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Abstract. Future flood frequency for the upper Truckee

River basin (UTRB) is assessed using non-stationary extreme

value models and design-life risk methodology. Historical

floods are simulated at two UTRB gauge locations, Farad and

Reno, using the Variable Infiltration Capacity (VIC) model

and non-stationary Generalized Extreme Value (GEV) mod-

els. The non-stationary GEV models are fit to the cool season

(November–April) monthly maximum flows using historical

monthly precipitation totals and average temperature. Future

cool season flood distributions are subsequently calculated

using downscaled projections of precipitation and tempera-

ture from the Coupled Model Intercomparison Project Phase

5 (CMIP-5) archive. The resulting exceedance probabilities

are combined to calculate the probability of a flood of a given

magnitude occurring over a specific time period (referred to

as flood risk) using recent developments in design-life risk

methodologies. This paper provides the first end-to-end anal-

ysis using non-stationary GEV methods coupled with con-

temporary downscaled climate projections to demonstrate

the evolution of a flood risk profile over typical design life

periods of existing infrastructure that are vulnerable to flood-

ing (e.g., dams, levees, bridges and sewers). Results show

that flood risk increases significantly over the analysis period

(from 1950 through 2099). This highlights the potential to

underestimate flood risk using traditional methodologies that

do not account for time-varying risk. Although model pa-

rameters for the non-stationary method are sensitive to small

changes in input parameters, analysis shows that the changes

in risk over time are robust. Overall, flood risk at both lo-

cations (Farad and Reno) is projected to increase 10–20 %

between the historical period 1950 to 1999 and the future pe-

riod 2000 to 2050 and 30–50 % between the same historical

period and a future period of 2050 to 2099.

1 Introduction

“Stationarity is dead” (Milly et al., 2008), yet the standard

practice for flood frequency analysis is predicated on this

very assumption. This discrepancy has not gone unnoticed

within the scientific community and there is a growing body

of research investigating (1) trends in observed floods (e.g.,

Franks, 2002; Vogel et al., 2011), (2) ways to incorporate

non-stationarity into frequency distributions (e.g., Katz et al.,

2002; Raff et al., 2009) and (3) methodologies to interpret

risk and approach design within a non-stationary framework

(e.g., Mailhot and Duchesne, 2010; Rootzén and Katz, 2013;

Salas and Obeysekara, 2014). Both the frequency and inten-

sity of extreme events are particularly susceptible to change

because small shifts in the center of a distribution can po-

tentially have much larger impacts on the tails (Meehl et

al., 2000). Regardless of climate change, naturally occurring

long-term climate oscillations, such as the El Niño–Southern

Oscillation (ENSO), have been linked to low frequency vari-

ability in flood frequency (e.g., Cayan et al., 1999; Jain and

Lall, 2001). Anthropogenic climate change has the potential

to amplify natural climatic variability throughout the inter-

connected climate and hydrologic systems.

Already trends in many hydrologic variables have been ob-

served across the western United States (as well as around

the world). For example, clear increases in temperature have

been measured across the west (e.g., Cayan et al., 2001; Det-
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tinger and Cayan, 1995). Precipitation trends are more vari-

able. Regonda et al. (2005) found increased total winter pre-

cipitation (rain and snow) from 1950 to 1999 in many sites

across the western United States, although springtime snow

water equivalent (SWE) was shown to decline over the same

period. Similarly, Mote et al. (2005) analyzed snowpack

trends in western North America and reported widespread

declines in springtime SWE over the period 1925–2000, es-

pecially since the middle of the 20th century. They attribute

this decline predominantly to climatic factors such as ENSO,

Pacific Decadal Oscillation (PDO) and positive trends in re-

gional temperature. Easterling et al. (2000) summarized pre-

vious studies on precipitation trends. They note that trends

vary from region to region but, in general, increases in pre-

cipitation have occurred disproportionately in the extremes.

Several subsequent studies have observed increasing trends

in extreme precipitation events, although the changes are rel-

atively small (Gutowski et al., 2008; Kunkel, 2003; Madsen

and Figdor, 2007).

Research has also demonstrated increasing trends in flood

frequency in some regions. Walter and Vogel (2010) and

Vogel et al. (2011) observed increasing flood magnitudes

across the United States using stream gauge records, and

Franks (2002) showed statistically significant increases in

flood frequency since the 1940s. Still, non-stationary flood

behavior has been historically difficult to quantify and there

has been some debate about the significance of flood fre-

quency trends. For example, Hirsch (2011) noted both in-

creasing and decreasing trends in annual flood magnitudes

in different regions of the US. Also, Douglas et al. (2000)

found that, if one takes into account spatial correlation, many

previous findings of flood trends are not statistically signif-

icant. Difficulty in diagnosing flood trends is not unique to

the western US; a literature review of historical flood studies

across Europe also found spatial variability in flood trends

(Hall et al., 2014).

Even when significant trends are found, the complexity of

flooding mechanisms, which depend on many variables that

can vary regionally and seasonally, makes it difficult to at-

tribute trends to specific causes. Illustrating the importance

of seasonality, Small et al. (2006) showed that if a high-

precipitation event occurs in the fall, as opposed to the spring,

it will contribute to baseflow rather than inducing flooding.

Also, urbanization can drastically increase the impervious

area of a basin, thus amplifying floods by decreasing infil-

tration and speeding runoff. The largest flood magnitude in-

creases observed by both Walter and Vogel (2010) and Vogel

et al. (2011) were in basins with urban development. The in-

fluence of development trends on flood behavior can be diffi-

cult to separate from other variables. For example, Villarini et

al. (2009) could not conclusively tie reduced stationarity (i.e.,

changes in mean and/or variance) in peak discharge records

to climate change because of variability in the other factors

that influence runoff.

Merz et al. (2012) note that attributing changes in flood

hazard is complicated by the complex array of drivers that

can include land cover change and infrastructure develop-

ment as well as natural climate variability and change. Here

we set aside the impacts of development and management

practices and focus on the role of climate change. How-

ever, even with this simplification, future extremes can still

be influenced by a number of interrelated variables such as

changes in temperature, precipitation efficiency and vertical

wind velocity (Mullet et al., 2011; O’Gorman and Schneider,

2009). Analyzing global circulation model (GCM) outputs,

Pierce et al. (2012) found total changes in precipitation to

be small relative to the existing variability, but noted larger

seasonal changes in storm intensity and frequency. Despite

uncertainty, many studies agree that warming will increase

the potential for intense rainfall (Allan, 2011; Gutowski et

al., 2008; Pall et al., 2011; Sun et al., 2007). Furthermore,

Min et al. (2011) found that some GCM simulations may

underestimate extreme precipitation events in the Northern

Hemisphere, indicating that projections of extreme precipi-

tation based on GCM outputs may be conservative.

