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Abstract. Ensemble hydrological predictions are normally

obtained by forcing hydrological models with ensembles of

atmospheric forecasts produced by numerical weather pre-

diction models. To be of practical value to water users, such

forecasts should not only be sufficiently skilful, they should

also provide information that is relevant to the decisions end

users make. The semi-arid Limpopo Basin in southern Africa

has experienced severe droughts in the past, resulting in crop

failure, economic losses and the need for humanitarian aid.

In this paper we address the seasonal prediction of hydro-

logical drought in the Limpopo River basin by testing three

proposed forecasting systems (FS) that can provide opera-

tional guidance to reservoir operators and water managers at

the seasonal timescale. All three FS include a distributed hy-

drological model of the basin, which is forced with either

(i) a global atmospheric model forecast (ECMWF seasonal

forecast system – S4), (ii) the commonly applied ensemble

streamflow prediction approach (ESP) using resampled his-

torical data, or (iii) a conditional ESP approach (ESPcond)

that is conditional on the ENSO (El Niño–Southern Oscil-

lation) signal. We determine the skill of the three systems

in predicting streamflow and commonly used drought in-

dices. We also assess the skill in predicting indicators that

are meaningful to local end users in the basin. FS_S4 shows

moderate skill for all lead times (3, 4, and 5 months) and

aggregation periods. FS_ESP also performs better than cli-

matology for the shorter lead times, but with lower skill than

FS_S4. FS_ESPcond shows intermediate skill compared to

the other two FS, though its skill is shown to be more ro-

bust. The skill of FS_ESP and FS_ESPcond is found to de-

crease rapidly with increasing lead time when compared to

FS_S4. The results show that both FS_S4 and FS_ESPcond

have good potential for seasonal hydrological drought fore-

casting in the Limpopo River basin, which is encouraging in

the context of providing better operational guidance to water

users.

1 Introduction

Climate change studies show evidence of an intensifica-

tion of the global water cycle (Huntington, 2006; IPCC,

2007; Hansen et al., 2012; Trenberth, 2012; Coumou and

Rahmstorf, 2012), with extreme events including floods and

droughts expected to become more frequent. The UNISDR

(United Nations Office for Disaster Risk Reduction) Hyogo

Framework of Action 2005–2015 (UNISDR, 2005) describes

early warning systems and action plans triggered on the is-

suing of a warning as one of the most effective strategies to

mitigate the impacts of natural hazards. Operational forecast-

ing of streamflow to inform early warning is already com-

monplace in several parts of the world, but the main focus is

often on flood prediction. Operational forecasting of stream-

flow for drought prediction has to date not been applied as

widely, despite the widespread recognition of the relevance

and importance of drought forecasting in the research com-

munity.

There are several Drought Early Warning Systems

(DEWS) currently in existence in the world, though due to

the complexity of drought these are arguably less developed
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than many flood early warning systems. Grasso (2009) re-

ports that only three institutions provide information on the

occurrence of major droughts at the global scale: FAO’s

Global Information and Early Warning System on Food

and Agriculture (GIEWS), the Humanitarian Early Warning

Service (HEWS) operated by the World Food Programme

(WFP), and the Benfield Hazard Research Centre at Univer-

sity College London.

In the United States the US Drought Monitor (http://

droughtmonitor.unl.edu/) was set up in collaboration be-

tween the US Department of Agriculture (USDA), NOAA,

the Climate Prediction Centre, and the University of Ne-

braska. It provides insight to current drought conditions and

impacts at the national and state level through an interac-

tive map, presenting multiple drought indicators combined

with field information and expert input. It also includes 6–10-

day outlooks and monthly and seasonal forecasts of precip-

itation, temperature, soil moisture and streamflow. The Na-

tional Weather Service’s National Center for Environmental

Prediction’s (NCEP) also has a (multi-model) drought mon-

itoring system, as well as a seasonal hydrological forecast-

ing system running at the Environmental Modeling Center

(Ek et al., 2010). Additionally, the North American Multi-

Model Ensemble (NMME), which became an experimental

real-time system in August 2011, is mainly focused on sea-

sonal prediction of meteorological drought (Kirtman et al.,

2013).

In Europe the European Commission Joint Research Cen-

tre (JRC) has established the European Drought Observa-

tory (EDO, http://edo.jrc.ec.europa.eu/), which includes an

interactive map viewer with drought-relevant information. It

includes real-time maps of different drought indicators, in-

cluding the standardised precipitation index (SPI), snow and

soil moisture anomaly, and vegetation productivity anomaly.

These indicators are combined in an overall indicator that

is used to provide warnings and alerts. A 1-week forecast

of the expected soil moisture anomaly is also provided. The

Beijing Climate Center (BCC) of the China Meteorological

Administration (CMA) similarly monitors the development

of drought across China, with maps on current drought con-

ditions being updated daily on their website.

The FEWS Net (Famine Early Warning Systems Network)

for eastern Africa, Afghanistan, and Central America reports

on current famine conditions, including droughts, by provid-

ing monthly bulletins that are accessible on the FEWS Net

web page. However, a drought forecast is not provided. Other

drought warning systems over Africa include the Botswana

national early warning system (EWS) for drought (Morgan,

1985) and the Regional Integrated Multi-Hazard Early Warn-

ing System for Africa and Asia (RIMES). In the latter a

drought early warning system is being adapted to identify

climate and water supply trends in order to detect the proba-

bility and potential severity of drought (RIMES, 2014).

Advances regarding drought early warning systems in

Africa in the last few years are remarkable. There is an in-

creasing availability of drought monitoring and forecasting

tools for decision making that can provide real-time monitor-

ing and forecasting of drought across the continent. The Land

Surface Hydrology Group at Princeton University, USA, has

recently established an African Flood and Drought Monitor

(http://stream.princeton.edu/) with support from the Interna-

tional Hydrology Program of UNESCO. The system pro-

vides near-real-time monitoring of land surface hydrolog-

ical conditions based on the Variable Infiltration Capacity

(VIC) model. The monitor is updated every day at 2 days

behind real time. The database provides the daily condi-

tions of precipitation, temperature, wind speed, soil moisture,

evaporation, radiation, and different components of runoff

in the continent, as well as historic hydrological records in

eastern, southern and western sub-regions for up to 10 an-

tecedent years, and derived products such as current drought

conditions. They also provide precipitation, temperature and

SPI forecasts (Sheffield et al., 2014). Recently, Barbosa et

al. (2013) developed a pan-African map viewer for drought

within the framework of the DEWFORA project, following

the main features of the earlier developed EDO. The African

Drought Observatory (ADO) is a web application hosted by

JRC (http://edo.jrc.ec.europa.eu/ado/ado.html) that provides

historical and near-real-time monitoring information, as well

as seasonal forecasts describing meteorological, agricultural

and hydrological droughts (Barbosa et al., 2013).

Yuan et al. (2013) applied the NCEP’s Climate Forecast

System version 2 (CFSv2) combined with the VIC land sur-

face model for seasonal drought prediction over Africa. They

used both the SPI and soil moisture as indices and the Brier

skill score (BSS) to assess the probabilistic drought hindcast

for 1982–2002. Their results show relatively good skill in the

dry season but only limited skill in the rainy season. They

indicate that CFSv2 precipitation is correlated with the ob-

served precipitation over southern Africa, but only accounts

for 44–45 % of the variance of observations. They point out

that for two extreme droughts CFSv2 predicted neutral con-

ditions or only a weak anomaly. Our study focuses on the

Limpopo River basin and follows a similar type of analysis,

although it does so at a higher resolution and in a more de-

tailed manner. Additionally, we present different skill scores

for different hydrological drought indicators during the rainy

season, and compare different forecasting systems in the

basin. We focus on assessing the skill of the forecast in pre-

dicting indicators that are meaningful to the local end users

in the basin.

