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Abstract. Water temperature is a non-conservative tracer

in the environment. Variations in recharge temperature are

damped and retarded as water moves through an aquifer

due to heat exchange between water and rock. However,

within karst aquifers, seasonal and short-term fluctuations

in recharge temperature are often transmitted over long dis-

tances before they are fully damped. Using analytical solu-

tions and numerical simulations, we develop relationships

that describe the effect of flow path properties, flow-through

time, recharge characteristics, and water and rock physi-

cal properties on the damping and retardation of thermal

peaks/troughs in karst conduits. Using these relationships,

one can estimate the thermal retardation and damping that

would occur under given conditions with a given conduit ge-

ometry. Ultimately, these relationships can be used with ther-

mal damping and retardation field data to estimate parame-

ters such as conduit diameter. We also examine sets of nu-

merical simulations where we relax some of the assumptions

used to develop these relationships, testing the effects of vari-

able diameter, variable velocity, open channels, and recharge

shape on thermal damping and retardation to provide some

constraints on uncertainty. Finally, we discuss a multitracer

experiment that provides some field confirmation of our re-

lationships. High temporal resolution water temperature data

are required to obtain sufficient constraints on the magnitude

and timing of thermal peaks and troughs in order to take full

advantage of water temperature as a tracer.

1 Introduction

Much of the flow and transport through karst aquifers occurs

via conduits (Atkinson, 1977b; Worthington, 1999; Wor-

thington et al., 2000). These preferential flow paths occur in

all karst aquifers, but most are poorly characterized or un-

known. Hydrogeological investigations of karst aquifers fre-

quently employ hydrographs, chemographs, and thermo-

graphs collected from boreholes and springs. Ideally, these

data could be used to provide flow path information, and

this characterization would facilitate models that are more

capable of predicting flow and transport through these sys-

tems.

Hydrographs have been analyzed for more than a cen-

tury (Boussinesq, 1903, 1904; Maillet, 1905) to character-

ize flow recession, determine aquifer characteristics, or pre-

dict discharge with time (e.g., see summaries in Hall, 1968;

Tallaksen, 1995; Jeannin and Sauter, 1998; Dewandel et al.,

2003; Ford and Williams, 2007). However, hydrographs pro-

vide minimal information about conduit geometry (Coving-

ton et al., 2009), and interpretations of karst aquifer struc-

tures based on hydrograph analysis are problematic because

of the relatively strong control of rainfall frequency on hy-

drograph shape (Jeannin and Sauter, 1998). Variations in

specific conductance often occur with changes in localized

recharge (Jakucs, 1959; Newson, 1971; Ternan, 1972; Atkin-

son, 1977a, b; Worthington et al., 1992; White, 2002). While

chemical modification of electrical conductivity signals due

to dissolving calcite could theoretically be used to constrain

the geometry of flow paths with hydraulic diameters on the

mm to cm scale, electrical conductivity provides little in-
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formation about conduits with diameters on the meter scale

and larger because these larger flow paths produce negligi-

ble chemical modification of localized recharge from disso-

lution (Covington et al., 2012).

Conduits facilitate fast flow-through times and may en-

able thermal perturbations to reach a spring (e.g., Benderit-

ter et al., 1993; Bundschuh, 1997; Martin and Dean, 1999;

Screaton et al., 2004; Luhmann et al., 2011). These perturba-

tions are modified as water flows through the system, and the

modification is sensitive to conduit geometry (Renner, 1996;

Liedl et al., 1998; Liedl and Sauter, 1998). The modification

occurs because of the heat exchange between water and rock,

causing both damping (i.e., decrease in signal amplitude) and

retardation (i.e., time lag of the signal) of recharge (Luh-

mann et al., 2012). Studies have also demonstrated ther-

mal damping and retardation in porous media (e.g., Mol-

son et al., 1992; Palmer et al., 1992; Markle and Schincar-

iol, 2007) and fractures (e.g., Molson et al., 2007). The non-

conservative nature of water temperature, even within fairly

large conduits, facilitates estimates of conduit size via an

analysis of input and output thermographs (Covington et al.,

2011, 2012; Luhmann et al., 2012; Birk et al., 2014). Un-

like chemical modification, the degree of thermal modifica-

tion depends on the timescale of recharge variations. Shorter,

storm-event thermal perturbations provide maximum infor-

mation about conduits with hydraulic diameters on the meter

scale; longer, seasonal thermal perturbations probe smaller,

mm to cm scale flow paths (Covington et al., 2012). Pre-

vious work has also demonstrated that groundwater input

into surface streams in karst terrains modifies the relation-

ships between air and water temperatures (O’Driscoll and

DeWalle, 2006). The extent of this modification will depend

upon whether groundwater has had sufficient residence time

to reach thermal equilibration (Luhmann et al., 2011; Cov-

ington et al., 2012).

In addition to correlations between thermal signals and

conduit geometry, temperature peaks have been used as

a simple and inexpensive means of estimating residence

times within karst conduit systems when the timing of

changes in recharge temperature is known (Martin and Dean,

1999; Birk et al., 2004; Screaton et al., 2004; Covington

et al., 2011; Gunn, 2015). However, since heat exchange

within a karst conduit introduces a retardation in the timing

of the peak, residence times estimated using temperature will

typically be longer than the true residence time. The magni-

tude of this error, and its functional relationship with conduit

geometry and boundary conditions, have not been previously

quantified, though Birk et al. (2004) noted that estimates of

conduit volume based on temperature lags displayed signifi-

cantly more scatter than estimates using electrical conductiv-

ity lags, and concluded that electrical conductivity provided

a more reliable means of estimating travel times.

Recent work used temperature to identify water sources

by employing a two-component mixing model (Doucette and

Peterson, 2014). However, since heat exchange within a karst

conduit dampens all thermal perturbations, there will be error

in estimates of different water source fractions derived from

models that assume conservative end-member temperatures.

Temperature mixing models will typically overestimate con-

tributions from background temperature sources and under-

estimate source waters that provide the thermal perturbations

at the thermal peak/trough. Alternatively, during the thermal

recession, the heated or cooled rock surrounding the con-

duit may potentially facilitate water temperatures that are no

longer within the temperature range of the different water

sources. The magnitude of these errors will depend upon the

extent of water temperature change that occurs along the flow

paths.

Our primary objective in this study is to demonstrate the

effect of conduit geometry on thermal damping and retar-

dation in karst conduits using both analytical solutions and

numerical simulations. We also consider the effects of fluid

flow velocity, recharge characteristics, and rock and water

physical properties. A relationship between conduit geom-

etry and thermal damping or retardation may ultimately be

used to estimate conduit diameter given recharge temperature

and down-gradient monitoring data that include water tem-

perature and a conservative tracer. These relationships can

also be used to estimate, and potentially correct for, errors in

residence times or water source fractions derived from tem-

perature pulses, and to understand how these errors vary with

conduit properties and recharge.

2 Conceptual model

A simplified conceptual model of heat transport in a conduit

through a karst aquifer is employed to provide a general un-

derstanding of thermal damping and retardation in karst con-

duits. Heat transport occurs via advection and dispersion in

the conduit, conduction in the rock surrounding the conduit,

and exchange between the conduit and rock. Both a circular

conduit and a planar fracture or bedding plane are investi-

gated. Velocity is imposed along the entire length of the con-

duit, and the following analysis generally assumes a number

of constants to simplify the system, including water flow at

a constant velocity in a conduit with a constant hydraulic di-

ameter. However, the effects of velocity variations induced

by recharge events and a conduit diameter that varies along

its length are briefly considered. The analysis also generally

employs conduits with full pipe flow, but open channel flow,

where conduits are only partially full of water, is also consid-

ered in a few example cases. The conceptual model does not

account for exchange of water between the conduit and ma-

trix (or fractures or other conduits) or spatial velocity gradi-

ents or mobile/immobile regions within the conduit. Finally,

the analysis employs a number of simple functions to approx-

imate the shape of thermal perturbations produced in nature.

Some limitations of our conceptual model are discussed in

Sect. 9.2.
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3 Mathematical model

Temperature along a karst conduit as a function of time can

be approximated by the 1-D heat advection–dispersion equa-

tion:

∂Tw

∂t
=DL

∂2Tw

∂x2
−V

∂Tw

∂x
+

4hconv

ρwcp,wDH

(Ts− Tw), (1)

where Tw is the water temperature, t is time, DL is the lon-

gitudinal dispersivity, x is the longitudinal distance down the

conduit, V is the water velocity, hconv is the convective heat

transfer coefficient, ρw is the density of water, cp,w is the spe-

cific heat of water at constant pressure, DH is the hydraulic

diameter of the flow path, and Ts is the conduit wall surface

temperature. The terms on the right side of Eq. (1) describe

heat dispersion, heat advection, and heat exchange with the

surrounding rock. The convective heat transfer coefficient is

given by

hconv =
kwNu

DH

, (2)

where kw is the thermal conductivity of water and Nu is the

dimensionless Nusselt number, which is the ratio of convec-

tive to purely conductive heat transfer through the convective

boundary layer near the wall. Nu for turbulent flow is given

by the empirically derived Gnielinski correlation (Incropera

et al., 2007, Eq. 8.62):

Nu =
(f/8)(Re− 1000)Pr

1+ 12.7(f/8)1/2(Pr2/3− 1)
, (3)

where f is the Darcy–Weisbach friction factor, Re=

ρwVDH/µw is the dimensionless Reynolds number, Pr=

cp,wµw/kw is the dimensionless Prandtl number of water,

and µw is the dynamic viscosity of water.

