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Abstract. Hindcasts based on the extended streamflow pre-
diction (ESP) approach are carried out in a typical rainfall-
dominated basin in China, aiming to examine the roles of
initial conditions (IC), future atmospheric forcing (FC) and
hydrologic model uncertainty (MU) in streamflow forecast
skill. The combined effects of IC and FC are explored within
the framework of a forecast window. By implementing vir-
tual numerical simulations without the consideration of MU,
it is found that the dominance of IC can last up to 90 days
in the dry season, while its impact gives way to FC for lead
times exceeding 30 days in the wet season. The combined
effects of IC and FC on the forecast skill are further investi-
gated by proposing a dimensionless parameter (β) that rep-
resents the ratio of the total amount of initial water storage
and the incoming rainfall. The forecast skill increases expo-
nentially withβ, and varies greatly in different forecast win-
dows. Moreover, the influence of MU on forecast skill is ex-
amined by focusing on the uncertainty of model parameters.
Two different hydrologic model calibration strategies are car-
ried out. The results indicate that the uncertainty of model pa-
rameters exhibits a more significant influence on the forecast
skill in the dry season than in the wet season. The ESP ap-
proach is more skillful in monthly streamflow forecast during
the transition period from wet to dry than otherwise. For the
transition period from dry to wet, the low skill of the fore-
casts could be attributed to the combined effects of IC and
FC, but less to the biases in the hydrologic model parame-
ters. For the forecasts in the dry season, the skill of the ESP
approach is heavily dependent on the strategy of the model
calibration.

1 Introduction

Reliable hydrologic forecasts are crucial in many hydrologic
sectors, for example, flood control, irrigation, water supply,
etc. Forecast skill is mainly affected by three factors: the un-
certainty of hydrologic models used to derive the streamflow
from atmospheric forcing (precipitation, temperature, etc.),
the uncertainty of initial conditions of the basin at the begin-
ning of the forecast, and the uncertainty of atmospheric forc-
ing during the forecast horizon. These factors are referred
to as the “uncertainty triplet” (Zappa et al., 2011). Exami-
nation of the three types of uncertainty and their joint im-
pacts on the forecast skill is therefore not only beneficial
for the understanding of rainfall–runoff processes, but also
for facilitating hydrologic applications with process-based
hydrologic models.

Previous studies revealed that the dominance of IC and FC
in the hydrologic forecast skill varies with season and loca-
tion (Mahanama et al., 2011, 2008; Shukla and Lettenmaier,
2011; Singla et al., 2012; Maurer and Lettenmaier, 2003). For
hydrologic forecasts, IC is frequently referred to as the initial
water storage (e.g., soil moisture, snow water equivalent) of
the entire basin. Li et al. (2009) found that IC dominates the
forecast skill with lead time of up to 1 month, where beyond
that FC becomes the main contributor to the forecast skill.
However, for some basins over the US, initial soil moisture
contributes significantly to the forecast skills of all seasons
except spring, and the contribution can last up to six months
(Mahanama et al., 2011). The dominance of IC is related to
the persistence of soil moisture and/or snow water equivalent
(SWE). It is not surprising that SWE dominates the forecast
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skill over those basins in which streamflow are mainly gen-
erated by snowmelt (Koster et al., 2010). For a short lead
time (within the concentration time of the basin) or during
a dry period, soil moisture is the only source of streamflow
observed at the outlet of the basin (Kirkby, 1978). The per-
sistence of IC is also affected by the future atmospheric con-
ditions. Wood and Lettenmaier (2008) found that IC yields
forecast skill for up to five months during the transition be-
tween the wet and dry seasons, but for the reverse transition,
FC is critical. IC is also proved to have a stronger impact dur-
ing the inter-monsoon seasons in Sri Lanka (Mahanama et
al., 2008). More recently, Shukla et al. (2013) examined the
relative roles of IC and FC in seasonal hydrologic forecast at
a global scale. Their results are consistent with previous stud-
ies. Mahanama et al. (2011) defined a parameterκ (variance
ratio of initial water storage and total rainfall within forecast
period) to combine the effect of IC and FC, allowing the es-
timates of the potential forecast skills.

