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Abstract. For streamflow forecasting, rainfall–runoff mod-

els are often augmented with updating procedures that cor-

rect forecasts based on the latest available streamflow ob-

servations of streamflow. A popular approach for updating

forecasts is autoregressive (AR) models, which exploit the

“memory” in hydrological model simulation errors. AR mod-

els may be applied to raw errors directly or to normalised er-

rors. In this study, we demonstrate that AR models applied

in either way can sometimes cause over-correction of fore-

casts. In using an AR model applied to raw errors, the over-

correction usually occurs when streamflow is rapidly reced-

ing. In applying an AR model to normalised errors, the over-

correction usually occurs when streamflow is rapidly rising.

In addition, when parameters of a hydrological model and

an AR model are estimated jointly, the AR model applied to

normalised errors sometimes degrades the stand-alone per-

formance of the base hydrological model. This is not desir-

able for forecasting applications, as forecasts should rely as

much as possible on the base hydrological model, with up-

dating only used to correct minor errors. To overcome the ad-

verse effects of the conventional AR models, a restricted AR

model applied to normalised errors is introduced. We show

that the new model reduces over-correction and improves the

performance of the base hydrological model considerably.

1 Introduction

Rainfall–runoff models are widely used to generate stream-

flow forecasts, which provide essential information for flood

warning and water resource management. For streamflow

forecasting, rainfall–runoff models are often augmented by

updating procedures that correct streamflow forecasts based

on the latest available observations of streamflow and their

departures from model simulations. Model errors reflect lim-

itations of the hydrological models in reproducing physical

processes as well as inaccuracies in data used to force and

evaluate the models.

The most popular updating approach uses autoregressive

(AR) models, which exploit the “memory” – more precisely

the autocorrelation structure – of errors in hydrological sim-

ulations (Morawietz et al., 2011). Essentially, AR updating

uses a linear function of the known errors at previous time

steps to anticipate errors in a forecast period. Forecasts are

then updated according to these anticipated errors. AR up-

dating is conceptually simple and yet generally leads to sig-

nificantly improved forecasts (World Meteorological Orga-

nization, 1992). AR updating has been shown to provide

equivalent performance to more sophisticated non-linear and

non-parametric updating procedures (Xiong and O’Connor,

2002).

In rainfall–runoff modelling, model errors are generally

heteroscedastic (i.e. they have heterogeneous variance over

time) (Xu, 2001; Kavetski et al., 2003; Pianosi and Raso,

2012) and non-Gaussian (Bates and Campbell, 2001; Schae-

fli et al., 2007; Shrestha and Solomatine, 2008). In many

applications (Seo et al., 2006; Bates and Campbell, 2001;

Salamon and Feyen, 2010; Morawietz et al., 2011), AR

models are applied to normalised errors that are consid-

ered homoscedastic and Gaussian. Normalisation is often

achieved through variable transformation by using, for exam-

ple, the Box–Cox transformation (Thyer et al., 2002; Bates

and Campbell, 2001; Engeland et al., 2010) or, more recently,

the log-sinh transformation (Wang et al., 2012; Del Giudice
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et al., 2013). In other applications (Schoups and Vrugt, 2010;

Schaefli et al., 2007), AR models are applied directly to raw

errors, but residual errors of the AR models may be explicitly

specified as heteroscedastic and non-Gaussian.

There is no agreement on whether it is better to apply

an AR model to normalised or raw errors. Recent work by

Evin et al. (2013) found that an AR model applied to raw

errors may lead to poor performance with exaggerated un-

certainty. They demonstrated that such instability can be

mitigated by applying an AR model to standardised errors

(raw errors divided by standard deviations). Here, standard-

isation has a similar effect to normalisation in that it ho-

mogenises the variance of the errors (but does not consider

the non-Gaussian distribution of errors). Conversely, Schae-

fli et al. (2007) pointed out that when an AR model is jointly

estimated with a hydrological model, there is a clear advan-

tage in applying an AR model to raw errors rather than nor-

malised (or standardised) errors. Schaefli et al. (2007) found

that using raw errors leads to more reliable parameter infer-

ence and uncertainty estimation, because the mean error is

close to zero and therefore the simulations are free of sys-

tematic bias. The same is not necessarily true when applying

an AR model to normalised errors.

In this study, we evaluate AR models applied to both

raw and normalised errors in four Australian catchments and

three United States (US) catchments. We show that when

estimated jointly with a hydrological model, the AR model

applied to normalised errors sometimes degrades the stand-

alone performance of the base hydrological model. We also

identify the fact that both of these conventional AR models

can sometimes cause over-correction of forecasts. We intro-

duce a restricted AR model applied to normalised errors and

demonstrate its effectiveness in overcoming the adverse ef-

fects of the conventional AR models.

2 Autoregressive error models

2.1 Formulations

A hydrological model is a function of forcing variables (pre-

cipitation and potential evapotranspiration), initial catchment

state, S0, and a set of hydrological model parameters, θH. We

denote the observed streamflow and model simulated stream-

flow at time t by Qt and Q̃t , respectively. An error model is

used to describe the difference between Qt and Q̃t . The log-

sinh transformation defined by Wang et al. (2012),

f (x)= b−1 log{sinh(a+ bx)}, (1)

is applied to stabilise variance and normalise data.