Studies have also predicted increases in flood fre-

quency and magnitude with a warmer climate, especially in

snowmelt-dominated basins (e.g., Das et al., 2011). As with

historical flooding trends, translating forecasted climate vari-

ables to flood frequency is a complex process and several

methodologies have been used. Downscaled GCM climate

forcings can be used to drive hydrologic models and sim-

ulate future floods directly (e.g., Das et al., 2011; Vogel et

al., 2011; Raff et al., 2009). With this approach, traditional

stationary flood frequency distributions can be fit to the sim-

ulated floods to calculate return periods of interest (e.g., Raff

et al., 2009; Vogel et al., 2011). This allows for return periods

and flood magnitudes that change over time, as with the flood

magnification and recurrence reduction factors calculated by

Walter and Vogel (2010) and Vogel et al. (2011). While these

approaches do capture temporal changes between analysis

periods, they still assume that flood mechanisms are station-

ary within each period of analysis.

This limitation can be overcome using non-stationary gen-

eralized extreme value (GEV) distributions where the model

parameters, like mean (i.e., location) and spread (i.e., scale),

are allowed to vary as a function of time (e.g., Gilroy and

McCuen, 2012) or with relevant covariates (e.g., Griffis and

Stedinger, 2007; Katz et al., 2002; Towler et al., 2010). This

approach has been gaining popularity for flood frequency es-

timation. Using this technique, it is not necessary to simu-

late future floods directly by forcing a hydrologic model with

projected hydroclimate fields (e.g., precipitation and temper-

ature). The parameters of the GEV model, like mean and

spread, change with time (i.e., non-stationary) based on a lin-

ear combination of covariates like precipitation and tempera-

ture. Historical relationships between extreme events and hy-

droclimate fields are used to identify the weighting of covari-

ates. These weights are then used to estimate parameters for
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future time periods using precipitation and temperature out-

puts from hydroclimate projections. For example, Gilroy and

McCuen (2012) used non-stationary GEV models of flood

frequency that incorporated a linear trend in the location pa-

rameter. Similarly, Griffis and Stedinger (2007) and Towler

et al. (2010) used climate variables as covariates for the dis-

tribution parameters.

While non-stationary flood forecasting methods provide

flexibility in analyzing flood variability, they are also in-

congruent with many of the traditional metrics used in wa-

ter resources planning. Historically, most infrastructures that

are vulnerable to flooding (e.g., dams, levees, sewers and

bridges) have been designed to withstand flooding of a spec-

ified return period (e.g., the 100-year flood). However, these

calculations rely on a flood frequency distribution which is

assumed to remain stationary with time, and hence the re-

turn period design metric is also assumed to be stationary.

When non-stationary methods are used, the underlying flood

frequency distributions, and associated return periods, vary

with time. Thus, under a non-stationary climate, the notion of

a static return period flood event (e.g., 100-year flood, 200-

year flood) is no longer a valid concept.

To address this issue, Rootzén and Katz (2013) introduced

the concept of design life level to calculate the risk of a given

flood magnitude occurring over a specified time period. Salas

and Obeysekera (2014) further demonstrated the relevance

of this technique to the hydrologic community using flood

frequency examples. However, this methodology has yet to

receive widespread attention within the hydrologic commu-

nity. Here, we present a non-stationary flood frequency as-

sessment for the upper Truckee River basin (UTRB) using

contemporary downscaled climate projections and the non-

stationary design life level technique introduced by Rootzén

and Katz (2013) to quantify flood risk. Note that, following

the convention of Rootzén and Katz (2013), we use the term

flood risk to refer to the probability of an extreme event oc-

curring and not as a quantification of expected losses. While

the methodology used for this analysis is previously estab-

lished, this paper provides the first end-to-end demonstration

of non-stationary GEV analysis coupled with contemporary

downscaled climate projections (specifically, downscaled cli-

mate projections from the Coupled Model Intercomparison

Project Phase 5, or CMIP-5) to quantify how the flood risk

profiles may evolve in the upper Truckee River basin over

the 21st century. The flood analysis presented here is part of

a larger study on climate change impacts in the Truckee River

basin (Reclamation, 2010). This project is supported by local

water managers and conducted by the Bureau of Reclama-

tion through the WaterSMART Basin Studies Program au-

thorized under US Public Law 111-11, Subtitle F (SECURE

Water Act). The intent of this work is (1) to investigate po-

tential flood risk changes over time in the UTRB and (2) to

demonstrate the applicability of non-stationary techniques in

a regional flood analysis to make these tools more accessible

to the hydrologic community.

The paper is organized as follows. Section 2 provides

background on the study area along with the data sets and

models used. The methodologies of using non-stationary

spatial GEV analysis in conjunction with climate projections

and time-evolving risk assessment are described in Sect. 3.

Results and discussions of findings are given in Sect. 4.

Summary and conclusions from the analysis are presented

in Sect. 5.

2 Background

This section provides background on the study area

(Sect. 2.1), streamflow data and simulations (Sect. 2.2) and

climate data and models (Sect. 2.3).

2.1 Upper Truckee River basin

The Truckee River originates in the northern Sierra Nevada

in California (above Lake Tahoe) and flows northeast to

Nevada, where it ends in the Pyramid Lake (Fig. 1). The

total basin area is roughly 7900 km2; however, the area up-

stream of Reno (2763 km2), henceforth referred to as the up-

per Truckee River, provides the majority of the basin’s pre-

cipitation through snowpack. The focus of this analysis is on

the Farad and Reno gauge locations shown in Fig. 1, hence-

forth referred to as Farad and Reno. The Farad gauge is lo-

cated roughly 1.5 km downstream of the Farad hydropower

plant and provides a cumulative measure of all of the upper

basin tributaries (Stokes, 2002). Most of the available water

supply is generated upstream of the Farad gauge (USACE,

2013a). The Reno gauge is located downstream of Farad in

the heart of Reno and is a good reference point for analyzing

urban flooding. The intervening area between the Farad and

Reno gauges is small, roughly 350 km2 [km], and there are

only two small tributaries that enter the main stem between

Farad and Reno.

Flooding in the upper Truckee generally takes one of three

forms. Some of the most severe floods have resulted from

heavy rain events covering most of the basin and lasting 1

to 6 days. These storms generally occur from November to

April and may be linked to atmospheric rivers (Ralph and

Dettinger, 2012). Snowmelt floods are also common from

April to July. Although snowmelt floods transmit large vol-

umes of water for longer durations, they generally do not

cause damage because they are typically well predicted and

can be regulated with upstream reservoirs. Finally, in late

summer (July–August), local cloudbursts can generate high-

intensity precipitation over small areas. These storms can

cause local damage to tributaries but generally do not have

a large impact on the main stem of the Truckee.