Conduction provides a strong control over heat exchange

in karst conduits (Covington et al., 2011). Heat conduction

in the rock surrounding a circular conduit with no energy

generation can be described, using cylindrical symmetry, by

the 2-D heat conduction equation

1

r

∂

∂r

(
r
∂Tr

∂r

)
+
∂2Tr

∂x2
=

1

αr

∂Tr

∂t
, (4)

where r is the radial distance from the conduit center, Tr

is the rock temperature, and αr = kr/(ρrcp,r) is the here-

assumed isotropic and homogeneous thermal diffusivity of

rock, with kr denoting the thermal conductivity, ρr the den-

sity, and cp,r the specific heat. To represent heat transport in

rock adjacent to a planar fracture or a bedding plane part-

ing, we use translational symmetry, and the heat conduction

equation becomes

∂2Tr

∂y2
+
∂2Tr

∂x2
=

1

αr

∂Tr

∂t
, (5)

where y is the distance from the fracture center. Furthermore,

heat exchange in a cylindrical conduit can be approximated

by heat exchange in planar coordinates in many cases (Cov-

ington et al., 2011), permitting simpler planar simulations.

The boundary conditions are

∂Tw

∂x

∣∣∣∣
x= conduit outlet

= 0, (6)

∂Tr

∂r
→ 0 as r→∞, (7)

and

kr

∂Tr

∂r

∣∣∣∣
r= conduit wall

= hconv(Ts− Tw). (8)

In planar coordinates, r in Eqs. (7) and (8) is replaced by y:

∂Tr

∂y
→ 0 as y→∞ (9)

and

kr

∂Tr

∂y

∣∣∣∣
y= conduit wall

= hconv(Ts− Tw). (10)

4 Analytical solutions for damping and thermal

retardation

Simplification of Eq. (1) allows derivation of several useful

analytical solutions. Karst conduits are frequently advection

dominated, with Peclet numbers of around 100 (Field and

Nash, 1997). Therefore, neglecting longitudinal dispersivity

will provide a reasonable approximation in many cases. This

approximation will break down for particularly short dura-

tion pulses (Hauns et al., 2001), but is more likely to hold for

the longer-term pulses typically found from natural perturba-

tions. Neglecting longitudinal dispersivity results in

∂Tw

∂t
=−V

∂Tw

∂x
+

4hconv

ρwcp,wDH

(Ts− Tw). (11)

For most relevant cases, where the timescale of the change in

water temperature is not extremely short, the approximation

hconv→∞ is valid (Covington et al., 2011). In this case heat

flow is limited by conduction in the rock, and one obtains

a boundary condition

Tr (x,r or y = conduit wall, t)= Tw(x, t). (12)

4.1 Sinusoidal solution for the planar case

Heat conduction in the rock along the length of the conduit

(the x direction) is neglected, and thus, the equation for heat

conduction in the rock becomes

∂2Tr(x,y, t)

∂y2
=

1

αr

∂Tr(x,y, t)

∂t
. (13)
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Equations (10) to (13) can be solved for the case of sinu-

soidally varying water temperature, allowing direct calcu-

lation of the thermal damping and retardation of the input

wave. The retardation and damping produced for this sinu-

soidal upstream boundary condition provide significant in-

sight into the response from many pulses found in natural set-

tings, including, as will be seen later, a single isolated pulse.

For the sinusoidal solution, we employ a shifted temperature

variable defined as

T ′r = Tr− Tr,∞, (14)

where Tr,∞ is the rock temperature at an infinite distance

from the conduit axis. For an upstream boundary condition

that is sinusoidal in time, the solution for the rock tempera-

ture is separable and has the functional form

T ′r (x,y, t)=X(x)Y (y)T
′

t (t). (15)

Since the water and rock temperatures are assumed equal

at the boundary (Eq. 12), Eq. (15) contains all of the

temperature field. With a sinusoidal upstream bound-

ary condition, the time varying component of the solu-

tion is also sinusoidal, T ′t (t)= T
′

w,ine
−iωt and T ′r (x,y, t)=

T ′w,inX(x)Y (y)e
−iωt , where T ′w,in is the peak amplitude of the

input temperature variation. Using this in Eq. (13), combined

with the boundary condition limy→∞T
′

r = 0, leads to

Y (y)= e
(−1+i)

√
ω

2αr
y
. (16)

The function X(x) can then be derived using Eqs. (10)–(12),

leading to

X(x)Y (y)
dT ′t (t)

dt
=−V Y(y)T ′t (t)

dX(x)

dx

+
4αr

9DH

X(x)T ′t (t)
dY (y)

dy

∣∣∣∣
y= conduit wall

, (17)

where 9 = ρwcp,w/(ρrcp,r) is a ratio of the volumetric heat

capacities of water and rock. This is an ordinary differential

equation with constant coefficients and the solution is an ex-

ponential function X(x)= e−γ x , where

γ =−i
ω

V
− (−1+ i)

4

V9DH

√
αrω

2
e
(1−i)

√
ω

2αr
y
. (18)

For the water temperature at the conduit outlet, T ′w,out, this

gives the solution

T ′w,out(t)= T
′

w,in exp

[
−iωt + i

ω

V
L+ (i− 1)

4L

V9DH

√
αrω

2

]
, (19)

where L is the conduit length. Since we are interested only

in real solutions, we fix the phase and only look at the real

part of the equation.

From this solution, one can directly derive both the retar-

dation and damping experienced by each sinusoidal temper-

ature peak. A peak in the output temperature is reached at

a distance L (i.e., conduit length) downstream of the input at

the time, tpeak,out, when the imaginary part of the exponent is

zero; that is,

−ωtpeak,out+
ω

V
L+

4L

V9DH

√
αrω

2
= 0. (20)

The fluid flow-through time through the conduit is tft = L/V ,

and the retardation of the thermal peak, τ , is the difference

τ = tpeak,out− tft =
4L

V9DH

√
αr

2ω
. (21)

As can been seen from the real part of γ , the damping of the

upstream temperature peaks observed at the downstream end

of the conduit (x = L) is given by

T ′w,out

T ′w,in

= exp

[
−

4L

V9DH

√
αrω

2

]
. (22)

This solution illustrates a thermal length scale, λT,sin, that is

appropriate for sinusoidal temperature variations in the input

temperature, with

λT,sin =
V9DH

4

√
2

αrω
. (23)

λT,sin is, to within a dimensionless factor of order 1, equiva-

lent to the late time thermal length scale of Eq. (22) in Cov-

ington et al. (2012).

4.2 Sinusoidal solution for the cylindrical case

For heat conduction within the rock in the vicinity of a karst

conduit with a cylindrical geometry, we again neglect con-

duction in the direction along the conduit (x) and, instead of

Eq. (4), we use

∂2Tr(x,r, t)

∂r2
+

1

r

∂Tr(x,r, t)

∂r
=

1

αr

∂Tr(x,r, t)

∂t
. (24)

The solution remains separable, such that

T ′r (x,r, t)=X(x)R(r)T
′

t (t). (25)

Again, we use sinusoidal T ′t (t) and get T ′r (x,r, t)=

T ′w,inX(x)R(r)e
−iωt . Substituting this into Eq. (24) gives

a Bessel equation whose solutions are Bessel func-

tions. From the boundary condition limr→∞T
′

r = 0 follows

limr→∞R(r)= 0, which limits the solution space for R(r)

to specific linear combinations of Bessel functions that are

known as Hankel functions of the first kind, H
(1)
i . The solu-

tion is

R(r)=

H
(1)
0

(
(1+ i)

√
ω

2αr
r
)

H
(1)
0

(
(1+ i)

√
ω

2αr
DH/2

) . (26)
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As in the planar case,X(x) is obtained from Eq. (11) and has

the form X(x)= e−γ x , where

γ =−i
ω

V
+(i+ 1)

√
2αrω

9DH/2

H
(1)
1

(
(1+ i)

√
ω

2αr
DH/2

)
H
(1)
0

(
(1+ i)

√
ω

2αr
DH/2

) . (27)

Because of the special functions, this solution is less useful

analytically, but provides a straightforward means of calcu-

lating the output wave numerically.

5 Numerical integration of the planar case for

arbitrary recharge temperature

As shown above, if the temperature at the input is Tw,in(t)=

e−iωt , then the temperature at the output is Tw,out(t)=

Tw,in(t)X(L)= e
−γ (ω)L−iωt . A general Tw,in(t) can be ex-

pressed in terms of its Fourier transform,

Tw,in(t)=

∞∫
−∞

K(ω)e−iωtdω, (28)

and the output temperature is then calculated as

Tw,out(t)=

∞∫
−∞

K(ω)e−γ (ω)L−iωtdω. (29)

A Gaussian pulse is of particular interest, since this shape

approximates many natural recharge events and is also the

functional form we use for the simulations below. We use

a Gaussian recharge function of the form

Tw,in(t)= Tr,0+RAe
−
(t−tpeak,in)

2

2σ2 , (30)

where Tw,in is Tw at x = 0, Tr,0 is the initial rock temperature

(or Tr,∞), RA is the recharge temperature amplitude, tpeak,in

is the peak time at x = 0, and σ controls the width of the

thermal pulse.

The Fourier transform is given by

K(ω)= δ(ω)+
RAc
√

2π
e−

c2ω2

2
+itpeak,inω. (31)

Therefore, the general solution for a Gaussian pulse can be

calculated using the integral

Tw,out(t)= 1+
RAc
√

2π

∞∫
−∞

e−
c2ω2

2
+itpeak,inω

e
−

L
9DH/2

√
αr
2

√
ω+i

(
L

9DH/2

√
αr
2

√
ω+

(
L
V
−t
)
ω
)
dω. (32)

In practice, this equation, or Eq. (29) for the general case,

must be integrated numerically. However, the Fourier trans-

form solution provides an efficient means of numerically cal-

culating thermographs.