In this study, we firstly examine two first-order AR error

models:

1. An AR error model applied to normalised errors (re-

ferred to as AR-Norm) defined by

Zt = Z̃t + ρ
(
Zt−1− Z̃t−1

)
+ εt , (2)

where Zt and Z̃t are the log-sinh transformed variables

of Qt and Q̃t .

2. An AR error model applied to raw errors (referred to as

AR-Raw) defined by

Zt = f
{
Q̃t + ρ

(
Qt−1− Q̃t−1

)}
+ εt . (3)

For both models, ρ is the lag-1 autoregression param-

eter, and εt is an identically and independently dis-

tributed Gaussian deviate with a mean of zero and a

constant standard deviation σ .

Both the AR-Norm and AR-Raw models represent the lag-

1 autocorrelation by an AR process and both employ the log-

sinh transformation. However, the way the log-sinh transfor-

mation is applied differs between the two models. The AR-

Norm model first applies the log-sinh transformation to the

observed and model simulated streamflow, and then assumes

that the error in the transformed space follows an AR(1) pro-

cess. In contrast, the AR-Raw model essentially assumes that

the error in the original space follows an AR(1) process and

only applies the log-sinh transformation to fit the asymmetric

and non-Gaussian error distribution.

The medians of the updated streamflow forecast (referred

to as updated streamflow) for the AR-Norm and AR-Raw

models (see Appendix A for proof), denoted by Q̃∗t , are re-

spectively

Q̃∗t = f
−1
{
Z̃t + ρ

(
Zt−1− Z̃t−1

)}
, (4)

and

Q̃∗t = Q̃t + ρ
(
Qt−1− Q̃t−1

)
, (5)

where f−1(x) is the inverse of the log-sinh transformation

(or back-transformation). The magnitude of the error update

by the AR-Raw model, Q̃∗t − Q̃t , is dependent only on the

difference between Qt−1 and Q̃t−1. In contrast, the magni-

tude of the error update by the AR-Norm model is dependent

not only on the difference between Qt−1 and Q̃t−1, but also

on Q̃t . Put differently, the AR-Norm model uses errors calcu-

lated in the transformed domain, and this means that the error

in the original domain can be amplified (or reduced) by the

back-transformation (Eq. 4). The AR-Raw model uses errors

calculated in the original domain and no back-transformation

is used in calculating Q̃∗t (Eq. 5), meaning that the error in

the original domain cannot be amplified (or reduced). In Ap-

pendix B, we show that the AR-Norm model gives greater

error updates for larger values of Q̃t .

We will demonstrate in Sect. 4 that the AR-Norm and

AR-Raw models can sometimes cause over-correction of
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forecasts. Motivated to overcome the potential for over-

correction, we introduce a modification of the AR-Norm

model, called the restricted AR-Norm model (referred to

as RAR-Norm). A condition |Q̃∗t − Q̃t | ≤ |Qt−1− Q̃t−1| is

used to limit the correction to an amount not exceeding the

raw error at the last time step. The updated streamflow is

given by

Q̃∗t =

{
f−1

{
Z̃t + ρ

(
Zt−1− Z̃t−1

)}
if Dt ≤

∣∣Qt−1− Q̃t−1

∣∣
Q̃t +

(
Qt−1− Q̃t−1

)
otherwise

(6)

where

Dt =

∣∣∣f−1
{
Z̃t + ρ

(
Zt−1− Z̃t−1

)}
− Q̃t

∣∣∣ . (7)

The full RAR-Norm model in the transformed space is given

by

Zt =

{
Z̃t + ρ

(
Zt−1− Z̃t−1

)
+ εt if Dt ≤

∣∣Qt−1− Q̃t−1

∣∣
f
(
Q̃t +Qt−1− Q̃t−1

)
+ εt otherwise

. (8)

2.2 Estimation

The AR-Norm, AR-Raw and RAR-Norm models are each

calibrated jointly with the hydrological model. The method

of maximum likelihood is used to estimate the error model

parameters θE and the hydrological model parameters θH.

Using a similar derivation as given by Li et al. (2013), the

likelihood functions can be written as

a. for AR-Norm

L(θE,θH)=
∏
t

P
(
Qt |Q̃t ,Q̃t−1;θE,θH

)
=

∏
t

JZt→Qt φ
(
Zt |Z̃t + ρ

(
Zt−1− Z̃t−1

)
,σ 2

)
, (9)

b. for AR-Raw

L(θE,θH)=
∏
t

P
(
Qt |Q̃t ,Q̃t−1;θE,θH

)
=

∏
t

JZt→Qt φ
(
Zt |f

{
Q̃t + ρ

(
Qt−1 − Q̃t−1

)}
σ2
)
, (10)

c. for RAR-Norm

L(θE,θH)=
∏
t

P
(
Qt |Q̃t ,Q̃t−1;θE,θH

)
=

∏
t :Dt≤|Qt−1−Q̃t−1|

JZt→Qtφ
(
Zt |Z̃t + ρ

(
Zt−1− Z̃t−1

)
,σ 2

)
+

∏
t :Dt>|Qt−1−Q̃t−1|

JZt→Qtφ
(
Zt |f

{
Q̃t + ρ

(
Qt−1− Q̃t−1

)}
,

σ 2
)
, (11)

where JZt→Qt ={tanh(a+ bQt )}
−1 is the Jacobian determi-

nant of the log-sinh transformation and φ(x|µ, σ 2) is the

probability density function of a Gaussian random variable x

with mean µ and standard deviation σ . The probability den-

sity function is replaced by the cumulative probability func-

tion when evaluating events of zero flow occurrences (Wang

and Robertson, 2011; Li et al., 2013). The shuffled complex

evolution (SCE) algorithm (Duan et al., 1994) is used to min-

imise the log likelihood.

