlation R. The

time series plots are shown in Fig. 6 to support interpreta-

tions. These additional results focus on the AMS-INS pair

that best illustrates the influence of noise in AMS.

The results of bulk, A/S and MS linear rescaling can be

readily interpreted. For bulk (Fig. 5b) and A/S linear (Fig. 5d)

rescaling, the values of α̂Y and α̂Yi used for their implementa-

tion (Eqs. 7 and 9) are listed in the figure. As these values are

greater than unity for both AMS and MER, this leads to the
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Figure 5. Bias correction of AMS and MER (as Y ) with respect to INS (as X), showing the impact of 5 correction schemes on the scaling

coefficients, noise and total SD on individual scales. Estimated α̂Y,j 6= 1 or α̂Y ∗,j 6= 1 suggests multiplicative bias in Yj or Y ∗
j

as per Eq. (6).

(a) is the diagnosis of Y before correction, and (b–f) are that of Y ∗ after correction. The estimated α̂Y,j and α̂Y ∗,j for the diagnoses are derived

using OLS (for j = 1, 2) and TC (j > 2). The additional α̂Y values listed in (b, d) are the scaling coefficients used in the implementations of

bulk and A/S linear rescaling. Scale j > 8 corresponds to Y
(a)
8

.

Table 1. RMSD (in units of m3 m−3) and correlation between INS

and AMS SM at Kyeamba treated by various methods. The square

brackets contain the 95 % confidence interval.

Methods RMSD Correlation

None 0.088 0.659 [14]

Bulk linear 0.055 0.659 [14]

Bulk CDF 0.053 0.679 [14]

A/S linear 0.059 0.635 [15]

A/S CDF 0.054 0.671 [14]

Multi-scale (MS) 0.062 0.650 [15]

Wavelet thresh. (WT) 0.069 0.709 [13]

WT+MS 0.048 0.711 [12]

suppression of the associated signal, as well as noise, com-

ponents: std(Y ∗j )< std(Yj ), and std(εY ∗,j )< std(εY,j ). For

AMS, the bulk linear scheme corrects the coarse-scale bias

in Y
(a)
8 component and rescales the noise variance, reducing

RMSD from 0.09 to 0.06 m3 m−3. However, the fine-scale

biases in Y ∗j are still present, and increased on some scales,

e.g. at j = 4, 7 for AMS∗. Additionally for A/S linear rescal-

ing, R(AMS∗,INS) value does not change significantly and

the noise are still clearly visible in Fig. 6b and d.

By construction, the MS rescaling uses the estimated α̂Y,j
values from Fig. 5a to correct bias on all the scales. Fig. 5f

shows the analysis of MS-corrected Y ∗. The equivalence

α̂Y ∗,j = 1 indicates that the multiplicative biases are elimi-

nated at j > 2. At j = 1–2, as the scaling coefficients can-

not be estimated by TC, CDF matching was applied to these

scales such that the biases are still present on these scales.

Amid the reduction of biases, we also observed noise ampli-

fication (i.e. std(εY ∗,j )>std(εY,j )) in AMS∗ at j = 3, 7 and in

MER∗ at j = 3–7, because of rescaling with less-than-unity

α̂Y,j values in Eq. (10). Indeed it is evident from Eq. (6) that

it is possible to increase the noise variance and MSE when

reducing the bias component of the MSE. This in turn leads

to larger disagreement between INS and AMS in terms of

RMSD and R, and the increased amplitudes of the noise ob-

served in AMS in Fig. 6f.

The bulk and A/S CDF methods produced very similar re-

sults with each other, and also with their linear counterparts.

There is signal and noise suppression, but the scale-level bi-

ases are retained. The signal components of Y ∗ are negatively

biased at j = 3–7 and positively biased at j = 8. The CDF-

corrected AMS∗ shows slightly better RMSD and R with

INS, owing to the reduced noise variance and a reduced bias

at AMS
(a)∗
8 .