6 Numerical simulations

In order to relax the somewhat restrictive assumptions re-

quired by the analytical solutions, and particularly to test

the applicability of the sinusoidal analytical solutions to the

propagation of isolated pulses, we present the results of nu-

merical simulations of thermal pulses. These simulations

solve the full version of Eqs. (1) and (4) or (5) for a variety

of recharge and flow conditions, conduit geometries, thermal

pulse shapes, rock and water physical properties, and also for

open channel cases that include radiative heat exchange. For

the majority of the simulation set, recharge temperature is

varied according to the Gaussian function given in Eq. (30).

For each simulation, σ is defined to attain a desired recharge

duration,RD, or full width at half maximum given by

RD = 2σ
√

2ln2. (33)

For the initial condition, Tw and Tr are set equal to Tr,∞ or

Tw(x, t = 0)= Tr(x,r or y, t = 0)= 10 ◦C.

For most of the simulations, V is constant, although V

varies between different simulations. f is approximated for

most simulations using the von Kármán equation,

f = [1.74+ 2log(R/ε)]−2, (34)

where R =DH/2 is the conduit radius and ε is the roughness

height (i.e., the average distance that irregularities on the rock

wall protrude into the conduit). We set ε = 2.15 cm for all

simulations. We also run simulations where f is calculated

using the empirical Colebrook–White equation, and we find

that simulation results are identical regardless of the equation

used to determine f (Luhmann, 2011).

The COMSOL Multiphysics® (Version 3.5) finite ele-

ment package is used to solve the coupled heat advection–

dispersion and conduction equations numerically. Using

the Coefficient Form PDE mode in COMSOL, Eq. (1) is

solved along a 1-D line, which represents a conduit (Fig. 1a)

or fracture (Fig. 1b). Because of axial symmetry, a simula-

tion of conduction in the rock surrounding a circular con-

duit with full pipe flow may be reduced to a 2-D axisym-

metric problem. Thus, Eq. (4) is solved using COMSOL’s

Conduction Heat Transfer application mode with a 2-D ax-

isymmetric rectangle for cylindrical simulations (Fig. 1a).

Similarly, because of translational symmetry across the frac-

ture plane, a simulation of conduction in the rock surround-

ing a water-filled fracture may be simplified to a 2-D pla-

nar problem. Thus, Eq. (5) is solved in a 2-D rectangle in

Cartesian coordinates for planar simulations (Fig. 1b). The

1-D line and either the 2-D cylindrical or planar rectangle

are coupled to each other at one of the rectangle edges us-

ing the Extrusion Coupling Variables feature in COMSOL.

The 1-D conduit or fracture line and the rock at the conduit

or fracture wall were discretized into 1000 finite elements

along the flow path length for all simulations. Mesh resolu-

tion gradually coarsens in the 2-D rectangle of rock away

www.hydrol-earth-syst-sci.net/19/137/2015/ Hydrol. Earth Syst. Sci., 19, 137–157, 2015



142 A. J. Luhmann et al.: Thermal damping and retardation in karst conduits

(a) (b)r y

x x

Figure 1. Model setup for heat transport simulations involving a (a) conduit or (b) fracture and the surrounding rock. The advection–

dispersion equation is solved along the 1-D (a) conduit or (b) fracture. Because of symmetry, conduction in the 3-D rock surrounding the

conduit or fracture may be modeled with a simple 2-D rectangle (outlined in thick gray and blue lines). Thus, conduction is modeled in (a)

2-D cylindrical or (b) 2-D planar coordinates. The 1-D conduit or fracture and the 2-D rock are coupled to each other at each respective thick

blue line (i.e., the conduit/fracture wall surface). Thick gray limestone boundaries perpendicular to the conduit or fracture are insulated rock

boundaries. Thick gray limestone boundaries parallel to the conduit or fracture are sufficiently far from flow path lines to satisfy Eqs. (7)

or (9), respectively, and are set to background temperature.

Table 1. Default parameters used in simulations.

Parameter Value Unit

DH 1 m

L 1000 m

V 0.626 ms−1

RA 10 ◦C

RD 60 000 s

kr 2.15 Wm−1 ◦C−1

cp,r 810 Jkg−1 ◦C−1

ρr 2320 kgm−3

kw 0.58 Wm−1 ◦C−1

cp,w 4200 Jkg−1 ◦C−1

ρw 1000 kgm−3

µw 1.3× 10−3 kgs−1 m−1

DL 0.01 m2 s−1

Pr 9.5 –

from the flow path wall, but the 2-D rectangle was generally

discretized into 23 000 elements. COMSOL uses an implicit

method to solve the system of equations. User-defined rel-

ative and absolute tolerances are compared to the estimated

error to modify timestep duration to obtain the desired accu-

racy. The relative and absolute tolerances were set to ≤ 10−6

and ≤ 10−7, respectively. Several example cases were run

at higher spatial and temporal resolution, and produced the

same results.

We conduct numerous simulations where we vary the pa-

rameters to consider their effect on thermal damping and

retardation. Table 1 lists default values for parameters, but

simulations were also run with other values, which are pro-

vided in the Supplement. The thermal transmission factor, F ,

which provides a means to quantify damping, is given by

F =
Tw,peak,out− Tr,∞

Tw,peak,in− Tr,∞

, (35)

where Tw,peak,out and Tw,peak,in are the outlet and inlet peak

water temperatures, respectively. The thermal peak retarda-

tion, τ , for each simulation is the time of peak temperature

at the outlet minus the flow-through time (Eq. 21). Though

the notation here is in terms of temperature peaks, the same

equations apply to temperature troughs. τ and F for all sim-

ulations are provided in the Supplement.

7 Results

7.1 Thermal damping

The damping of temperature peaks in the simulations is de-

pendent on the ratio L/λT,sin. When the ratio L/λT,sin is

small, there is little damping of recharge signals. However,

when the ratio L/λT,sin is large, recharge signals undergo

significant to complete damping. For the planar sinusoidal

solution, the transmission factor, F , is given by Eq. (22).

In order to compare this analytical solution for damping

of sinusoids with the simulations that contain Gaussian in-

put thermographs, we need an approximate conversion be-

tween the angular frequency of the sinusoid, ω, and an ap-

propriate analog for the Gaussian pulse. We use the relation

ω = π/(CtimeRD), which relates the period of the sinusoid to

a multiple of the full width at half maximum of the Gaussian

curve. The time conversion constant, Ctime, is treated as a fit-

ting parameter. Using this approximation, and the definition

of the transmission factor (Eq. 35), Eq. (22) can be rewritten
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Figure 2. A comparison of the transmission factors of peaks in

the simulations of Gaussian temperature pulses against the modi-

fied form of the analytical solution for a sinusoidal input tempera-

ture (Eq. 36). Cylindrical cases are corrected by an additional fac-

tor (Eq. 37) that is a function of the dimensionless parameter 2.

These modified forms of the analytical solution provide a close fit

to the simulation results for most cases. Big Cyl and Small Cyl

indicate a conduit in cylindrical coordinates with a DH ≥ 1 m and

a DH < 1 m, respectively. Slow Cyl indicates a conduit in cylindri-

cal coordinates with a V ≤ 0.0352 ms−1. Planar indicates a conduit

in planar coordinates. The graph includes a 1 : 1 line.

as

Fplanar = exp

(
−

4L

V9DH

√
παr

2CtimeRD

)
. (36)

For the planar simulations, and cylindrical simulations that

are well approximated with the planar solution, we find that

a value of Ctime ≈ 4 provides a tight fit to the transmis-

sion factors measured from the pulses in the simulations

(Fig. 2). Covington et al. (2011) showed that the agreement

between planar and cylindrical heat transport solutions was

dependent on a dimensionless quantity, 2= (R2V )/(Lαr),

where V is a time-averaged or reference flow velocity, with

cylindrical cases well approximated by the planar solution

for2& 10. Similarly, here we find that Eq. (36) breaks down

for cylindrical simulations with small 2. However, we also

find that the error is strongly correlated with 2, and the

damping in the cylindrical cases is well fit by a correction

factor of the form

Fcyl =
2

Ccyl+2
Fplanar. (37)

This correction factor, with a value of Ccyl ≈ 0.4, roughly ac-

counts for the additional heat exchange. Though an approx-

imation of the cylindrical solution given in Sect. 4.2 might

provide a more well-motivated correction, this equation pro-

duces acceptable results and is simpler to implement since it

requires no calculation of Hankel functions. Figure 2 shows

a comparison between the transmission factors within the
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Figure 3. Simulated retardation as a function of theoretical retarda-

tion. In general, there is excellent agreement between the analytical

solution and numerical simulations. Legend categories are the same

as Fig. 2, and the graph includes a 1 : 1 line.

simulations and the values of Fplanar or Fcyl for the planar

and cylindrical simulations, respectively.

7.2 Thermal retardation

As for thermal damping, the thermal retardation of a Gaus-

sian pulse can be approximated using the form of the sinu-

soidal solution along with a multiplicative time constant. For

thermal retardation, we find that Eq. (21) provides a good ap-

proximation to the simulated cases (Fig. 3) with a choice of

ω ≈ π/RD, such that

τplanar =
4L

V9DH

√
αrRD

2π
. (38)

While this relation provides an excellent fit to the planar

cases, and most of the cylindrical cases, cylindrical cases

with small values of 2 do produce some scatter. This scatter

is sufficiently small that we do not attempt to develop a cor-

rection for it. There is also some scatter associated with sim-

ulations with relatively slow velocities. This scatter is likely

caused by numerical dispersion.

7.3 Relaxation of additional assumptions

Our analysis thus far, including the simulations, employs

a number of simplifications or approximations, such as con-

stant conduit diameter and constant flow velocity. Here, we

run simulations that relax these assumptions to examine po-

tential uncertainty in the F and τ relationships. We consider

the effect of variable diameter or flow velocity within an indi-

vidual conduit and also run open channel simulations, where

a conduit is only partially filled with water and radiative heat

exchange occurs. Finally, we consider other functions that

approximate the shape of recharge thermographs in nature to
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examine whether different shapes produce significantly dif-

ferent values of damping or retardation.