3 Data

We use daily data from four Australian catchments and three

catchments from the US (Fig. 1, Table 1). Australian stream-

flow data are taken from the Catchment Water Yield Estima-

tion Tool (CWYET) data set (Vaze et al., 2011). Australian

rainfall and potential evaporation data are derived from the

Australian Water Availability Project (AWAP) data set (Jones

et al., 2009). All data for the US catchments come from

the Model Intercomparison Experiment (MOPEX) data set

(Duan et al., 2006). The selected US catchments are amongst

the 12 catchments used by Evin et al. (2014) to compare

joint and postprocessor approaches to estimating hydrolog-

ical uncertainty, and allow us to compare results with that

study (the other catchments used by Evin et al. (2014) are

influenced by snowmelt, which is not considered in the hy-

drological model used in this study). The Abercrombie River

and the Guadalupe River intermittently experience periods of

very low (to zero) flow, while the other rivers flow perenni-

ally (Table 1). Such dry catchments are challenging for hy-

drological simulations and error modelling. All catchments

have high-quality streamflow records with very few missing

data.

We forecast daily streamflow with the GR4J rainfall–

runoff model (Perrin et al., 2003). We apply updating proce-

dures to correct these forecasts. All results presented in this

paper are based on cross-validation to ensure the results can

be generalised to independent data. We use different cross-

validation schemes for the Australian and US catchments,

because of the shorter streamflow records available for the

Australian catchments:

1. For the Australian catchments, we use data from 1992

to 2005 (14 years) for these catchments. We then gen-

erate 14-fold cross-validated streamflow forecasts. The

data from 1990 to 1991 are only used to warm up the

GR4J model. For a given year, we leave out the data

from that year and the following year when estimat-

ing the parameters of GR4J and error models. For ex-

ample, if we wish to forecast streamflows at any point

in 1999, we leave out data from 1999 and 2000 when

we estimate parameters. The removal of data from the

following year (2000) is designed to minimise the im-

pact of hydrological memory on model parameter esti-

mation. We then generate streamflow forecasts in that
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Figure 1. Map of US (top panel) and Australian (bottom panel) catchments.

year (1999) with model parameters estimated from the

remaining data.

2. For the US catchments we follow the split-sampling

validation scheme suggested by Evin et al. (2014) to

make our results comparable to that study: (1) an 8 year

calibration (9 September 1973–26 November 1981)

(i.e. 3000 days) with an 8 year warm-up period and (2) a

17 year validation (27 November 1981–1 May 1998)

(i.e. 6000 days) with an 8 year warm-up period.

To demonstrate the problems of over-correction of errors in

updating and poor stand-alone performance of the base hy-

drological model, we consider only streamflow forecasts for

one time step ahead. We will consider longer lead times in

future work. Forecasts are generated using observed rainfall

(i.e. a “perfect” rainfall forecast) as input. In streamflow fore-

casting, forecasts may be generated from rainfall information

Hydrol. Earth Syst. Sci., 19, 1–15, 2015 www.hydrol-earth-syst-sci.net/19/1/2015/
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Table 1. Catchment characteristics.

Name Country Gauge site Area Rainfall Streamflow Runoff Zero

(km2) (mm yr−1) (mm yr−1) coefficient flows

Abercrombie Aus Abercrombie River 1447 783 63 0.08 14.4 %

at Hadley no. 2

Mitta Mitta Aus Mitta Mitta River at 1527 1283 261 0.20 0

Hinnomunjie

Orara Aus Orara River at 1868 1176 243 0.21 0.6 %

Bawden Bridge

Tarwin Aus Tarwin River at 1066 1042 202 0.19 0

Aus Meeniyan

Amite US 07378500 3315 1575 554 0.35 0

Guadalupe US 08167500 3406 772 104 0.13 1.7 %

San Marcos US 08172000 2170 844 165 0.20 0 %

that comes from a different source (e.g. a numerical weather

prediction model). Our study is aimed at streamflow fore-

casting applications, so we preserve the distinction between

observed and forecast forcings by referring to streamflows

modelled with observed rainfall as simulations and those

modelled with forecast rainfall as forecasts. In this study the

forecast rainfall is observed rainfall, so the terms forecast and

simulation are interchangeable.

4 Results

4.1 Over-correction of forecasts as the hydrograph

rises

The first adverse effect of the conventional AR models is

over-correction of errors in updating as streamflows are ris-

ing. By over-correction, we mean that the AR model up-

dates the hydrological model simulations too much. Over-

correction is difficult to define precisely; however, we will

demonstrate the concept with two examples in the Mitta

Mitta catchment: the first example illustrates over-correction

by the AR-Norm model, and the second example illustrates

over-correction by the AR-Raw model.

