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Abstract. Two key sources of uncertainty in projections of

future runoff for climate change impact assessments are un-

certainty between global climate models (GCMs) and within

a GCM. Within-GCM uncertainty is the variability in GCM

output that occurs when running a scenario multiple times

but each run has slightly different, but equally plausible,

initial conditions. The limited number of runs available for

each GCM and scenario combination within the Coupled

Model Intercomparison Project phase 3 (CMIP3) and phase

5 (CMIP5) data sets, limits the assessment of within-GCM

uncertainty. In this second of two companion papers, the

primary aim is to present a proof-of-concept approximation

of within-GCM uncertainty for monthly precipitation and

temperature projections and to assess the impact of within-

GCM uncertainty on modelled runoff for climate change im-

pact assessments. A secondary aim is to assess the impact

of between-GCM uncertainty on modelled runoff. Here we

approximate within-GCM uncertainty by developing non-

stationary stochastic replicates of GCM monthly precipita-

tion and temperature data. These replicates are input to an

off-line hydrologic model to assess the impact of within-

GCM uncertainty on projected annual runoff and reservoir

yield. We adopt stochastic replicates of available GCM runs

to approximate within-GCM uncertainty because large en-

sembles, hundreds of runs, for a given GCM and scenario are

unavailable, other than the Climateprediction.net data set for

the Hadley Centre GCM. To date within-GCM uncertainty

has received little attention in the hydrologic climate change

impact literature and this analysis provides an approximation

of the uncertainty in projected runoff, and reservoir yield, due

to within- and between-GCM uncertainty of precipitation

and temperature projections. In the companion paper, McMa-

hon et al. (2015) sought to reduce between-GCM uncertainty

by removing poorly performing GCMs, resulting in a selec-

tion of five better performing GCMs from CMIP3 for use in

this paper. Here we present within- and between-GCM un-

certainty results in mean annual precipitation (MAP), mean

annual temperature (MAT), mean annual runoff (MAR), the

standard deviation of annual precipitation (SDP), standard

deviation of runoff (SDR) and reservoir yield for five CMIP3

GCMs at 17 worldwide catchments. Based on 100 stochas-

tic replicates of each GCM run at each catchment, within-

GCM uncertainty was assessed in relative form as the stan-

dard deviation expressed as a percentage of the mean of

the 100 replicate values of each variable. The average rela-

tive within-GCM uncertainties from the 17 catchments and 5

GCMs for 2015–2044 (A1B) were MAP 4.2 %, SDP 14.2 %,

MAT 0.7 %, MAR 10.1 % and SDR 17.6 %. The Gould–

Dincer Gamma (G-DG) procedure was applied to each an-

nual runoff time series for hypothetical reservoir capacities

of 1×MAR and 3×MAR and the average uncertainties in

reservoir yield due to within-GCM uncertainty from the 17

catchments and 5 GCMs were 25.1 % (1×MAR) and 11.9 %

(3×MAR). Our approximation of within-GCM uncertainty

is expected to be an underestimate due to not replicating the

GCM trend. However, our results indicate that within-GCM

uncertainty is important when interpreting climate change

impact assessments. Approximately 95 % of values of MAP,

SDP, MAT, MAR, SDR and reservoir yield from 1×MAR

or 3×MAR capacity reservoirs are expected to fall within
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twice their respective relative uncertainty (standard devia-

tion/mean). Within-GCM uncertainty has significant impli-

cations for interpreting climate change impact assessments

that report future changes within our range of uncertainty for

a given variable – these projected changes may be due solely

to within-GCM uncertainty. Since within-GCM variability is

amplified from precipitation to runoff and then to reservoir

yield, climate change impact assessments that do not take

into account within-GCM uncertainty risk providing water

resources management decision makers with a sense of cer-

tainty that is unjustified.

1 Introduction

This study is part of a research project that seeks to enhance

our understanding of the uncertainty of future annual river

flows, leading to more informed decision-making for the sus-

tainable management of scarce water resources. This is the

second of two papers examining the uncertainty of stream-

flow estimates derived from global climate models (GCMs).

In the first paper, McMahon et al. (2015) assessed the ad-

equacy of GCMs from phase 3 of the Coupled Model In-

tercomparison Project (CMIP3; Meehl et al., 2007) to simu-

late observed values of mean annual precipitation, standard

deviation of annual precipitation, mean annual temperature,

monthly patterns of precipitation and temperature, and Köp-

pen climate classification. Five GCMs (HadCM3, MIROCM,

MIUB, MPI and MRI; see Table 1 of McMahon et al. (2015)

for full GCM names) were selected as better performing

GCMs for use in this second paper.

In this paper we address a significant limitation to char-

acterising the uncertainty of future runoff which is the lack

of sufficient GCM runs of historical (20C3M) and future

projections (e.g. A1B). Modelling historical runoff involves

numerous uncertainties (Peel and Blöschl, 2011) including

uncertainties in observed input data used to drive the hy-

drologic model (Andréassian et al., 2004; McMillan et al.,

2011), observed data against which the hydrologic model

is calibrated (Di Baldassarre and Montanari, 2009; McMil-

lan et al., 2010), the calibration method and objective func-

tion adopted (Efstratiadis and Koutsoyiannis, 2010) and the

hydrologic model structure itself (Andréassian et al., 2009;

Vogel and Sankarasubramanian, 2003). Additional uncer-

tainty is introduced when modelling future runoff through

(1) assuming the hydrologic model calibration applies into

the future (Chiew et al., 2014), (2) assuming a bias correc-

tion for adjusting GCM data developed over the observed

period applies into the future and (3) through differences

in future climate projections between GCMs and within a

GCM. Recent investigations into uncertainty introduced at

different stages of the model train, from GCM to hydro-

logic model, for climate change impact assessments include

Bosshard et al. (2013), Dobler et al. (2012), Hingray and

Saïd (2014), Kay et al. (2009), Lafaysse et al. (2014), Prud-

homme and Davies (2009a, b), Steinschneider et al. (2012),

Teng et al. (2012) and Woldemeskel et al. (2014).

The uncertainty between GCM projections of future cli-

mate can be assessed through analysis of runs from a

wide range of GCMs, such as those available from CMIP3

and being collated within the Coupled Model Intercompar-

ison Project phase 5 (CMIP5). Our selection of five bet-

ter performing GCMs from CMIP3 in the companion paper

(McMahon et al., 2015) is an attempt to reduce between-

GCM uncertainty by removing poorly performing GCMs

from the analysis conducted in this paper. Our primary aim

in this proof-of-concept paper is to present an approximation

of within-GCM uncertainty, which is the variability in GCM

output that occurs when running a scenario multiple times

but each run has slightly different, but equally plausible, ini-

tial conditions. Although the importance of within-GCM un-

certainty for climate change impact assessments has been

highlighted by Tebaldi and Knutti (2007), Hawkins and Sut-

ton (2009, 2011) and Deser et al. (2012, 2014), to date it has

received little attention in the hydrology climate change im-

pact literature. Here we develop an approximation of within-

GCM uncertainty and apply it to a climate change impact

assessment for future runoff and reservoir yield.

The magnitude of within-GCM uncertainty for a metric

like mean annual precipitation can be assessed directly from

GCM output if a large enough ensemble of runs from a GCM

for a given emission scenario are available. The number

of GCM runs required to adequately assess uncertainty de-

pends upon the metric of interest and the level of confidence

adopted. For example, for a given level of confidence an ex-

treme value metric will require many more runs than a mean

to obtain a reliable estimate. For a more detailed discussion

of this issue see Salas (1992). Currently, large ensembles of

runs from each GCM and scenario are unavailable. In the

CMIP3 data set most GCMs have a single run of a given sce-

nario from which a direct assessment of within-GCM uncer-

tainty is impossible. In terms of ensemble members, CMIP5

is an improvement over CMIP3 in that more runs of each sce-

nario are being reported for each GCM. However, the number

of runs per GCM and scenario combination in CMIP5 is still

of the order of 3 to 10, rather than the hundreds of runs re-

quired for adequate estimation of within-GCM uncertainty of

some metrics. The Climateprediction.net data set contains an

ensemble of several thousand runs from the Hadley Centre

GCM (Frame et al., 2009; Rowlands et al., 2012). However,

this data set can only be used to directly assess within-GCM

uncertainty for the Hadley Centre GCM.

Previous assessments of the impact of within-GCM un-

certainty on runoff have been limited by the lack of avail-

able GCM runs. For example, when investigating sources

of uncertainty in the climate change impact on hydrology,

Chen et al. (2011) were limited to 5 runs with different ini-

tial conditions from the MRI GCM. Similarly, Velázquez

et al. (2013) were limited to five runs from one GCM and
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Table 1. Comparison between MIROCM(1) GCM estimates of mean and standard deviation of annual precipitation and mean annual tem-

perature of 20C3M data and stochastically generated values for six worldwide catchments. Generated values are based on 100 replicates,

each 151 years long.

Reference number 1237 3284 4133 5410 6043 6304

River Faleme Duck Huasco Prut Donnelly Pioneer

Station Gourbassy Columbia Algodones Chernovtzsy Nannup Road Br Pleystowe Mill

Lat ◦ 13.23 35.62 −28.73 48.26 −34.33 −21.15

Long ◦ −11.38 −87.03 −70.5 25.95 115.77 149.05

Catchment area (km2,a) 14 698 3140 7269 6874 755 1375

Köppen climate zoneb Aw Cfa BWk Dfb Csb Cwa

MAP (mm yr−1) GCM 1120 1111 126 763 620 1039

Genc 1120± 20 1111± 13 126± 3.3 763± 8.3 620± 8.8 1039± 99

SDP (mm yr−1) GCM 212 155 39.1 94.7 94.4 274

Gen 213± 13 156± 9 39.1± 2.6 94.9± 5.6 95.6± 6.3 302± 71

Precipitation GCM 0.13 0.07 0.00 0.03 0.16 0.16

Lag-1 Gen 0.17± 0.08 0.10± 0.07 0.01± 0.08 0.09± 0.08 0.24± 0.07 0.77± 0.07

MAT (◦C) GCM 26.6 16.6 15.0 8.87 14.8 22.5

Gen 26.6± 0.03 16.6± 0.04 15.0± 0.03 8.87± 0.06 14.8± 0.02 22.5± 0.04

a Catchment area from digital elevation model (see Peel et al., 2010) is within 5 % of reported catchment area; b see Peel et al. (2007); c Gen: shows the mean

value± standard deviation of 100 replicates; MAP: mean annual precipitation; SDP: standard deviation of annual precipitation; MAT: mean annual temperature.

three runs from a second in their comparison of the un-

certainty due to hydrologic models and within-GCM uncer-

tainty. Prudhomme and Davies (2009a) sought to overcome

the limited number of GCM runs by introducing a seasonal

block-resampling technique to estimate natural climate vari-

ability via 100 bootstrap replicates of observed and GCM

time series. In Prudhomme and Davies (2009b) they applied

seasonal block-resampling to a 30-year baseline period and

future period to assess whether climate change impacts were

significantly different to baseline climate variability. How-

ever, seasonal block-resampling is unable to address inter-

decadal variability, as noted by Kay et al. (2009), or periods

with significant trend as the bootstrap replicates will scram-

ble any inter-decadal variability or trend. Finally, Hingray

and Saïd (2014) and Lafaysse et al. (2014) adopted a stochas-

tic approach whereby they generated 100 stochastic repli-

cates from each of 6 statistical downscaling models for each

of 11 runs from 5 GCMs (Hingray and Saïd, 2014), or 12 runs

from 6 GCMs (Lafaysse et al., 2014). They used this multi-

model ensemble of stochastic replicates to investigate the

magnitude of within- and between-GCM uncertainty for the

Durance catchment in France.

In this proof-of-concept paper, we develop an approx-

imation of within-GCM uncertainty using non-stationary

stochastic replicates of GCM monthly precipitation and tem-

perature data that seeks to preserve any inter-decadal vari-

ability and trend. Unlike Hingray and Saïd (2014) and

Lafaysse et al. (2014) whose replicates were produced by the

statistical downscaling model, here we stochastically repli-

cate the original GCM runs prior to downscaling. Estimating

uncertainty in a time-series metric via stochastic modelling

of a time series is standard hydrologic practice (Hipel and

McLeod, 1994). A stochastic model is fit to the time series

of interest and an ensemble of time-series replicates with the

same stochastic properties as the original series is generated.

The metric of interest is calculated for each ensemble mem-

ber and the metric uncertainty is estimated from the distri-

bution of metric values. In this paper we stochastically repli-

cate the GCM output data, then use an ensemble of stochastic

replicates as input to an off-line hydrologic model to estimate

an ensemble of future runoff projections, from which we es-

timate the variability in mean and variance of annual runoff.