In the 20th century, nine major floods have been recorded

on the Truckee River, all of which occurred from Novem-

ber to April (USACE, 2013b). The flood of record occurred

in January of 1997 and was caused by warm rain falling on
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Figure 1. Map of model domain including the Farad and Reno

gauges and their drainage areas.

a large snowpack (∼ 180 % of normal) and melting nearly

all of the snowpack below ∼ 2100 m (USACE, 2013b). The

floods of 1950, 1955 and 1963 were some of the most dam-

aging due to the development of Reno along the river during

this time period (USACE, 2013b). Subsequent flood damages

have been, at least partially, mitigated by the implementation

of flood infrastructure starting in the 1960s.

2.2 Streamflow data and simulations

Streamflow has been measured at both the Farad and Reno

USGS gauges. However, gauge flows are not readily appli-

cable to flood frequency analysis due to upstream develop-

ments of water supply and flood control structures. For ex-

ample, upstream of Reno there are four dams with flood con-

trol capabilities (i.e., Martis Creek Dam, Prosser Creek Dam,

Stampede Dam and Boca Dam); in addition to Tahoe, Don-

ner and Independence lakes provide incidental flood regula-

tion. Unregulated flow estimates were developed by the US

Army Corps of Engineers (USACE) but are only available for

historical flood events (USACE, 2013b). Therefore, we sim-

ulate unregulated flows from 1950 to 1999 using the three-

layer variable infiltration capacity (VIC) model and validate

results using the available unregulated flow estimates.

A brief summary of the VIC model is provided here, and

for additional technical specifications the reader is referred

to Liang et al. (1994, 1996) and Nijssen et al. (1997). VIC

is a gridded hydrologic model designed to simulate macro-

scale (spatial resolution is greater than 1 km) water balances

using parameterized sub-grid infiltration and vegetation pro-

cesses. In the VIC model, surface water infiltrates to the sub-

surface based on soil properties, and soil moisture is dis-

tributed vertically through three model layers extending up

to about 2 m below the land surface. At the surface, poten-

tial evapotranspiration (PET) is simulated using the Penman–

Monteith PET model (Maidment, 1993). Surface flows are

determined in a two-step process. First, the water balance for

each grid cell is calculated independently to determine sur-

face runoff and baseflow, and subsequently runoff from each

cell is routed to river channels and outlets using a predefined

routing network. Here we drive VIC with daily weather forc-

ings including precipitation, maximum and minimum tem-

perature, and wind speed. Additional climate variables such

as short- and long-wave radiation, relative humidity and va-

por pressure are calculated within the model using estab-

lished empirical relationships. The VIC model is well doc-

umented and has already been used in a number of hydro-

logic and climate change studies (e.g., Christensen and Let-

tenmaier, 2007; Christensen et al., 2004; Gangopadhyay et

al., 2011; Maurer et al., 2007; Payne et al., 2004; Reclama-

tion, 2011; Van Rheenen et al., 2004). Recently VIC has also

been applied for real-time flood estimation (Wu et al., 2014).

The VIC model used for this analysis was part of the Bu-

reau of Reclamation (Reclamation) West Wide Climate Risk

Assessment (WWCRA) effort and is described in Recla-

mation (2011). The WWCRA VIC model encompasses the

western US. Simulated and observed streamflows were com-

pared at 152 locations primarily from the USGS Hydro-

climatic Data Network (Slack et al., 1993) and 43 addi-

tional locations of importance to Reclamation’s water man-

agement activities. Among the evaluated locations are several

in the Truckee basin including the Truckee River at Farad.

For details on model calibration and development we re-

fer the reader to Reclamation (2011) and Gangopadhyay et

al. (2011). While we do not discuss model calibration further

here, in the subsequent sections we provide additional model

verification for flood simulation in the UTRB.

2.3 Climate data and models

As noted in the previous section, the VIC model requires

daily climate inputs to drive water balance simulations. We

use the national 1/8◦ (roughly 12 km) gridded data set from

Maurer et al. (2002) for historical (i.e., 1950–1999) cli-

mate observations. Additionally, monthly total precipitation

and average temperature were aggregated for the upstream

area of each gauge for every month of the flood season
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(i.e., November through April). These values are used as co-

variates for fitting non-stationary GEV models discussed in

Sect. 3.

Future gridded precipitation and temperature values from

2000 to 2099 were generated from GCM outputs. We ana-

lyzed 234 projections generated by 37 different climate mod-

els from the CMIP-5 archive (Taylor et al., 2012). In the ab-

sence of objective guidance in contemporary climate litera-

ture to limit the number of projections, we chose to include

all of the available CMIP-5 projections of future climate in

this study. However, it should be noted that other studies have

demonstrated that a subset of projections could provide com-

parable results for specific study objective (e.g., water sup-

ply) (Pierce et al, 2009; Harding et al., 2012). Projections

span four representative concentration pathways (RCPs) for

greenhouse gas emissions. Each GCM projection includes

monthly gridded precipitation and temperature from 1950 to

2099 at a coarse grid resolution ranging between ∼ 65 and

250 km.

Reclamation in collaboration with other federal and non-

federal partners has developed a monthly archive of down-

scaled CMIP-5 projections at the finer 1/8◦ resolution us-

ing the two-step bias correction and spatial disaggregation

(BCSD) algorithm described by Wood et al. (2004). For

this analysis we extended the existing hydrology archive

to cover the UTRB domain for all 234 BCSD CMIP-

5 climate projections following the steps detailed below.

A subset of the CMIP-5 hydrology projections is pub-

lically accessible through the archive of the downscaled

CMIP3 and CMIP5 climate and hydrology projections at

http://gdo-dcp.ucllnl.org/downscaled_cmipprojections/. Ad-

ditional documentation on the archive and the methodology

is provided in Reclamation (2014).

The downscaled climate variables include monthly to-

tal precipitation, monthly maximum and minimum tempera-

tures and monthly average temperature. Before applying the

BCSD algorithm, all 234 climate projections were first grid-

ded from their respective native GCM scale to a common

grid of 1◦ latitude by 1◦ longitude. Similarly, the observed

1/8◦ gridded data set (Maurer et al., 2002) was aggregated to

the coarser 1◦ latitude by 1◦ longitude grid. Next, for a given

climate variable, GCM and location (1◦ latitude by 1◦ lon-

gitude grid cell), the bias correction (BC) step uses quantile

mapping between monthly cumulative distribution functions

(CDFs) of historical simulated and historical observed val-

ues to identify biases over a common climatological period

– in this case, 1950–1999. The projected future climate vari-

ables from the same GCM at the same location are then bias-

corrected using the identified bias. The result of bias correc-

tion is an adjusted GCM data set (20th century and 21st cen-

tury, linked together) that is statistically consistent with the

observed data during the bias correction overlap period (i.e.,

1950–1999 in this application). Note that the BC step hap-

pens at the coarse 1◦ latitude by 1◦ longitude grid. Next, mul-

tiplicative adjustment factors (ratio of bias-corrected GCM

to observed) for precipitation and offset adjustment factors

(bias-corrected GCM minus observed) for temperature are

calculated for each of the 1◦ latitude by 1◦ longitude grid

cells (Reclamation, 2013). These adjustments are then spa-

tially disaggregated (SD) to a 1/8◦ latitude by 1/8◦ longi-

tude grid. Finally, the adjustments are applied (multiplicative

for precipitation, additive for temperature) to the finer reso-

lution, 1/8◦ gridded observed precipitation and temperature

fields (Maurer et al., 2002) to derive the 1/8◦ gridded BCSD

climate projections.