In summary, the MRA of the bulk and A/S schemes high-

lights the deficiency of using a correction scheme that does

not take into account the scale variability of bias and the

differences in noise statistics between the two data. The im-
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Figure 6. Time series of AMS SM at Kyeamba treated by various bias correction schemes. The use of WT-based de-noising has also been

demonstrated in (g, h).

provements in RMSD and correlation between the corrected

Y ∗ and the reference X are somewhat superficial, masking

the fact that the bias correction is limited to the coarsest

scales. On the other hand, the A/S-based and MS methods

can modify the original noise profiles in the data across the

scales, by amplifying (or suppressing) noise in individual

components (either Yj , YS, or YA) with less-than (greater-

than) unity pre-correction α. This may be considered unde-

sirable for an objective to produce more physically represen-

tative data with a simple error structure on the whole. There-

fore, arguably, none of these methods is entirely satisfactory,

in manners of not removing the multiplicative biases com-

pletely and/or changing error characteristics. From this view-

point, the task of bias correction is seen as inseparable from

that of noise reduction when considering MS (or A/S) bias

correction, unless certain components in MRA were explic-

itly ignored.

7 Combining bias correction with wavelet de-noising

The last example presents an impetus to consider noise re-

moval prior to bias correction and produce a simpler error

structure in the bias-corrected data Y ∗. Critically, TC pro-

vides noise and signal estimates that can be used for de-

noising through thresholding of wavelet coefficients pjk . The

basic rationale for wavelet thresholding (WT) is that insignif-

icant detail coefficients are likely due to noise, while signif-

icant ones are related to the signal component. Thus, a co-

efficient is eliminated if its magnitude is less than a given

threshold λp; otherwise, it is modified according to a trans-

formation function 0(pjk) to remove the influence of the

noise (Donoho and Johnstone, 1994).

One commonly used transformation is soft thresholding

(Donoho, 1995), where the coefficients are modified accord-

ing to

0λp
(
pjk

)
= sign

(
pjk

)
max

(
|pjk − λp|,0

)
. (11)

Such de-noising filters have near-optimal properties in the

minmax sense. We follow the BayesShrink rule of Chang

et al. (2000) to define a set of scale-dependent threshold val-

ues using

λp,j =
var
(
εp,j

)
αp,j std

(
fj
) , (12)

where the variances are provided by TC (Appendix B). This

choice of threshold is near optimal under the assumption that

the signal is generalised Gaussian distributed and the noise

is Gaussian. When the threshold value for j = 1–2 could not

be estimated using TC, CDF matching was applied. While

TC is an ideal error estimator, alternative estimators for the

threshold values are also available to make the de-noising a

stand-alone process (Donoho and Johnstone, 1994; Donoho,

1995). After WT, the de-noised time series is constructed via

inverse DWT of the modified coefficients, and can be sub-

sequently corrected for biases. Combining with the MS bias

correction scheme, biased-corrected, de-noised data are gen-

erated via
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Y ∗ =
Y ′

α̂′Y
+

j0∑
j=1

nj∑
k=1

0λp,j
(
Yjk

)
α̂Y,j

ψjk. (13)

The prescription, which is essentially a two-stage opera-

tion, was applied to AMS for comparisons with the previous

results. The first stage of de-noising leads to smoothing of

the time series, improved R with INS by 0.05, and reduced

RMSD by 0.02 m3 m−3. The actual SM variability has be-

come more apparent in Fig. 6g. Over-smoothing can occur

due to our inability to properly distinguish signal from noise

in AMS1 and AMS2 where the signal-to-noise ratio is very

low. However, without the second stage of bias correction,

the dynamic ranges of de-noised AMS and INS are visibly

different, such that the improvement in RMSD with INS is

limited. Combining WT and MS leads to improvement in

both metrics of RMSD= 0.048 m3 m−3 and R= 0.711, with

Fig. 6h confirming that the reduced noise was not amplified

by the MS rescaling.

8 Conclusions

This work combines MRA and TC in a new analysis frame-

work with increased capacity to provide a more compre-

hensive view of the inter-data relations on short and long

timescales. TC (or CDF) rescaling can be exploited on in-

dividual scales to reduce scale-specific multiplicative biases,

and provide “prior” knowledge of noise for calibrating a WT-

based de-noising filter. As a demonstration of principle, these

methods are applied to SM data from in situ and satellite sen-

sors and a land surface model. Using MRA, we found that the

three data exhibit significantly different wavelet spectra and

variable degrees of agreement on different timescales. On

fine scales, the contribution of noise is most prominent, un-

dermining the correlation between the data sets. By contrast,

the biases are most apparent on coarse scales. Furthermore,

these biases are non-systematic across timescales in the study

region and across spatial locations over Australia, and the

signal-to-noise ratios vary with scales and between the vari-

ous data, pointing to the need to use correction schemes that

are capable of handling such complexities.