To illustrate the problem of over-correction caused by the

AR-Norm model, Fig. 2 presents a 1 week time series for

the Mitta Mitta catchment, showing streamflow forecasts

with GR4J before error updating (referred to as streamflow

forecast with the base hydrological model) and after error

updating. Figure 2 shows that the base hydrological mod-

els consistently under-estimate the streamflow from 23 to

25 September 2000, and the corresponding updating proce-

dures successfully identify the need to compensate for this

under-estimation. For the AR-Norm model, however, the cor-

rection for 26 September 2000 is unreasonably large. Be-

cause the forecast streamflow on 26 September 2000 is much

Figure 2. An example of over-correction caused by the AR-Norm

model in the Mitta Mitta catchment. Dashed lines: forecasts from

the base hydrological model (i.e. without error updating). Solid

lines: forecasts with error updating.

higher than that of the previous day, the correction is greatly

amplified by the back-transformation, leading to the over-

correction. In contrast, the AR-Raw model works better in

this situation because the magnitude of the error update never

exceeds the simulation error on the previous day, regardless

of whether the forecast streamflow is high or low. The RAR-

Norm model behaves similarly to the AR-Raw model for cor-

recting the peak on 26 September 2000 and avoids the over-

correction made by the AR-Norm model.

Figure 3 shows instances of possible over-correction

by the AR-Norm model, identified by the condition

www.hydrol-earth-syst-sci.net/19/1/2015/ Hydrol. Earth Syst. Sci., 19, 1–15, 2015
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Figure 3. The fraction of instances whereDt >
∣∣Qt−1 − Q̃t−1

∣∣ (i.e. instances where over-correction may occur in the AR-Norm model and

where error updating is restricted in the RAR-Norm model) for the AR-Norm and RAR-Norm models for Australian catchments.

Dt > |Qt−1− Q̃t−1|. Figure 3 shows that about 10–25 % of

the AR-Norm updated forecasts have an error update that

is larger than the forecast error on the previous day and

therefore are susceptible to over-correction. The frequency

of these instances varies somewhat from catchment to catch-

ment. The RAR-Norm model identifies 10–30 % of the fore-

casts as possible instances of problematic updating, and the

AR-Norm model identifies a similar number of instances

(slightly fewer – they are not identical because the param-

eters for each model are inferred independently).

Figure 4 presents a time series for the Orara catchment

that shows the instances susceptible to over-correction for the

AR-Norm model. These instances all occur when the stream-

flow rises. The RAR-Norm model effectively rectifies the

problem of over-correction caused by the AR-Norm model.

We note that there is nothing that forces the instances suscep-

tible to over-correction identified by the AR-Norm model to

be the same as those identified by the RAR-Norm models,

because the two models are calibrated independently (and

therefore base hydrological model simulations may be dif-

ferent). However, the restriction defined in the RAR-Norm

model is largely applied to the instances where the AR-Norm

model is susceptible to over-correction.

4.2 Over-correction of forecasts as the hydrograph

recedes

The second adverse effect of conventional AR models is

over-correction of forecasts as streamflows recede. An exam-

ple is presented in Fig. 5 where the AR-Raw model causes

over-correction. Here, the base hydrological model over-

estimates the receding hydrograph on 5 October 1993. The

magnitude of the error update given by the AR-Raw model

cannot adjust according to the value of the forecast. As a

result, the AR-Raw model updates the forecast on 6 Oc-

tober 1993 by a large amount, resulting in serious under-

estimation (the forecast streamflow is nearly zero), and an

artificial distortion of the hydrograph. (We note that we have

seen this problem become much worse in unpublished ex-

periments of forecasts made for several time steps into the

future, sometimes resulting in forecasts of zero flows dur-

ing large floods.) In contrast, the AR-Norm model performs

better in this example, giving a smaller magnitude of error

update by recognising that the hydrograph is moving down-

ward. It is generally true that in applying the AR-Raw model,

over-correction may occur when the streamflow is receding.

The RAR-Norm model produces updated streamflow sim-

ilar to the AR-Norm model when the hydrograph recedes

rapidly and avoids the over-correction by the AR-Raw model

on 6 October 1993.

Figure 6 provides more examples of the over-correction

caused by the AR-Raw model from a longer time-series plot

for the Abercrombie catchment. There are three clear in-

stances of over-correction, all occurring on the time step

immediately after large peaks in observed streamflows. The

RAR-Norm model works better than the AR-Raw model to

avoid the three instances of over-correction for the Aber-

crombie catchment. Overall, the RAR-Norm model takes a

conservative position when streamflow changes rapidly, ei-

ther rising or falling. When streamflow changes rapidly, it

is difficult to anticipate the magnitude of forecast error. Ac-

cordingly, the conventional AR models are prone to over-

correction in such instances.
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Figure 4. Forecast streamflows for the Orara catchment for an ex-

ample 1 year period. The top panel shows streamflows forecast with

the AR-Norm model; the bottom panel shows streamflows forecast

with the RAR-Norm model. Dashed lines: forecasts from the base

hydrological model (i.e. without error updating). Solid lines: fore-

casts with error updating. Tick marks on the x axis denote the in-

stance of updating where Dt >
∣∣Qt−1 − Q̃t−1

∣∣.
4.3 Poor stand-alone performance of the base

hydrological model

The third adverse effect with conventional AR error mod-

els is the stand-alone performance of the base hydrologi-

cal model (GR4J). As noted above, the parameters of the

base hydrological model are estimated jointly with each er-

ror model. For streamflow forecasting, we expect to obtain

a reasonably accurate forecast from the base hydrological

model followed by an updating procedure as an auxiliary

means of improving the forecast accuracy. At lead times of

many time steps (e.g. streamflow forecasts generated from

medium-range rainfall forecasts) the magnitude of AR error

updates becomes rapidly smaller (tending to zero), and thus

the performance of the base hydrological model is crucial for

realistic forecasts at longer lead times. While we only inves-

Figure 5. An example of over-correction caused by the AR-Raw

model in the Mitta Mitta catchment. Dashed lines: forecasts from

the base hydrological model (i.e. without error updating). Solid

lines: forecasts with error updating.

tigate forecasts at a lead time of one time step in this study,

we aim to develop methods that can be applied to forecasts

at longer lead times. Furthermore, if the base hydrological

model does not replicate important catchment processes re-

alistically, the performance of the hydrological model outside

the calibration period may be less robust.