7.3.1 Variable hydraulic diameter

The conduit hydraulic diameter,DH, typically changes along

a karst flow path. If this occurs, the thermal signal at the mon-

itoring location of interest will be a composite signal, and es-

timates ofDH using Eqs. (36) and (38) will then be estimates

of an effective hydraulic diameter, DH,e, that is some func-

tion of the different size flow paths that the water traversed.

If the pulse undergoes little modification in shape or duration

as it flows through different conduit segments, then the total

transmission factor, FT, in a conduit with multiple segments

with different values of DH, is given by

FT =

n∏
i=1

Fi, (39)

where Fi is the transmission factor from segment i. Further-

more, the total retardation of the thermal peak, τT, is given

by

τT =

n∑
i=1

τi, (40)

where τi is the retardation from segment i. τi is given by

τi =

[
4

9

√
αrRD

2π

]
Li

ViDH,i

, (41)

where the quantity in square brackets is approximately con-

stant and Li , Vi , and DH,i are the length, velocity, and hy-

draulic diameter, respectively, of segment i. It follows that

τT =

[
4

9

√
αrRD

2π

]
n∑
i=1

Li

ViDH,i

. (42)

We can define an effective length (Le), velocity (Ve), and di-

ameter (DH,e) such that

τT =

[
4

9

√
αrRD

2π

]
Le

VeDH,e

. (43)

From this we can see that, provided the quantities in the

square bracket are constant, the response of a multi-diameter

conduit is the same as that of an equivalent single-diameter

conduit with the effective length, velocity, and diameter. We

can then consider the relationship of DH,e to DH,i as well as

the relationship of Le to Li . There is more than one equiv-

alent conduit that can be defined, depending upon the con-

straints chosen. We impose the following four constraints,

which we deem to be the most physically meaningful:

1. The retardation of the equivalent conduit is equal to that

of the multiple segment conduit,

Le

VeDH,e

=

n∑
i=1

Li

ViDH,i

. (44)

2. Mass (discharge) is conserved along the multiple seg-

ment conduit,

ViD
2
H,i = Vi+1D

2
H,i+1. (45)

3. The equivalent and multiple segment conduits have the

same discharge,

VeD
2
H,e = ViD

2
H,i . (46)

4. The flow-through time of the equivalent and multiple

segment conduits is the same,

Le

Ve

=

n∑
i=1

Li

Vi
. (47)

Using these constraints, it is possible to solve for the equiva-

lent diameter and length,

DH,e =

n∑
i=1

LiD
2
H,i

n∑
i=1

LiDH,i

=
(total conduit volume)

n∑
i=1

(ith segment volume)/DH,i

=
tft

n∑
i=1

tft,i/DH,i

(48)

and

Le =

n∑
i=1

LiD
2
H,i

D2
H,e

=
(total conduit volume)

(equivalent conduit cross-sectional area)
, (49)

where tft,i is the fluid flow-through time through segment i.

The relationships between the equivalent model parameters

and conduit volumes or flow-through times assume that the

relationship between hydraulic diameter and cross-sectional

area is fixed. An analogous derivation using transmission fac-

tor, F , rather than retardation, τ , yields the same relation-

ships, and therefore the equivalent models for damping and

retardation are the same.

The equivalent diameter is given by the volume- or time-

weighted harmonic mean of the hydraulic diameters of the

individual segments. Since the harmonic mean accentuates

the smaller values in a set, and is always less than the arith-

metic mean, one might think that the smaller diameters fig-

ure more heavily in the calculation of an equivalent diameter.

However, this effect is offset by the weighting by volume, or,

equivalently, flow-through time. For the same length, larger
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Figure 4. (a) DH,e/DH,avg and (b) Le/(L1+L2) for different relative increases in DH when L1 = L2. The DH,e for a flow path with two

sections of different DH is generally more heavily weighted toward the section with a larger DH, and a larger increase in DH produces

a larger DH,e. The Le for a flow path with two sections of different DH is always less than L1+L2, and a larger increase in DH results in

a smaller Le.

Table 2. Thermal transmission factors and retardation values of

variable DH and constant DH,e simulations.

DH or DH,e L V F τ

(m) (m) (ms−1) (–) (s)

1 and 1.2 2500 and 2500 0.144 and 0.1 0.42 2220

1.11 4959 0.117 0.42 2220

1 and 2 2500 and 2500 0.4 and 0.1 0.65 1040

1.67 4500 0.144 0.65 1050

Other parameters different from values in Table 1:RD = 6000 s.

diameter conduits will have larger volumes and longer flow-

through times. The effect of the weighting is sufficiently

strong that, for two conduit segments of equal length, the

equivalent diameter is more heavily weighted toward the

larger diameter.

Since discharge and flow-through time are fixed, the vol-

umes of the multi-segment and equivalent conduits must be

the same. Consequently, the length of the equivalent model

is equal to this volume divided by the cross-sectional area of

the equivalent model conduit. While one might like to hold

conduit length fixed between the multi-segment and equiva-

lent models, this is not possible given the constraints (1–4)

used above, and we deem these constraints to be more physi-

cally meaningful than holding length constant. This is, how-

ever, a somewhat arbitrary choice, and other equivalent mod-

els could also be derived. As an example of the relationship

between multiple segment and equivalent conduit properties,

Fig. 4 shows the ratio of DH,e to the average hydraulic di-

ameter, DH,avg, and the ratio of Le to L1+L2 for systems

containing two conduit segments with equal length.

Simulations are run in cylindrical coordinates to test if

a conduit with two segments with different diameters and

a conduit with a constant effective diameter calculated from

Eq. (48) produce the same transmission and retardation. We

run two example cases of a multiple segment conduit, both of

which have two segments with equal lengths and different di-

ameters. In one caseDH increases by 20 % halfway down the

conduit and in the other case by 100 %. Table 2 provides val-

ues of model parameters for each case and the transmission

and retardation from each simulated thermograph. For the

simulations of a conduit with two differentDH segments, the

output of the first section was used as input into the second

section. For the two example cases, there is good agreement

between the transmission factors and retardation observed in

the multi-segment and equivalent models (Table 2).

7.3.2 Variable flow velocity

During recharge events, discharge variability causes varia-

tions in flow velocity, V . To explore the effect of varying

velocity on the amount of damping and retardation that oc-

curs, we run additional simulations in cylindrical coordinates

where velocity was varied and compared them with constant

velocity simulations. For each variable velocity simulation,

both V and Tw,in are defined by a Gaussian equation of the

form of Eq. (30). Both curves use the same tpeak,in and σ , but

the initial velocity, V0, and velocity amplitude, VA, (equiva-

lent to Tr,0 and RA, respectively, in Eq. 30) are both set to

0.1 ms−1 for all simulations. This simulates a velocity that

ranges from 0.1 to 0.2 ms−1 over the duration of the pulse.

In these simulations, velocity and input temperature began to

change at the same time, and the peak water temperature at

the input occurs at the same time as the peak velocity in the

conduit. Because these are 1-D simulations of full pipe flow,

there are no spatial velocity gradients, even though velocity

varies as a function of time. We also run equivalent constant

velocity simulations, where the flow velocity for each sim-

ulation is set so that the flow-through time is equal to the

flow-through time of the peak of the corresponding variable

velocity simulation. Five sets of simulations are run to com-
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pare five different recharge duration, RD, to flow-through

time ratios, L/V .

Table 3 provides transmission and retardation data for sim-

ulations that consider the effect of variable velocity. For most

cases, each set of variable V and constant V simulations pro-

duced similar damping. However, as the ratio of recharge du-

ration to flow-through time decreased, the constant V sim-

ulations underwent somewhat more damping than variable

V simulations. In general, thermal retardation values were

similar for the constant and variable V simulations. How-

ever, thermal peaks from variable V simulations are charac-

terized by more retardation than the constant V cases when

RD .L/V and less retardation when RD > L/V . The frac-

tion of time spent at a velocity above or below the aver-

age velocity ultimately controlled whether variable V sim-

ulations produced less or more retardation, respectively, than

the corresponding constant V simulation. The maximum dif-

ference between thermal retardation observed in the constant

and variable V simulations is approximately 30 %.

7.3.3 Open channel

If water flows along a conduit with a free surface, then a po-

tentially significant amount of heat exchange occurs via ra-

diation through the air. The significance of this exchange is

a function of the timescale of the pulse (Covington et al.,

2011). To incorporate radiation, we add one more term to the

heat advection–dispersion equation:

∂Tw

∂t
=DL

∂2Tw

∂x2
−V

∂Tw

∂x
+

4hconv

ρwcp,wDH

(Ts,w− Tw)

+
4hradAd

ρwcp,wDHAw

(Ts,d− Tw), (50)

where Ts,w is the wet conduit wall surface temperature, hrad

is the radiative heat transfer coefficient, Ad = Pd/Wfs is the

ratio of dry conduit perimeter (Pd) to the width of the water’s

free surface (Wfs), Aw = Pw/Wfs is the ratio of wet conduit

perimeter (Pw) toWfs, and Ts,d is the dry conduit wall surface

temperature. hrad is given by

hrad =
σSB

Ad

(Tw+ Ts,d)
(
T 2

w + T
2

s,d

)
, (51)

where σSB = 5.67× 10−8 Wm−2 K−4 is the Stefan–

Boltzmann constant. Emissivities of water and rock are close

to 1, and temperatures in Eq. (51) are in Kelvin. Finally, the

dry perimeter boundary condition is

kr

∂Tr,d

∂y

∣∣∣∣
y= conduit wall

= hrad(Ts,d− Tw), (52)

where Tr,d is the temperature of the dry rock. As before, the

wet perimeter boundary condition is given by Eq. (8), where

Tr = Tr,w (wet rock temperature), Ts = Ts,w, and r becomes

y. We run three sets of simulations with different choices of

Figure 5. Different modeled recharge shapes. The sineH curve is

widest near the peak and produces less damping and more retarda-

tion than the other recharge shapes. Note that the ends of the Gaus-

sian curve are not shown in this figure.

recharge duration, RD, with values equal to 1.67 h, 16.7 h,

or 6.9 days. For each set, simulations are run in planar coor-

dinates with conduits that are full, mostly full, half full, and

mostly empty. Aw is held constant for all open channel sim-

ulations to see how F and τ vary as a function of Ad. All

simulations are run with DH = 1 m to further facilitate com-

parisons. Because2≈ 22 for all of these planar simulations,

they accurately model heat exchange in cylindrical or planar

conduits and permit simpler planar simulations (Covington

et al., 2011). However, we also run a simulation with a full

conduit in cylindrical coordinates for comparison to planar

simulations for each set.