3 Methodology

This section describes the methodology used for flood fre-

quency analysis in the UTRB. Discussion is divided into

two sections. First, we describe the process of extreme value

modeling using non-stationary GEV distributions (Sect. 3.1).

Second, the methodology for design-life level risk assess-

ment is described (Sect. 3.2)

3.1 Extreme value modeling

Extreme values analysis (EVA) deals with the examination

of the tail (i.e., extreme) values of a distribution (as op-

posed to standard approaches which are generally more con-

cerned with the average system behavior). EVA methods are

standard practice for flood frequency analysis because they

are designed to capture the behavior of low-frequency high-

impact events. Furthermore, Katz (2010) points out that in

climate change studies traditional approaches are not suffi-

cient and extreme value statistics are needed. For this anal-

ysis, we use the GEV, which is commonly applied to flood

frequency analysis to model block maxima from streamflow

time series (e.g., Katz et al., 2002; Towler et al., 2010). The

cumulative distribution function (CDF) for the GEV, F , is as

follows:

F(z;θ)= exp

{
−

[
1+ ξ

(
z−µ

σ

)]−1/ξ
}
, (1)

where z is the streamflow maxima value of interest and θ is

the parameter set (µ, σ , ξ ) used to specify the distribution,

such that the center is given by the location (µ), the spread by

the scale (σ ) and the behavior of the upper tail by the shape

(ξ ). Based on the shape parameter, the GEV can take one of

three forms: Gumbel, or light tailed, when ξ is zero; Fréchet,

or heavy tailed, if ξ is positive; and Weibull, or bounded,

when ξ is negative. Following the methodology of Towler

et al. (2010), GEV parameters (µ, σ , ξ ) are fitted using the

maximum likelihood estimation (MLE) technique.

In traditional stationary flood frequency analysis, it is as-

sumed that observations are independent and identically dis-

tributed (IID), and therefore model parameters (µ, σ , ξ ) de-

rived from the observed flood record are assumed to remain

constant across the period of record and into the future. Here,
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we introduce non-stationarity into the distribution by allow-

ing location and scale parameters to change with relevant co-

variates, such that:

µ(t)= β0,µ+β1,µx1+ . . .+βn,µxn, (2)

σ(t)= β0,σ +β1,σx1+ . . .+βn,σxn, (3)

where the β variables represent the coefficients and the x

variables are the covariates. In keeping with previous studies,

the shape parameter, which is the most difficult to estimate,

is assumed constant (e.g., Obeysekara and Salas, 2014; Salas

and Obeysekera, 2013; Towler et al., 2010).

Some previous studies (e.g., Salas and Obeysekera, 2014;

Stedinger and Griffis, 2011) have developed non-stationary

location and scale parameters that are explicitly dependent

on time. This approach requires first the derivation of tem-

poral flooding trends and second the projection of this trend

into the future. Here we derive location and scale parameters

based on time-varying meteorological variables (i.e., temper-

ature and precipitation). With the approach used here, tempo-

ral trends in flooding are introduced as a function of temporal

variability in precipitation and temperature, but no explicit

trend is specified a priori.

To determine the optimal set of covariates for a non-

stationary model, additional statistical methods must be em-

ployed. The Akaike information criterion (AIC; Akaike,

1974), given in Eq. (4), weighs the goodness of the fit of a

model with the level of complexity.

AIC= 2(NLLH)+ 2K (4)

Here, NLLH is the negative log-likelihood estimated for a

model fitted with K parameters. In this formulation, higher-

ranked models have lower AIC scores. For this analysis,

the best model is selected using pairwise comparisons of

NLLH scores following the methods of Salas and Obeysek-

era (2014) and others. Models are compared using the de-

viance statistic (D), which is equal to twice the difference

in NLLH scores. The D is then tested for significance based

on a chi-squared distribution with the degrees of freedom set

equal to the difference in the number of parameters (K) be-

tween models. Finally, p values less than 0.05 indicate a sta-

tistically significant improvement in model performance at

the 5 % significance level.

Following the methodology described above, GEV distri-

butions are fitted to time series of maximum monthly his-

torical (1950–1999) 1-day simulated streamflows (detailed

in Sect. 2) for the cool season (November to April). Al-

though there are some unregulated historical flow estimates,

the available data set only covers six storms. Therefore to be

consistent, we fit our model only to the simulated flows. The

data set includes maximum daily streamflows for each month

in the cool season defined by the block of months Novem-

ber through April, as opposed to the more traditional single

value per year. This technique was also used by Towler et

al. (2010), who noted that expanding the data set helps avoid

the problems associated with using maximum likelihood es-

timate on small data sets. However, as noted by Towler et

al. (2010), when multiple values are used per year the calcu-

lated probabilities must be adjusted appropriately to derive

annual values. Floods during the cool season generally last

between 1 and 4 days. Here we focus on the 1-day flood

peak, as opposed to multi-day flood volumes, because this

is a representative metric for flood damage. Additionally, us-

ing the 1-day flood maximum focuses the analysis on flood

magnitude rather than duration.

Two covariates were considered, monthly total precipita-

tion (P ) and mean temperature (T ), averaged over the up-

stream area for each gauge. As discussed in Sect. 2, precipita-

tion is a relevant covariate because many of the floods in this

season are rain-on-snow events or extreme rainfall events.

Similarly, temperature drives snowmelt and is an important

contributor to UTRB flood events (e.g., January 1997 event).

Both stationary and non-stationary GEV models were evalu-

ated using the extRemes package (Gilleland and Katz, 2011)

in the R statistical computing environment (R Core Team,

2012).

3.2 Time-varying risk assessment

Traditional flood planning relies on the concept of return pe-

riods, which are usually calculated as the inverse of annual

exceedance probability for a given flood magnitude, assum-

ing a stationary distribution: for example, the log-Pearson

Type III (LP3) distribution described by the Interagency Ad-

visory Committee on Water Data bulletin 17B (IACWD,

1982). However, when non-stationary models are used, the

distribution parameters, and hence the exceedance probabil-

ities, vary with time. Table 1 compares various flood prob-

ability calculations between stationary and non-stationary

approaches (Salas and Obeysekera, 2014). As shown here,

when the flood distribution is stationary, the return period for

a given flood magnitude is constant and relies only on the ex-

ceedance probability (Eq. 4a in Table 1). However, if distri-

bution parameters are non-stationary, then the return period

will vary based on the period of interest (Eq. 4b in Table 1).