Figure 7 presents the Nash–Sutcliffe efficiency (NSE)

(Nash and Sutcliffe, 1970) calculated from the base hydro-

logical model and the error models. When the AR-Norm

model is used, the forecasts from the base hydrological

model are very poor for the Orara catchment (NSE< 0). The

scatter plot in Fig. 8 shows a serious over-estimation of the

streamflow simulation for the Orara catchment. When the

AR-Norm model is used, the base hydrological model greatly

over-estimates discharge, and the AR-Norm model then at-

tempts to correct this systematic over-estimation. This is also

shown in Fig. 4, where the base hydrological model has a

strong tendency to over-estimate streamflows for a range of

streamflow magnitudes. The base hydrological model with

the AR-Norm model also performs poorly for the Aber-

crombie catchment (Fig. 7). In this case, the base hydrolog-

ical model tends to under-estimate streamflows (results not

shown). For the other three catchments, however, the base

hydrological model with the AR-Norm model performs rea-

sonably well.

In general, the AR-Raw base hydrological model performs

as well as or better than the AR-Norm base hydrological

model. The AR-Raw base hydrological model is notably bet-

ter than the AR-Norm base hydrological model in the Aber-

crombie and Orara catchments (Fig. 7). This suggests that

www.hydrol-earth-syst-sci.net/19/1/2015/ Hydrol. Earth Syst. Sci., 19, 1–15, 2015
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Figure 6. Forecast streamflows for the Abercrombie catchment for the period between 1 Augst 1997 and 15 September 1997. The top panel

shows streamflows forecast with the AR-Raw model; the bottom panel shows streamflows forecast with the RAR-Norm model. Dashed lines:

forecasts from the base hydrological model (i.e. without error updating). Solid lines: forecasts with error updating. Grey shading denotes

instances of over-correction caused by the AR-Raw model.

Figure 7. NSE of streamflows forecast with the AR-Norm, AR-Raw and RAR-Norm models (colours). Performance of the corresponding

base hydrological models is shown by hatched blocks.

more robust performance can be expected of base hydrolog-

ical models when AR models are applied to raw errors.

The RAR-Norm model generally improves the perfor-

mance of the AR-Norm base hydrological model to a level

similar to the AR-Raw base hydrological model (Fig. 7). The

improvement over the AR-Norm base hydrological model is

especially evident for the Orara (Figs. 4 and 7) and Aber-

crombie catchments (Fig. 7).

We note that for the AR-Norm models, the updated fore-

casts are not always better than forecasts generated by the

base hydrological models. For the Tarwin and Guadalupe

catchments, AR-Norm forecasts are not as good as the fore-

casts generated by the AR-Norm base hydrological model.
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Table 2. Comparison of the NSE calculated at (a) the receding limb and (b) the rising limb of the hydrograph for three different error models.

(a) Q̃t ≤ Q̃t−1 (b) Q̃t >Q̃t−1

Proportion AR- AR- RAR- Proportion AR- AR- RAR-

of flows Norm Raw Norm of flows Norm Raw Norm

Abercrombie 82 % 0.11 −0.41 0.52 19 % 0.58 0.66 0.65

Mitta Mitta 82 % 0.95 0.91 0.95 18 % 0.81 0.86 0.86

Orara 85 % 0.94 0.91 0.95 15 % 0.86 0.86 0.83

Tarwin 71 % 0.90 0.91 0.90 29 % 0.18 0.77 0.76

Amite 69 % 0.76 0.82 0.84 31 % 0.82 0.82 0.85

Guadalupe 83 % 0.75 0.35 0.77 15 % 0.24 0.55 0.45

San Marcos 82 % 0.80 0.66 0.80 17 % 0.63 0.64 0.64

Figure 8. Comparison of the observed streamflows (Qt ) and fore-

cast streamflows (Q̃t ), as forecast: (1) with the base hydrological

model (circles); and (2) with the base hydrological model and error

updating models (dots) for the Orara catchment.

This points to a tendency to overfit the parameters to the

calibration period, resulting in the error model undermin-

ing the performance of the base hydrological model under

cross-validation. Such a lack of robustness is highly undesir-

able in forecasting applications, where the hydrological mod-

els should be able to operate in conditions that differ from

those experienced during calibration. Note that this problem

also occurs in the RAR-Norm model (Guadalupe) and in the

AR-Raw model (Abercrombie, Guadalupe), but to a much

smaller degree.