For the range of Ad/Aw ratios and RD values considered,

there is little difference in the transmission and retardation

for each set of simulations with a given recharge duration

(Table 4). In general, channels with a free surface undergo

slightly more damping than channels that are completely full

because there is more rock where heat may be exchanged in

the open channel simulations. For the two sets of simulations

with longer recharge durations, full planar simulations pro-

duce the least retardation, and conduits that are mostly full

produce the most retardation.

7.3.4 Thermal recharge shape

Our numerical analysis thus far considers a Gaussian ther-

mal recharge function. This is a rough approximation of the

typical shape of thermographs found in natural systems, but

natural pulses can display a variety of shapes. To explore the

influence of shape on damping and retardation, we run sim-

ulations with a variety of other functions that are sometimes

used to approximate natural pulses. Table 5 provides ther-

mal transmission factors and retardation values for two sets
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Table 3. Thermal transmission factors and retardation values of variable V and equivalent constant V simulations.

V RD L/V RD-to- F τ

(ms−1) (s) (s) L/V ratio (–) (s)

Variable (but more time at V below average V ) 600 49 680 � 1 0.10 1470

0.101 600 49 680 � 1 0.06 1360

Variable (but more time at V below average V ) 6000 46 806 < 1 0.43 3900

0.107 6000 46 806 < 1 0.34 2800

Variable (but more time at V below average V ) 33 000 32 356 ∼1 0.70 5400

0.155 33 000 32 356 ∼1 0.70 4500

Variable (but more time at V above average V ) 60 000 27 194 > 1 0.78 4700

0.184 60 000 27 194 > 1 0.79 5100

Variable (but more time at V above average V ) 600 000 25 020 � 1 0.91 14 600

0.200 600 000 25 020 � 1 0.91 15 400

Other parameters different from values in Table 1: L= 5000 m.

Table 4. Thermal transmission factors and retardation values of

open channel simulations with different Ad/Aw ratios.

Channel type RD Aw Ad F τ

(s) (–) (–) (–) (s)

Full 6000 0.80 540

Full – cylindrical 6000 0.79 530

Mostly full 6000 3 1.4 0.79 540

Half full 6000 3 3 0.79 540

Mostly empty 6000 3 11 0.79 540

Full 60 000 0.93 1800

Full – cylindrical 60 000 0.92 1830

Mostly full 60 000 3 1.4 0.92 1850

Half full 60 000 3 3 0.92 1830

Mostly empty 60 000 3 11 0.92 1810

Full 600 000 0.98 5800

Full – cylindrical 600 000 0.96 6100

Mostly full 600 000 3 1.4 0.97 6600

Half full 600 000 3 3 0.97 6400

Mostly empty 600 000 3 11 0.96 6100

Other parameters different from values in Table 1: V = 0.1 m s−1.

of equivalent simulations in cylindrical coordinates. Each set

includes a Gaussian function, two types of sine function seg-

ments, and a triangular function. Shapes of the recharge ther-

mographs used are shown in Fig. 5. One of the sine-shaped

peaks is composed of one period of a sine function from one

trough to the next (sineO) and the other one as half a pe-

riod between two consecutive zeros of the sine (sineH). RD

for Gaussian functions is 6000 s and 60 000 s, respectively.

Sine and triangular functions are defined such that the total

area under each curve was equal to the respective areas for

the Gaussian functions. In both cases, the sineH curve is the

least damped and the triangular thermal recharge is the most

damped, although the difference in F between the different

Table 5. Thermal transmission factors and retardation values of dif-

ferent recharge shape simulations.

Thermograph shape RD F τ

(s) (–) (s)

SineH 6000 0.34 3220

SineO 6000 0.33 3090

Gaussian 6000 0.32 2960

Triangle 6000 0.31 3090

SineH 60 000 0.66 10 900

SineO 60 000 0.65 10 100

Gaussian 60 000 0.65 9300

Triangle 60 000 0.62 6500

Other parameters different from values in Table 1: L= 5000 m

and V = 0.1 m s−1.

recharge functions is small. For the shorter thermal pulse,

the Gaussian pulse peaks first, and the triangle, sineO, and

sineH peaks occur approximately 4, 4, and 9 % later, respec-

tively, than the Gaussian thermal pulse. For the longer ther-

mal pulse, the triangle pulse peaks approximately 30 % ear-

lier than the Gaussian peak, and the sineO and sineH peaks

occur approximately 9 and 17 % later, respectively, than the

Gaussian peak. There is less damping and more retarda-

tion for thermographs that have a wider peak/trough near

the peak/trough, except for the triangle pulse with a RD =

6000 s. However, the triangle pulse is not continuously dif-

ferentiable, and numerical dispersion likely plays a role.

8 An example field experiment to test components of

the theory

Luhmann et al. (2012) conducted a multitracer experiment at

Freiheit Spring in southeastern Minnesota by filling a pool

next to a sinkhole, heating the pool water, adding tracers,
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dumping the pool water into the sinkhole, and then moni-

toring spring breakthrough curves of discharge, temperature,

chloride, uranine, delta deuterium, and suspended sediment.

The straight-line, horizontal and vertical distances from the

sinkhole to the spring are 95 and 19 m, respectively. 54 % of

the pool’s thermal energy was recovered over the first 2 h of

the trace, which was lower than either the dye (66 %) or salt

recoveries (78 %) over the same time period (Luhmann et al.,

2012). The dye recovery was lower than the salt recovery be-

cause of degradation, and the lower heat recovery occurred

because of the damping of the thermal signal, where some of

the heat was transferred into the rock surrounding the flow

path. However, the heat from the heated rock was later trans-

ferred to subsequent water that flowed along the flow path,

since water temperature at the spring remained higher than

its background after experiment water no longer reached the

spring. The flow path’s DH was estimated by reproducing

the damped, retarded thermal signal from the trace with heat

transport simulations. A much larger diameter was estimated

by summing discharge between hydraulic and chemical re-

sponses, dividing by flow path distance, and assuming a cir-

cular conduit, but the estimate using the thermal pulse was in

much better agreement with field observations.

We conducted a similar experiment at the same site 3 days

later. The pool was filled with approximately 12 600 L of wa-

ter for the later study. The pool water was heated to 21.5 ◦C,

and 33.02 kg of NaCl were added. Discharge, temperature,

electrical conductivity, and suspended sediment data were

collected at the spring as the pool water was emptied into the

sinkhole. This time, however, the pool was released as two

separate pulses. Breakthrough curves are shown in Fig. 6,

and all data but suspended sediment time series are pro-

vided in Luhmann (2011). Approximately the first half of

the 12 600 L of water was released beginning at 16:27 LT on

2 September 2010, and the rest of the pool was emptied into

the sinkhole beginning at 16:52 LT.

In general, spring breakthrough curves during this double

pulse tracer experiment displayed similar responses to the

single pulse tracer experiment 3 days earlier (see Luhmann

et al. (2012) for more discussion about the breakthrough

curves from the earlier experiment). Discharge at Freiheit

Spring increased shortly after each half of the pool was emp-

tied into the sinkhole, suggesting full pipe flow conditions.

Furthermore, the initial changes and peaks in suspended sed-

iment occurred before the initial changes and peaks in con-

ductivity. Finally, initial changes and peaks in temperature

occurred later than the initial changes and peaks in conduc-

tivity because of temperature’s non-conservative behavior.

Because these two field-scale experiments were conducted

at the same site 3 days apart, all parameters that control F

and τ except RD remained nearly constant. There was some

rainfall between the two experiments that caused more back-

ground variability in spring parameters before the second

study, but hydrodynamic conditions were very similar. Back-

ground spring discharges before the first and second traces

were 26.7 and 26.8 Ls−1, respectively. Additionally, it took

1082 s (Luhmann et al., 2012), 1066 s, and 1103 s between

the pool dump (or partial pool dump) and each respective

conductivity/chloride increase at the spring for the first trace,

the first pulse of the second trace, and the second pulse of

the second trace, respectively. Thus, flow-through time was

similar for all three pours, and there was little to no variabil-

ity in DH, L, and V between the two experiments. However,

RD was significantly changed from pour one during the first

trace (Luhmann et al., 2012) to pours one and two during the

second trace.

We did not collect any robust data at the sinkhole during

the pours to provide quantitative RD information. However,

the time span from the initial increase to the peak in electrical

conductivity/chloride at the spring provides a proxy for RD

during each pour. This took 625 s during the 30 August 2010

experiment (Luhmann et al., 2012) and 502 and 464 s for the

first and second pulses, respectively, of the 2 September 2010

experiment. Because τ is proportional to R0.5
D , the thermal

retardation in planar coordinates of the first or second pulse

of the second experiment, τpl,Ex2, is given by

τpl,Ex2 = τpl,Ex1

√
RD,Ex2√
RD,Ex1

, (53)

where τpl,Ex1 is the thermal retardation in planar coordinates

from the first experiment and RD,Ex1 and RD,Ex2 are the

recharge durations during single and double pulse experi-

ments, respectively. With τpl,Ex1 equal to 248 s (Luhmann

et al., 2012), the predicted τpl,Ex2 for the first and second

pulses of the second experiment would be 222 s and 214 s,

respectively. In reality, τpl,Ex2 was 224 s and 218 s for the

first and second pulses of the double pulse experiment, re-

spectively, providing field evidence that τ ∝R0.5
D .