This concept is easily extended to flood risk (here defined as

the probability of a flood of a given magnitude occurring, not

expected losses). In traditional analyses, the risk of a flood

occurring in a given period depends only on the length of

the period (Eq. 5a), while in a non-stationary analysis, risk

depends on both the length of time considered and the time

period itself (Eq. 5b). This is the concept of design life level

proposed by Rootzén and Katz (2013). Here we adopt the

design-life level risk framework given by Eq. (5b) in Table 1

and calculate the risk of flood for a range of future periods

and design life lengths.
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Table 1. Flood calculations using stationary and non-stationary distributions (adapted from Salas and Obeysekera, 2014).

Eq. # Description (a) Stationary (b) Non-stationary

1 Exceedance probability p px

(probability of flood1 occurring

in year x)

2 Probability of the first flood f (x)= (1−p)x−1p f (x)=px
x−1∏
t=1

1−pt

occurring in year x2

3 Probability of a flood occurring F(x)=
x∑
i=1

f (i)

before year x3 F(x)= 1− (1−p)x F(x)= 1−
x∏
t=1

(1 − pt )

4 Return period E(X)=
∞∑
x=1

x · P(X = x)

(expected waiting time E(X)= 1/p E(X)= 1+
xmax∑
x=1

x∏
t=1

(1 − Pt )

between flood occurrences4,5)

5 Probability of a flood occurring R=P(X≤ n)=F(n)

before the design life n6 R= 1− (1−p)n R= 1−
n∏
t=1

(1 − pt )

1 Flood is defined as a flow exceeding a predefined threshold; 2 f (x) is the probability density function of X; 3 F(x) is the

cumulative distribution function of X; 4 X is a random variable denoting the waiting time for the first flood occurrence; 5 xmax is

the time when px equals 1; 6 n is the length of the time period over which flood risk is calculated.

4 Results and discussion

Results are grouped into three sections. First we present the

development of the non-stationary GEV models (Sect. 4.1).

Next the models are verified by comparing simulated results

to observations (Sect. 4.2). Finally we present future projec-

tions of flood frequency analysis (Sect. 4.3).

4.1 Extreme value model development

A suite of models were fit to the logarithms of block cool sea-

son (November–April) maxima flows simulated by the cal-

ibrated VIC model with different non-stationary parameter

combinations. The model structures tested include station-

ary, non-stationary location, non-stationary scale and non-

stationary location and scale. For all model structures, model

fit was tested using one or both covariates (i.e., precipitation

and temperature). Models were also tested using the block

maxima flows directly; however, performance was improved

considerably with the logarithmic transformation. Validation

of the VIC-simulated flows as well as the GEV models is

presented in the following section.

Table 2 summarizes NLLH and AIC scores for each model

configuration. The D for pairwise comparisons of NLLH

scores and the p values calculated for each D based on a

chi-squared distribution are also provided. The bottom row

of Table 2 provides the number of parameters in each model

and the model number that was used for the pairwise com-

parisons. As shown here, the models with non-stationary lo-

cation and scale relying on both precipitation and tempera-

ture as covariates have the best (i.e., lowest) NLLH scores

for both stations and are a statistically significant improve-

ment over the other models listed in Table 2. Figure 2 plots

stationary and non-stationary location and scale models with

histograms of observed flow for both gauges. Qualitatively,

the stationary model fits well with the center of the distribu-

tion but overestimates the tails. The non-stationary models

overestimate the median values but are a closer fit to the ex-

treme values.

The coefficients for Eqs. (2) and (3) for the selected mod-

els are provided in Table 3. Using the coefficients deter-

mined above, the location and scale parameters are calcu-

lated for every climate projection (i.e., 234) and flood season

month (i.e., November to April 1950 to 2099) based on the

downscaled precipitation and temperature values detailed in

Sect. 2 (note that the shape parameter remains fixed). Thus,

for every future month there is a separate GEV distribution

curve for each of the 234 climate projections.

To address uncertainty of model parameters (namely the

model coefficients, β in Eqs. 2 and 3), models of the same

form (i.e., non-stationary location and scale with precipita-

tion and temperature as covariates) were also fit to the histor-

ical simulation period (1950–1999) using downscaled pre-

cipitation and temperature from all 234 climate projections.
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Table 2. Negative log likelihood (NLLH) and Akaike information criterion (AIC) scores for each model, as well as the deviance statistics (D)

of pairwise comparisons of different model configurations (P is precipitation only, T is temperature only and P & T are both) and the p values

of each D score based on a chi-squared distribution. The number of parameters in each model and the models used for comparison are listed

at the bottom of the table. The selected model for each station is in bold.

Station Metric Stationary Non-stationary location Non-stationary scale Non-stationary location

and scale

P & T P T P & T P T P & T P T

1 2 3 4 5 6 7 8 9 10

Farad NLLH 508.9 422.9 467.1 499.7 487.3 500.9 506.5 416.4 462.2 496.9

AIC 1023.7 855.9 942.3 1007.4 984.6 1009.8 1021.1 846.8 934.4 1003.8

D 171.8 83.4 18.3 43.1 15.9 4.7 13.0 9.9 5.7

p value of D < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05

Reno NLLH 505.4 418.4 462.5 496.0 484.4 497.6 503.1 408.8 457.4 493.2

AIC 1016.8 846.8 932.9 1000.0 978.8 1003.2 1016.1 831.7 924.8 996.5

D 174.0 85.9 18.8 42.0 15.6 4.7 19.1 10.1 5.5

p value of D < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05

# of model parameters 3 5 4 4 5 4 4 7 5 5

Model # compared to for p value 1 1 1 1 1 1 2 3 4

Figure 2. Probability density function of fitted stationary (solid black) and non-stationary (dashed) GEV models compared to historical

VIC-simulated flow histogram.

Because each climate projection seeks to reproduce similar

behavior over the historical 1950–1999 period, the variability

between projections in this time frame is a measure of uncer-

tainty in model coefficients given the representation of the

same physical system. This differs from the variability be-

tween climate projections in future periods (i.e., after 1999),

which is a measure of uncertainty in future forcing condi-

tions. Table 3 shows the interquartile range of model coeffi-

cients calculated from the 234 historical GCM simulations.

Using these parameters, the return period of the design

flood at Reno (37 600 cfs, 1065 cms) was calculated for every

set of model parameters using observed historical precipita-

tion and temperature. The observed model estimates a return

period of 45 years while the interquartile range (IQR) us-

ing the simulated model parameters (i.e., the model parame-

ters estimated from each of the 234 historical GCMs) with

observed precipitation and temperature varies from 28 to

247 years. Note that the return period of 45 years esti-

mated from observed meteorology is within the IQR of 28 to

247 years. Although the IQR is large, it should be kept in

mind that some of the uncertainty in this range is a result of

the performance of individual GCMs in simulating histori-

cal climate and in the BCSD downscaling methodology. The

monthly BCSD algorithm used for downscaling GCM cli-

mate only constrains the monthly precipitation and tempera-

ture statistics (total precipitation and mean monthly tempera-
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Table 3. Summary of derived model covariates for Eqs. (2) and (3) based on historical observations (historical observed) and using historical

simulated data from the 234 CMIP-5 projections (historical simulated interquartile range, IQR).