Finally, the ensemble of future runoff projections is used to

investigate the impact of within- and between-GCM uncer-

tainty on future reservoir yield.

In this paper we model runoff in an off-line hydrologic

model rather than adopt GCM generated runoff. Arora (2001)

demonstrated the quality of GCM runoff mainly depends on

the quality of GCM precipitation, with any bias in precipita-

tion amplified in the resulting runoff. In the companion paper

(McMahon et al., 2015), we assessed GCM bias in reproduc-

ing observed precipitation conditions and found substantial

biases for all GCMs; thus, we would expect significant bias

in runoff generated by a GCM. Furthermore, Sperna Wei-

land et al. (2012) found that runoff estimates from an exter-

nal hydrologic model generally outperformed GCM runoff

estimates. However, Sperna Weiland et al. (2012) noted that

when the GCM Land Surface Scheme is specifically tuned

to reproduce observed runoff and a routing scheme is added

then GCM runoff becomes more acceptable. We also use the

terms streamflow and runoff interchangeably and adopt depth

(in millimetres) as a measure of flow rather than a volume

unit.
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Following this introduction, in Sect. 2 we outline the

approximation methodology (ensemble empirical mode de-

composition (EEMD), stochastic data generation, quantile–

quantile bias correction of precipitation and temperature,

precipitation–evapotranspiration–runoff modelling and un-

certainty in reservoir yield) and related literature. We test

our stochastic within-GCM uncertainty approximation for

the largest ensemble of GCM runs in the CMIP3 data set

for a given GCM and scenario in Sect. 3. In Sect. 4 results of

applying the methodology to output from five GCMs iden-

tified in the companion paper (McMahon et al., 2015) are

presented and discussed. Conclusions from the analysis and

discussion are presented in Sect. 5. Further details about the

precipitation–evapotranspiration–runoff model, source code

and example input and output are provided in the Supple-

ment.

2 Methodology and related literature

2.1 Overall methodology

The methodology to approximate within-GCM uncertainty

and assess the impact of within- and between-GCM uncer-

tainty on future runoff and reservoir yield is shown in Fig. 1.

Five better performing GCMs were identified in the compan-

ion paper for use in this paper through a literature review

and assessment of how well CMIP3 GCMs reproduced ob-

served mean annual precipitation, annual temperature and

average monthly precipitation and temperature at GCM grid

cell scales (McMahon et al., 2015). The five GCMs iden-

tified were HadCM3, MIROCM(1), MIUB(1), MPI(1) and

MRI(3), where the number in brackets refers to the run num-

ber for that GCM in the CMIP3 data set (see McMahon et

al. (2015), Table 1 for full GCM names). As part of the

analysis in McMahon et al. (2015) catchment average values

of concurrent monthly precipitation and temperature for the

20C3M and A1B emissions scenarios were extracted from

each GCM in the CMIP3 data set. The catchment average

was calculated for each catchment and GCM combination

by determining the proportion of catchment area associated

with each GCM grid cell and performing an area weighted

average of the GCM data for each month. Catchment average

precipitation and temperature from the five better performing

GCMs are used throughout this paper.

An ideal assessment of within-GCM uncertainty would in-

volve analysis of hundreds of runs of a single GCM for a

given scenario with each run having slightly different, but

equally plausible, initial conditions. Each run in this ideal

ensemble would have a different sequence of monthly val-

ues and a different overall trend. How different the monthly

sequence and overall trend is from one run to the next rep-

resents the within-GCM uncertainty. In this paper we do not

seek to approximate the overall trend, as this information is

best provided by a GCM responding to an emissions sce-

Assess 22 GCM models based on catchments and spatial grid cells 

HadCM3 MIROCM(1) MPI(1) MRI(3) 

1. Apply EEMD to GCM monthly P & T to remove residual & identify 
low frequency IMFs  

2. Stochastically generate k replicates of P & T jointly without residual 

3. Add residual to each replicate of monthly time series of P & T 

5. Calibrate PERM using observed P & T 

6. Apply PERM to produce time-series on monthly runoff 

7. Estimate MAR, SDR, CS, ρ for the k replicates 

8. Examine uncertainty in runoff and reservoir yield 

Short-list satisfactory GCM models, five 
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m
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4. Bias correct P & T using quantile-quantile 

MIUB(1) 

Figure 1. Outline of process to approximate within-GCM uncer-

tainty of future runoff and reservoir yield. The companion paper is

McMahon et al. (2015).

nario. Here we approximate differences in the monthly se-

quence around the trend by using stochastic data generation.

To achieve this we de-trend the catchment average GCM

data, stochastically replicate the de-trended series and add

the trend to the stochastic data to form a stochastic replicate

of the GCM data for the entire period of GCM record. In this

way we approximate the uncertainty around the overall trend,

but not the uncertainty in the trend. Therefore, the approxi-

mation presented here represents an underestimate of the true

within-GCM uncertainty as the trends used are restricted to

those available in GCM runs in the CMIP3 data set. This

stochastic methodology is a temporary solution for approxi-

mating within-GCM uncertainty until sufficient GCM runs

become available to directly estimate within-GCM uncer-

tainty from a large ensemble of GCM runs.

The procedure adopted here to approximate within-GCM

uncertainty for a catchment consists of the following steps

(see Fig. 1):

1. De-trend the 20C3M and A1B catchment average

GCM monthly precipitation and temperature data using

EEMD. EEMD also allows any low-frequency signals

in the time series to be identified.

2. Generate stochastically at a monthly time step k repli-

cates (where k is arbitrarily adopted as 100 to demon-

strate the proof-of-concept) of precipitation and tem-

perature of ∼ 250 years (∼ 150 from 20CM3 and

100 from A1B) ensuring the cross-correlations and

auto-correlations in the precipitation and temperature

time series are preserved and any significant low-
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frequency signals are taken into account. The length of

available 20C3M data differs between GCMs; hence,

there are approximately 250 years of monthly data to

replicate.

3. Add the appropriate trend to the time series for each

replicate of monthly precipitation and temperature.

4. Bias correct both the precipitation and the temperature

time series using the quantile–quantile procedure.

5. Calibrate the precipitation–evapotranspiration–runoff

monthly model (PERM) for each catchment using ob-

served precipitation, temperature and runoff data.

6. Model runoff using PERM and the bias-corrected

stochastic replicates of GCM monthly precipitation and

temperature.

7. Compute mean annual runoff (MAR), standard devia-

tion of annual runoff (SDR), the lag-1 serial correlation

of annual runoff (lag-1) and hypothetical reservoir yield

for each replicate.

8. Estimate the within- and between-GCM uncertainty in

MAR, SDR and lag-1 and hypothetical reservoir yield

based on the 100 replicates.

An advantage of this methodology over a bootstrap-based

methodology, like Prudhomme and Davies (2009a), is that

the entire period of the GCM run is replicated, which can pre-

serve any inter-decadal variability and trend in the replicates.

The replicates can be used to drive a hydrologic model for the

entire period (∼ 250 years), rather than for short (∼ 30 years)

separate periods, since the overall trend has been preserved.

Therefore, hydrologic model stores will be representative

of prior conditions at the beginning of any future period of

runoff impact assessment.

2.2 De-trend GCM data

GCM projections of precipitation and temperature are non-

stationary in terms of mean and existing stochastic data

generation techniques generally deal with stationary data.

In order to apply existing stochastic methods we de-trend

the GCM monthly precipitation and temperature data using

EEMD.

The original empirical mode decomposition (EMD) algo-

rithm, introduced by Huang et al. (1998), is an adaptive spec-

tral analysis technique that is robust when applied to non-

linear and non-stationary data. EMD decomposes a time se-

ries into a set of intrinsic mode functions (IMFs) and a resid-

ual. Each IMF is a zero-mean fluctuation in which the fre-

quency and amplitude may vary within a given IMF. Subse-

quent IMFs represent progressively lower frequency fluctua-

tions. The EMD residual captures any trend in a time series

which may be an unresolved low-frequency fluctuation with

an average period longer than the period of record or a linear

or non-linear trend. The nature of the EMD residual is not

assumed prior to running the algorithm, rather it is a data-

driven output. More recently, Wu and Huang (2009) pro-

posed ensemble EMD (EEMD), a noise assisted data anal-

ysis procedure as an improvement over the original EMD.

In EEMD, an ensemble of EMD trials is obtained by adding

white noise of finite amplitude to the time series prior to each

EMD run. The IMFs and residual from each trial are grouped

by IMF order into ensembles and the average of each IMF

group and the average residual yield the EEMD result. Be-

cause the white noise is different for each EMD trial, dur-

ing averaging the noise cancels out as the ensemble size in-

creases. The purpose of the noise is to change the ordering of

local maxima and minima within the time series, thus gener-

ating a different EMD outcome in each trial. Details are given

in Wu and Huang (2009) and an application to the Southern

Oscillation Index is presented by Peel et al. (2011b) and to

Australian monthly rainfall and temperature by Srikanthan et

al. (2011).

For this analysis the relevant features of EEMD are the

residual, which represents the time-series trend, and any low-

frequency signal in the GCM data. Some GCMs reproduce

features of the El Niño–Southern Oscillation (ENSO) and

associated low-frequency variability (van Oldenborgh et al.,

2005). For GCMs with an ENSO signal in precipitation we

would like to maintain this information in the stochastic

replicates. To identify low-frequency signals in GCM data

we follow Wu and Huang (2004) and compare each set of

EEMD results against a white noise model. Low-frequency

IMFs (average period> 2 years) with more variance than

expected from a white noise model are considered a low-

frequency signal. The white noise model is an ensemble of

200 EMD results from a white noise series of the same length

and variance as the GCM series.

EEMD was applied to 20C3M and A1B precipitation and

temperature data and the residual (trend) identified. For tem-

perature data all IMFs are summed together to form a de-

trended time series ready for stochastic replication. For pre-

cipitation data, where a low-frequency signal is not present,

all IMFs are summed together to form a de-trended time se-

ries ready for stochastic replication. Where a low-frequency

precipitation signal is identified, all IMFs with an average

period≤ 2 years are summed to form a high-frequency com-

ponent and all IMFs with an average period> 2 years are

summed to form a low-frequency component.

In this EEMD analysis we use a rational spline EMD (Pe-

gram et al., 2008) with a tension parameter= 0.5 and a re-

flective spline end condition (Peel et al., 2009). Each EEMD

analysis has 200 ensemble members, the standard deviation

of white noise added to the series represents 0.4 of the origi-

nal series standard deviation and non-orthogonal IMFs, IMF

pairs with Orthogonality Index> 0.1, are automatically com-

bined following Peel et al. (2011a).
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2.3 Stochastic data generation

In this step we approximate uncertainty around the GCM

trend by generating stochastic replicates of de-trended GCM

catchment average time series of concurrent monthly pre-

cipitation and temperature. In order to preserve any cross-

correlation between the precipitation and temperature se-

ries and their auto-correlations, the Matalas (1967) multi-site

stochastic data generation procedure was adopted. In order

to preserve any low-frequency precipitation information, the

generation procedure also needs to be able to simulate both

high- and low-frequency time series. To achieve this we adapt

the method of McMahon et al. (2008) who used EMD to

decompose 6-month precipitation data into intra- and inter-

decadal components, replicated each component separately,

and then combined the component replicates to form the 6-

month precipitation replicate. In this way their stochastic

replicates were able to reproduce observed multi-year dry pe-

riods. Replicating intra- and inter-decadal components sepa-

rately was possible in McMahon et al. (2008) as IMFs from

EMD, and EEMD, are orthogonal to each other. In this pa-

per we use EEMD to identify any low-frequency component

(> 2 years) in the precipitation and utilise the orthogonal na-

ture of EEMD IMFs to replicate the high- and low-frequency

components separately before combining the generated com-

ponent replicates and the trend to form the overall replicate.

The first step in the data generation process is to re-

move the trends (one for precipitation and one for temper-

ature) identified through EEMD analysis in Sect. 2.2 from

the monthly precipitation and temperature time series. If the

GCM precipitation does not contain a low-frequency com-

ponent then there are two separate time series to replicate

concurrently: (1) the de-trended temperature (sum of EEMD

IMFs), and (2) the de-trended precipitation (sum of EEMD

IMFs). If GCM precipitation does contain a low-frequency

component then the de-trended precipitation is divided into a

high-frequency component (sum of EEMD IMFs with aver-

age period≤ 2 years) and a low-frequency component (sum

of EEMD IMFs with average period> 2 years), resulting in

three time series to replicate concurrently. Next, for each cal-

endar month, these time series are standardised to zero mean

and unit variance. Data generation then takes place and the

resulting standardised values are rescaled by the calendar

monthly means and variances. Finally, the respective trends

are added to the rescaled precipitation and temperature data

to form the final replicates.