Samples were not analyzed for chloride during the dou-

ble pulse tracer test. Thus, our uncertainty in calculating the

transmission factor from either pulse of the double pulse

tracer test is larger than our uncertainty from the single pulse

tracer test. Furthermore, spring water temperature and elec-

trical conductivity were less stable before the double pulse

study because of a recharge event that produced a mini-

mum in conductivity and a maximum in temperature less

than 1 day before the beginning of the experiment. Despite

these uncertainties, a similar analysis can be performed with

transmission using Eq. (36), as was done with retardation.

The transmission factor in planar coordinates of the first or

second pulse of the second experiment, Fpl,Ex2, is given by

Fpl,Ex2 = exp

(
lnFpl,Ex1

√
RD,Ex1√

RD,Ex2

)
, (54)

where Fpl,Ex1 is the transmission factor in planar coordinates

from the first experiment. With Fpl,Ex1 equal to 39 % (Luh-

mann et al., 2012), the predicted Fpl,Ex2 for the first and

second pulses of the second experiment would be 35 % and
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Figure 6. (a) Discharge, (b) suspended sediment, (c) electrical conductivity, and (d) temperature breakthrough curves at Freiheit Spring on

2 September 2010. Water was added to a pool at the edge of a sinkhole, and the water was heated to 21.5 ◦C as salt was added. The water

was emptied into the sinkhole, and breakthrough curves were monitored at Freiheit Spring approximately 95 m away.

33 %, respectively. By defining background temperature for

each peak as the water temperature before each respective in-

crease in temperature that led to each peak, Fpl,Ex2 was 36 %

and 34 % for the first and second pulses of the double pulse

experiment, respectively. The heat recovery during the first

2 h of the double pulse multitracer experiment (58 %) was

higher than the heat recovery over the first 2 h of the single

pulse injection (54 %) because of the elevated rock tempera-

tures from earlier water–rock heat exchange. This effect is ul-

timately responsible for the second pulse producing a higher

temperature peak than the first pulse during the double pulse

study, even though the second pulse produced a lower con-

ductivity peak with a shorter RD (Fig. 6). The heated rock

from the first pulse facilitated the propagation of a higher

temperature peak during the second pulse. Thus, while the

peak temperature from a later pulse is still useful, deriving

flow path information from the peak temperature of a later

pulse is more complicated than doing so using peak data from

an initial pulse that follows a relatively stable background.

The best simulated fit of the temperature breakthrough

curve from the single pulse tracer study occurred with

DH= 7 cm using a heat transport simulation in planar co-

ordinates (Luhmann et al., 2012). The average flow-through

time between the sinkhole and the spring from the initial in-

crease in discharge to the initial increase in electrical conduc-

tivity/chloride at the spring was 1075 s. Given the RD noted

above and the values of rock and water physical properties

provided in Table 1, then the best DH estimate is 8 cm using

τ data from this earlier study and Eq. (38). Similarly, the best

DH estimate is 5 cm using F data from this experiment and

Eq. (36).

After these multitracer experiments were conducted, a

caver used a track hoe to excavate the sinkhole used for

all injections and an abandoned steephead just southwest of

Freiheit Spring. Excavation of the sinkhole revealed a rela-

tively flat, weathered bedrock surface with a vertical solu-

tion conduit about 20 cm in diameter developed down a ver-

tical joint. The steephead indicates the location of a former

spring, which was present long enough for headward ero-

sion to develop the surface feature. The steephead excavation

uncovered an underground stream flowing across the back

of the steephead toward Freiheit Spring. Although a visual

dye trace documented that the steephead flow did emerge at

Freiheit Spring, we do not know for sure if water from the

multitracer experiments passed through the steephead feature

while flowing from the sinkhole to the spring. However, ex-

cavation at the steephead revealed a solutionally enlarged

bedding plane parting with a height on the order of cms, in

agreement with observations at the spring. For a very wide

flow channel, DH= 2h, where h is the height of the conduit.

Conduit height estimates using either the damping and retar-

dation relationships or the numerical simulations range from

2.5 to 4 cm, in agreement with field observations.
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9 Discussion

9.1 Information content of thermal damping and

retardation

Variations in water quantity and quality at karst springs are

often used to obtain information about the internal proper-

ties of a karst aquifer (e.g., Ashton, 1966; Atkinson, 1977b;

Sauter, 1992; Ryan and Meiman, 1996; Birk et al., 2004,

2014; Luhmann et al., 2011, 2012; Covington et al., 2012).

Specifically, Luhmann et al. (2012) showed that combining

breakthrough curves of temperature and conservative tracers

allows one to constrain values of flow path diameter. This

was achieved by adjusting conduit parameters within a nu-

merical transport simulation to obtain best fitting curves for

tracer breakthrough. Here, we illustrate an alternative ap-

proach that employs the analytical solution for a sinusoidal

recharge temperature. This solution provides a good approx-

imation to the damping and retardation of Gaussian tempera-

ture pulses simulated over a wide range of conduit properties

and recharge conditions. A single fitting parameter, Ctime,

was used to convert between the timescale of the sinusoidal

pulse and the timescale of the Gaussian pulse. The primary

advantage of this approach is that it is much easier to esti-

mate a hydraulic diameter from analytical equations that re-

late to damping or retardation than it is to use a numerical

model to try to find the best fitting breakthrough curve. Us-

ing the technique presented here, one can extract much of the

information available in the breakthrough curve using either

damping or retardation.

The analytical solution provides explicit relationships for

both the transmission (Eq. 36) and retardation (Eq. 38) of

a thermal peak as a function of conduit properties (L and

DH), flow velocity, V , recharge duration,RD, and quantities

that are related to the thermal properties of water and rock

(9 and αr). The thermal properties of water and rock are rel-

atively constant within a given aquifer, and even do not vary

that substantially among near-surface karst aquifers. While

an estimate of these parameters is needed to relate damp-

ing and retardation to conduit properties, once an estimate

is made we typically can treat these as constants for a given

site. The conduit length and velocity only occur in Eqs. (36)

and (38) as a ratio, L/V , which is equal to the flow-through

time, tft. Therefore, we can reduce these two parameters to

a single parameter that is also physically meaningful and

more easily measured in the field. This leaves three variables,

tft, RD, and DH, that relate to the damping and retardation

via two equations. Therefore, if both damping and retarda-

tion are measured at a field site, then we have two equations

and three unknowns. One might expect that only one of these

three unknowns would need to be constrained by additional

field data, and then the other two could be calculated from the

relations. However, the relations for damping and retardation

are not entirely linearly independent, and therefore contain

some duplicate information.

A Maclaurin series expansion of the exponential in

Eq. (36) shows that for low to moderate amounts of damp-

ing, the transmission factor, F , scales roughly as

(1−F)∝
tft

DHR0.5
D

. (55)

Regardless of the extent of damping, the retardation scales as

τ ∝
tftR0.5

D

DH

. (56)

Since tft and DH enter both relations in the same combina-

tion, one of these two variables must be constrained from

data in order to solve for the other variables. This conclu-

sion only holds for the low damping regime, but this is also

the regime in which damping or retardation could feasibly be

measured in the field.

These considerations about the independence of the damp-

ing and retardation equations are largely theoretical. In real-

world cases, both tft and RD are relatively easy to measure,

and it is more likely that both of these will be measured

and then used to make separate estimates of DH using both

the damping and retardation equations. If these duplicate es-

timates are substantially different from each other, then it

would suggest that some assumptions of the model are be-

ing broken or that one or more of the measurements was in

error.

Thermal damping and retardation are not affected by the

recharge amplitude (RA) or the thermal conductivity (kw) or

dynamic viscosity of water (µw). However, it may be impos-

sible to determine F and τ information ifRA is small. Thus,

recharge temperatures that are further from background tem-

peratures make it more practical to use water temperature as

a tracer to potentially provide flow path information.

9.2 Limitations of the model

A fairly large number of simplifying assumptions separate

the analytical solution presented above from a natural karst

conduit. Therefore, it is worth considering the likely effects

of these assumptions, and the extent to which the solution

will fail in different settings. Among the assumptions behind

the analytical solution are (1) a sinusoidal recharge temper-

ature, (2) a single conduit diameter, (3) no longitudinal dis-

persion, (4) constant discharge, (5) no hydraulic exchange

between the conduit and the matrix, and (6) rock and water

thermal properties that are constant throughout the system.

While seasonal temperature variations might be well rep-

resented by a sinusoidal solution, most temperature varia-

tions at karst springs come in the form of short peaks due

to recharge events. However, the numerical simulations pre-

sented above demonstrate that, with the help of a fitting pa-

rameter, the sinusoidal solution for damping and retardation

can be applied to a variety of single-peak functions, includ-

ing Gaussians, a triangle pulse, and sine peaks. This may not
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be the case for multipeak functions, particularly if the peaks

are more closely spaced than those of the sinusoidal function.

In that case, earlier peaks will likely influence the behavior

of later peaks.