Farad Reno

Historical Historical Historical Historical

observed simulated IQR observed simulated IQR

β0µ 2.155 1.738 4.794 2.582 2.135 4.827

β1µ 0.175 0.053 0.148 0.180 0.066 0.152

β2µ 0.115 0.046 0.138 0.105 0.046 0.124

β0σ 0.211 0.517 1.673 0.530 0.569 1.748

β1σ −0.013 −0.020 0.006 −0.018 −0.023 0.008

β2σ 0.027 −0.012 0.022 0.017 −0.015 0.019

Shape (ξ ) −0.178 −0.389 −0.094 −0.275 −0.389 −0.070

ture) over the historical 1950–1999 period. Furthermore, un-

certainty is introduced when monthly total precipitation and

mean temperature are disaggregated to daily values. Thus,

the estimated IQR implicitly captures climate simulation and

downscaling uncertainties, in addition to explicitly represent-

ing model parameter uncertainty. The need to consider un-

certainties at each and every step of the process starting with,

for example, downscaling methods (statistical, dynamical or

some combination of statistical and dynamical methods) is a

topic of ongoing research.

4.2 Hydrologic and GEV model validation

Since we used modeled VIC flows for flood analysis, there

are two considerations for model validation. First, we com-

pare VIC-simulated 1-day flood events to the observed un-

regulated flow estimates (i.e., validating that our calibrated

VIC model is accurately simulating flood flows). Second, we

compare the GEV-modeled floods to the VIC-simulated 1-

day flood events and the observed unregulated flow estimates

(i.e., validating that the GEV models we fit to the simulated

data match both the observed unregulated flows and the VIC-

simulated flows).

Although unregulated flows are not available for the en-

tire period of record, 1-day maximum unregulated flow esti-

mates are available at Reno for six historical floods (USACE,

2013b). Figure 3 plots the observed flow (blue triangle) with

the 1-day VIC flow that was simulated using historical ob-

served forcings from Maurer et al. (2002) (red triangle) and a

box plot of the non-stationary GEV distribution for the same

month generated using the same monthly historical precip-

itation and temperature (i.e., Maurer et al., 2002). Compar-

ing first the 1-day maximum VIC-simulated flow with the

observed flow the maximum percent difference between the

natural logarithm of simulated and observed flows is 12 %.

There does appear to be a slight positive bias in the VIC

simulations (i.e., VIC-simulated flows are greater than ob-

served flood flows). Still, the simulated flood values (red cir-

cles) generally fall within the interquartile range of the GEV

Figure 3. “Observed” unregulated flow estimated from gauge

records (blue triangle) compared to VIC-simulated flow (red cir-

cles) and the simulated GEV distribution. Boxes span the 25th to

75th percentile of the GEV distribution for a given month and the

whiskers extend to the 5th and 95th percentiles.

distribution except in the case of the 2 February 1963 flood

and the 2 January 1997 flood.

In these instances the VIC simulation matches very closely

(percent difference in the natural logarithm of flows are

0.5 and 1.2 %, respectively) with the observed flow; however,

the GEV model underestimates the events. This discrepancy

is caused by the flood timing. In both cases the flood occurs at

the very beginning of the month. In the GEV framework, the

precipitation and temperature are used as covariates for the

flow of the same month. However, for these storms, flood-

ing is linked to precipitation and temperature in the month

of flooding and the preceding month. Therefore, the GEV

model simulates the flood in the preceding month and/or un-

derestimates the flood magnitude if the precipitation is split

between 2 months. While this is a limitation for matching in-

dividual historical events (primarily timing), it should not be

a major concern for future projections. This is because, for

the purposes of risk calculations, it does not matter in what

month the GEV model simulates the flood event as long as it

realistically captures flood magnitude behavior.
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Figure 4. VIC-simulated 1-day flood maximums for November through April 1950 to 1999 (red lines) compared with the historical GEV

distributions (blue line is median and grey shading is the 5th to 95th percentile range) and the six observed flow rates.

Comparing the GEV model distribution to the other ob-

served floods (blue triangles), the distribution encompasses

the observed flood magnitude (within the 5th and 95th per-

centile) for all except two of the floods (1955 and 1963). For

1963, the VIC-simulated and observed floods are in close

agreement (the difference between the natural logarithm of

simulated and observed flows is the smallest of any event at

0.5 %), and the discrepancy with the GEV model is consis-

tent with the flood timing described above. The 1955 flood

resulted from 38 cm of melted snow combined with 33 cm of

rainfall over a 3-day period (O’Hara et al., 2007). In the his-

torical forcings used to drive the VIC model, December 1955

has 75 cm of precipitation, which is the highest December

precipitation value in the historical period. In this instance,

the VIC-simulated flow falls within the interquartile range of

the GEV model, but the high monthly precipitation results

in an overestimation of the flood magnitude. Again, this is

a limitation of using monthly forcings because the total De-

cember precipitation is used as a covariate and not a storm-

specific value, though in many cases the storm-specific val-

ues constitute the bulk of the monthly precipitation totals.

Figure 4 is a time series plot of VIC historical simu-

lated flow along with the median and 5th to 95th percentile

flow of the GEV model. As would be expected from the

model fit demonstrated in Figs. 2 and 3, Fig. 4 shows that

the VIC-simulated flows are generally close to the median

GEV-modeled flow and nearly always fall within the 5th to

95th percentile range. Although there are differences in the

simulation of individual events discussed above, the median

simulated flood magnitudes are only greater than the max-

imum observed flood in two instances of the 300 historical

months simulated.

In general, Figs. 3 and 4 show that the VIC-simulated

flows match closely with the observed floods (based on per-

cent difference in the natural logarithm of flows) and that

the interquartile range of the GEV distributions encompasses

the observed and simulated flows in most instances. Figure 3

does illustrate some of the complications in matching in-

dividual events. However, based on analysis of the driving

forces behind each individual event we are able to explain

and document the sources of these discrepancies. Based on

this analysis we conclude that the VIC model behavior has a

reasonable match with the natural system.

4.3 Future flood risk

Future flood risk is calculated using Eq. (5b) from Table 1.