For sites without a low-frequency precipitation compo-

nent, the following auto-regressive lag-1 (AR1) model is ap-

propriate:

[Xt ]2×1 = [A]2×2

[
Xt−1

]
2×1
+ [B]2×2[εt ]2×1, (1)

where [Xt ]2×1=

[
P

T

]
t

, [Xt−1]2×1=

[
P

T

]
t−1

, [A]2×2 and

[B]2×2 are 2× 2 matrices of constant coefficients to preserve

the cross-correlations between the standardised monthly Pt
and Tt and their auto-correlations, [εt ] is a matrix of random

skewed variates with a mean= 0 and variance= 1.

To take into account the skewness in a time series, εt is

defined by the Wilson–Hilferty transformation (Wilson and

Hilferty, 1931) and replaced in Eq. (1) by

εt =

[
2

γ

(
1+

γ ξ

6
−
γ 2

36

)3

−
2

γ

]
, (2)

where εt is a random skewed variate (zero mean and unit

variance) to account for the skewness in the standardised data

defined by the coefficient of skewness γ , ξ is a random nor-

mal variate with zero mean and unit variance.

The matrices [A] and [B] are determined from (Matalas,

1967)

[A] = [M1] [M0]−1, (3)

[B][B]T = [M0]− [M1] [M0]−1[M1]T , (4)

where [M0] and [M1] are the lag zero and lag-1 cross-

correlation matrices respectively. The elements of [M0] and

[M1] corresponding to variables i and j are given by

m
ij

0 =
1

n

n∑
i=1

XiXj , (5)

m
ij

1 =
1

n− 1

n−1∑
i=1

XiXj−1. (6)

The matrix [A] can be obtained from Eq. (3). The matrix

[B][B]T in Eq. (4) is symmetric and should be positive semi-

definite for solving [B], where [B] can be estimated by the

Cholesky decomposition in which matrix [B] is lower trian-

gular (Hipel and McLeod, 1994). The elements bij of [B] are

obtained from the following recursive relationships:

bij = 0,j > i, (7)

b11 =
√
c11, (8)

where cij is the element of the matrix [B] in Eq. (4). The

remaining element in the first column of [B] is given by

b12 =
c12

b11

. (9)

The second diagonal element is obtained from

b22 = c22− b
2
21. (10)

Once matrices [A] and [B] are determined, 100 replicates

of standardised skewed values are generated using Eqs. (1)

and (2), and then rescaled by the standard deviation and the

mean of the monthly calendar values and trend added to ob-

tain the stochastic replicates of monthly precipitation and

temperature data. In general, the generated monthly data will
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not preserve the annual characteristics especially for precip-

itation as it is highly variable. The generated monthly tem-

perature data were found to preserve the annual character-

istics, while the generated precipitation did not. Hence, the

generated monthly precipitation data were nested in an an-

nual model (Srikanthan, 2004). The details of the nesting are

described later.

For sites with a low-frequency precipitation component,

an AR(2) model is used to incorporate the low-frequency

component. A general multi-site AR(2) model takes the fol-

lowing form:

[Xt ]3×1 = [A]3×3

[
Xt−1

]
3×1
+ [B]3×3

[
Xt−2

]
3×1

+ [C]3×3[εt ]3×1, (11)

where [Xt ]3×1=

 PH
PL
T


t

, [Xt−1]3×1=

 PH
PL
T


t−1

,

[Xt−2]3×1=

 PH
PL
T


t−2

, and the elements of [A]3×3 and

[B]3×3 are 3× 3 matrices of constant coefficients to preserve

the cross-correlation between PH , PL and T at time t and

their auto-correlations.

Due to problems with inverting matrices that are not pos-

itive semi-definite and only the low-frequency precipitation

is AR(2), a contemporaneous form of the model in Eqs. (12)

and (13) is used (Hipel and McLeod, 1994):

[A]3×3 =

 a11 0 0

0 a22 0

0 0 a33

 , (12)

[B]3×3 =

 0 0 0

0 b22 0

0 0 0

 , (13)

where a11 is the AR(1) parameter of the high-frequency pre-

cipitation IMFs, a22, b22 are the AR(2) parameters of the

low-frequency precipitation IMFs, and a33 is the AR(1) pa-

rameter of the temperature IMFs.

Matrix [C] is determined from the following equation

(Salas et al., 1980)

[C][C]T = [M0]− [A][M1]T − [B][M2]T , (14)

where [M0], [M1] and [M2] are the lag-zero, lag-1 and lag-2

correlation matrices, respectively. The elements of [M0] and

[M1] corresponding to variables i and j are given by Eqs. (5)

and (6), respectively. The elements of [M2] are given by

m
ij

2 =
1

n− 2

n−2∑
k=1

XikX
j

k−2, (15)

and the elements of matrices [A] and [B] in Eq. (14) are given

by

a11 =m
11
1 , (16)

a22 =
m22

1

(
1−m22

2

)[
1−

(
m22

1

)2] , (17)

a33 =m
33
1 , (18)

b22 =

[
m22

2 −
(
m22

1

)2][
1−

(
m22

1

)2] . (19)

For catchments with a low-frequency precipitation compo-

nent, matrices [M0], [M1] and [M2] are calculated using

Eqs. (5), (6) and (15). The elements of the matrices [A] and

[B] are calculated using Eqs. (16)–(19) and those of matrix

[C] are calculated from Eq. (14). One hundred replicates of

standardised variates are generated from Eq. (11) then the

skewness is incorporated using Eq. (2). The mean and stan-

dard deviation are reintroduced and, finally, the trends added

to obtain the 100 stochastic replications of monthly precipi-

tation and temperature.

As mentioned above, to ensure the generated monthly pre-

cipitation data preserved the annual characteristics, the gen-

erated monthly precipitation data were nested in an annual

AR(1) model.

Yi −µ

σ
= ρ

Yi−1−µ

σ
+

(
1− ρ2

)0.5 Ỹι−µg

σg

, (20)

where Yi is the adjusted annual precipitation for year i, µ

the mean of the observed annual data, σ the standard devia-

tion of the observed annual data, ρ the lag-1 auto-correlation

coefficient of the observed annual data, Ỹι the annual pre-

cipitation for year i obtained by aggregating the generated

monthly data, µg the mean of the generated annual data and

σg the standard deviation of the generated annual data. The

generated monthly data are then multiplied by the ratio
Yi
Ỹι

.

The stochastic model was tested by applying the above

procedure to monthly precipitation and temperature data for

20CM3 from the MIROCM GCM after the data were sub-

jected to EEMD analysis. Table 1 summarises the perfor-

mance of the stochastic procedure to replicate annual data

for six catchments covering a range of climate types world-

wide. Five of the catchments were modelled by an AR(1)

process, whereas station 6304 required an AR(2) model be-

cause it exhibited a low-frequency precipitation component.

Table 2 summarises the performance of the stochastic pro-

cedure to replicate monthly data for station 6304. Overall,

the stochastic model performed satisfactorily at the monthly

and annual timescales. As a general rule one would expect

the value of the input parameters (GCM in this study) to be

within ±2× standard deviation of the mean of the generated

values. This is achieved for all variables and catchments ex-

cept in two cases: (1) annual lag-1 auto-correlation in catch-

ment 6304, where the low-frequency precipitation IMFs have
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Table 2. Comparison between MIROCM(1) GCM estimates of mean and standard deviation of monthly precipitation and mean monthly

temperature of 20C3M data and stochastically generated values for catchment 6304. Generated values are based on 100 replicates, each 151

years long.

Month MMP (mm month−1,a) SDMP (mm month−1) MMT (◦C)

GCM Genb GCM Gen GCM Gen

1 163 158± 10 103 86.3± 7.9 26.3 26.3± 0.1

2 172 168± 10 93.3 80.8± 6.9 26.2 26.2± 0.1

3 150 147± 9.3 79.4 72.2± 5.5 25.1 25.1± 0.1

4 75.1 73.8± 11 45.0 49.1± 4.6 23.0 23.0± 0.1

5 52.3 53.1± 11 30.5 40.0± 5.3 20.5 20.5± 0.1

6 48.3 50.4± 9.9 36.7 41.1± 5.0 18.5 18.5± 0.1

7 31.5 38.1± 9.2 29.0 39.4± 5.8 17.5 17.5± 0.1

8 34.4 38.0± 9.3 32.8 36.8± 5.4 18.7 18.7± 0.1

9 33.1 37.5± 9.7 28.6 35.6± 5.7 20.8 20.8± 0.1

10 54.8 56.2± 9.8 38.6 44.7± 4.4 23.0 23.0± 0.1

11 96.4 93.9± 8.8 59.0 58.9± 4.4 24.6 24.6± 0.1

12 127 125± 10 83.2 75.0± 6.7 26.0 26.0± 0.1

a MMP: mean monthly precipitation; SDMP: standard deviation of monthly precipitation; MMT: mean monthly

temperature. b Gen: shows the mean value ± standard deviation of 100 replicates.

high auto-correlation, which we assume bias the standardised

variates and, therefore, the generated series; and (2) the stan-

dard deviation of January precipitation in catchment 6304.

There was some variation between the generated and histori-

cal coefficient of skewness (results not shown) but in terms of

the level of modelling required for this project, these differ-

ences are acceptable. The monthly precipitation and temper-

ature values were satisfactorily generated as represented by

station 6304 in Table 2, which was the most difficult catch-

ment to replicate due to the high- and low-frequency precip-

itation components. We conclude from this assessment that

the AR(1) and AR(2) stochastic models are able to preserve

the monthly and annual precipitation and temperature char-

acteristics satisfactorily for the purposes of this study.

2.4 Quantile–quantile bias correction of P and T

Prior to using GCM, or stochastic replicates of GCM, data in

a climate change impact assessment, any bias between GCM

and observed conditions needs to be corrected. The extent

of bias in the GCM precipitation and temperature data is re-

ported in the companion paper (McMahon et al., 2015). For

example, the MAP data for MIUB(3) compared with CRU

MAP data at the GCM grid scale exhibit a slope of 0.69

on logarithmic scales, which indicates the GCM overesti-

mates low MAP and underestimates high MAP. Mean annual

temperatures are much less biased and require only a small

amount of bias correction.

Ehret et al. (2012) presented a detailed review of bias cor-

rection and discusses the associated assumptions and impli-

cations of applying bias correction to GCM or regional cli-

mate model data. Many procedures are available for bias

correction, with techniques falling into two categories: dy-

namical downscaling and statistical downscaling. Dynamical

downscaling procedures are sophisticated and resource inten-

sive (Tisseuil et al., 2010) and are impractical for applying

to globally distributed catchments and a range of GCMs as

proposed in this study. In keeping with the proof-of-concept

nature of this paper we adopt a simple empirical-statistical

downscaling and error correction approach that is appro-

priate for bias correcting catchment average monthly (not

daily) GCM outputs for input into a lumped (not spatially

distributed) hydrologic model. We did not adopt the delta

change method, also known as simply daily scaling (Chiew,

2010), where the observed series is scaled by the relative

difference between future and baseline conditions, as delta

change would not make full use of the re-ordering of pre-

cipitation and temperature events provided by the stochastic

replicates. Rather, we adopted quantile—quantile or quan-

tile mapping as discussed in Themeßl et al. (2012) and Bár-

dossy and Pegram (2011). The basis of the quantile–quantile

bias correction is a comparison of the empirical cumulative

distribution functions (ECDF) of the observed data and the

GCM data for a common period. Here the common period

is the observed catchment record and the concurrent period

of GCM data from the 20C3M scenario. The difference be-

tween observed and GCM ECDFs for a given value provides

the bias correction. Here we also adopt the frequency adapta-

tion method discussed in Themeßl et al. (2012) for when the

GCM series has a higher frequency of zero values than the

observed series. The issue of new extremes, values outside

the range of the GCM and observed data during the period

in which the bias correction is established, was also inves-

tigated by Themeßl et al. (2012). We adopt option QMv1a

of Themeßl et al. (2012), which takes the bias correction at

the highest (lowest) quantile and applies that correction to all
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new upper (lower) extremes. In our analysis we establish and

apply a bias correction for each calendar month (12 correc-

tions in all), rather than a single correction for the whole of

record at each catchment.

An assumption of using this bias correction is that the

correction applies into the future under different conditions.