The analytical solution allows estimation of a single con-

duit diameter, whereas karst conduits can display a substan-

tial variation in diameter along their length. Therefore, a key

question is how this estimated diameter is related to the phys-

ical conduit properties. The estimated diameter is the diam-

eter of an equivalent conduit that produces the same thermal

damping and retardation. It is possible to derive more than

one equivalent model, depending upon the constraints and

assumptions applied. However, for a seemingly reasonable

set of constraints, the effective diameter is the flow-through

time weighted harmonic mean of the hydraulic diameters of

the real conduit. To derive this equivalent model, it was as-

sumed that the thermograph timescale does not substantially

change as it passes through the system. For the two example

simulation sets, the equivalent diameter, so defined, produces

the same transmission and retardation as a multi-segment

conduit with different diameters (Sect. 7.3.1). This provides

some verification that the approach is reasonable, though the

approximation is likely to break down for cases where the

flow-through time is much longer than the pulse duration.

However, this is also the limit in which pulses will be sub-

stantially damped and difficult or impossible to observe.

Rather than consisting of a single flow path, natural karst

conduits typically contain a network of flow paths of various

sizes. Branchwork patterns are quite common, but a variety

of network topologies are possible. Physical interpretation

of thermal damping and retardation is most straightforward

when the system is dominated by a single flow path, such as

a sink–rise system. In this case, estimates of conduit diam-

eter apply to the primary conduit. However, a thermal trac-

ing experiment between an injection point and a spring, as

conducted by Luhmann et al. (2012), may also allow charac-

terization of a conduit diameter along the flow path between

those two points. It is less clear how to interpret natural tem-

perature pulses at a spring fed by a branchwork system, since

water arriving at the spring will have flowed via a large num-

ber of different paths of different lengths and diameters. In

such cases, network properties are likely to play a significant

role, and a better understanding of heat transport within net-

works is required.

The analytical solution also assumes that longitudinal dis-

persion can be neglected. While karst conduits tend to have

high Peclet numbers, and therefore to be advection domi-

nated, dispersion is certain to play a role for increasingly

short duration pulses. Therefore, care is needed when apply-

ing this solution to short injection pulses, particularly if they

propagate a substantial distance. However, the tracer pulses

described in Sect. 8 are relatively short, and still display the

scaling predicted by the theory. In that case, the flow path

was also short, which may minimize the influence of disper-

sion. In addition to longitudinal dispersion, immobile fluid

regions such as pools and eddies can substantially influence

tracer behavior (Field and Pinsky, 2000). Again, such effects

are likely to be largest for short-duration pulses.

The solution assumes constant discharge in time and with

distance along the conduit. In Sect. 7.3.2, we use simulations

to explore the effect of varying discharge in time. We find

that discharge variability has a relatively modest effect on

damping and retardation, and that the direction of the effect

is dependent upon the relative magnitude of the flow-through

time and recharge duration.

Our choice of velocity variation is only one of many ap-

proximations to natural flow variations, and variability in na-

ture is certainly more complex. While it is difficult to gener-

alize when the constant velocity assumption introduces large

errors, the analytical solutions can be used to provide some

constraints on the effect of the constant velocity simplifi-

cation. For example, consider flow through a karst conduit

where discharge is not constant, but zero for the first half of

the flow-through time and twice the average discharge value

for the second half. By comparing to an equivalent conduit

with constant discharge and the same water volume in the

pulse, the velocity and recharge duration in the non-constant

discharge conduit would be 2V andRD/2, respectively. If we

determine F , then the term in parenthesis in Eq. (36) would

be 1/
√

2 times what it would be with constant discharge.

Similarly, given τ , the term on the right side of Eq. (38)

would be 0.5/
√

2 times what it would be with constant dis-

charge. Therefore, the ratio L/(VDH) in Eqs. (36) and (38)

would be 1/
√

2 and 0.5/
√

2 times, respectively, of the actual

value. Given an estimate of flow-through time (L/V ), the

calculated conduit length would be 1/2 of the true value, and

the hydraulic diameter would be underestimated or overesti-

mated by a factor of
√

2 using either the damping or retarda-

tion relationships, respectively. Still, it is likely that discharge

variability will introduce too much uncertainty and limit the

applicability of the damping and retardation analytical solu-

tions in some field scenarios. However, the multitracer stud-

ies at Freiheit Spring suggest that the damping and retarda-

tion relationships may provide useful results even when there

are variations in velocity.

The analytical solution does not account for hydraulic ex-

change between the conduit and the matrix (or fractures or

other conduits). Flow from the conduit to the matrix will

affect heat flux in the matrix, and the changed heat flux in

the matrix would only have a small, indirect influence on the

water temperature in the conduit. In contrast, flow from the

matrix to the conduit would have a direct and significant ef-

fect on the water temperature in the conduit. However, in this

case, the thermal modification of the water is due to mixing

of two water sources with different temperatures or dilution

of the input rather than damping that occurs due to heat ex-

change between water and rock. The influence of dilution

on the transmission factor can be approximated using a sim-

ple mixing model, where the effects of dilution and heat ex-

change are assumed to be separable. The applicable bounds
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of this approximation are discussed for linear processes in

Covington et al. (2012, Eq. 31), who conclude that the sepa-

rated treatment of dilution and damping is a good approxima-

tion for cases where the signal is not severely damped. The

same conclusion applies when heat exchange can be treated

as approximately linear, which is also in the regime where

damping is not too severe. However, more work is needed to

quantify more precisely the conditions under which this sepa-

rable model breaks down. To account for dilution with a sim-

ple mixing model, the peak input temperature is first reduced

by the fraction that would be calculated from simple mix-

ing. Then the heat transport model is applied. For example,

during the multitracer study in Luhmann et al. (2012), the

injected pool water temperature (24.1 ◦C) produced a peak

water temperature at Freiheit Spring of 11.45 ◦C, above the

spring background temperature of 9.08 ◦C. Without account-

ing for dilution/mixing, transmission is incorrectly calculated

as 16 %. However, chloride concentration from the trace was

used to determine the extent of mixing, indicating that the

24.1 ◦C pool water temperature was reduced to a maximum

of 15.19 ◦C along the flow path due to mixing with water

from other sources. By accounting for this mixing, transmis-

sion is actually 39 %. Flow from the matrix to the conduit

would likely have a small effect on retardation in the conduit

that will ultimately depend on the spatial distribution of the

matrix input. Further simulations and field experiments could

better quantify the effects of dilution/mixing.

Finally, the thermal properties of rock and water are as-

sumed to be constant throughout the aquifer. While the ther-

mal properties of carbonate rocks within karst aquifers can

be somewhat variable (Beardsmore and Cull, 2001), uncer-

tainty can be reduced if measured thermal properties for spe-

cific formations of interest are available. However, there are

still some potential limitations. In particular, many karst con-

duits contain a substantial layer of sediments on the floor.

The heat transfer properties of such sediments are likely to

be more variable than that of the solid rock at the field site

of interest, and in some cases hyporheic exchange is likely to

play an important role.

9.3 Considerations for field studies

Determination of the damping and retardation of a thermal

peak requires high-resolution data for both temperature and

a conservative tracer in order to capture sharp features in the

data. In some cases, data output intervals may need to be

on the order of seconds to provide sufficient constraints on

the timing and magnitude of thermal peaks/troughs. Due to

memory or power limitations, data are not often collected

at such a high frequency. Consequently, deploying loggers

with the capacity to modify data output intervals based on

real-time monitoring, or with the capability to transfer data

remotely in real time, may be particularly useful.

Monitoring installations in karst frequently have equip-

ment to record water level, electrical conductivity, and tem-

perature. In general, water level data have little use in de-

termining retardation, since initial hydrograph perturbations

often record arrival of pre-event water. Even in the case of

open channel conduits, the discharge pulse, which travels as

a kinematic wave, will arrive before the event water. In con-

trast, spring electrical conductivity perturbations can record

event water arrival (e.g., Raeisi et al., 2007), and electrical

conductivity interacts more slowly with the rock surround-

ing a conduit than temperature (Birk et al., 2006; Covington

et al., 2012). Thus, in many cases, retardation may be esti-

mated as the time difference between the electrical conduc-

tivity and temperature peaks or troughs.

Determining the damping of a thermal peak requires an

estimate of recharge temperature, in addition to a thermo-

graph at the spring. In some cases, recharge temperature can

be monitored at an upstream monitoring location. If this is

not possible, recharge temperature may also be approximated

in some special cases, such as during a snowmelt event. Di-

lution can significantly modify recharge temperatures, and

therefore an estimate of dilution is needed for damping cal-

culations, for example by measuring flow at the recharge and

discharge points.

While it can be relatively easy to determine thermal retar-

dation using electrical conductivity and temperature data at

some monitoring location of interest, interpretation of ther-

mal damping and retardation is most easily accomplished

in systems that contain a sinking surface stream. The val-

ues of thermal damping and retardation can be estimated

during periods of relatively constant discharge between pre-

cipitation events. While flow-through time remains relatively

constant during these periods, oscillations in surface stream

recharge temperature will cause diurnal thermal oscillations

at a downstream monitoring location, so long as heat ex-

change along the conduit is sufficiently ineffective (Luh-

mann et al., 2011). Measuring discharge at both upstream and

downstream monitoring locations allows an estimate of the

degree of dilution that occurs along the flow path to facilitate

determination of F and constrain potential uncertainty in the

measurement of τ and F . Injection of a conservative tracer

permits estimates of flow-through time, and thus facilitates

calculation of τ when used in conjunction with the travel

time of diurnal thermal peaks or troughs from the upstream

to the downstream monitoring locations. Measurements of

damping and retardation in a sink–rise system are more dif-

ficult to obtain during natural recharge events, since temper-

ature and recharge rates may vary independently, and flow-

through time will also vary throughout the event. However,

simultaneous monitoring of conductivity and temperature at

the recharge and discharge points, particularly if combined

with recharge and discharge hydrographs, may still enable

measurement of damping and retardation in many settings.