The semi-arid Limpopo River basin, located in southern

Africa, has experienced severe droughts in the past, which

have led to crop failures, high economic losses and the need

for humanitarian aid. An effective drought early warning sys-

tem for this basin is of prime importance. Current practices

for drought forecasting in the Limpopo River basin involve

three forms of seasonal climate forecasts ranging from re-

gional to local scales: the Southern Africa Regional Climate

Outlook Forum (SARCOF) climate outlooks, seasonal cli-
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mate outlooks prepared by meteorological departments, and

forecasts based on local knowledge applied in rural com-

munities. Despite these seasonal forecasts being available in

the basin, farmers seem to prefer to rely on drought fore-

casting systems based on indigenous and traditional knowl-

edge. Such forecasts include signs in (i) the sun, moon and

wind; (ii) trees and plants; and (iii) insects, birds and animals

(DEWFORA, 2013). For seasonal forecasts to be accepted by

the local community there are several challenges that need to

be addressed. End users should receive the information in a

suitably understandable format at the time they need it for the

forecast to be useful. The highly technical information that is

typically contained in the forecasts should then be translated

to a comprehensible form before being disseminated and de-

livered to decision makers and farmers. Moreover, end users

should be involved in the product verification by providing

feedback to the forecasters (DEWFORA, 2012).

Seasonal hydrological drought forecasts aim for high hy-

drological predictability at a seasonal timescale. Shukla et

al. (2013) quantified the contribution of a good represen-

tation of initial hydrologic conditions (IHCs) and seasonal

meteorological forecast (MF) to seasonal hydrological pre-

dictability at different forecast dates and lead times (1, 3,

and 6 months) globally. They quantified the contributions of

two components of the IHCs (soil moisture and snow wa-

ter content) through ensemble streamflow prediction (ESP)

and reverse-ESP. Their results show that for the region of the

Limpopo River basin the MF dominates the hydrological pre-

dictability during the wet season (forecasts starting in Octo-

ber and January) for almost every lead time considered. Only

for the 1-month lead time forecasts issued in October did the

IHCs appear to some extent to have a higher influence. For

the dry season the IHCs dominate the hydrological forecast at

all lead times. These results suggest that to improve the sea-

sonal hydrologic forecast skill in the Limpopo River basin,

efforts should focus on improving the MF. However, the con-

tribution of other IHCs (surface water and groundwater level)

to hydrological predictability should also be assessed.

Yossef et al. (2013) also investigated the relative contribu-

tion of initial conditions and meteorological forcing to the

skill of the global seasonal streamflow forecasting system

FEWS-World, using the global hydrological model PCR-

GLOBWB (PCRaster Global Water Balance). They use ESP

and reverse-ESP to determine the critical lead time for differ-

ent locations at which the importance of the initial conditions

is surpassed by that of the meteorological forcing. They indi-

cate that for semi-arid regions such as the Limpopo Basin the

initial conditions do not contribute much to the skill given the

high sensitivity of the runoff coefficient to rainfall variability.

This would suggest that the predictability in semi-arid basins

such as the Limpopo using ESP is limited, with seasonal me-

teorological forecasts potentially offering better skill.

In this study we introduce three dynamic forecasting sys-

tems based on a distributed hydrological model for the sea-

sonal prediction of hydrological droughts for the semi-arid
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Figure 1. Approach followed in the forecasting system for the

Limpopo River basin.

Limpopo Basin in southern Africa. All three forecasting sys-

tems include a distributed hydrological model of the basin,

and are forced by either (i) a global atmospheric model

(ECMWF seasonal forecast system S4), (ii) the ESP ap-

proach using resampled historical data, or (iii) a conditional

ESP approach (ESPcond) that is conditioned on the ENSO

(El Niño–Southern Oscillation) signal. The aim of this study

is to assess the skill of the three systems in predicting mean-

ingful drought indices for the Limpopo Basin.

2 Methods and data

The approach followed in this study is summarised in Fig. 1.

It starts with obtaining the meteorological seasonal forecast

and preprocessing the data. This is then used to force the hy-

drological model (embedded in the Delft-FEWS forecasting

shell; Werner et al., 2013), thus obtaining seasonal forecasts

of streamflow and other hydrological variables.

2.1 Ensemble hydrological forecasting in the Limpopo

River basin

2.1.1 Study area – Limpopo River basin

The Limpopo River basin is one of the larger basins in

southern Africa, with a drainage area of approximately

415 000 km2. It is shared by four riparian countries (see

Fig. 2): South Africa (45 %), Botswana (20 %), Mozambique

(20 %) and Zimbabwe (15 %). The climate in the basin is

quite diverse. The upper part of the basin lies in the Kala-

hari Desert and is particularly arid. Towards the Indian Ocean

the climate then changes to a hot dry steppe and finally to a

tropical dry savannah. In the mountainous regions the cli-

mate is markedly cooler. Rainfall in the basin is seasonal,

influenced by the movement of the intertropical convergence

zone. Moreover, rainfall is highly variable causing frequent

droughts, though floods can also occur during the rainy sea-

son. In the period 1980–2000, the southern African region

was stuck by four major droughts in the seasons 1982/83,

1986/87, 1991/92 and 1994/95. This corresponds to an aver-

age frequency of a drought every 4 or 5 years, although the

periodicity of droughts is not necessarily predictable. It is es-

timated that during the 1991/92 drought in southern Africa

86 million people were affected, 20 million of whom were
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Figure 2. Location of the Limpopo River basin.

considered to be at serious risk of starvation (DEWFORA,

2011).

The annual rainfall in the basin averages some

530 mm yr−1, though the spatial variation is significant,

ranging from 200 to 1200 mm yr−1. Rainfall occurs mainly

in the austral summer months (October–April; LBPTC,

2010). As is common with semi-arid and arid basins, runoff

coefficients in the Limpopo are very low, being only 4.3 %

for the naturalised discharge and a mere 1.7 % for the

observed discharge at Chókwe station in Mozambique,

which is the most downstream station considered in this

study. If abstractions are included then only 23 of the

539 mm yr−1 precipitation average for the basin upstream of

Chókwe runs off. Consequently, hydrological modelling in

the Limpopo Basin is extremely challenging. Even a small

error in precipitation or evaporation estimates could result

in quite a large error in runoff estimation. Moreover, the

uncertainty in the rainfall input could easily be larger than

the runoff coefficient (4.3 %) of the basin. Fig. 3 shows the

location of selected runoff stations and reservoirs in the

Limpopo Basin.