This assumption is supported by Teutschbein and Seib-

ert (2013) who found the quantile–quantile method per-

formed best out of six alternate bias corrections in differ-

ential split sample tests for non-stationary conditions. The

quantile–quantile bias correction is applied to the precipi-

tation and temperature stochastic replicates (100 replicates

of ∼ 250 years covering the 20CM3 and A1B scenarios)

for each GCM run (5) at 17 global catchments. These 8500

(100× 5× 17) sets of monthly precipitation and temperature

are used as input to our hydrologic model PERM to estimate

monthly runoff.

2.5 Monthly precipitation–evapotranspiration–runoff

model

In order to convert GCM monthly precipitation and temper-

ature into runoff, the PERM model was developed specif-

ically to meet the requirements for hydrologic modelling

in this project. PERM is a simple lumped, not spatially

distributed, conceptual precipitation–runoff model run on a

monthly time step with 5 parameters to be optimised. The

time step was dictated by the availability of monthly stream-

flow data and concurrent precipitation and temperature data.

Further details about the precipitation–evapotranspiration–

runoff model, source code and example input and output are

provided in the Supplement.

2.5.1 Model structure

The structure of PERM is shown in Fig. 2 with the param-

eters to be calibrated highlighted in bold. As observed in

Fig. 2 monthly precipitation is either added to the intercep-

tion store (if the monthly mean daily temperature is > 0 ◦C)

or accumulated in a snowpack (if the monthly mean daily

temperature is ≤ 0 ◦C). The contents of the interception store

are reduced by evaporation. Excess precipitation is subject

to an infiltration function in which a surface runoff compo-

nent (designated as PAreaF) is dependent on the contents of

the soil moisture store. When precipitation is accumulated as

snow, there is no evaporation for that month from the snow-

pack or evapotranspiration from the soil moisture store. The

snowpack continues to accumulate as long as the monthly

mean daily air temperature is ≤ 0 ◦C. The snowpack begins

to melt when the monthly mean daily temperature is > 0 ◦C.

Snowmelt is partitioned into two components, a runoff and

soil moisture infiltration component based on the parameter

Melt. When the maximum capacity of the soil moisture store

is exceeded, saturation excess runoff (SMF) occurs. Evapo-

transpiration from the soil moisture store is estimated either

IC
Imax

AETINT
Precip

Accum

AETSOIL

Smax
SMS

PAreaF

SnowF

SMF

BF

Runoff

TFall

SMI

Interception store

Snow accumulation

Soil moisture store

IC
Imax

AETINT
Precip

Accum

AETSOIL

Smax
SMS

PAreaF

SnowF

SMF

BF

Runoff

TFall

SMI

Interception store

Snow accumulation

Soil moisture store

IC = minimum of Precip + ICprev, Imax 
TFall = maximum of Precip – Imax, 0 
PAreaF = TFall × SMSprev/Smax 
Accum = Precip, if Temp ≤ 0 
SnowF = Melt × (minimum of Temp × a, Accum) 
SMI = (1– Melt) × (minimum of Temp × a, Accum) 
AETINT = maximum on Imax, a × Temp 
AETSOIL = minimum of 150 × (SMS + SMSprev)/Smax, a × Temp – AETINT – SnowF 
SMS = SMSprev + SMI + (TFall – PAreaF) – AETSOIL 
SMF = SMS – Smax 
BF = K × (SMS+ SMSprev)/2 
 a = rate of snowmelt and potential evapotranspiration (mm/°C/month) 
Melt = proportion of snowmelt volume to runoff 
Smax = soil moisture storage capacity (mm) 
K = baseflow linear recession parameter 
Imax = interception storage capacity (mm) 

Figure 2. Structure of the monthly conceptual precipitation–

evapotranspiration–runoff model (PERM) where the five calibration

parameters are highlighted in bold.

as a linear function of the available soil moisture or as a linear

function of monthly mean daily temperature. The algorithms

representing these soil moisture or energy limiting conditions

are given in Fig. 2. Baseflow from the soil moisture store is

simulated as a linear recession of the water content in the

store.

Two other hydrologic processes – impervious area runoff

and deep recharge – were considered for inclusion in PERM.

The inclusion of impervious area was considered unneces-

sary. With respect to deep seepage, the reviews of Petheram

et al. (2002), Scanlon et al. (2006) and Crosbie et al. (2010)

suggest the maximum effect could be, on average, equivalent

to 5 % of the long-term average annual precipitation. From

the results of these reviews and taking into account the model

time step, the available data and the fact that the parameters

in PERM are calibrated, it was concluded that incorporating

deep seepage would yield little benefit to the modelling ex-

ercise.

2.5.2 Model calibration

PERM is run on a monthly time step and calibrated against

observed annual runoff. Details of the calibration are set out
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Catchment
Selected Catchment

Figure 3. Locations of the initial 699 catchments and the final sub-set of 17 catchments.

in the Supplement. In summary, an objective function, de-

fined as the sum of squared differences between the estimated

and observed annual runoff, was minimised with penalties

applied to the objective function to ensure the calibrated

model approximately reproduced the mean and coefficient

of variation of observed annual runoff. An automatic pattern

search optimisation method was used to calibrate the model

(Hooke and Jeeves, 1961; Monro, 1971) with 10 different

parameter sets used as starting points to increase the likeli-

hood of finding the global optimum of parameter values. A

K-fold cross-validation method (where K = 3) described by

Efron and Tibshirani (1993) was used to evaluate calibrated

model performance. PERM was calibrated for 699 catch-

ments worldwide using the observed monthly precipitation,

temperature and runoff data described in Peel et al. (2010).

2.5.3 Model performance and catchment selection

An objective of our study is to examine the within-GCM

uncertainty in runoff estimated from GCM projections of

precipitation and temperature. To examine this uncertainty

we need to minimise any uncertainty in future runoff due

to poor hydrologic model calibration. Therefore, a sub-set

of the 699 catchments was selected for further analysis that

exhibited minimum error as a result of the calibration pro-

cess. Several criteria were used to assess the adequacy of the

PERM calibration for selecting the catchments. These cri-

teria included the following: the annual Nash–Sutcliffe effi-

ciency (NSE) (Nash and Sutcliffe, 1970), between observed

and modelled runoffs, was > 0.8, NSE values based on 3-

fold independent testing were > 0.60, monthly NSE values

were > 0.6, and the mean and the coefficient of variation of

annual runoff were estimated to be within ±5 and ±10 %,

respectively, of the observed values. From a practical point

of view, catchments less than 1000 km2 were excluded as

were several that were spatially very close. Using these se-

lection criteria, 17 catchments from the initial 699 data set

were selected for later analyses. Figure 3 shows the location

of all 699 catchments and the sub-set of 17 catchments used

in later analyses, while Table 3 provides information about

the selected catchments.

Details of the modelling performance of PERM for the

699 catchments are presented in the Supplement. For the

17 selected catchments the difference between the average

modelled and observed MAR is −0.2 % and coefficient of

variation of annual runoff is−4.4 %. At the annual time step,

the average NSE and R2 between modelled and observed

runoff are both 0.88, and the monthly NSE is 0.72. PERM

is well calibrated for these 17 catchments and, therefore, un-

certainty in runoff due to poor model calibration is minimised

using these catchments.

A key assumption of using PERM, or any hydrologic

model, to model future runoff is that the calibrated parame-

ters are appropriate for the future climatic conditions. Where

future climatic conditions are similar to the observed calibra-

tion period, then this assumption is likely to hold. If climatic

conditions differ from the calibration period, then there is no

evidence to support this assumption. However, in terms of

the analysis conducted in the next section this assumption is

a pragmatic one that may well affect the bias of future runoffs

but should have less impact on the range of uncertainty.

2.6 Uncertainty in reservoir yield

The 17 catchments modelled by PERM are unregulated

catchments and do not have an existing reservoir on which

to base our analysis. Therefore, we need to assume a hy-

pothetical reservoir for each catchment. Many procedures

exist to estimate reservoir yield from a hypothetical stor-

age (see McMahon and Adeloye, 2005). For the purposes of
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Table 3. Details of the 17 selected catchments.

Ref. Country River Station Lat ◦ Long ◦ Catchment Length of Köppen

no. area (km2) record climate

(years) zone∗

1202 Mali Bafing Daka Saydou 12.15 −10.2 15 500 21 Aw

1325 Benin Oueme Pont de Beterou 9.2 2.27 10 326 16 Aw

1333 Zimbabwe Sabi Condo D/S G/W −19.22 32.02 11 000 26 Cwb

2270 China Songhuajiang Haerbin 45.77 126.58 391 000 34 Dwa/Dwb

2274 India Tapi Kathore 21.28 72.95 61 575 18 Aw/BSh

2288 China Wujiang Gongtan 28.9 108.35 58 300 37 Cfa

3195 USA Kiamichi Belzoni 34.2 −95.48 3686 45 Cfa

3279 USA Black Kingstree 33.66 −79.84 3243 54 Cfa

3543 USA Umpqua Elkton 43.58 −123.55 9539 19 Csb

4014 Colombia Magdalena Puerto Berrio 6.5 −74.38 74 410 31 Af/Aw/Cfb

4019 Guyana Cuyuni Kamaria Falls 6.43 −58.82 53 354 30 Af/Aw

4145 Chile Lumaco Lumaco −38.15 −72.9 1054 40 Csb

4179 Brazil Rio Jaguaribe Iguatu −6.35 −39.3 21 770 32 BSh

5255 UK Clyde Blairston 55.8 −4.07 1704 24 Cfb

6058 Australia Herbert Gleneagle −18.2 145.33 5236 80 Cwa

6103 Australia Nymboida Nymboida −29.98 152.72 1660 73 Cfa

6279 Australia Ovens Wangaratta −36.36 146.35 5410 41 Cfb

∗ see Peel et al. (2007).

this analysis we require a method that is simple to apply as

there are 100 replicates of future runoff generated by PERM

from 5 GCMs for the 17 selected catchments. Here we adopt

the Gould–Dincer Gamma (G-DG) procedure for estimating

reservoir yield, which is defined as (McMahon and Adeloye,

2005; Petheram et al., 2008)

D =µ−
σ 2

µτγ 2

(
1− ρ3(

1− ρ2
)1.5

)−2 [{
1+

γ zp

6

(
1− ρ3(

1− ρ2
)1.5

)
−
γ 2

36

(
1− ρ3(

1− ρ2
)1.5

)2


3

− 1


2

(
1+ ρ

1− ρ

)
, (21)

where D is the annual yield or draft (mm yr−1), µ and σ are

the mean and the standard deviation, respectively, of annual

runoff (mm yr−1) into the reservoir storage, τ is the hypo-

thetical storage capacity specified as a ratio of mean annual

runoff, γ is the coefficient of skewness of annual runoff, ρ

is the lag-1 serial correlation of annual runoff, and zp is the

standardised normal variate (zero mean and unit variance)

at p the probability of failure. In our analysis, we adopted

95 % reliability of supply; thus, (1−p)= 0.05. In our anal-

ysis we specify two hypothetical storage sizes, τ = 1 and

τ = 3, which are storage capacities equal to 1 and 3 times

the mean annual runoff. The G-DG procedure assumes there

is no net evaporation loss from the storage (see McMahon et

al. (2007) for a detailed description of the procedure), which

in this analysis is not considered critical as we are mainly

considering relative changes in yield. In this analysis the un-

certainty in reservoir yield is estimated via the G-DG pro-

cedure using annual runoff parameters (µ, σ , γ , and ρ) es-

timated from the monthly runoff time series generated by

PERM (see steps 7 and 8 of Fig. 1).

3 Testing the stochastic within-GCM uncertainty

approximation

Testing our stochastic approximation of within-GCM uncer-

tainty requires multiple runs from a single GCM for a given

scenario from which to estimate within-GCM uncertainty

and compare against our stochastic results. In the CMIP3

data set the Community Climate System Model (CCSM)

GCM has the most runs (seven) for the 20C3M and A1B

scenarios. In this section we test the ability of our stochas-

tic methodology to approximate within-GCM uncertainty for

the CCSM GCM using the seven available runs for the period

1870–2100 (20C3M and A1B emissions scenarios).