In addition to sink–rise systems, interpretation of damp-

ing and retardation may be relatively straightforward during

tracer studies with a known recharge input. In this case, the

more heavily the system is perturbed, the easier it will be to

Hydrol. Earth Syst. Sci., 19, 137–157, 2015 www.hydrol-earth-syst-sci.net/19/137/2015/



A. J. Luhmann et al.: Thermal damping and retardation in karst conduits 153

interpret the results. In general, the ratio of conduit length to

the thermal length scale provided in Eq. (23) can be used to

estimate conditions where it would be possible to perform a

thermal tracer study and observe water temperature perturba-

tions at the outlet. This ratio is the thermal process number

(Covington et al., 2012), 3T,sin, and is given by

3T,sin =
L

λT,sin

=
4L

V9DH

√
παr

2CtimeRD

, (57)

where we use the same relation for ω as in Eq. (36). If

3T,sin . 1, then a thermal trace should change water tempera-

ture at the outlet, so long as estimates of variables in Eq. (57)

are appropriate. If3T,sin� 1, then thermal variations will be

completely damped, which still permits estimates of a thresh-

old or maximum conduit diameter (Birk et al., 2014). Re-

gardless of the outcome, thermal tracer studies will generally

provide useful results, while either confirming predictions or

exposing errors in parameter estimates.

If recharge can be monitored, then RD is given by the

full width at half maximum of the recharge thermograph

(Eq. 33). The actual shape of the pulse will ultimately be

a source of uncertainty. When recharge cannot be monitored,

a related timescale to the RD is given by the time from the

initial change to the peak/trough in a chemograph during

a recharge event, as we did in Sect. 8. If necessary, the time

from the initial change to the peak/trough in a thermograph

may be used, although the thermograph will not be as accu-

rate, since the pulse is modified.

Both thermal damping and retardation data can potentially

be used to estimate the hydraulic diameter of a karst conduit.

However, measurement of retardation, rather than damping,

has inherent advantages. There is better agreement in τ be-

tween analytical solutions and numerical simulations than

there is with F . This suggests that estimates ofDH may have

less uncertainty when using τ values. Furthermore, it is eas-

ier to determine τ in the field than F , since estimates of τ

only require temperature and electrical conductivity data at

the monitoring location of interest, whereas estimates of F

also require information about recharge into the system. Fi-

nally, damping requires an accounting of dilute inflow occur-

ring along the flow path.

10 Conclusions

As water flows through an aquifer, heat exchange occurs be-

tween water and rock if they are in thermal disequilibrium.

When thermal equilibrium is not attained, the water–rock in-

teraction produces a damped thermal signal in the water that

is retarded behind the actual groundwater velocity. Our an-

alytical derivations and numerical simulations demonstrate

that the damping (which is quantified using the thermal trans-

mission factor, F ) and retardation (τ ) of thermal peaks in

conduits or fractures depend on the flow path’s hydraulic

diameter (DH), flow-through time, and the timescale of the

temperature variation. Damping and retardation are also de-

pendent on the thermal conductivity, specific heat, and den-

sity of rock and the specific heat and density of water. How-

ever, these parameters vary relatively little within shallow

aquifers. Because of this, the relationships for damping and

retardation developed here may be used to estimate the hy-

draulic diameter of a flow path given estimates of the flow-

through time and the timescale of temperature variations. Our

tracer studies at Freiheit Spring provide some evidence for

the applicability of these relationships. Additional field work

is needed to test the usefulness of these relationships when

working with more complex flow paths found in nature.

Simulations with variable DH or velocity, open chan-

nels, and sine- or triangular-shaped thermograph shapes pro-

duce some variability in F and τ when compared to sim-

ulations with constant DH or velocity, full pipe flow, and

Gaussian-shaped thermographs. However, variability is gen-

erally small, and uncertainty from these conditions should

not prevent estimates of DH using F and τ . In general, es-

timates of DH from natural conduits with variable DH rep-

resent a flow-through time weighted harmonic mean of DH.

The effect of variable velocity on F and τ relationships is

more complex, and additional work is necessary to further

understand the effect of the shape and timing of different ve-

locity functions on spring thermographs. Finally, the differ-

ence in F and τ between conduits with or without free water

surfaces depends on the timescale of temperature variation,

but open channels will produce somewhat more damping and

retardation than conduits that are water filled.

Luhmann et al. (2012) conducted a field tracer experiment

that involved temperature, conductivity/chloride, and other

parameters. They were able to estimate a flow path’s DH us-

ing known recharge data, high-resolution output data, and

heat transport simulations that reproduced the damped, re-

tarded thermal signal that resulted from the trace. The de-

pendence of F and τ onDH derived here enables a new tech-

nique. Specifically, one may estimate the conduit diameter

using observations of only the damping and retardation of

thermal pulses from natural recharge events or tracer experi-

ments. There is likely more error in DH estimates using this

new technique. However, it allows extraction of much of the

information carried by the thermal pulses with the ease of

employing an analytical solution.
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Appendix A

Table A1. Notation.

Ad Pd/Wfs (unitless)

Aw Pw/Wfs (unitless)

cp,r Specific heat capacity of rock (Jkg−1 ◦C−1)

cp,w Specific heat capacity of water (Jkg−1 ◦C−1)

Ccyl Correction factor for damping in cylindrical coordinates (unitless)

Ctime Time conversion constant (unitless)

DH Conduit hydraulic diameter (m)

DH,avg Average conduit hydraulic diameter (m)

DH,e Effective conduit hydraulic diameter (m)

DH,i Conduit hydraulic diameter of segment i (m)

DL Longitudinal dispersivity (m2 s−1)

f Darcy–Weisbach friction factor (unitless)

F Thermal transmission factor (unitless)

Fcyl Thermal transmission factor in cylindrical coordinates (unitless)

Fi Thermal transmission factor of segment i (unitless)

Fpl,Ex1 Thermal transmission factor in planar coordinates during first pool trace experiment (unitless)

Fpl,Ex2 Thermal transmission factor in planar coordinates during second pool trace experiment (unitless)

Fplanar Thermal transmission factor in planar coordinates (unitless)

FT Total thermal transmission factor for multisegment conduit system (unitless)

h Conduit height (m)

hconv Water convection heat transfer coefficient (Wm−2 ◦C−1)

hrad Radiation heat transfer coefficient (Wm−2 ◦C−1)

H
(1)
i

Hankel functions of the first kind

kr Thermal conductivity of rock (Wm−1 ◦C−1)

kw Thermal conductivity of water (Wm−1 ◦C−1)

L Conduit length (m)

Le Effective conduit length (m)

Li Length of conduit segment i (m)

Nu Nusselt number (unitless)

Pd Conduit dry perimeter (m)

Pw Conduit wetted perimeter (m)

Pr Prandtl number (unitless)

r Radial distance from the conduit center into the surrounding rock (m)

R Conduit radius (m)

RA Recharge amplitude (◦C)

RD Recharge duration (s)

RD,Ex1 Recharge duration during first pool trace experiment (s)

RD,Ex2 Recharge duration during second pool trace experiment (s)

Re Reynolds number (unitless)

sineH Half period of a sine function between two consecutive zeros (unitless)

sineO One period of a sine function from one trough to the next (unitless)

t Time (s)

tft Fluid flow-through time through the conduit, L/V (s)

tft,i Fluid flow-through time through segment i, Li/Vi (s)

tpeak,in Time of temperature peak at conduit beginning (x = 0) (s)

tpeak,out Time of temperature peak at conduit end (x = L) (s)

Tr Rock temperature (◦C)

Tr,0 Initial rock temperature (◦C)

Tr,∞ Rock temperature at an infinite distance from conduit axis (◦C)

Tr,d Dry rock temperature (◦C)

Tr,w Wet rock temperature (◦C)

T ′r Tr− Tr,∞ (◦C)

Ts Conduit surface temperature (◦C)

Ts,d Dry conduit surface temperature (◦C or K)

Ts,w Wet conduit surface temperature (◦C)

Tw Water temperature (◦C or K)

Tw,in Water temperature at conduit beginning (x = 0) (◦C)

T ′
w,in

Tw,in− Tr,∞ (◦C)

Tw,out Water temperature at conduit end (x = L) (◦C)
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Table A1. Continued.

T ′w,out Tw,out− Tr,∞ (◦C)

Tw,peak,in Peak/trough water temperature at conduit beginning (x = 0) (◦C)

Tw,peak,out Peak/trough water temperature at conduit end (x = L) (◦C)

V Flow velocity in conduit (ms−1)

V0 Initial flow velocity in conduit (ms−1)

VA Flow velocity amplitude (ms−1)

Ve Equivalent flow velocity in conduit (ms−1)

Vi Flow velocity in conduit of segment i (ms−1)

V Average or reference flow velocity (ms−1)

Wfs Width of the water free surface (m)

x Longitudinal position along conduit (m)

y Distance from the conduit center into the surrounding rock (m)

αr Thermal diffusivity of rock (m2 s−1)

ε Roughness height (m)

2 Conduction and advection time ratio (unitless)

λT,sin Thermal length scale for sinusoidal temperature variations (m)

3T,sin Thermal process number (unitless)

µw Dynamic viscosity of water (kgm−1 s−1)

ρr Density of rock (kgm−3)

ρw Density of water (kgm−3)

σ Width of thermal Gaussian pulse (s)

σSB Stefan–Boltzmann constant (Wm−2 K−4)

τ Retardation of thermal peak/trough (s)

τi Retardation of thermal peak/trough for segment i (s)

τpl,Ex1 Retardation of thermal peak in planar coordinates during first pool trace experiment (s)

τpl,Ex2 Retardation of thermal peak in planar coordinates during second pool trace experiment (s)

τplanar Retardation of thermal peak/trough in planar coordinates (s)

τT Total retardation of thermal peak/trough for multisegment conduit system (s)

9 ρwcp,w/(ρrcp,r) (unitless)

ω Angular frequency
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