2.1.2 The forecasting system

Regional hydrological model

A finer-resolution version (0.05× 0.05◦) of the 0.5× 0.5◦

resolution global PCR-GLOBWB hydrological model is

used. This is a continuous-time simulation, process-based

distributed model applied on a raster basis. PCR-GLOBWB

is in many ways similar to other global hydrological mod-

els but it has several improved features, such as improved

schemes for sub-grid parameterization of surface runoff, in-

terflow and baseflow, a kinematic wave-based routing for the

surface water flow, dynamic inundation of floodplains and

a reservoir scheme (van Beek and Bierkens, 2009; van Beek,

2008). The model is set up for the Limpopo Basin with a spa-

tial resolution of 0.05× 0.05◦ and the simulation is carried

Figure 3. Locations of selected hydrometric stations and reservoirs

in the Limpopo Basin.

out with a daily time step. As the scope of this study is on

the skill of the hydrological forecast, reservoirs are consid-

ered in a simple way. Cells with reservoirs in the model are

considered as having a maximum storage volume. Releases

to irrigation are taken into consideration as a fixed monthly

value and subject to availability, and the reservoir will spill

when full. The reservoirs in the basin are mainly used for irri-

gation. For a more detailed description of the model setup for

the Limpopo River basin the reader is referred to Trambauer

et al. (2014b).

Delft-FEWS shell

The hydrological model is embedded in the Delft-FEWS

(Flood Early Warning System) open shell for forecasting pur-

poses. The shell provides a sophisticated collection of mod-

ules designed for building a hydrological forecasting system

customised to the specific requirements of an individual or-

ganisation. The philosophy is to provide an open shell for

managing the data handling and forecasting process. This

shell incorporates a comprehensive library of general data

handling utilities, allowing a wide range of external mod-

els to be integrated in the system through a published open

interface. This allows existing simulation models and data

streams to be incorporated into a comprehensive and reliable

forecasting system (Werner et al., 2013).

Reference run for the period 1979–2010

The hydrological model is run in simulation mode for a

32-year period (1979–2010) with the ERA-Interim forc-

ing meteorological data at a daily time step. ERA-Interim

(ERAI) is the latest global atmospheric reanalysis produced

by the European Centre for Medium-Range Weather Fore-

casts (ECMWF) and covers the period from January 1979 to

the present date with a horizontal resolution of approximately
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0.7 degrees and 62 vertical levels. A complete description of

the ERAI product is available in Dee et al. (2011). The ERA-

Interim precipitation data used in this study was corrected

using the GPCP (Global Precipitation Climatology Project)

v2.1 product to reduce the bias when compared to measured

products (Balsamo et al., 2010). The GPCP v2.1 data is a

monthly climatology provided globally at 2.5× 2.5◦ reso-

lution, covering the period from 1979 through to Septem-

ber 2009. It combines the precipitation data available from

several sources (satellite data, rain gauge data, etc.) into a

merged product (Huffman et al., 2009; Szczypta et al., 2011).

From September 2009 to December 2010, the mean monthly

ERAI precipitation was corrected using a mean bias coeffi-

cient based on the climatology of the bias correction coeffi-

cients that were established for the period 1979–2009. While

this only corrects for systematic biases, this was the only op-

tion available at the time, as a new version of GPCP (version

2.2) was not available. This corrected version of precipitation

was also used in the production of the ERA-Interim/Land

data set (Balsamo et al., 2015).

In addition to the precipitation, other meteorological pa-

rameters from the ERA-Interim reanalysis data that are used

to force the model include the 2 m daily temperature (mini-

mum, maximum and average). Temperature data is used for

the computation of the reference potential evaporation that

is required to force the hydrological model. In this study the

Hargreaves formula is used. This method requires less pa-

rameterization than the Penman–Monteith formula, though it

has the disadvantage that it is less sensitive to (uncertain) cli-

matic input data, with a possible reduction of the dynamics

and accuracy of the potential evaporation as a consequence.

However, this also means that it is less sensitive to errors

in climatic inputs (Hargreaves and Allen, 2003) that are in-

herent to any meteorological forecast. Moreover, the choice

of the method used for the computation of the reference po-

tential evaporation was shown to have minor effects on the

results of the actual evaporation for southern Africa, where

actual evaporation is dominated by soil moisture availabil-

ity (Trambauer et al., 2014a). The ERA-Interim data for the

32-year period from 1979 to 2010, corrected using the GPCP

v2.1 data set, are converted to the same spatial resolution as

the continental-scale version of the PCR-GLOBWB model.

ERAI is archived on an irregular grid (reduced Gaussian)

with an approximate resolution of 0.7◦ over the domain. The

data is downscaled from the ERAI grid to the original 0.5◦

model grid using bilinear interpolation and assumed to be

constant over the 0.5◦ grid cell. No further downscaling of

the meteorological forcings is carried out.

Initial conditions

The reference run provides the initial conditions for all fore-

casts. Initial conditions at the beginning of each month are

saved in the Delft-FEWS database, and subsequently used as

Figure 4. Upper plot: Limpopo River flow regime for Station 24

at Chókwe. The blue line represents the average observed runoff,

and the whiskers of the boxplots represent the 10th percentile and

the 90th percentile. The lighter and darker shaded areas represent

the main runoff period and high runoff period, respectively. Lower

plot: initialization dates and length of forecasts during the year. The

forecast issued in December is highlighted as the one that captures

the main runoff season.

“warm states” to start the forecasts when doing the retroac-

tive forecast (also referred to as hindcasts).

Time period of the simulations

An ensemble of meteorological hindcasts is first tested for

the summer rainfall season over southern Africa for the pe-

riod 1981–2010. Seasonal forecasts in this study are issued

for only 7 months of the year so as to capture the rainy sea-

son and main runoff season (meaning the there are 5 months

where we do not issue a forecast). The predictive skill for

drought is expected to be higher during the dry season and

lower during the wet season given that the hydro-climate has

a longer persistence during the dry season (Yuan et al., 2013).

Yuan et al. (2013) show the high contrast in skill between the

dry and wet seasons in southern Africa.

In the hindcast, the first forecast of each season is issued

in August and includes the seasonal (6 months) forecast from

August to January. The forecast is updated at the beginning

of each month from September to February. The last forecast

of the season is issued in February, covering the period from

February to July (see Fig. 4). All simulations are done at a

daily time step.

2.2 Seasonal forecasting systems

All three forecasting systems considered use the same hydro-

logical model of the basin, but are forced with different me-

teorological forecasts. In the first system (FS_S4) the PCR-

GLOBWB hydrological model is forced with the output of

a global atmospheric model, the ECMWF seasonal forecast

system S4 (atmosphere–ocean coupled). The second fore-

casting system (FS_ESP) is based on the ESP (Day, 1985)

procedure. In the ESP procedure the ensemble meteorologi-
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cal forecast is generated with re-sampled historical meteoro-

logical data. The hydrological model is then forced with this

re-sampled data. A third system (FS_ESPcond) is proposed

given that the ENSO has a clear influence on the interannual

climate variability over the Limpopo River basin (Landman

and Mason, 1999). This is equivalent to the second system

but the weights of the ESP ensemble members are condi-

tioned on the ENSO signal (Oceanic Niño Index, ONI). This

is explained in full in Sect. 2.2.3.

2.2.1 ECMWF S4 meteorological forecasts (FS_S4)

Meteorological ensemble forecasts

Seasonal meteorological forecasts from the most recent sea-

sonal forecasting system at ECMWF (S4) are used to force

the hydrological model. The S4 ensemble seasonal forecasts

are initialised on the 1st of each month and the ensemble is

generated by perturbations in the initial conditions and by

the use of stochastic physics in the atmosphere during the

model integration (out to 6 months lead time; Molteni et al.,

2011). The atmospheric resolution is about 79 km with 91

vertical levels, and is fully coupled with an ocean model

with a horizontal resolution of 1◦. S4 has been in opera-

tional use since November 2011, issuing 51 ensemble mem-

bers with 6-month lead time. A hindcast set is provided for

calibration and verification purposes, covering a period of

30 years (1981–2010) with the same configuration as the

operational forecasts but with only 15 ensemble members.