These observations raised concerns about the possible in-

adequate treatment of SM data in the linear regime, even

with anomaly/seasonal decomposition. Scale-by-scale linear

rescaling based on a MRA-TC analysis framework offers

a more comprehensive treatment of different biases on dif-

ferent scales, but error characteristics are found to be modi-

fied by variable rescaling, and can lead to undesirable noise

amplification. The method of removing biases and noise on

individual scales offers a remedy, although a few caveats

should be noted. First, TC analysis requires a strong instru-

ment and large sample, and in cases where these prerequisites

are not met, we resort to sub-optimal estimation and rescal-

ing methods. Second, the issue of non-stationarity in errors

and scaling has not been addressed so far, and this can lead

to biased estimates of the correction parameters for rescaling

and de-noising. Despite this, DWT offers additional degree

of freedom in translation parameter k to accommodate non-

stationarity. Third, given the theoretic viewpoint presented in

this work, further evaluations based on assimilation of data

treated by different schemes are still warranted to assess their

practical impacts. Notwithstanding these factors, MRA-TC

analysis can be an important tool to allow better character-

isation of the inter-sensor differences and to develop more

effective strategies in harmonising a broad range of observa-

tional data records in oceanography and hydrometeorology.
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Appendix A: Wavelet statistical analysis

MRA enables the (bulk) variance var(p) of a time series p to

be decomposed into wavelet variances var(pj ) on different

scales j . Analogous to a Fourier spectrum, the expansion of

var(p) yields a wavelet spectrum and is given by

var(p)=

J∑
j=1

var
(
pj
)

(A1)

= var
(
p
(a)
j0

)
+

j0∑
j=1

var
(
pj
)

(A2)

where the variance of the approximation time series p
(a)
j0

can

be expressed in terms of that of the detail time series pj .

Similarly, wavelet covariance cov(Xj , Yj ) at a given j in-

dicates the contribution of covariance between two time se-

ries (X, Y ) on that scale. Specifically, the wavelet covariance

on scale j can be expressed as

cov
(
Xj ,Yj

)
=

1

nj

nj∑
k=1

XjkYjk, (A3)

noting that there is an equivalence of computing (co)variance

in the wavelet and time domains. To exclude the boundary

influence of a finite-length time series and missing values in

the time series, an estimator of the wavelet covariance can

be constructed by excluding the coefficients affected by the

boundaries and gaps, followed by renormalisation. In the pa-

per, we find it more intuitive to report the wavelet correlation,

namely

R
(
Xj ,Yj

)
=

cov
(
Xj ,Yj

)√
var
(
Xj
)

var
(
Yj
) . (A4)

Appendix B: Multi-scale triple collocation

Starting with the scale-level affine model of Eqs. (4) and (5),

the associated scaling coefficients (α′p, αp,j ) and error vari-

ances (var(ε′p), var(εp,j )) for each scale can be estimated us-

ing TC. We use solutions of Su et al. (2014a) for the data

triplet p={X, Y, Z} on each scale separately: with X as the

reference by setting αX,j , α′X = 1,

α̂Y,j =
cov

(
Yj ,Zj

)
cov

(
Xj ,Zj

) , (B1)

α̂Z,j =
cov

(
Yj ,Zj

)
cov

(
Xj ,Yj

) , (B2)

ˆvar
(
εp,j

)
= var

(
pj
)
−

cov
(
pj ,qj

)
cov

(
pj , rj

)
cov

(
qj , rj

) , (B3)

ˆvar
(
fj
)
= var

(
Xj
)
− var

(
εp,j

)
(B4)

where q and r are also data labels, but p 6= q 6= r . The hat

notation is used throughout the paper to distinguish esti-

mates from true values. It can be shown that, in proba-

bility, TC yields unbiased estimates whereby α̂p,j =αp,j ,

ˆvar(εp,j )= var(εp,j ), and ˆvar(fj )= var(fj ). These expres-

sions were used to compute the results in Fig. 5 and the

threshold values for wavelet de-noising. When TC does not

produce physically meaningful estimates from negative or

small covariance due to weak instruments and possible in-

adequacy of the considered signal and noise model, the OLS

estimator was used,

α̂OLS
Y,j =

cov
(
Xj ,Yj

)
var
(
Xj
) , (B5)

although its estimates are biased (α̂OLS
Y,j <αY,j ) for our pur-

pose, due to the extraneous contribution of noise variance in

the denominator. Similarly the VAR estimator can be used,

α̂VAR
Y,j =

√
var(Yj )/var(Xj ), but it is also biased.
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