In general, the updated forecasts from the RAR-Norm

model show similar or better forecast accuracy, as measured

by NSE, than both the AR-Raw model and the AR-Norm

model (Fig. 7). We note that the Orara catchment is an ex-

ception: here the AR-Raw model shows slightly better per-

formance than the RAR-Norm model. Conversely, the RAR-

Norm model shows notably better performance than both

the AR-Norm and AR-Raw models in the Abercrombie and

Guadalupe catchments. This suggests the RAR-Norm model

may work better in intermittently flowing catchments, al-

though further testing is required to establish that this is true

for a greater range of catchments.

4.4 Further analyses

We further evaluate the NSE of the three different er-

ror models calibrated when streamflows are receding

(i.e. Q̃t ≤ Q̃t−1) and rising (i.e. Q̃t >Q̃t−1) (Table 2). For

the receding streamflows (constituting 70–85 % of stream-

flows), the AR-Raw model leads to the overall worst fore-

cast accuracy because of the over-correction explained in

Sect. 4.1. This is especially evident for the Abercrombie

catchment (and, to a lesser degree, the Guadalupe catch-

ment). The RAR-Norm model significantly outperforms the

other two models for the Abercrombie catchment and shares

similar forecast accuracy to the (strongly performing) AR-

Norm model for the other catchments. When streamflows are

rising (which also includes streamflow peaks), the AR-Norm

model can cause over-correction and leads to the least accu-

rate forecasts (in terms of NSE), and the RAR-Norm model

behaves similarly to the AR-Raw model, which consistently

provides the most accurate forecasts. (The only exception is

the Guadalupe River, where the AR-Raw model clearly out-

performs the RAR-Norm model when streamflows are rising.

This is somewhat compensated for by the markedly better

performance the RAR-Norm model offers over the AR-Raw

model when streamflows are receding for this catchment,

leading to better forecasts overall (Fig. 7).) We conclude that

the AR-Norm model generally tends to perform least well

when streamflows recede, and that the AR-Raw model tends

to perform least well when streamflows rise. We also con-

clude that the RAR-Norm model tends to combine the best

elements of the AR-Norm and AR-Raw models, leading to

the best overall performance.
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Figure 9. PIT uniform probability plots. Curves on the diagonal indicate perfectly reliable forecasts.

We have shown that over-corrections can lead to inaccu-

rate deterministic forecasts, and we now discuss the conse-

quences for the probabilistic predictions given by each of

the error models. We assess probabilistic forecast skill with

skill scores derived from two probabilistic verification mea-

sures: the continuous rank probability score (CRPS) and the

root mean square error in probability (RMSEP) (denoted by

CRPS_SS and RMSEP_SS, respectively) (Wang and Robert-

son, 2011). Both skill scores are calculated with respect to a

reference forecast. The reference forecast is generated by re-

sampling historical streamflows: for a forecast issued for a

given month/year (e.g. February 1999), we randomly draw a

sample of 1000 daily streamflows that occurred in that month

(e.g. February) from other years with replacement (e.g. years

other than 1999). Table 3 compares these two skill scores

calculated for the all catchments. The RAR-Norm model per-

forms best across the range of skill scores and catchments, at-

taining the highest CRPS_SS in 4 of the 7 catchments and the

highest RMSEP_SS in 4 of 7 catchments. Even where RAR-

Norm was not the best performed model, it performs very

similarly to the best performing model in all cases. Interest-

ingly, the AR-Raw model tends to outperform the AR-Norm

model in CRPS_SS while the reverse is true for RMSEP_SS.

The CRPS tests how appropriate the spread of uncertainty

is for each probabilistic forecast, while RMSEP puts little

weight on this. The results suggest that while the median

forecasts of AR-Norm tends to be slightly more accurate than

those of the AR-Raw model, the forecast uncertainty is rep-

resented slightly better by the AR-Raw model.

To understand better how reliably the forecast uncertainty

is quantified by each model, we produce probability integral

transform (PIT) uniform probability plots (Wang and Robert-

son, 2011) in Fig. 9. There are two main points to draw from

these plots. First, the curves are very similar for all error

Table 3. Comparison of the skill scores based on CRPS and RMSEP

(denoted by CRPS_SS and RMSEP_SS) for three different error

models.

CRPS_SS (%) RMSEP_SS (%)

AR- AR- RAR- AR- AR- RAR-

Norm Raw Norm Norm Raw Norm

Abercrombie 64.1 62.3 66.3 75.1 73.7 74.7

Mitta Mitta 80.3 79.7 80.7 84.1 83.2 84.0

Orara 74.0 75.7 75.5 81.7 80.7 81.4

Tarwin 74.9 79.3 78.8 86.1 85.1 86.1

Amite 67.5 68.3 69.5 71.0 70.9 71.2

Guadalupe 57.4 60.9 59.8 76.3 75.2 77.2

San Marcos 68.8 66.0 68.9 73.9 73.9 74.3

models (a partial exception is the San Marcos catchment,

where the AR-Raw model is slightly closer to the one-to-one

line than the other models). This demonstrates that, in gen-

eral, the models produce similarly reliable uncertainty distri-

butions. Second, all models show an inverted S-shaped curve,

which indicates that the uncertainty ranges are too wide. This

underconfidence is a result of using a Gaussian distribution to

characterise the error. The Gaussian distribution is not flex-

ible enough to represent the high degree of kurtosis in the

distribution of the residuals after error updating (partly be-

cause the errors become very small after updating). We are

presently experimenting with other distributions in order to

address this issue, and will seek to publish this work in fu-

ture. For the purposes of the present study, we conclude that

the three error models are similarly reliable.
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5 Discussion and conclusions

For streamflow forecasting, rainfall–runoff models are often

augmented with an updating procedure that corrects the fore-

cast using information from recent simulation errors. The

most popular updating approach uses autoregressive (AR)

models that exploit the “memory” in model errors. AR mod-

els may be applied to raw errors directly or to normalised

errors.