Molteni et al. (2011) presents an overview of S4 model bi-

ases and forecasts performance, and Dutra et al. (2013, 2014)

present an evaluation of S4 in seasonal forecasts of meteoro-

logical droughts. They found that S4-derived meteorological

drought forecasts over southern Africa were skilful with up to

4-months lead time for SPI-6 in April. In the setup of FS_S4,

the hydrological model is forced with the re-forecasts of the

ECMWF seasonal system S4, with 15 ensemble members. A

(hydrological) re-forecast is made to coincide with the 1st of

each month in the 30-year hindcast set. Precipitation inputs

to the hydrological model are accumulated from the 6-hourly

S4 model values, while evaporation was calculated using the

daily maximum and minimum temperatures directly archived

by the meteorological model.

Climatological bias correction of seasonal forecasts of

precipitation

Mean biases and drifts in the seasonal forecasts of precipi-

tation can have a detrimental influence on the hydrological

forecasts. Therefore, a simple climatological bias correction,

based on monthly means, is applied to the seasonal forecasts

in the form

P ′m, l = αm, lPm, l, (1)

where P and P ′ are the original and corrected seasonal fore-

casts of precipitation, respectively, α is a multiplicative cor-

rection factor and the subscripts “m” and “l” are the calendar

month (1–12, of the initial forecast date) and lead time (0–5

months), respectively. The correction factor is given by the

ratio

αm,l = P
base

m∗ /Pm,l, (2)

where P
base

m∗ is the climatological long-term mean of precipi-

tation of the base data set for a particular calendar month m∗

(m∗ =m+l), and P̄m,l is the long term ensemble mean of the

forecasts for a particular month “m” and lead time “l”. The

base data set used was ERA-Interim corrected with GPCP

to be consistent with the baseline simulation period. The cor-

rection factor α is limited to a reasonable range (0.1–10), and

is linearly interpolated from monthly values to daily values

by assuming that it corresponds to day 15 of the particular

month. Equation (1) is applied to the daily precipitation val-

ues. This is a simple bias correction that only guarantees that

the mean forecast climate is similar to the climate of the base

data set. It does not address other problems of the forecasts,

common to all coupled atmosphere–ocean models, such as

interannual variability, ensemble spread or daily variability.

2.2.2 ESP meteorological forecasts (FS_ESP)

A widely used approach to seasonal forecasting is the ESP

procedure. ESP predicts future streamflow from the current

initial conditions (warm state) in the hydrological model with

re-sampled historical meteorological data (ERA-Interim-

corrected with GPCP-observed meteorology from the last 31

years in this study). The procedure assumes that meteoro-

logical events that occurred in the past are representative of

events that may occur in the future (Day, 1985). Although

ESP is normally used in the absence of a seasonal forecast,

in this study we use it to compare the skill of the FS_ESP

with that of the FS_S4. Moreover, a comparison of these two

forecasts may give an indication of what influences the pre-

dictability. ESP represents forecast uncertainty due to bound-

ary forcing uncertainties only (Wood and Lettenmaier, 2008)

and thus allows measuring the skill that can be expected only

from initial states. In the FS_ESP hindcast, the sample of the

year in which the forecast starts is excluded from the ensem-

ble to allow for a fair estimate of the forecast uncertainty.

The FS_ESP therefore includes 30 (31 minus 1) years in the

ensemble.

2.2.3 Conditional ESP meteorological forecasts

(FS_ESPcond)

ENSO is clearly related to interannual climate variability

over the Limpopo River basin. In southern Africa meteo-

rological droughts tend to happen in the December–March

rainy season after onset of an El Niño event (Thomson et al.,

2003). However, it is not always the case that this happens.

Thomson et al. (2003) recorded a 120 % increase in proba-

bility of drought disaster in the year after an El Niño onset.
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To account for the relationship between ENSO and the oc-

currence of drought, this system is similar to FS_ESP but the

weights of ensemble members sampled through the ESP pro-

cedure are conditioned on the ENSO signal.

We use the post-ESP weighting technique described in

Werner et al. (2004). This approach uses the El Niño-3.4 in-

dex averaged over the 3-month-period immediately prior to

the issue date of the forecast to weight ensemble members

from ESP. The technique is summarised here for the forecast

of the 6-month standardised runoff index (SRI-6).

1. Compute a vector (X) of absolute differences (xi) be-

tween the value of the Niño-3.4 index (ONI) in the fore-

cast year and those of all the other years and sort the

vector (X) from lowest to highest.

X = (x1,x2, . . .,xn) (3)

The sorted vector (ℵ) is

ℵ =
[
x(1), x(2), . . .,x(n)

]
, x(1) ≤ x(2). . .≤ x(n). (4)

2. Compute a vector of weights (W ) for each member

of the ESP ensemble by defining two parameters: a

distance-sensitive weighting parameter (λ) and a param-

eter (α) that defines the k nearest neighbours used to cal-

culate the weight of each member. Higher λ gives more

weight to ensemble members with values of ONI closer

to that of the forecast year. Higher α restricts attention

to the n/α elements in the sorted vector. The ensemble

member with the same year as the forecast year is as-

signed a weight of zero.

W = (w1,w2, . . .,wn) (5)

wi =

[
1−

x(i)

x(k)

]λ−1

, x(i) ≤ x(k) (6)

wi = 0, x(i) > x(k) (7)

k = NINT
(n
α

)
(8)

3. Calculate the probability (pi) assigned to each ensem-

ble member i by rescaling the weights.

pi =
wi
n∑
j=1

wj

(9)

The parameters λ and α can be optimised for each case study

or subbasin. The case with λ= α = 1 is the traditional equal

weighting scheme applied to ESP forecasts, with all ensem-

ble members considered to have equal weight. If α = 1 and λ

varies, all ensemble members are considered, but these have

non-zero weights that depend on the absolute distance be-

tween the ONI of the forecast year and the ONI of the year

of the ensemble member. If λ= 1 and α varies only the near-

est k ensemble members to the forecast year are considered

in the ensemble, but they are all weighted equally. This case

is similar to the approach applied by Hamlet and Letten-

maier (1999) for the Columbia River, where they restricted

the ensemble members to those years that were similar in

terms of the ENSO phase and the Pacific decadal oscillation

phase. However, this restriction may result in ensembles with

only few members, resulting in forecasts that are very sensi-

tive to sampling errors (Brown et al., 2010). In the last case,

where both α and λ vary, weights are assigned only to the k

nearest ensemble members based on the distance of the index

to the index of the forecast year (Werner et al., 2004). Werner

et al. (2004) found this last case where both α and λ vary to

show the best improvements for forecast skills.

For the FS_ESPcond we chose to keep the parameters con-

stant (λ= 2 and α =1 ) given that the optimal selection of

parameters would vary for each subbasin. Performing an in-

depth selection of parameters for each subbasin is out of the

scope of this study. Here we use λ= 2 and α = 1, meaning

that all ensemble members have a non-zero probability of

being included in the ensemble, with that probability based

on the distance between the ENSO indexes and the distance

sensitive weighting parameter (linear for λ= 2). For each

forecast start date, we construct an ensemble meteorological

forecast of 30 members to be consistent with FS_ESP. The

selection of the members is based on a resampling with re-

placement procedure given the probability assigned to each

member. From the 30 possible ensemble members to be in-

cluded, those with an ONI index closer to that of the fore-

cast year have a higher probability of being included in the

ensemble. This means that some ensemble members are in-

cluded more than once, and some are not included at all. The

ONI indexes for the period 1979–2010 were retrieved from

NOAA (2014).