A comparison of within-GCM uncertainty based on seven

runs from the CCSM GCM and the stochastic approxima-

tion of within-GCM uncertainty for (a) annual precipita-

tion and (b) annual temperature for the Herbert River at

Gleneagle, Australia, is shown in Fig. 4. The CCSM runs

and stochastic replicates presented in Fig. 4 are not bias

corrected. In each plot the maximum, median and mini-

mum annual value for a given year are shown for the seven

CCSM runs and are compared with the maximum, me-

dian and minimum of the 700 (7× 100) stochastic repli-
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Figure 4. Within-GCM uncertainty for the Herbert River at Glenea-

gle based on seven runs from the CCSM GCM compared with the

stochastic approximation of within-GCM uncertainty for un-bias

corrected (a) annual precipitation and (b) annual temperature. In

each plot the maximum, median and minimum annual value for a

given year are shown for the seven CCSM runs compared with the

maximum, median and minimum of the 700 (7× 100) stochastic

replicates of the CCSM runs.

cates of the CCSM runs for annual precipitation and tem-

perature. For both precipitation and temperature the me-

dian of the 700 stochastic replicates overlies the median

of the seven CCSM runs, and the difference between the

maximum and minimum lines around the median for the

two data sets is totally consistent considering there are only

seven CCSM runs and 700 stochastic replicates. A compari-

son of the standard deviation of all annual values calculated

for the seven CCSM runs (precipitation= 110 mm, temper-

ature= 1.21 ◦C) and the 700 stochastic replicates (precipita-

tion= 111 mm, temperature= 1.20 ◦C) confirms the stochas-

tic replicates are replicating the CCSM GCM runs well in

terms of overall trend and variability around the trend. These

results confirm the credibility of the stochastic methodology

for approximating the within-GCM uncertainty when limited

GCM runs are available.

Figure 5. Box plots of 30-year mean annual (a) precipitation and

(b) temperature for the periods 1965–1994 (20C3M) and 2015–

2044 (A1B) for five GCMs. Each box plot is based on 100 quantile–

quantile bias-corrected stochastic replicates of GCM data for catch-

ment 6058 – Herbert River at Gleneagle (Australia). The box rep-

resents the inter-quartile range and the whiskers extend to the max-

imum and minimum values. The Raw value next to each box plot

represents the bias-corrected mean annual value from the GCM run

that the stochastic replicates are based on.

4 Results and discussion

In this section we present and discuss results from the

methodology described in the previous section to approxi-

mate within-GCM uncertainty of precipitation and temper-

ature from five GCMs and assess the consequent impact of

these uncertainties on estimated runoff and reservoir yield at

17 catchments for two 30-year periods – 1965–1994 (20C3M

emissions scenario) and 2015–2044 (A1B emissions sce-

nario).

To assist interpretation of within- and between-GCM un-

certainty results for 17 catchments and 5 GCMs subse-

quently presented in tables and figures, we present results

for an example catchment, the Herbert River at Gleneagle

in Australia, in Fig. 5. The box plots of MAP (Fig. 5a)

and MAT (Fig. 5b) are presented for two 30-year periods

for each GCM. These box plots represent our approxima-

tion of within-GCM uncertainty of MAP and MAT. The box

represents the inter-quartile range of MAP (MAT) from the
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100 bias-corrected stochastic replicates of GCM precipita-

tion (temperature). The median MAP (MAT) is represented

by the bar across the box and the box-plot whiskers rep-

resent the maximum and minimum MAP (MAT) from the

100 replicates. The range of within-GCM uncertainty of

MAP (Fig. 5a) is similar for all GCMs except MIROCM(1),

where the inter-quartile and maximum–minimum range are

approximately 50 % larger. The range of within-GCM uncer-

tainty of MAT (Fig. 5b) is similar for all GCMs.

The box plots in Fig. 5 can also be used to assess between-

GCM uncertainty through differences between GCMs in the

range of within-GCM uncertainty and differences in the di-

rection of change between 30-year-period box plots. All

GCMs have an increasing trend in MAP over time for this

catchment except HadCM3 (Fig. 5a), whereas all GCMs

show a similar increasing trend in MAT over time (Fig. 5b).

Also shown in Fig. 5 is a Raw symbol plotted next to

each box plot. These MAP and MAT values are calculated

from bias-corrected original CMIP3 GCM runs and are the

only values of MAP and MAT available for this combination

of catchment, GCM and scenario if stochastic replication is

not used. In a traditional climate change impact assessment,

without stochastic replication, the Raw values are all that are

available for analysis and the magnitude of uncertainty asso-

ciated with them is unknown. Figure 5 shows that the range

of within-GCM uncertainty associated with Raw values of

MAT is smaller than for MAP.

Figure 5 can also be used to check whether our stochas-

tic methodology is performing well at this catchment. Our

stochastic methodology generates statistically similar repli-

cates of each 20C3M and A1B GCM run from which we

calculate MAP and MAT over two 30-year periods to ob-

tain our box plots. If our methodology is performing well we

would expect the Raw values from the original GCM runs to

fall within our box-plot range, which they do in all cases. It

should be noted that the true within-GCM uncertainty range

for MAP and MAT will be larger than what is shown by

our box plots since we have only replicated the uncertainty

around the GCM trend and not the uncertainty in the trend

itself.

In Table 4 within-GCM uncertainty results are presented

for the five GCMs over the period 1965–1994 at the 17 catch-

ments for six variables – MAP, SDP, MAT, MAR, SDR

and lag-1. Here the six variables have been calculated for

each stochastic replicate and the results are presented as the

mean± the standard deviation of the 100 replicate estimates.

The mean values in Table 4 show the range of hydroclimatic

conditions represented by the 17 catchments, while the stan-

dard deviation around each mean represents our approxima-

tion of within-GCM uncertainty of that variable. The mean

values differ between the five GCMs for a given catchment

for at least two reasons: (1) the stochastic variability in the

mean value of a sample of 100 replicates, and (2) each GCM

has a different trend for each catchment during this period.
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Figure 6. Within-GCM uncertainty (mm yr−1) in mean annual pre-

cipitation versus mean annual precipitation based on 100 replicates

of monthly precipitation (1965–1994, 20C3M) for five GCMs.

Although Table 4 provides absolute values of within-GCM

uncertainty for each combination of catchment, GCM and

variable, it is difficult to draw conclusions from this table.

Therefore, in Tables 5, 6 and 8 we express within-GCM un-

certainty in relative form as the standard deviation of the

100 replicate estimates as a percentage of the mean of the

100 replicate estimates. If the 100 replicate values are nor-

mally distributed, then approximately 95 % of the values will

be within ±2 standard deviations of the mean. The assump-

tion of normality was tested for six variables – MAP, SDP,

MAT, MAR, SDR and reservoir yield for a reservoir equal

to 3×MAR – estimated from 100 replicates of HadCM3 at

each of the 17 catchments for the period 1965–1994. Nor-

mality was assessed using the Anderson–Darling normality

test (Anderson and Darling, 1954). Of the 102 normality tests

(17 catchments× 6 variables) 11 (10.8 %) were not normally

distributed at the 5 % level of significance (not shown), which

is more than expected from random chance. The distribu-

tion of non-normal results was MAP(2), SDP(0), MAT(1),

MAR(4), SDR(2) and reservoir yield(2). Based on our anal-

ysis of HadCM3 replicates, an expectation that roughly 95 %

of MAP, SDP and MAT values will be within±2 standard de-

viations of the mean appears reasonable. Whereas for MAR,

SDR and reservoir yield this expectation is less justified and

within-GCM uncertainty is less likely to be symmetrically

distributed around the mean.

4.1 Annual precipitation and temperature

In this sub-section we present and discuss within- and

between-GCM uncertainty results for annual precipitation

(MAP and SDP) and temperature (MAT). In Table 5 a sum-

mary is presented of the within-GCM uncertainty results

shown in Table 4. The uncertainty results in Table 5 are

in relative form (standard deviation as a percentage of the

mean), except for lag-1 where the standard deviation is used,

and are the average uncertainty across the 17 catchments
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Table 4. Variation and uncertainty in key hydrologic statistics for the five highest ranking GCMs and 17 catchments, based on 100 replicates

of de-trended 20C3M for the period 1965–1994.

Hydrologic variable HadCM3 MIROCM(1) MIUB(1) MPI(1) MRI(3)

1202 Bafing at Daku Saydou (Mali)

Annual P MAP 1733± 45∗ 1700± 46 1743± 43 1743± 39 1693± 41

SDP 195± 27 201± 28 182± 21 206± 30 194± 26

Annual T MAT 23.7± 0.05 23.6± 0.04 23.7± 0.05 23.7± 0.06 23.8± 0.05

Annual R MAR 620± 33 589± 33 595± 30 587± 27 566± 29

SDR 143± 21 147± 22 126± 16 143± 21 135± 19

Lag-1 0.14± 0.17 0.11± 0.19 0.12± 0.19 0.05± 0.19 0.05± 0.19

1325 Oueme at Pont de Beterou (Benin)

Annual P MAP 1292± 30 1358± 41 1257± 37 1309± 28 1254± 30

SDP 169± 21 193± 28 169± 24 159± 22 157± 21

Annual T MAT 26.3± 0.04 26.2± 0.04 26.3± 0.05 26.3± 0.05 26.4± 0.04

Annual R MAR 226± 18 272± 24 189± 20 202± 16 161± 14

SDR 99± 14 115± 18 96± 14 86± 13 80± 12

Lag-1 −0.03± 0.19 0.05± 0.18 0.16± 0.19 −0.09± 0.16 −0.07± 0.18

1333 Sabi at Condo D/S G/W (Zimbabwe)

Annual P MAP 823± 38 799± 35 855± 26 785± 41 854± 44

SDP 204± 27 185± 24 149± 19 185± 24 214± 28

Annual T MAT 19.3± 0.09 19.4± 0.06 19.3± 0.06 19.4± 0.07 19.4± 0.06

Annual R MAR 146± 17 120± 14 130± 10 115± 15 128± 17

SDR 93± 19 75± 17 59± 9 72± 15 87± 21

Lag-1 −0.07± 0.17 −0.01± 0.19 −0.09± 0.17 0.01± 0.19 0.06± 0.18

2270 Songhuajiang at Haerbin (China)

Annual P MAP 492± 20 477± 18 510± 16 495± 16 514± 17

SDP 84± 14 72± 13 72± 10 84± 12 79± 11

Annual T MAT 1.5± 0.13 1.7± 0.11 1.7± 0.18 1.8± 0.14 1.8± 0.11

Annual R MAR 91± 10 87± 10 99± 9 90± 9 100± 9

SDR 39± 7 37± 8 37± 6 41± 6 39± 6

Lag-1 0.25± 0.16 0.20± 0.19 0.19± 0.18 0.19± 0.16 0.19± 0.17

2274 Tapi at Kathore (India)

Annual P MAP 887± 38 865± 40 854± 38 815± 42 891± 46

SDP 204± 27 190± 23 175± 22 206± 24 216± 34

Annual T MAT 26.9± 0.07 26.9± 0.07 26.7± 0.10 26.9± 0.10 26.7± 0.08

Annual R MAR 259± 25 269± 28 259± 25 241± 27 282± 32

SDR 129± 19 131± 19 117± 16 135± 18 143± 23

Lag-1 0.02± 0.18 0.04± 0.19 0.09± 0.17 −0.04± 0.17 0.21± 0.21

2288 Wujiang at Gongtan (China)

Annual P MAP 1136± 31 1125± 26 1186± 27 1126± 31 1172± 29

SDP 159± 23 141± 19 139± 20 147± 20 166± 25

Annual T MAT 15.7± 0.09 15.8± 0.09 15.7± 0.08 15.8± 0.09 15.7± 0.08

Annual R MAR 589± 31 576± 27 640± 27 578± 32 625± 28

SDR 137± 23 126± 18 122± 18 127± 19 143± 22

Lag-1 0.17± 0.16 0.22± 0.17 0.00± 0.18 0.16± 0.17 0.07± 0.18

3195 Kiamichi at Belzoni (USA)

Annual P MAP 1237± 53 1302± 60 1260± 42 1318± 65 1308± 49

SDP 267± 38 260± 38 242± 33 284± 43 269± 36

Annual T MAT 17.1± 0.12 16.8± 0.13 16.7± 0.14 16.6± 0.13 16.9± 0.11

Annual R MAR 407± 37 466± 47 419± 35 483± 53 480± 41

SDR 199± 30 213± 34 187± 29 227± 38 221± 31

Lag-1 0.02± 0.17 0.06± 0.19 −0.02± 0.17 0.08± 0.21 0.01± 0.17
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Table 4. Continued.