We demonstrate three adverse effects of AR error updat-

ing procedures on seven catchments. The first adverse ef-

fect is possible over-correction on the rising limb of the hy-

drograph. The AR-Norm model can exhibit the tendency to

over-correct the peaks or on the rise of a hydrograph, be-

cause error updating can be (overly) amplified by the back-

transformation. The second adverse effect is the tendency

to over-correct receding hydrographs. This tendency is most

prevalent in the AR-Raw model, which can fail to recognise

that a large error update may not be appropriate for small

streamflows.

The third adverse effect is that the stand-alone perfor-

mance of the base hydrological model can be poor when the

parameters of the rainfall–runoff model and the error model

are jointly estimated. We show that poor base hydrological

model performance is particularly prevalent in the AR-Norm

model. The poor performance appears to occur in catchments

with highly skewed streamflow observations (the intermit-

tent Abercrombie River, and the Orara River, a catchment

in a subtropical climate). For example, in the Orara River,

the base hydrological model tends to greatly over-estimate

streamflows, and then relies on the error updating to correct

the over-estimates. This is not desirable in real-time forecast-

ing applications for two major reasons. First, modern stream-

flow forecasting systems often extend forecast lead times

with rainfall forecast information (Bennett et al., 2014). The

magnitude of AR updating decays with lead time, and fore-

casts at longer lead times rely heavily on the performance of

the base hydrological model. Second, hydrological models

are designed to simulate various components of natural sys-

tems, such as baseflow processes or overland flow. In theory,

simulating these processes correctly will allow the model to

perform well for climate conditions that may substantially

differ from those experienced during the parameter estima-

tion period. If the hydrological model parameters do not re-

flect the natural processes for a given catchment, the hydro-

logical model may be much less robust outside the parameter

estimation period.

We note that the poor performance of the hydrological

model may be specific to the GR4J model, and may not oc-

cur in other hydrological models. Evin et al. (2014) estimated

hydrological model and error model parameters jointly using

GR4J and another hydrological model, HBV, for the three US

catchments tested here. While they did not assess the perfor-

mance of the base hydrological models, they found that HBV

tended to perform more robustly when combined with differ-

ent error models. It is possible that we may have achieved

more stable base model performance had we used HBV or

another hydrological model. We note, however, that our con-

clusions can probably be generalised to other hydrological

models that do not offer robust base model performance

under joint parameter estimation (e.g. GR4J). Because the

RAR-Norm model limits the range of updating that can be

applied, it will tend to rely more heavily on the base hydro-

logical model, and therefore will tend to favour parameter

sets that encourage good stand-alone performance of the base

model. For those hydrological models that already produce

robust base model performance under joint parameter esti-

mation (perhaps HBV), RAR-Norm is unlikely to undermine

this performance for the same reasons. We see some evidence

of this in our experiments with GR4J: when the performance

of the base hydrological model is already strong relative to

the updated forecasts for the AR-Norm and AR-Raw models

(e.g. the Tarwin, Mitta Mitta, or Guadalupe catchments), the

RAR-Norm model base hydrological model also performs

strongly.

The tendency of the AR-Norm model to over-correct rising

streamflows is probably generic. In particular, transforma-

tions other than the log-sinh transformation may still lead to

over-correction at the peak of hydrograph. The proof in Ap-

pendix B shows that if a transformation satisfies some con-

ditions (first derivate is positive and second derivate is nega-

tive), it will tend to correct more for higher forecast stream-

flows and can cause the problem of over-correction. The con-

ditions given by Appendix B are generally true for many

other transformations used for data normalisation and vari-

ance stabilisation in hydrological applications, such as log-

arithm transformation or the Box–Cox transformation with

the power parameter less than 1.

We use joint parameter inference to calibrate hydrological

model and error model parameters, in order to address the

true nature of underlying model errors. Inferring parameters

of the error model and the base hydrological model indepen-

dently – i.e. first inferring parameters of the base hydrologi-

cal model, holding these constant and then inferring the error

model parameters – relies on simplified and often invalid er-

ror assumptions (it assumes independent, homoscedastic and

Gaussian errors), but nonetheless could be a pragmatic al-

ternative to the joint parameter inference to reduce compu-

tational demands. The over-correction of conventional AR

models is independent of the parameter inference, whether

the error and base hydrological model parameters are in-

ferred jointly or independently.

In order to mitigate the adverse effects of conventional AR

updating procedures, we introduce a new updating proce-

dure called the RAR-Norm model. The RAR-Norm model

is a modification of the AR-Norm model: in most instances

it operates as the AR-Norm model, but in instances of pos-

sible over-correction it relies on the error in untransformed

streamflows at the previous time step. That is, RAR-Norm is

essentially a more conservative error model than AR-Norm:
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in situations where streamflows change rapidly, it opts to up-

date with whichever error (transformed or untransformed)

is smaller. This forces greater reliance on the base hydro-

logical model to simulate streamflows accurately, leading to

more robust performance in the base hydrological model.