We also use this procedure for the forecast of SRI-4

(JFMA SRI). FS_ESPcond always uses the latest ONI index

available prior to the start date of the forecast. This means

that for the forecast issued in January, which corresponds to

a 3-month lead time, FS_ESPcond uses the ONI values for

October, November and December (OND). Similarly, for the

forecast issued in December, which corresponds to a 4-month

lead time, FS_ESPcond uses the SON (September, October,

November) ONI, and the forecast issued in November (5-

month lead time) makes use of the ASO (August, September,

October) ONI.

2.3 Assessing skill of the forecasts

2.3.1 Skill scores

Standard verification skill scores are selected to measure the

skill of the forecast ensembles in predicting drought indica-

tors. In this study we use the SRI for the characterisation of

hydrological droughts. This indicator is explained in the fol-

lowing section. Forecasts are verified against the reference

run and the resulting skills are established relative to sample
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climatology. Cloke and Pappenberger (2008) recommend the

use of several verification measures in the same analysis so

that the quality of the forecast can be assessed rigorously. We

selected three verification scores that measure slightly differ-

ent properties of the forecast skill. The ROC curve measures

discrimination but not bias, the rank histogram measures re-

liability or bias, and the Brier score (BS) accounts both for

reliability and sharpness (Renner et al., 2009).

The ROC (relative operating characteristic, or receiver op-

erating characteristic) diagram measures the ability of the

forecast to discriminate between two alternative outcomes. It

plots the hit rate or probability of detection (POD) versus the

false alarm rate or probability of false detection (POFD). It is

not sensitive to bias in the forecast, so it says nothing about

the reliability. It is conditioned to the observations. In sum-

mary, it indicates the ability of the forecast to discriminate

between events and non-events given a certain event thresh-

old (WWRP/WGNE, 2013). The area under a ROC curve

(ROCS) is used as a score. ROCS can take values from 0 to

1, with a value of 0.5 indicating no skill and a value of 1

representing a perfect score. Values lower than 0.5 indicate

negative skill. ROC curves measure how good forecasts are

in the context of a very simple decision-making model, and

are thus better suited to measure how good forecasts are from

the perspective of the user than many other commonly used

measures (Tveito et al., 2008).

The BS ([0–1]) measures the mean squared probability er-

ror and represents the magnitude of the probability forecast

errors, with a perfect score of zero. The BSS ([−∞ to 1])

measures the improvement of the probabilistic forecast rel-

ative to sample climatology and indicates what the relative

skill of the probabilistic forecast is over that of the climatol-

ogy, in terms of predicting whether or not an event occurred

(WWRP/WGNE, 2013).

The rank histogram is used to evaluate whether the fore-

cast ensembles are from the same underlying population as

the observations, which implies that the observed would have

the same probability of occurrence as any of the ensemble

members. This would result in a uniform distribution in the

histogram that plots the frequency of the rank of the obser-

vation in the ensemble, while deviations from the uniform

distribution reveal deficiencies in ensemble calibration or re-

liability (Wilks, 2011).

2.3.2 Standardised runoff index

The hydrological drought indicator SRI follows the same

concept as the SPI and is defined as a “unit standard normal

deviate associated with the percentile of hydrologic runoff

accumulated over a specific duration” (Shukla and Wood,

2008). To compute SRI the runoff time series is fitted to a

probability density function (a gamma distribution) and the

function is used to estimate the cumulative probability of the

runoff of interest for a specific month and temporal scale.

The cumulative probability is then transformed to the stan-

dardised normal distribution with mean of 0 and variance of

1 (Shukla and Wood, 2008).

2.3.3 Skill assessment

Forecasted streamflow is transformed to the hydrological

drought indicator SRI and forecasts of drought are analysed

by considering drought conditions to occur for SRI ≤−0.5

(mild to moderate drought). The value of−0.5 was chosen as

it corresponds to the 30th percentile in runoff and it is there-

fore a good compromise between not capturing all negative

anomalies and having a sufficient amount of samples for the

analysis. The forecasting system is thus evaluated on the skill

of predicting SRI falling below the −0.5 threshold.

However, as we also want to analyse the ability of the

system to forecast distributed variables (for agricultural

droughts) and water levels in the reservoirs (for irrigation

curtailments), we also evaluated the skill of the forecast sys-

tem in predicting these variables.

2.3.4 Estimating uncertainty in the skill scores

Given the small sample size resulting from applying the ver-

ification over the 30-year hindcast period, a bootstrap ap-

proach is used to estimate the confidence intervals around

the ROCS. The idea behind the bootstrap is to treat a finite

sample at hand as similarly as possible to the unknown dis-

tribution from which it was drawn, which in practice leads to

resampling with replacement (Wilks, 2011). The uncertainty

of the ROCS is estimated by applying a bootstrap resampling

with replacement procedure.

For the FS_S4 and FS_ESP forecasts, we randomly re-

place (allowing repetition) the original forecast and verifi-

cation pair to produce a new sample of the same size as our

original sample. We then calculate the ROCS from the new

sample. We repeat this procedure to create 1000 new sam-

ples from which we generate an empirical distribution of the

ROCS. The 90 % confidence interval is estimated from the

5th and 95th percentiles of this empirical distribution.

For the FS_ESPcond the bootstrap procedure follows the

same theory but is computed slightly differently. In this case

the bootstrap is achieved by recreating the ensemble fore-

casts for the hindcast period 1000 times based on the com-

puted probability vector and computing the skill score from

each created ensemble.

A limitation of this bootstrap procedure is that statistics

computed from discrete bootstrap samples may differ from

the ones based on continuous data, and this might lead to

overestimation of the confidence. However, this method is

widely used in the literature (Dutra et al., 2014; Friederichs

and Thorarinsdottir, 2012; Wilks, 2011) to estimate confi-

dence intervals as it does not require assumptions on the dis-

tribution.
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2.4 Assessing spatial hydrological indicators

ROCS and BSS are computed for the spatially distributed

indicator root stress (RS) to assess the skill of the forecast

in predicting agricultural drought indicators. The RS is an

indicator of the available (or the lack of) soil moisture in the

root zone, which can be calculated for each grid cell. The

RS varies from 0 to 1, where 0 indicates that the soil water

availability in the root zone is at field capacity and 1 indicates

that the soil water availability in the root zone is at wilting

point and the plant is under maximum water stress. For each

grid cell, a drought is defined to occur when the root stress is

higher than the 70th percentile of the observed values for that

month. An advantage of defining the threshold as a percentile

of the observed sample as proposed by Roulin (2007) is that it

assures a sufficiently large enough number of events to verify

and also allows for comparison of verification statistics at

different locations (Renner et al., 2009).

In addition to indicators such as RS, it is interesting to

evaluate the skill of the model in predicting indicators that

are meaningful to the end users in the basin. Irrigation is the

major water use in the Limpopo Basin. The amount of wa-

ter made available to the irrigation sector may, however, be

restricted depending on the water level in the reservoirs in

the basin as a percentage of their full capacity (DWA, 2013).