Hydrologic variable HadCM3 MIROCM(1) MIUB(1) MPI(1) MRI(3)

3279 Black at Kingstree (USA)

Annual P MAP 1110± 60 1147± 43 1164± 29 1127± 47 1187± 37

SDP 236± 34 198± 26 177± 23 231± 33 208± 29

Annual T MAT 17.5± 0.12 17.3± 0.11 17.3± 0.11 17.4± 0.12 17.5± 0.11

Annual R MAR 255± 37 276± 29 272± 21 273± 31 294± 25

SDR 140± 26 128± 22 112± 18 143± 24 130± 19

Lag-1 0.24± 0.17 0.15± 0.20 0.05± 0.21 0.14± 0.18 0.04± 0.19

3543 Umpqua at Elkton (USA)

Annual P MAP 1085± 44 1088± 43 1025± 36 1134± 42 1142± 36

SDP 211± 29 224± 29 197± 27 218± 27 217± 31

Annual T MAT 10.3± 0.12 10.8± 0.09 10.5± 0.10 10.7± 0.08 10.6± 0.11

Annual R MAR 752± 38 734± 40 679± 35 784± 37 801± 33

SDR 189± 26 213± 27 183± 26 203± 26 191± 26

Lag-1 0.02± 0.19 −0.01± 0.19 −0.02± 0.20 −0.01± 0.19 −0.02± 0.17

4014 Magdalena at Puerto Berrio (Colombia)

Annual P MAP 1962± 46 1843± 57 1800± 53 1905± 37 1901± 40

SDP 226± 32 189± 30 145± 25 206± 31 176± 24

Annual T MAT 20.7± 0.08 20.7± 0.05 20.7± 0.07 20.7± 0.07 20.8± 0.08

Annual R MAR 1085± 30 1007± 37 978± 34 1047± 24 1044± 26

SDR 138± 20 115± 20 85± 17 121± 17 103± 16

Lag-1 0.15± 0.18 0.42± 0.17 0.50± 0.16 0.06± 0.16 0.26± 0.18

4019 Cuyuni at Kamaria Falls (Guyana)

Annual P MAP 1566± 89 1457± 90 1454± 31 1413± 49 1442± 42

SDP 306± 43 258± 46 185± 26 218± 33 244± 31

Annual T MAT 25.1± 0.11 25.3± 0.13 25.1± 0.08 25.2± 0.07 25.2± 0.06

Annual R MAR 818± 85 697± 87 686± 31 650± 48 673± 40

SDR 293± 39 236± 49 164± 22 203± 30 227± 30

Lag-1 0.33± 0.17 0.53± 0.19 −0.03± 0.17 0.21± 0.17 −0.04± 0.17

4145 Lumaco at Lumaco (Chile)

Annual P MAP 1084± 47 1037± 58 1096± 50 1088± 43 1052± 43

SDP 217± 28 204± 29 210± 29 224± 35 210± 29

Annual T MAT 11.5± 0.07 11.6± 0.10 11.5± 0.08 11.5± 0.08 11.6± 0.09

Annual R MAR 595± 38 553± 47 613± 41 584± 37 564± 35

SDR 171± 24 161± 25 175± 24 188± 31 167± 24

Lag-1 0.12± 0.18 0.39± 0.17 0.23± 0.18 0.06± 0.20 0.09± 0.17

4179 Rio Jaguaribe at Iguata (Brazil)

Annual P MAP 801± 96 808± 65 675± 34 744± 38 694± 46

SDP 315± 53 266± 44 180± 23 236± 34 260± 40

Annual T MAT 26.6± 0.12 26.6± 0.12 26.5± 0.09 26.5± 0.14 26.9± 0.08

Annual R MAR 51.5± 22 48.7± 16 45.3± 9.0 64.7± 14 56.4± 16

SDR 81.0± 34 62.0± 24 50.1± 14 76.9± 22 81.6± 30

Lag-1 0.20± 0.19 0.16± 0.19 0.00± 0.18 −0.02± 0.17 −0.05± 0.17

5255 Clyde at Blairston (UK)

Annual P MAP 1025± 29 1032± 29 989± 27 1026± 28 978± 30

SDP 154± 20 140± 17 147± 20 134± 16 140± 20

Annual T MAT 8.4± 0.09 8.5± 0.10 8.7± 0.10 8.4± 0.10 8.7± 0.10

Annual R MAR 762± 28 774± 29 717± 27 784± 31 704± 30

SDR 149± 20 141± 17 149± 19 145± 21 141± 21

Lag-1 −0.05± 0.16 0.05± 0.19 0.00± 0.19 −0.02± 0.17 0.04± 0.18

www.hydrol-earth-syst-sci.net/19/1615/2015/ Hydrol. Earth Syst. Sci., 19, 1615–1639, 2015



1630 M. C. Peel et al.: Approximating uncertainty of annual runoff and reservoir yield using stochastic replicates

Table 4. Continued.

Hydrologic variable HadCM3 MIROCM(1) MIUB(1) MPI(1) MRI(3)

6058 Herbert at Gleneagle (Australia)

Annual P MAP 854± 44 908± 73 900± 42 873± 50 868± 44

SDP 245± 42 323± 52 253± 40 267± 50 251± 37

Annual T MAT 21.5± 0.09 21.4± 0.08 21.5± 0.11 21.5± 0.09 21.6± 0.07

Annual R MAR 184± 28 230± 44 210± 29 202± 29 201± 29

SDR 150± 34 206± 45 161± 33 166± 39 158± 31

Lag-1 −0.06± 0.17 0.03± 0.16 −0.08± 0.17 0.01± 0.19 −0.03± 0.19

6103 Nymboida at Nymboida (Australia)

Annual P MAP 1477± 83 1432± 88 1479± 69 1497± 92 1474± 90

SDP 414± 72 436± 66 365± 55 437± 62 412± 66

Annual T MAT 17.1± 0.07 17.0± 0.06 17.2± 0.08 17.0± 0.08 17.2± 0.06

Annual R MAR 493± 59 475± 59 480± 48 510± 64 485± 61

SDR 268± 61 282± 59 236± 47 289± 55 270± 59

Lag-1 0.11± 0.18 0.15± 0.18 0.03± 0.20 0.20± 0.14 0.11± 0.19

6279 Ovens at Wangaratta (Australia)

Annual P MAP 1137± 58 823± 42 1057± 36 1074± 48 1040± 42

SDP 243± 33 181± 25 206± 30 257± 33 214± 33

Annual T MAT 12.6± 0.08 12.4± 0.10 12.7± 0.11 12.5± 0.10 13.0± 0.08

Annual R MAR 215± 24 106± 14 186± 15 195± 21 182± 18

SDR 105± 17 60± 10 84± 15 106± 15 88± 14

Lag-1 0.14± 0.17 0.29± 0.17 0.00± 0.18 0.01± 0.16 0.07± 0.18

∗ Mean value± standard deviation based on 100 replicates.

Table 5. Relative within-GCM uncertainty of mean and standard deviation of annual precipitation, mean annual temperature and mean,

standard deviation and lag-1 serial correlation of annual runoff. Relative uncertainty is the standard deviation of the 100 replicate estimates

as a percentage of the mean replicate estimate for each GCM during the period 1965–1994 (20C3M). The average of the 17 catchment

relative uncertainty values is presented, except for lag-1 annual runoff which is the average of the 17 standard deviations.

Variable HadCM3 MIROCM(1) MIUB(1) MPI(1) MRI(3) Average

MAP 4.6 % 4.6 % 3.4 % 3.9 % 3.8 % 4.1 %

SDP 14.4 % 14.6 % 13.9 % 14.2 % 14.2 % 14.3 %

MAT 1.0 % 0.9 % 1.1 % 1.0 % 0.8 % 1.0 %

MAR 10.8 % 10.9 % 8.1 % 9.3 % 9.3 % 9.7 %

SDR 17.9 % 18.4 % 16.4 % 16.8 % 17.3 % 17.4 %

Lag-1 0.17 0.18 0.18 0.18 0.18 0.18

for each GCM. Averaging relative uncertainty values across

the catchments allows differences in within-GCM uncer-

tainty between GCMs to be examined and the average un-

certainty across all GCMs for a given variable of interest to

be estimated. For MAP within-GCM uncertainty varies be-

tween GCMs from 3.4 to 4.6 % and the average across the

five GCMs is 4.1 %. Given a normal distribution of MAP

values across the 100 replicates this translates into 95 %

of MAP values being within ±7 to ±9 % of the replicate

mean. Although the average within-GCM uncertainty for

SDP (14.3 %) is 3–4 times higher than for MAP (4.1 %), the

difference between GCMs is smaller for SDP (13.9–14.6 %).

Within-GCM uncertainty of inter-annual variability of pre-

cipitation is high with approximately 95 % of SDP values

being within ±28 to ±29 % of the mean SDP. In contrast,

within-GCM uncertainty for MAT is very small (1 % with

95 % within ±2 % of mean MAT) and is very consistent be-

tween GCMs. Across the five GCMs, MIUB(1) has the least

within-GCM uncertainty for MAP and SDP and the highest

for MAT, while MIROCM(1) has the highest for MAP and

SDP.

A similar set of results to those in Table 5 are presented

in Table 6 for the 30-year period 2015–2044 (A1B). On

average across the five GCMs, within-GCM uncertainty of

MAP, SDP and MAT are similar between the two periods.

However, differences in uncertainty between GCMs are ap-
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Table 6. Relative within-GCM uncertainty of mean and standard deviation of annual precipitation, mean annual temperature and mean,

standard deviation and lag-1 serial correlation of annual runoff. Relative uncertainty is the standard deviation of the 100 replicate estimates

as a percentage of the mean replicate estimate for each GCM during the period 2015–2044 (A1B). The average of the 17 catchment relative

uncertainty values is presented, except for lag-1 annual runoff which is the average of the 17 standard deviations.

Variable HadCM3 MIROCM(1) MIUB(1) MPI(1) MRI(3) Average

MAP 4.9 % 4.9 % 3.4 % 3.8 % 3.8 % 4.2 %

SDP 14.7 % 14.4 % 14.4 % 13.6 % 13.7 % 14.2 %

MAT 0.8 % 0.6 % 0.7 % 0.8 % 0.7 % 0.7 %

MAR 13.0 % 11.7 % 8.0 % 8.9 % 9.0 % 10.1 %

SDR 20.1 % 18.8 % 16.6 % 16.0 % 16.5 % 17.6 %

Lag-1 0.18 0.17 0.18 0.18 0.18 0.18
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Figure 7. Within-GCM uncertainty (mm yr−1) in standard devi-

ation of annual precipitation versus the standard deviation of an-

nual precipitation based on 100 replicates of monthly precipitation

(1965–1994, 20C3M) for five GCMs.

parent across the two periods. For example, for MAP the

maximum and minimum values in Tables 5 and 6 are from

MIROCM(1) (4.6 and 4.9 %) and MIUB(1) (3.4 and 3.4 %),

respectively. It should be noted that the uncertainties in Ta-

ble 6 are for the projected values of precipitation, temper-

ature and runoff in 2015–2044, and not the uncertainties in

their changes between the earlier and the later periods. Often,

regional climate change projections present uncertainties in

the projected changes in variables. However, here we present

the uncertainties in the projected values, as these are impor-

tant for the projected runoff and reservoir yield.

Within-GCM uncertainty results for MAP, SDP and MAT

from Table 4 are also summarised in Figs. 6 to 8, where

results from the 17 catchments are plotted for each GCM.

Figure 6 shows that within-GCM uncertainty in MAP varies

from below 20 mm yr−1 to more than 90 mm yr−1. For each

GCM there is a weak positive relationship between uncer-

tainty and MAP. The strongest relationship is for MIUB(1),

which also has the lowest uncertainty. In Fig. 7, within-GCM

uncertainty results for SDP are in contrast to the MAP re-

sults of Fig. 6. Although the range in uncertainty of SDP

is only slightly less than for MAP, ranging from approxi-

mately 10 to above 70 mm yr−1, there is a very strong pos-

itive relationship between uncertainty in SDP and SDP for

each GCM shown. The reason for the difference in relation-

ship strengths in Figs. 6 and 7 is due to the uncertainty in

MAP being strongly positively related to SDP (not shown).

This is to be expected as higher inter-annual variability, rep-

resented here by SDP, increases the uncertainty in a 30-year

estimate of MAP. Thus, in Fig. 6 the weak relationship be-

tween MAP and the uncertainty in MAP is due to a combina-

tion of stochastic variability and the SDP at each catchment.

Whereas the strong relationship observed in Fig. 7 between

SDP and uncertainty in SDP is solely a function of stochastic

variability. Within-GCM uncertainty in mean annual temper-

ature is small, varying from less than 0.05 to 0.18 ◦C, and

decreases with increasing MAT for all GCMs, although the

relationships between uncertainty and mean annual tempera-

ture are weak (Fig. 8).

4.2 Annual runoff

In this sub-section we present and discuss within- and

between-GCM uncertainty results for annual runoff (MAR,

SDR and lag-1). For each GCM and catchment, 100 bias-

corrected stochastic replicates of monthly P and T were used

as input to PERM and 100 series of monthly runoff gener-

ated. In Fig. 9 box plots of MAR (Fig. 9a) and SDR (Fig. 9b)

are presented for the Herbert River at Gleneagle in Australia

as an example of the runoff results for 17 catchments and

5 GCMs. For each GCM a box plot of the 100 values calcu-

lated from PERM is presented for the two 30-year periods.