For the first part of this analysis we define “flood” as 1-

day flow exceeding 1065 cms (37 600 cfs). This is the max-

imum historical unregulated flow at Reno from the 2 Jan-

uary 1997 event and is considered to be the design flood for

flood protection infrastructure design. For each simulation

month (1950–2099 November–April) exceedance probabili-

ties are calculated for every climate projection (234 in total)

using the selected non-stationary GEV models from Table 3

(fit to the historical observations) and the projected monthly

precipitation and temperature. As detailed in Sect. 3.2, when

exceedance probabilities are time dependent, the flood risk

(refer to Eq. 5b, Table 1) is a function of both the length of

the design life and the period of operation. Figure 5 plots the

risk of flood versus project life for three time periods: 1950

to 1999, 2000 to 2049 and 2050 to 2099. In other words,

this is the risk of a flood exceeding 1065 cms in the next n

years from 1950, 2000 or 2050. The median and interquartile

ranges show the distribution of the 234 climate projections

simulated. Here we use the interquartile range, as opposed

to the 5th and 95th percentile, to focus on the central ten-

dencies of each time period. Note that the ranges presented

here express the variability between climate projections. Un-

certainty of future VIC model simulations is not investigated
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Figure 5. Probability of 1-day flood exceeding historical maximum of 1065 cms (risk) at Farad and Reno. Solid lines represent the median

risk of the 234 climate projections and shading covers the interquartile range (i.e., 25th to 75th percentile).

Figure 6. Box plots of the probability of a 1-day flood exceeding 1065 cms (risk) for three project life lengths (10, 20 and 30 years). Results

are grouped by time period (1950–1999, 2000–2049 and 2050–2099). Blue dashed lines show the flood risk calculated from the stationary

GEV model fit to the historical data.

here. For a detailed analysis of uncertainty in VIC simula-

tions the reader is referred to Elsner et al. (2014).

For both Farad and Reno there is a clear positive shift in

flood risk between the three time periods. In all cases the

median risk for each subsequent time period falls outside the

interquartile range of the preceding time period although the

prediction spread for Reno is greater than that for Farad. It is

important to note that the flood risk is actually higher at Farad

than Reno in both the historical and future periods despite the

fact that the observed flow distributions at the two stations are

very similar (refer to Fig. 2). This shift between Farad and

Reno is caused by the differences in the shape parameters

(refer to Table 3). Farad has a relatively heavier tailed dis-

tribution (i.e., the GEV shape parameter for Farad is greater

than the shape parameter for Reno) and therefore flood risks

are increased. The sensitivity of the model parameters (and

the associated flood risk) to small differences in the flow and

covariate distributions is further demonstrated by Fig. 6.

Figure 6 presents the project life risk from Fig. 5 for three

project life periods (10, 20 and 30 years). Box plots show

the non-stationary model results for the 234 climate projec-

tions with the different time periods compared side by side.

Also, the risk calculated using a stationary GEV model and

a stationary LP3 model (i.e., the distribution prescribed by

Bulletin 17B and fitted using L-moments; IACWD, 1982) fit

to the historical flow data are plotted for reference (blue and

red dashed lines, respectively). Comparing these three ap-

proaches (non-stationary GEV, stationary GEV and station-
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ary LP3) provides information on the sensitivity of results to

the modeling approach and non-stationary parameters. For

instance, both stationary models are fit to the same histori-

cal simulated flows (one using MLE and the other using L-

moments) so differences between the stationary lines reflect

the impact of model choice and fitting approach on estimated

risk. Conversely the stationary GEV model (blue line) and

the historical non-stationary models (grey box plot) have the

same model form and cover the same time period; the only

difference is the addition of covariates to estimate model pa-

rameters. Thus differences between these two show the ef-

fect of model parameter changes from the non-stationary ap-

proach. Finally, variability between the box plots for a given

design period demonstrates the evolution of risk over time

(i.e., the impact of climate change on risk). The latter (i.e.,

changing risk over time) is the purpose of this analysis; how-

ever, before assessing change over time, we must first discuss

the impact of model choice and parameters on risk estimates.

For both of the stationary methods, the risk increases with

project life following Eq. (5a) from Table 1. The distinction

between these lines and the non-stationary approaches is that,

with the stationary approach, a single exceedance probability

is calculated for the given flood magnitude, and this probabil-

ity is assumed to remain constant throughout the design life.

Also, for both stationary approaches the model is fit directly

to the historical 1-day maximum flow distribution and no co-

variates are required (note that stationary models are not fit

to the future time periods because this would require future

simulated flows). Comparing the GEV (blue line) and the

LP3 (red line) stationary models, there is a 10–20 % increase

in risk between the two models. This difference is purely a

function of model form and highlights the sensitivity of the

risk calculations to model choice.

Contrasting the difference between the stationary (blue

line) and the non-stationary GEV for the historical time pe-

riod (grey box plot) illustrates the effect of adding non-

stationary parameters to a given model form. Recall that

in both cases the GEV model is fit to the historical sim-

ulated flows. However, for the stationary approach, model

fitting results in a single set of parameters (location, scale

and shape), whereas with the non-stationary approach we

derive the shape parameter and a set of coefficients for lin-

ear models to determine the location and scale parameters

based on precipitation and temperature values. Thus, for the

non-stationary approach, different location and scale param-

eters are calculated for every historical cool season month

and GCM model (234).

Overall, there is close agreement between the station-

ary (S) and average non-stationary (NS) location parameters

(6.55 S vs. 6.64 NS at Farad and 6.63 S vs. 6.78 NS at Reno).

However, for both gauges the scale parameter is lower with

the non-stationary approach (1.30 S vs. 0.94 NS at Farad and

1.28 S vs. 0.96 NS at Reno). At Reno the shape parameter

is similar (−0.24 S vs. −0.27 NS), but at Farad the differ-

ence is somewhat larger (−0.24 S vs. −0.18 NS). Differ-

ences in model parameters are reflected in the distance be-

tween the stationary GEV model (blue line) and the median

historical non-stationary GEV box plots (center of the grey

box plots) in Fig. 6. For Reno, the stationary line is closer to

the historical box plots. However, at Farad the non-stationary

box plots are consistently higher than the stationary line. The

larger differences between the stationary and non-stationary

models for Farad result from changes in the shape param-

eter between the stationary and non-stationary model fits.

This change demonstrates the sensitivity of model results to

changes in model parameters.

As with Fig. 5, Fig. 6 shows significant increases in risk

moving into the future and subsequently larger differences

between the stationary and non-stationary approach. By the

second future period the differences between the station-

ary and non-stationary models can be as much as 50 % or

more. For both gauges, difference in risk between the non-

stationary and stationary approaches grows over time, indi-

cating greater potential to underestimate the future risk if

non-stationary parameters are not considered.

Results were also grouped by RCPs to analyze connec-

tions between greenhouse gas emission rates and changes in

flood risk. As shown in Fig. 7, we observed no clear trend in

flood risk based on the different RCPs. This indicates that, for

this flood statistic in this basin, the variability between GCM

model form and initial conditions likely overwhelms the in-

fluence of greenhouse gas emissions when comparing be-

tween scenarios. Although we caution that this is not a gen-

eral finding, for this application we show that the variability

between projections within any RCP scenario is larger than

the difference between RCP scenarios. Harding et al. (2012)

also noted similar behavior in their study of the Colorado

River basin.