The forecasted anomaly of the water level in the reservoir is

a decision variable that can give an indication to the water

managers of the percentage of irrigation demand that can be

covered during the season.

An analysis of the historical time series of water level for

the Tzaneen reservoir together with the curtailment rules of

the reservoir (DWA, 2013) indicate that a 20 % curtailment

to the irrigation sector is applied when water levels in the

reservoir fall below the 50th percentile in the water levels (in

percentage of the capacity of the reservoir). Similarly, a 65 %

curtailment to the irrigation sector is applied when water lev-

els in the reservoir fall below the 37.5th percentile and a 90 %

curtailment in the irrigation sector along with a 30 % curtail-

ment in the urban sector when the water levels are below the

12th percentile. ROCS and BSS are then computed to assess

the skill of the forecast in predicting the water levels in the

reservoirs to be lower than these threshold percentages of the

full capacity. Although the actual operation of the reservoirs

is quite a bit more complex, this can be interpreted as an as-

sessment of the skill of the forecast in predicting curtailments

to the irrigation sector.

3 Results

The following section outlines the results when applying the

different types of forcing to the hydrological model over the

30-year hindcast period from 1981 to 2010. The analysis is

carried out for different verification periods and lead times

as the forecast quality may vary significantly with temporal

scales and lead times. While the rainy season in the Limpopo

River basins spans from October to March, the main rains

typically take place from November to February. The main

runoff season and the high runoff season, however, lag be-

hind the rainy season by 1 or 2 months, occurring in general

from December to May and from January to April respec-

tively (see Fig. 4).

3.1 Skill of seasonal streamflow prediction

This section presents the skill expressed in the selected

skill scores of the seasonal streamflow prediction for the

three forecast systems described (FS_S4, FS_ESP, and

FS_ESPcond) for Station 24 (Chókwe), Station 1, Station 18

and Station 20 in the Limpopo River basin (see Fig. 3 for

the station locations). Station 24 is the one with the largest

drainage area in the basin with available discharge data. Four

stations (highlighted in Fig. 3) with diverse drainage areas

were selected to assess the influence of the spatial scale and

forecast location on the quality of the forecasts. Table 1

presents the main characteristics of these stations, such as

drainage area, mean annual runoff and observed runoff coef-

ficient (RC= runoff/precipitation). In these stations the per-

formance of the hydrological model is found to be satisfac-

tory based on the evaluation measures and ranges proposed

by Moriasi et al. (2007), which comprise the Nash–Sutcliffe

efficiency (NSE), and the ratio of the root mean square error

to the standard deviation of the measured data (RSR). The

coefficient of determination (R2) is also included. These re-

sults are presented by Trambauer et al. (2014b) and are sum-

marised in Table 1.

Figure 5 (upper plots) presents the ROC diagram for the

6-month SRI-6 ≤−0.5. For calculating the SRI-6 the ver-

ification period is from December to May and the SRI-6

value is recorded at the end of the period in May. The fig-

ure shows three of the four stations considered, for a lead

time of 5 months (the forecast is issued in December). De-

cember is the only start time of the forecast that captures

the whole 6-month main runoff season (from December to

May) in the seasonal forecast. The ROC diagram for Station

18 is not presented given that it has a similar behaviour to

Station 1. The ROC curves are presented for each forecast-

ing system, and the ROC of FS_ESPcond is represented by

the ensemble that results in the median ROCS. Results from

the FS_ESPcond show for all stations a narrower 90 % con-

fidence interval when compared with the other two forecast-

ing systems considered (see middle and lower plots in Fig. 5),

thus suggesting that FS_ESPcond is more robust. Histograms

of ROCS for FS_ESP are not shown as these are similar to

those of FS_S4.

The ROCS of the FS_S4 in predicting SRI-6 ≤−0.5 are

generally quite high (around 0.8), but some lower values such

as 0.72 (this for the station with largest contributing area)

are observed (Fig. 5). The lower skills for the station with

the largest contributing area for FS_S4 might be attributed
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Table 1. Model evaluation measures for runoff for selected stations, ordered by basin size.

Station Subbasin area Mean annual observed RCobs (%) R2 NSE RSR

number (km2) runoff (m3 s−1)

24 342 000 96.9 1.7 0.92 0.90 0.32

1 201 001 39.5 1.2 0.69 0.57 0.65

18 98 240 12.2 0.7 0.68 0.62 0.62

20 12 286 14.8 5.3 0.70 0.65 0.59

Figure 5. Upper plots: relative operating characteristic (ROC) diagram representing false alarm rate versus hit rate for the 6-month SRI

(DJFMAM) ≤−0.5 given by FS_S4, FS_ESP and FS_ESPcond for three stations (1, 20, and 24). The ROCS for each forecasting system

together with the 90 % confidence interval (5–95th percentiles) resulting from the bootstrap are indicated in the legend. Middle and bottom

plots: histogram of the bootstrapped ROCS for FS_S4 (middle) and FS_ESPcond (lower), respectively, for the same three stations.

to the shift from an arid to a more tropical climate, which

means that the persistence of initial conditions would be

lower. Also, given that this is mostly the case for the FS_S4

and less so for the FS_ESP and FS_ESPcond, we can spec-

ulate the ECMWF S4 seasonal forecast might have a bet-

ter skill for the northern (more arid) part of the basin (area

corresponding to the subbasin draining to Station 1) than

for the southern part of the basin. FS_ESP generally shows

the lowest skills, with the skills of FS_ESPcond in between

FS_ESP and FS_S4. The verification was also done for fore-

casts issued for the 4-month period JFMA (high-runoff sea-

son) with forecasts issued from November to January, respec-

tively. Figure 6 presents the ROCS for the 4-monthly SRI
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(SRI-4 in April) ≤−0.5 for three different lead times (3–5

months) and two stations.

For the high runoff season SRI-4, similar results to those

of SRI-6 are observed. In almost every case FS_S4 shows

higher skill than FS_ESP and FS_ESPcond. The skill of

the forecasts tend to decrease with lead time, especially for

FS_ESP and FS_ESPcond, which do not show any skill at

the 5-month lead time. In contrast, the skill of FS_S4 for the

5-month lead time is still good. The skill score verification

for SRI-1 for the same 4-month period January–April (not

shown) shows once more that the FS_S4 is more skilful than

the other two forecasting systems. The smaller subbasins (18

and 20) present lower skill for SRI-4 for the three forecast-

ing systems, and while subbasin 18 still presents some skill

for all the three FS, subbasin 20 only does so for the FS_S4

for all lead times. In general, for all locations, the skill of the

FS_S4 decreases slightly with lead time, while the skill of

both FS_ESP and FS_ESPcond decreases more rapidly with

lead time. A curious fact is that for a few stations (e.g. 1, 18),

for both SRI-4 and SRI-1, the FS_S4 shows a higher skill for

a lead time of 4 months than for a lead time of 3 months. For

the SRI-4, this means that the forecast is more skilful in pre-

dicting the April SRI-4 when issued in December than when

issued in January. However, the differences are not statisti-

cally significant and this can be due to sampling errors.

Rank histograms for every station and lead time together

with the results of the Kolmogorov–Smirnov test show that

for the three forecasting systems, uniformity of the distribu-

tion cannot be rejected, indicating the forecasts are reliable.

Figure 7 presents the rank histograms of SRI-6 for Station 1

for the three forecasting systems as an example.