The RAR-Norm model clearly outperforms the AR-Norm

model in both the updated and base model forecasts, as well

as ameliorating the problem of over-correcting rising stream-

flows. The RAR-Norm model’s advantage over the AR-Raw

model is less clear: both the base hydrological model and the

updated forecasts produced by the AR-Raw model perform

similarly to (or sometimes slightly better than) the RAR-

Norm model. However, the RAR-Norm model clearly ad-

dresses the problem of over-correcting receding streamflows

that occurs in the AR-Raw model. As we show, this type of

over-correction can seriously distort event hydrographs, and

cause forecasts of near zero streamflows when reasonably

substantial streamflows are observed. While these instances

are not very common, the failure in the forecast is a seri-

ous one. As we note earlier, the over-correction of receding

streamflows is likely to be exacerbated when producing fore-

casts at lead times of more than one time step. Accordingly,

we contend that the RAR-Norm model is preferable to both

the AR-Norm and AR-Raw models for streamflow forecast-

ing applications.
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Appendix A: The median of the updated streamflow

forecast

For brevity we only show the case of the AR-Norm model;

analogous arguments can be used to prove the cases of the

AR-Raw and RAR-Norm models. The streamflow ensemble

forecast Qt given by the AR-Norm model defined by Eq. (1)

can be written as

Qt =max
[
f−1

{
Z̃t + ρ

(
Zt−1− Z̃t−1

)
+ εt

}
, 0
]
, (A1)

where negative values after the back-transformation are as-

signed zero values. Because we assume that εt is a standard

normal random variable, to show that Q̃∗t is the median of

Qt , we need only show that P(Qt ≤ Q̃
∗
t )= 0.5, which can

be proved as follows:

P
(
Qt ≤ Q̃

∗
t

)
= P (max

. . .+ εt , 0≤ Q̃∗t = P
(
f−1

{
Z̃t + ρ(

Zt−1− Z̃t−1

)
+ εt

}
≤ Q̃∗t and 0≤ Q̃∗t

)
. (A2)

Because Q̃∗t always has a non-negative value, we have

P(Qt ≤ Q̃
∗
t )= P

(
f−1

{
Z̃t + ρ

(
Zt−1− Z̃t−1

)
+ εt

}
≤ f−1

{
Z̃t + ρ

(
Zt−1− Z̃t−1

)})
= P (εt ≤ 0)= 0.5. (A3)

Appendix B: The error updates of the AR-Norm model

We will show analytically that the AR-Norm model gives

a larger magnitude of the error update for a higher forecast

streamflow.

Firstly, we will show that the first derivate of the log-sinh

transform f defined by Eq. (3) is positive and that the second

derivate is negative (i.e. f ′(x)> 0 and f ′′(x)< 0) for any

b> 0 and any x. Following some simple manipulation, we

have

f ′(x)=
cosh(a+ bx)

sinh(a+ bx)
> 0 and

f ′′(x)=
−b

sinh2(a+ bx)
< 0. (B1)

Using the differentiation of inverse functions, we find the first

and second derivates of the inverse transform f−1

[
f−1

]′
(x)=

1

f ′
{
f−1(x)

} > 0

and
[
f−1

]′′
(x)=

−f ′′
{
f−1(x)

}[
f ′
{
f−1(x)

}]3 > 0, (B2)

for any b> 0 and any x.

Next, we will derive the difference in magnitudes of the

error update between low and high forecast streamflows.

For the sake of notation simplicity, we rewrite q = Z̃t and

u= ρ(Zt−1− Z̃t−1) and assume that u > 0. Using Equ. (4),

the updated streamflow can be written as Q̃∗t = f
−1(q + u).

The magnitude of the error update can be written as∣∣Q̃∗t − Q̃t

∣∣= ∣∣∣f−1(q + u)− f−1(q)

∣∣∣
=


u∫
0

[
f−1

]′
(x+ q)dx if u > 0

0∫
u

[
f−1

]′
(x+ q)dx otherwise

. (B3)

Suppose that we have two forecast streamflows Q̃t,1≤ Q̃t,2

and denote the normalised forecast streamflow by q1= Z̃t,1
and q2= Z̃t,2 and the updated streamflow by Q̃∗t,1 and Q̃∗t,2.

Because f is an increasing function, we have q1≤ q2. The

difference in the magnitude of the error update between Q̃t,1

and Q̃t,2 can be derived as∣∣Q̃t,1− Q̃
∗

t,1

∣∣− ∣∣Q̃t,2− Q̃
∗

t,2

∣∣
=


u∫
0

{[
f−1

]′
(x+ q1)−

[
f−1

]′
(x+ q2)

}
dx if u > 0

0∫
u

{[
f−1

]′
(x+ q1)−

[
f−1

]′
(x+ q2)

}
dx otherwise

. (B4)

From Eq. (A2), we have shown that [f−1
]
′ is a

positive increasing function, and this ensures that

[f−1
]
′(x+ q1)− [f

−1
]
′(x+ q2)≤ 0. Finally, we have∣∣Q̃t,1− Q̃

∗

t,1

∣∣≤ ∣∣Q̃t,2− Q̃
∗

t,2

∣∣ . (B5)

Therefore, the error update at larger forecast streamflows is

always larger than the error update at lower forecast stream-

flows.
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