Consistent with results for MAP shown in Fig. 5a the range

of within-GCM uncertainty of MAR is similar for all GCMs

except MIROCM(1), where the inter-quartile and maximum–

minimum range are approximately 50 % larger. For MAP all

GCMs, except HadCM3, had an increasing trend in MAP

over time (Fig. 5a). However, trends in MAP are not consis-

tently transferred to MAR. As expected HadCM3 has a de-

creasing trend in MAR and MIROCM(1) shows an increas-

ing trend in MAR. However, MIUB(1), MPI(1) and MRI(3)

show little change in MAR between periods. In Fig. 9b the
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Figure 8. Within-GCM uncertainty (◦C) in mean annual temper-

ature versus mean annual temperature based on 100 replicates of

monthly temperature (1965–1994, 20C3M) for five GCMs.

range of within-GCM uncertainty of SDR is similar across all

the GCMs, except MIROCM(1) which again has the high-

est inter-quartile and maximum–minimum range. The pat-

tern of trend in SDR between the two periods is complex.

MIROCM(1) is the only GCM to have an increase in me-

dian SDR and inter-quartile range over time, while HadCM3,

MIROCM(1) and MRI(3) all have an increase in maximum–

minimum range over time. Also shown in Fig. 9 are the Raw

values of MAR and SDR calculated from PERM runs of bias-

corrected original GCM data, which are the only values of

MAR and SDR available for this combination of catchment,

GCM and scenario if stochastic replication is not used. As

was the case for MAP and MAT, the Raw MAR and SDR val-

ues for each GCM and 30-year period fall within the box-plot

range, indicating that our stochastic replication methodology

is performing satisfactorily. Again, the true within-GCM un-

certainty range for MAR and SDR is expected to be larger

than what is shown by our box plots since we only replicated

the noise around the GCM trend and not the GCM trend it-

self.

Within-GCM uncertainty results for MAR and SDR av-

eraged across the 17 catchments for each of the 5 GCMs

and expressed in relative form (standard deviation as a per-

centage of the mean) are shown in Table 5 for the 30-year

period 1965–1994 (20C3M). Also shown in Table 5 are the

standard deviation and the lag-1 serial correlation of runoff.

In Table 5 within-GCM uncertainty of MAR varies between

GCMs from 8.1 to 10.9 % and the average across the GCMs

is 9.7 %. Although the 100 MAR values may not be normally

distributed we would expect roughly 95 % of the MAR val-

ues to be within ±16 to ±22 % of the replicate mean MAR.

The average within-GCM uncertainty of MAR (9.7 %) is

over double that of MAP (4.1 %), which demonstrates how

uncertainty in precipitation is magnified in runoff through

the precipitation–runoff relationship. In Table 5 the aver-

age within-GCM uncertainty for SDR (17.4 %) is approx-

Figure 9. Box plots of 30-year (a) mean annual runoff and (b) stan-

dard deviation of annual runoff for the periods 1965–1994 (20C3M)

and 2015–2044 (A1B) for five GCMs. Each box plot is based on

100 quantile–quantile bias-corrected stochastic replicates of GCM

data that have been input to the PERM model of catchment 6058

– Herbert River at Gleneagle (Australia). The box represents the

inter-quartile range and the whiskers extend to the maximum and

minimum values. The Raw value next to each box plot represents

the PERM output when using the bias-corrected GCM runs that the

stochastic replicates are based on.

imately 80 % higher than for MAR (9.7 %) and the differ-

ence between GCMs is smaller for SDR (16.4–18.4 %) than

for MAR. Within-GCM uncertainty of inter-annual variabil-

ity of runoff is high with approximately 95 % of SDR values

being within ±33 to ±37 % of the mean SDR. Although the

within-GCM uncertainty of SDR is high (17.4 %), it is only

∼ 20 % higher than the uncertainty for SDP (14.3 %). In Ta-

ble 5 there is little difference between GCMs in within-GCM

uncertainty of lag-1 serial correlation with standard deviation

values varying from 0.17 to 0.18 and the average across the

GCMs is 0.18.

Within-GCM uncertainty of MAR, SDR and lag-1 serial

correlation for the 30 year period 2015–2044 (A1B) in Ta-

ble 6 is similar to the results shown in Table 5. However, dif-

ferences in uncertainty between GCMs are apparent across

the two periods. For example, for MAR the minimum values

in Tables 5 and 6 are from MIUB(1) (8.1 and 8.0 %), whereas

Hydrol. Earth Syst. Sci., 19, 1615–1639, 2015 www.hydrol-earth-syst-sci.net/19/1615/2015/



M. C. Peel et al.: Approximating uncertainty of annual runoff and reservoir yield using stochastic replicates 1633

y = 0.03x + 19.40 
R² = 0.28 

y = 0.04x + 18.39 
R² = 0.30 

y = 0.03x + 14.00 
R² = 0.49 

y = 0.02x + 19.95 
R² = 0.22 

y = 0.02x + 19.23 
R² = 0.24 

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200

U
nc

er
ta

in
ty

 in
 M

AR
 (m

m
) 

MAR (mm) 

HadCM3

MIROCM(1)

MIUB(1)

MPI(1)

MRI(3)

Figure 10. Within-GCM uncertainty (mm yr−1) in mean annual

runoff versus mean annual runoff based on 100 PERM runs using

replicates of monthly precipitation and temperature (1965–1994,

20C3M) as input from five GCMs.

the second highest MAR in Table 5 and the maximum value

in Table 6 are from HadCM3 (10.8 and 13.0 %).

Within-GCM uncertainty results for MAR and SDR from

the 17 catchments and 5 GCMs in Table 4 are summarised

in Figs. 10 and 11. Figure 10 shows the within-GCM uncer-

tainty in MAR varies from below 10 mm yr−1 to more than

80 mm yr−1. For each GCM there is a positive relationship

between uncertainty and MAR. The strongest relationship

is for MIUB(1), which also has the lowest uncertainty. In

Fig. 11, the within-GCM uncertainty results for SDR are in

contrast to the MAR results of Fig. 10. Although the range

in uncertainty of SDR is slightly less than for MAR, ranging

from under 10 to above 60 mm yr−1, there is a much stronger

positive relationship between the uncertainty in SDR and

SDR for each GCM shown. Although the uncertainty rela-

tionships for precipitation (Figs. 6 and 7) and runoff (Figs. 10

and 11) are broadly similar, modelling runoff through PERM

has modified the uncertainty relationships of precipitation

relative to runoff. The relationships in Fig. 10 for MAR are

stronger than those for MAP in Fig. 6, while the relation-

ships for SDR in Fig. 11 are weaker than those for SDP in

Fig. 7. The within-GCM uncertainty of lag-1 serial correla-

tion of annual runoff is approximately constant at 0.18 and

shows little difference between GCMs (not shown).

4.3 Reservoir yield

In this sub-section we present and discuss within- and

between-GCM uncertainty results for reservoir yield. The

impact of within-GCM uncertainty on reservoir yield is

shown in Fig. 12 for the Herbert River at Gleneagle. The

Gould–Dincer Gamma method was used to estimate aver-

age annual yield from a hypothetical reservoir of capac-

ity equal to 3×MAR with 95 % reliability of draft using

annual runoff statistics from PERM modelled runoff. Each

box plot is based on 100 values of average annual reser-
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Figure 11. Within-GCM uncertainty (mm yr−1) in standard devi-

ation of annual runoff versus standard deviation of annual runoff

based on 100 PERM runs using replicates of monthly precipitation

and temperature (1965–1994, 20C3M) as input from five GCMs.

voir yield for the two 30-year periods estimated from PERM

runs using stochastic replicates of precipitation and temper-

ature for each GCM. In Fig. 12 the minimum average an-

nual yield is zero in two cases – HadCM3 (2015–2044) and

MIROCM(1) (1965–1994). In these two cases the Gould–

Dincer Gamma method returned a physically impossible

negative draft, which indicates that a positive draft cannot

be supplied with 95 % reliability from the hypothetical reser-

voir for at least one replicate. For a given GCM, an increasing

trend in average reservoir yield between periods is due to ei-

ther an increasing trend in MAR (Fig. 9a) and or a decreasing

trend in SDR (Fig. 9b). The within-GCM uncertainty of av-

erage annual yield for MIROCM(1) is 70 % larger than for

the other GCMs for this catchment, which is consistent with

the MAP, MAR and SDR results. The Raw values of average

reservoir yield again fall within the box-plot range, indicat-

ing that our stochastic replication methodology is performing

satisfactorily.

Table 7 lists reservoir yield results for the 17 catchments,

5 GCMs and two hypothetical reservoir capacities (1×MAR

and 3×MAR) for the 30-year period 2015–2044 (A1B).

The average reservoir yield is the average of the 100 PERM

runs and the uncertainty is the standard deviation of the

100 PERM runs. Differences between GCMs in average

reservoir yield at a given catchment largely reflect differ-

ences in MAR and SDR trends during this period. If the

Gould–Dincer Gamma method returned a physically impos-

sible negative draft, the yield for that run was set to zero. In

Table 7 if more than half the yields (> 50) were set to zero,

results for that GCM and catchment combination were not

reported (N/R).

The yield uncertainties in Table 7 due to within-GCM un-

certainty are expressed as a percentage of the mean yield and

averaged across the 17 catchments in Table 8. For the larger

storage, τ = 3, the average uncertainty across the 5 GCMs is
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Table 7. Average and within-GCM uncertainty of reservoir yield (mm yr−1) for 17 catchments using the Gould–Dincer Gamma reservoir

storage model for two reservoir sizes (τ = 1×MAR and τ = 3×MAR) and 95 % reliability of draft. Average and uncertainty (standard

deviation) are calculated from 100 bias-corrected replicates of precipitation and temperature passed through the PERM model for each GCM

over the period 2015–2044 (A1B).

Ref. Observed Relative HadCM3 MIROCM(1) MIUB(1) MPI(1) MRI(3)

no. MAP MAR CvRa reservoir (mm yr−1) (mm yr−1) (mm yr−1) (mm yr−1) (mm yr−1)

(mm (mm size

yr−1) yr−1)

1202 1672 569 0.26 1×MAR 609± 40 531± 39 620± 34 516± 34 477± 33

3×MAR 632± 33 560± 34 641± 28 537± 31 497± 25

1325 1253 194 0.54 1×MAR 208± 23 238± 29 194± 40 188± 20 121± 19

3×MAR 229± 18 268± 25 228± 28 205± 16 143± 14

1333 809 126 0.75 1×MAR 90.7± 23 75.9± 23 112± 15 56.6± 19 58.0± 27

3×MAR 119± 15 105± 13 125± 10 82.8± 11 93.4± 15

2270 495 93.9 0.46 1×MAR 68.3± 21 74.0± 15 89.3± 13 70.1± 18 82.2± 16

3×MAR 88.6± 11 89.8± 9 100± 8 87.6± 10 95.7± 10

2274 801 225 0.53 1×MAR 221± 40 236± 39 244± 33 178± 51 316± 68

3×MAR 259± 27 277± 28 278± 25 226± 29 371± 43

2288 1158 617 0.20 1×MAR 557± 45 429± 44 601± 28 541± 36 550± 37

3×MAR 587± 33 459± 34 615± 25 563± 31 577± 29

3195 1234 416 0.45 1×MAR 243± 53 197± 77 336± 42 362± 66 391± 58

3×MAR 303± 36 273± 42 380± 30 439± 46 443± 46

3279 1122 260 0.54 1×MAR 173± 69 104± 40 220± 37 236± 69 259± 42

3×MAR 242± 53 152± 24 249± 24 303± 41 300± 30

3543 1078 721 0.35 1×MAR 599± 43 605± 44 560± 36 688± 38 762± 39

3×MAR 630± 34 639± 39 588± 33 715± 35 786± 35

4014 1900 1043 0.14 1×MAR 1046± 37 1058± 37 1204± 63 1072± 23 1122± 28

3×MAR 1059± 35 1078± 34 1247± 41 1081± 23 1131± 27

4019 1397 636 0.29 1×MAR 283± 162 147± 109 651± 31 341± 65 622± 52

3×MAR 475± 90 243± 88 669± 29 400± 38 657± 42

4145 1050 570 0.33 1×MAR 434± 52 229± 99 382± 79 417± 55 399± 46

3×MAR 476± 38 318± 54 441± 46 464± 40 433± 34

4179 636 38.9 1.37 1×MAR N/Rb N/R 7.8± 9 7.6± 11 N/R

3×MAR N/R N/R 30.8± 9 37.9± 14 19.9± 13

5255 1007 749 0.17 1×MAR 729± 27 765± 28 706± 32 723± 24 714± 31

3×MAR 742± 24 777± 27 722± 30 735± 22 727± 29

6058 873 201 0.88 1×MAR 59.8± 41 52.6± 61 116± 48 83.5± 55 89.3± 52

3×MAR 130± 31 169± 52 181± 32 161± 38 164± 31

6103 1455 482 0.59 1×MAR 251± 109 494± 146 391± 85 264± 112 273± 102

3×MAR 370± 58 653± 96 476± 54 394± 64 390± 61

6279 1119 206 0.55 1×MAR 62.0± 35 27.6± 22 162± 20 131± 34 125± 27

3×MAR 107± 20 54.7± 17 184± 15 169± 21 155± 19

a Coefficient of variation of annual runoff, N/Rb indicates more than half the replicates had negative draft estimate set to zero; therefore, the statistics are not

reported.