3.2 Skill of spatial hydrological indicators

Figure 8 shows the ROCS and the BSS of the FS_S4 in pre-

dicting agricultural drought conditions, i.e. in predicting ag-

gregated RS during the 6-monthly period DJFMAM to be

higher than the 70th percentile. Yuan et al. (2013) show that

the annual cycle of soil moisture in southern Africa (simu-

lated by the VIC model) lags behind the precipitation. Fig-

ure 8 shows that the skill of the FS_S4 forecast in predict-

ing agricultural droughts is higher than climatology (ROCS

> 0.5, BSS > 0) throughout the entire basin.

To assess the skill of the seasonal forecast in predicting

a specific decision variable in the Limpopo River basin, we

calculate the skill of the forecast in predicting water level

thresholds in the reservoir that would result in curtailment to

the irrigation sector. The availability of water is represented

in each cell by the water level. In the cells corresponding to

reservoirs, the water level is a surrogate for the storage and

is described as a percentage of the full storage capacity of

the reservoir. Figure 9 presents the ROCS and the BSS of

the FS_S4 in predicting water levels during the 6-monthly

period DJFMAM to be lower than the 50th and 37.5th per-

centiles, based on the analysis described in Sect. 2.4. The

figure shows that the skill of the FS_S4 forecast in predict-

ing low water levels is higher than climatology (ROCS > 0.5,

BSS > 0) throughout the basin. The spatial distribution across

the basin does show the skill to be higher in the northern

basin than in the southern basin, which may contribute to the

lower skill found at Station 24 close to the basin outlet than

at Station 1 in the upper (northern) basin.

The skill scores in cells that contain the reservoirs are rep-

resented by a circle to enhance visibility. It is clear from the

figure that the skill of the forecast in predicting low water

levels is higher in the reservoirs than in nearby streams. This

can of course be expected due to the higher memory intro-

duced by the reservoir’s storage capacity with respect to the

streams. Figure 10 presents the forecast probability of water

levels to be lower than the 50th and 37.5th percentiles during

the December 1991–May 1992 season as an example. This

was the driest season in the last 30 years. The forecast is is-

sued in December 1991.

The forecast probability of water levels in the reservoirs

being lower than the 50th and 37.5th percentiles can be inter-

preted as the forecast probability of a curtailment of 20 and

65 %, respectively, in the irrigation sector during the season.

For several reservoirs in the basin the FS_S4 forecast issued

in December 1991 predicted a high probability of curtailment

to the irrigation sector during the December 1991–May 1992

season. Records confirm the lower than normal water lev-

els during this season, with the irrigation quota indeed being

curtailed (DWA, 2013).

3.3 Analysis of a specific event

Yuan et al. (2013) note that “The major source of sea-

sonal forecast predictability comes from the ocean, and

the strongest signal is the El Niño Southern Oscillation

(ENSO)”. Given that the ECMWF S4 is influenced by the

ENSO signal, it is interesting to analyse how the FS_S4 pre-

dicts streamflow in the onset of two clear El Niño years. The

1997/98 El Niño year is described in Thomson et al. (2003)

as the largest for this century, predicted with a high degree of

certainty. Although many of the climate anomalies typical of

an El Niño event took place around the globe, the devastating

drought that was feared for southern Africa did not happen

(Thomson et al., 2003). For this analysis another year was se-

lected that had a less strong ONI but that did result in a severe

drought (1982/83). Figure 11 presents the ensemble seasonal

streamflow prediction from FS_S4 for both the 1997/98 and

the 1982/83 seasons issued in October and updated in De-

cember for Station 24. The plots also show the climatology

of the streamflow and the 30th percentile, i.e. the value be-

low which 30 % of the observations are found. The reference

streamflow for that season and the forecast ensemble mean

are also shown.

Figure 11 shows that in October the predictions from the

forecasting system FS_S4 for El Niño seasons of 1982/83

and 1997/98 were relatively similar (see Fig. 11 upper pan-
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Figure 6. ROCS for the SRI-4 (JFMA) ≤−0.5 given by FS_S4, FS_ESP, and FS_ESPcond for different lead times, for two of the stations

(1, 24). The error bars represent the 5–95th percentiles of the bootstrapped ROCS values.

Figure 7. Rank histograms of SRI-6 for Station 1 for the three forecasting systems (FS_S4, FS_ESP, and FS_ESPcond). The results of the

Kolmogorov–Smirnov test for uniformity are presented in each plot.

els) even though the 1997 JAS ONI was notably higher than

the 1982 JAS ONI. The updated forecast in December, how-

ever, shows a different situation: while the forecast for the

1982/83 season point towards very dry conditions, the fore-

cast of the 1997/98 season indicates near-normal conditions.

Yet, the 1997 SON ONI is markedly higher than the 1982

SON ONI. Thus, in spite of the strong ONI conditions, the S4

system correctly forecasted the no-drought condition in the

1997/98 season. This indicates that even though the S4 fore-

casting system is influenced by the sea surface temperatures

over the Niño-3.4 region, the precipitation and temperature

forecasts over the Limpopo region are not only constrained

by the sea surface temperature evolution but results from the

atmospheric circulation response to different climate forcing.

4 Discussion

The performance of the three hydrological forecasting sys-

tems constructed with the same hydrological model and dif-

ferent meteorological ensemble forecasts are evaluated by

means of widely used probabilistic verification skill scores,

including the ROC diagram and the rank histogram. Among

the forecasting systems considered in this study, FS_ESP is

considered the most traditional. Such traditional approaches

for hydrological forecasts rely on historical observations of

the meteorological conditions, without considering meteoro-

logical forecasts. In ensemble probabilistic forecasting, the

ESP approach, implicitly accounting for hydrologic persis-

tence and historical variability of climate, is normally used

(Brown et al., 2010). FS_S4 is a more complex forecasting

system as it requires as forcing the outputs of a seasonal

meteorological forecast system, which are complex numer-

ical models and resource intensive. FS_ESPcond, a mod-

ification of the ESP approach, conditions its ensemble on

past years that had similar climate conditions to the year in

which the forecast is made (Brown et al., 2010). Given that

the Limpopo region is known to be affected by ENSO and

droughts tend to occur during El Niño years, the forecast en-

semble was constructed by assigning weights to the different

ensemble traces based on the El Niño index.

The skill evaluation of the seasonal forecasts is limited by

the use of model data as verification, i.e. we verify our fore-

casts against the baseline simulation, which was also used

to provide the initial conditions to the forecasts. This is the

same approach as taken in Yossef et al. (2013), Winsemius

et al. (2014), Shukla et al. (2013) and Renner et al. (2009),

and while it allows for the detailed (spatial) evaluation of

the skill of the forecasts, it can potentially hide limitations

of the modelling system. Therefore, these skill results should

be interpreted as the upper limit of real predictability of the

current system. Results of the seasonal streamflow prediction

show that for every lead time FS_S4 is skilful in predicting

SRI-6, SRI-4, and SRI-1 during the summer rainy season,
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Figure 8. ROCS and BSS for DJFMAM RS > 70th percentile for

the FS_S4.