Given the sensitivity of projected risk to model parame-

ters, an obvious question is whether increases in risk over

time are similarly sensitive. For the 1065 cms flood plotted in

Fig. 6, the increased risk with added project life (i.e., 20 years

vs. 10 years) is greater with the non-stationary models than

the stationary one at both stations. This is intuitive, given

the increased flood risk with time demonstrated in Fig. 5 for

the non-stationary models. Although Farad has higher over-

all risk, the relative increase in risk between time periods is

similar between the two stations. For example, the median

10-year flood risk when comparing the first (1950–1999)

and second (2000–2049) time periods increases by 21 % for

Farad and 29 % for Reno.

Next, analysis is expanded to a range of flood magnitudes.

Figure 8 plots the flood risk over a 10-year project life start-

ing in 1950, 2000 and 2050 for flood values ranging from

283 to 1416 cms (10 000 to 50 000 cfs). As would be ex-

pected, the 10-year flood risk decreases with increasing flood

rate. The shapes of the curves are slightly different between

Farad and Reno; flood risk decreases more sharply with in-

creased flow at Reno than Farad. Again, this behavior is a

function of the shape parameter of the respective GEV distri-
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Figure 7. Box plots of the probability of a 1-day flood exceeding 1065 cms (risk) in 10 years for three 50-year periods. Results are grouped

by the representative concentration pathways (RCPs) used to drive the GCM projection. RCP 8.5 has the largest increase in greenhouse gas

concentrations and RCP 2.6 the smallest.

Figure 8. Probability of flood in a 10-year project life (risk) vs. median 1-day flood rate at (a) Farad and (b) Reno for three time periods

1950–1999 (blue), 2000–2049 (red) and 2050–2099 (green). Solid lines represent the median of the 234 climate projections and shading

covers the interquartile range (i.e., 25th to 75th percentile).

butions. Despite these differences, both gauges display clear

shifts between time periods similar to Fig. 5. Again, the me-

dian risk for each subsequent period consistently falls outside

the interquartile range of the preceding period.

Changes in the median flood risk (i.e., differences between

the solid lines in Fig. 8) between each future period and the

historical period are plotted in Fig. 9 for both gauges. As

would be expected based on the qualitative differences in

Fig. 8, the shape of the Farad and Reno difference curves

are slightly different. However, the salient point for this anal-

ysis is that the increased risk between periods and the two

stations is generally within 10 %. Overall, the increased risk

between the first future period (2000–2050) and the histor-

ical period (1950–1999) is between 10 and 20 % for flows

from 600 to 1200 cms. Similarly, the increased risk from the

historical period to the second future period (2050–2099) is

between 30 and 50 %. Differences for the highest and lowest

flows are difficult to assess because the median is skewed for

high and low flow values by the fact that the risk values are

bound between 0 and 100 %.
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Figure 9. Increased probability of flood occurrence for a 10-year

project life (risk) from the historical period (1950–1999) to each of

the two future periods, 2000–2050 (black) and 2050–2099 (grey).

Farad is plotted with a solid line and Reno is a dashed line.

5 Summary and conclusions

The analysis presented is unique in its incorporation of non-

stationary GEV analysis using CMIP-5 projections and the

design-life level risk assessment concepts. We present our

findings as a relevant case study and an example applica-

tion of recent developments in non-stationary flood assess-

ment. Lacking sufficient unregulated flow data we simulate

historical floods using the VIC model. Subsequently we use

the simulated floods to fit non-stationary GEV models, with

downscaled monthly precipitation and temperature as covari-

ates. Although there are some discrepancies between indi-

vidual simulated and observed flood events, we demonstrate

that the VIC model adequately captures the range of flood

magnitudes. Furthermore, we show that the GEV-modeled

historical floods are in good agreement with both the VIC-

simulated floods and the published flood events (USACE,

2013b).

Discrepancies between historical and simulated events of-

ten result from the monthly time step used for covariates.

This can affect the ability to model floods that are gen-

erated by precipitation that occurs in 2 months. Also, be-

cause the climate variables are monthly aggregates, and not

event based, large floods can be generated in months with

high precipitation even if that precipitation does not occur in

one concentrated event. Despite these differences, compari-

son with historical flood events demonstrates that the GEV

model does reasonably well at simulating historical flood

magnitudes, even if some individual historical events are not

matched exactly.

Using the derived non-stationary GEV models, we gen-

erate flood distributions for 234 CMIP5 climate projections

from 1950 to 2099. For the historical 1-day design flood

magnitude of 1065 cms, results show significant increases in

the frequency of high-flow events in the future. From a water

management standpoint, this finding translates directly to in-

creased flood risk. For example, we calculate a 21 % (29 %)

increase risk of a 1065 cms flood over a 10-year design life

for Farad (Reno) from the historical time period to the first

future period and similar increases from the first future pe-

riod to the second. Increased risk between time periods is

also relatively consistent for longer design life periods and

similar shifts in flood risk are noted across a range of flood

magnitudes. For both stations, the increased risk from the

historical to the first future period is between 10 and 20 %

and from the historical to the second future period is between

30 and 50 % for floods ranging from 600 to 1200 cms.

The significant increases in flood risk through time in-

dicate the importance of non-stationary flood frequency

analysis for future infrastructure planning, and the poten-

tial to underestimate risk when stationarity is assumed. For

both stations the difference between the stationary and non-

stationary approach increases over time. By the second fu-

ture period (2000–2049), differences in risk calculations be-

tween the stationary and non-stationary models can be 50 %

or larger. This finding is in keeping with a number of recent

studies (e.g., Griffis and Stedinger, 2007; Katz et al., 2002;

Towler et al., 2010) that have highlighted potential applica-

tions for non-stationary analysis of flood frequency.

An important consideration for this approach is the sensi-

tivity of results to model parameters. In all cases, the flood

risk is higher at Farad than Reno due to the relatively heavier

tailed distribution that was fit. Estimated model parameters

differed by station despite the fact that the flow, precipita-

tion and temperature distributions for both locations are very

similar. While these changes affected the overall risk projec-

tions, the relative increase in risk over time remained con-

sistent between stations. This indicates that the more robust

metric from this analysis is the relative increase in flood risk

and not the absolute values. This finding is further supported

by the fact that absolute flood risk estimates could be im-

pacted by model bias. By focusing on differences in risk, we

specifically highlight the impact of non-stationarity on risk

assessment as opposed to parameter sensitivity. Similarly, it

is important to note that this analysis is based on natural flow

estimates and does not include infrastructure development or

operation. Therefore, results indicate the potential increase

in the underlying natural flood risk in the UTRB over the

21st century.
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