Table 8. Relative within-GCM uncertainty of reservoir yield for hypothetical reservoirs of 1× and 3×MAR. The average of 17 catchment

relative uncertainty values is presented. Relative uncertainty is the standard deviation of the 100 replicate estimates as a percentage of the

mean replicate estimate for each GCM over the period 2015–2044 (A1B).

Variable HadCM3 MIROCM(1) MIUB(1) MPI(1) MRI(3) Average

1×MAR 25.9 % 33.2 % 19.6 % 28.3 % 18.6 % 25.1 %

3×MAR 11.6 % 14.3 % 9.3 % 11.6 % 12.7 % 11.9 %

Hydrol. Earth Syst. Sci., 19, 1615–1639, 2015 www.hydrol-earth-syst-sci.net/19/1615/2015/



M. C. Peel et al.: Approximating uncertainty of annual runoff and reservoir yield using stochastic replicates 1635

0

50

100

150

200

250

300

350

400

0 1 2 3 4 5

3x
M

AR
 A

nn
ua

l Y
ie

ld
 (m

m
) 

GCM 

Raw 1965 - 1994 1965 - 1994

Raw 2015 - 2044 2015 - 2044

HadCM3                 MIROCM(1)                MIUB(1)                    MPI(1)                      MRI(3) 

Figure 12. Box plots of average reservoir yield for the 30-year pe-

riods 1965–1994 (20C3M) and 2015–2044 (A1B) for five GCMs.

Reservoir yield is estimated using the Gould–Dincer Gamma reser-

voir storage model for reservoir size τ = 3×MAR and 95 % relia-

bility of draft. Runoff metrics for the Gould–Dincer Gamma method

are estimated from 100 PERM runs of quantile–quantile bias-

corrected stochastic replicates of GCM data for catchment 6058 –

Herbert River at Gleneagle (Australia). The box represents the inter-

quartile range and the whiskers extend to the maximum and mini-

mum values. The Raw value next to each box plot represents the

Gould–Dincer Gamma output when using the bias-corrected GCM

runs that the stochastic replicates are based on.

11.9 %, which is approximately half the average uncertainty

(25.1 %) for the smaller storage (τ = 1). The GCM with the

highest uncertainty in reservoir yield is MIROCM(1), which

is consistent with the high uncertainty in MAP, MAR and

SDR for this GCM. MIUB(1) is the only GCM to have be-

low average uncertainty for both reservoir sizes. The un-

certainty data in Table 7 for τ = 3 are plotted in Fig. 13

against mean reservoir yield. Uncertainty of reservoir yield

is only weakly positively related to reservoir yield. For a

given reservoir yield MIROCM(1) and HadCM3 generally

have higher uncertainty than the other GCMs. The range of

uncertainty is approximately 15 mm yr−1 for low-yield reser-

voirs (100 mm yr−1) through 40 mm yr−1 for reservoirs that

yield 1000 mm yr−1.

The main driver of uncertainty in reservoir yield is the

variability of annual reservoir inflows. Figure 14 shows the

relationship between uncertainty in reservoir yield, for τ = 3,

against the variability of reservoir inflows expressed as the

standard deviation of annual runoff for the five GCMs over

the period 2015–2044 (A1B). The relationship between un-

certainty in reservoir yield and annual runoff variability is

strongly positive with all GCMs having an R2
≥ 0.78, ex-

cept for MIROCM(1). Uncertainty in yield is driven more

strongly by inflow variability than by inflow mean (not

shown, but very similar to Fig. 13 as reservoir yield and mean

annual runoff are highly correlated).
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Figure 13. Within-GCM uncertainty (mm yr−1) in reservoir yield

versus reservoir yield based on 100 Gould–Dincer Gamma esti-

mates (hypothetical capacity: τ = 3, reliability of draft: 95 %) from

PERM runs of monthly precipitation and temperature replicates

(2015–2044, A1B) from five GCMs.

5 Conclusions and implications

Climate change impact assessments for future hydrology

are subject to significant uncertainties. The contribution of

within-GCM uncertainty to total uncertainty has not been

well quantified due to the limited number of GCM runs avail-

able for each GCM and scenario combination. In this paper

we developed a methodology to approximate within-GCM

uncertainty of precipitation and temperature projections us-

ing non-stationary stochastic data generation. Our methodol-

ogy is a contribution toward quantifying within-GCM uncer-

tainty and provides an objective approach for communicating

the uncertainty in climate change impact assessments in a

quantitative manner. In a proof-of-concept application of our

procedure we estimated the impact of within-GCM uncer-

tainty on annual runoff and reservoir yield, which can inform

water resources engineers and management decision makers

about the uncertainty in climate change impacts in the short-

to medium-term planning horizon. For the research commu-

nity our stochastic data generation methodology provides a

way to assess within-GCM uncertainty on a temporary basis

until the number of GCM runs for a given GCM and scenario

combination becomes adequate to estimate within-GCM un-

certainty directly from GCM runs.

In our proof-of-concept application, we de-trended GCM

projections of monthly precipitation and temperature from

five better performing CMIP3 GCMs (HadCM3, MIROCM,

MIUB MPI and MRI) identified in the companion paper

(McMahon et al., 2015). We stochastically replicated the de-

trended series 100 times, combined the replicates with their

respective trends and applied a bias-correction to the repli-

cates. Within-GCM uncertainty of precipitation and temper-

ature were assessed using the stochastic replicates from each

GCM for two periods: (1) 1965–1994 (20C3M scenario), and
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Figure 14. Within-GCM uncertainty (mm yr−1) in reservoir yield

versus standard deviation of annual runoff based on 100 Gould–

Dincer Gamma estimates (hypothetical capacity: τ = 3, reliability

of draft: 95 %) from PERM runs of monthly precipitation and tem-

perature replicates (2015–2044, A1B) from five GCMs.

(2) 2015–2044 (A1B scenario) at 17 catchments distributed

around the world. At each catchment within-GCM uncer-

tainty was estimated as the standard deviation of the repli-

cate values divided by the mean replicate value. The uncer-

tainty value for a given GCM was taken as the average of

the 17 catchment values for that GCM. Within-GCM uncer-

tainty of mean annual precipitation varied from 3.4 to 4.9 %

between GCMs over the two periods and averaged approxi-

mately 4.1 % across the five GCMs. For the standard devia-

tion of annual precipitation the average within-GCM uncer-

tainty (14.3 %) was 3–4 times larger than for mean annual

precipitation, while within-GCM uncertainty of mean annual

temperature was smaller (1 %).

The stochastic replicates were input to a calibrated hydro-

logic model (PERM) to estimate future projections of annual

runoff. The impact of within-GCM uncertainty on mean an-

nual runoff varied from 8.0 to 13.0 % between GCMs over

the two periods and averaged approximately 9.9 % across the

five GCMs. The uncertainty in the standard deviation of an-

nual runoff varied from 16.0 to 20.1 % between GCMs and

averaged approximately 17.5 % across the five GCMs. The

within-GCM uncertainty in precipitation and temperature is

amplified in the runoff through the precipitation–runoff re-

lationship. Summary statistics for the two periods were es-

timated from each annual runoff series (100 per catchment)

and used in the Gould–Dincer Gamma method to estimate

reservoir yield from two hypothetical reservoir capacities

(1× and 3×mean annual runoff) for 95 % reliability of sup-

ply. For the period 2015–2044, the uncertainty in reservoir

yield due to within-GCM uncertainty varied from 18.6 %

(9.3 %) to 33.2 % (14.3 %) for the 1× (3×) mean annual

runoff capacity reservoir and averaged approximately 25 %

(12 %) across the five GCMs. The main driver of uncertainty

in reservoir yield was the variability of annual runoff inflows.

In this analysis between-GCM uncertainty was limited

to small differences in within-GCM uncertainty for a given

variable and differences in trend between the two 30-year pe-

riods analysed. The reason why differences between GCMs

are not larger here is due to the application of bias correc-

tion. The quantile–quantile bias correction forces the mean

and variance of the GCM precipitation and temperature data

over the observed period to match the observed mean and

variance. Thus, a significant source of between-GCM uncer-

tainty, their bias in mean and variance, has been removed.

A significant implication of our results is that within-GCM

uncertainty is important when interpreting climate change

impact assessments. Although the variables calculated from

the stochastic replicates and hydrologic modelling of the

replicates are not strictly normally distributed, a rough guide

to the magnitude of within-GCM uncertainty is to double

the values reported above (±2× standard deviation/mean).

Thus, for the five GCMs analysed here during the period

2015–2044 the within-GCM uncertainty around a value of

mean annual precipitation is approximately ±7 to ±10 %.

For the standard deviation of annual precipitation the uncer-

tainty is approximately ±27 to ±29 %, while for mean an-

nual temperature the uncertainty is approximately ±1.2 to

±1.6 %. Compared to precipitation, runoff uncertainties are

larger with approximate uncertainties of mean and standard

deviation of annual runoff being ±16 to ±26 % and ±32 to

±40 %, respectively. The uncertainty around reservoir yield

for a 1× mean annual runoff reservoir is approximately

±37 to ±66 % and ±18 to ±28 % for a 3× mean annual

runoff reservoir.

The amplification of precipitation and temperature within-

GCM uncertainty in runoff and reservoir yield has signifi-

cant implications for interpreting climate change impact as-

sessments of these variables. For example, in Fig. 5 (MAP,

MAT), Fig. 9 (MAR, SDR) and Fig. 12 (3×MAR yield) we

presented within-GCM uncertainty box plots for two periods

for each GCM and the Raw value associated with each box

plot that would be the only value available in a traditional

climate change impact assessment for the Herbert River at

Gleneagle. For MAT (Fig. 5b), low within-GCM uncertainty

allows conclusions based on analysis of the Raw values to be

consistent with conclusions drawn from the box plots – the

Raw values indicate MAT is projected to increase by ∼ 5 %

between the two periods and the box plots do not overlap be-

tween the two periods for any of the GCMs. However, for

variables where within-GCM uncertainty is higher, conclu-

sions drawn from a traditional climate change impact assess-

ment would be misleading. For example, in Fig. 5a MIUB(1)

shows the largest increase in Raw MAP between the two pe-

riods (14.7 %), yet the box plots for this GCM clearly overlap

and the increase in median MAP is only 4.3 %. Similarly in

Fig. 9a MIUB(1) shows the largest increase in Raw MAR

between the two periods (34.1 %), yet the box plots for this

GCM overlap and the increase in median MAR is only 0.3 %.

Finally, in Fig. 12 MIUB(1) shows the largest increase in
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Raw reservoir yield between the two periods (41.3 %), yet the

box plots for this GCM overlap and the increase in median

yield is only 0.6 %. A traditional, without stochastic replica-

tion, climate change impact assessment reporting future in-

creases in MAP, MAR and reservoir yield of 14.7, 34.1 and

41.3 %, respectively, would initially seem significant, yet our

approximation of within-GCM uncertainty suggests these in-

creases could be solely due to within-GCM uncertainty.

Finally, we expect our results are an underestimate of the

true within-GCM uncertainty due to our stochastic method

only approximating the uncertainty around the overall GCM

trend and not the uncertainty in the GCM trend itself. To ob-

tain a true estimate of within-GCM uncertainty requires anal-

ysis of many (≥ 100) GCM runs of a given scenario. Until

considerably more GCM runs of a scenario become avail-

able the methodology presented here provides an interim

objective technique for estimating the influence of within-

GCM uncertainty on climate change impact assessments that

is suitable for existing, or future, GCM scenario runs. Cli-

mate change impact assessments based on projections that

do not take into account within-GCM uncertainty risk pro-

viding water resources management decision makers with a

sense of certainty that is unjustified.

The Supplement related to this article is available online

at doi:10.5194/hess-19-1615-2015-supplement.
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