 

 

 
 

Figure 9. ROCS and BSS for DJFMAM water level (WL) < 50th

percentile (upper plots), and WL < 37.5th percentile (lower plots)

for the FS_S4.

while for the other FS the skill is lower and decreases more

rapidly with lead time. This means that the complex S4 sea-

sonal forecasting system adds value to the hydrological pre-

dictions compared to the climatology-based forecasting sys-

tems, as well as the ENSO-mode-conditioned climatology

forecast systems. This was also observed during a specific

event where expected anomalies due to El Niño did not mate-

rialise, but FS_S4 detected this. The skill decreases when go-

ing from SRI-6 to SRI-4 and SRI-1. This is as expected given

the higher variability of the predictand for shorter aggrega-

tion periods. The skill from FS_ESP is lower than that of

FS_S4 in almost every case, while the skill of FS_ESPcond

is in general between the other two. For SRI-4, FS_ESP and

to a lesser extent FS_ESPcond do not show any skill for a

5-month lead time at any of the stations considered.

As expected, the skill of all forecasts tends to decrease

with lead time. This is, however, especially the case for

FS_ESP and FS_ESPcond where the decrease in skill with

lead time is larger than for FS_S4. For the smaller aggrega-

tion periods (SRI-4 and SRI-1) FS_ESP deteriorates to cli-

matology already at a lead time of 3 months for stations 18

 

 
 

Figure 10. Forecast probability of WL < 50th percentile (upper

plots), and WL < 37.5th percentile (lower plots) for the FS_S4 dur-

ing the season December 1991–May 1992 issued in Dec 1991 (left

panels) and what actually occurred: 1= yes, 0= no (right panels).

and 20, the upstream basins of which are smaller in size.

In the larger basins FS_ESP shows predictability up to a

4-month lead time, probably due to the spatial aggregation

taking place over larger basins smoothing out uncertainties

in space. This indicates that the memory in the hydrology

(storage in groundwater, reservoirs, channels and wetlands)

contributes to the predictability with a lead time of up to 2–

4 months. For longer lead times, the meteorological forcing

dominates the predictability of the system. The critical lead

time after which the importance of the meteorological fore-

cast exceeds that of the initial conditions depends on the lo-

cation and size of the basin and should be analysed for each

subbasin of interest. Rank histograms for every station and

lead time indicate that the three forecast systems are reliable

given that uniformity of the distribution cannot be rejected.

4.1 What does the analysis mean to end users?

The high predictability of FS_S4 for all lead times and ag-

gregation periods of SRI is encouraging given that such a

system, if made operational, may provide end users with suf-

ficient time to decide upon measures to take in anticipation.

For example, they might decide to change the cropping date

or the cropping area if they expect not to have enough wa-

ter to fulfil the crop requirements. Therefore, there is added

value to using a seasonal meteorological forecast (ECMWF

S4) to force the hydrological forecasting system when com-

pared to the conventional ESP. The higher skill of the FS_S4

and FS_ESPcond compared to that of the FS_ESP for every

lead time is in line with the study of Shukla et al. (2013), who

show that for the region of the Limpopo River basin the me-

teorological forecast dominates the hydrological predictabil-

ity for the wet season for almost every lead time considered.
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Figure 11. Seasonal forecast FS_S4 for 2 seasons issued in October (upper panel) and December (lower panel).

Only for the 1-month lead time forecasts issued in October

did they find a higher influence of the hydrological initial

conditions to some extent. Moreover, Yossef et al. (2013) in-

dicate that for semi-arid regions the initial conditions do not

contribute much to the skill given the high sensitivity of the

runoff coefficient to rainfall variability.

The FS_S4 was also evaluated regarding its ability to pre-

dict agricultural droughts and curtailments in irrigation (wa-

ter levels lower than the 50th and 37.5th percentiles). Maps

of spatially distributed ROCS and BSS (Figs. 8, 9) show that

the skill of the FS_S4 forecast in predicting these conditions

is higher than climatology (ROCS > 0.5, BSS > 0) through-

out the basin. Indicating the probability of curtailment to the

irrigation sector during the following season is an example

of providing a forecast in an understandable format that is

useful to the end users. If they are informed that there is a

high probability of a high curtailment to the water available

for irrigating their crops during the following season, users

would have a clear idea of what is the best practice for that

situation. Further improvements in forecasting skill could be

achieved through better meteorological predictions or better

estimation of initial conditions (Yossef et al., 2013). Whether

the forecasts indeed have value will depend on the costs of

decisions made in response to the forecast, losses in case of a

wrong decision and the gain in case of a good decision. This

should be further analysed in a continuation of this study.

As a next step, it is recommended that the forecast skill of

the FS_S4 and FS_ESPcond be assessed in an actual fore-

casting mode for a following summer season. The seasonal

meteorological forecast from S4 can be obtained in real time

for research purposes. To test a pre-operational system, the

forecasting system ought to be statistically post-processed in

order to remove biases in streamflow predictions. Moreover,

the initial conditions for the forecasts could be better esti-

mated through data assimilation of water levels in reservoirs

and streams. This data could be obtained from the water man-

agers of the basin. Despite the limitations of FS_S4 (access

to real-time atmospheric–ocean seasonal forecasts for non-

ECMWF member-states, and their quality) and FS_ESPcond

(depending on the calibration and decreased skill at long lead

times), both systems show potential for seasonal hydrologi-

cal drought forecasting in the Limpopo River basin to pro-

vide operational guidance to users.

5 Conclusions

We evaluate the performance of three forecasting systems

(FS_S4, FS_ESP, and FS_ESPcond) in the Limpopo River

basin. These systems make use of the same hydrological

model and are forced with three different meteorological

ensemble forecasts (two of which are based on resampled

climatological records, FS_ESP and FS_ESPcond, and one

based on seasonal meteorological forecasts, FS_S4). Results

of the seasonal streamflow prediction show that the three

forecasting systems show moderate skill in predicting SRI-6

(DJFMAM)≤−0.5. Moreover, the three forecasting systems

are unbiased as suggested by the rank histograms.

For every lead time and aggregation period considered,

FS_S4 is found to be skilful in predicting hydrological

droughts represented by SRI≤−0.5 during the summer rainy

season. The skill decreases when going from SRI-6 to SRI-

4 and SRI-1, as well as with increasing lead time. The skill

of FS_ESP is lower than that of FS_S4 in almost every case

and deteriorates rapidly with lead time, showing no skill af-
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ter a lead time of 4–5 months for SRI-4 and SRI-1. This in-

dicates that the memory in the hydrology contributes to the

predictability up to 2–4 months but for longer lead times the

predictability of the system is dominated by the meteorolog-

ical forcing. FS_ESPcond shows in general lower skills than

FS_S4 but it becomes comparable and can even outperform

the latter for smaller lead times if the parameters for selec-

tion and weighting of ensemble members are carefully cal-

ibrated for each basin. Moreover, the skill of FS_ESPcond

is more robust than that of the other forecasting systems as

suggested by the narrower confidence intervals of ROCS. As

with FS_ESP, the skill of FS_ESPcond also decreases faster

than that of FS_S4 with lead time.

The high predictability of drought of FS_S4 for all lead

times and aggregation periods of SRI and for the spatial

drought indicators is encouraging given that such a system,

if made operational, may provide end users with sufficient

time to decide upon measures to take in anticipation. More-

over, FS_ESPcond shows promising results. This forecasting

system only requires the ONI index previous to the forecast

to weight the ensemble traces to include in the forecast. This

system is relatively simple and presents the advantage that

it can be coupled with the forecast of the ONI index that is

available with a long lead time. Naturally, in this situation the

uncertainties of both forecasts need to be considered.
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