In this study, we will continue with the discussion of the
impact of IC and FC on hydrologic forecast by implementing
hindcasts with the ESP (extended streamflow prediction) ap-
proach (Day, 1985). In particular, due to the persistence of IC
and the impact of FC, we believe that there should be certain
proper time ranges which we termed as “forecast windows”
(see the definition in Sect. 3), beyond which the forecast is
not reliable any more. The impact of IC and FC will be dis-
cussed under the framework of the “forecast window”. In ad-
dition, we will try to combine the effect of the two factors by
defining a new dimensionless parameter, based on which the
relationships of forecast skill and the combined effect of IC
and FC can be derived.

The third member of the “uncertainty triplet” is model un-
certainty (MU). The rainfall–runoff model based forecasting
approach (e.g., ESP) requires the model to provide accurate
initial conditions of the basin at the beginning of the forecast.
The forecast skill will undoubtedly be impaired with model
uncertainty (Walker et al., 2005; Demirel et al., 2013). MU
could be induced by systematic biases in model input, the
structure of the model, and model parameters, etc. (Walker
et al., 2005). While errors in the model input and structure
may not be readily reduced, we will only focus on the un-
certainty of model parameters in this study through a pro-
cess of model calibration, assuming that the input as well as
the model structure is robust. Shi et al. (2008) demonstrated
the influence of hydrologic model calibration in the improve-
ment of seasonal streamflow forecasting.

The analyses in Sect.3 are based on the following hy-
potheses: (1) forecast skill varies with initial forecast date
and forecast window; and (2) the combined effect of IC and
FC determines the reliable forecast window in hydrologic
forecasting. We will test these hypotheses over the upper
Hanjiang River basin (UHRB) in China by examining the rel-
ative roles of IC, FC and MU on hydrologic forecast. UHRB
is a typical rainfall-dominant river basin (see descriptions in
Sect. 2), which is also the headwater of the south-to-north
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Figure 1. Location of upper Hanjiang River basin (UHRB, denoted as shaded region in the 590 

figure) in China. Dashed line is the boundary of the Yangtze River basin. The grey dots are rain 591 

gauges. The black square represents the location of Danjiangkou Reservoir station. 592 
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Fig. 1. Location of upper Hanjiang River basin (UHRB) in China.
Dashed line is the boundary of the Yangtze River basin. The grey
dots are rain gauges. The black square is Danjiangkou reservoir sta-
tion.

water transfer (SNWT) project in China. This study will
broaden the application fields of the ESP approach by testing
its validity in rainfall-dominant rather than snow-dominant
basins. The results will shed light on future application of
the ESP approach in similar basins.

The paper is organized as follows. The study area and
methods will be described in Sect. 2; Sect. 3 will present re-
sults, with conclusions and discussion following in Sect. 4.

2 Study area and methods

2.1 Study area

The study area is the upper Hanjiang River basin (abbre-
viated as UHRB below, see Fig. 1 for its geographic loca-
tion), which is a sub-basin of the Yangtze River in China.
The drainage area of UHRB is 9.52× 104 km2. It is a typ-
ical monsoon-climate region, characterized by the summer
dominant rainfall within the year and great distinctions be-
tween rainy and dry seasons (Guo et al., 2009). Figure 2
shows the intra-annual cycle of monthly rainfall and runoff
averaged from 1970–2000 over UHRB. Clearly, the runoff
regime in this basin is dominated by the rainfall pattern. The
integral runoff from May through October (the wet-season
period) accounts for about 80 % of the annual total. Based
on the rainfall and runoff regimes presented in Fig. 2, we di-
vided the water year into four stages: pre-wet season (May to
July), post-wet season (August to October), pre-dry season
(November and December) and post-dry season (January to
April of the following year). The distinct variations of the
basin state and rainfall pattern within the four stages have
some implications on the forecast skill of the ESP approach,
as will be discussed in the next section.
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Figure 2. Rainfall and runoff regimes over upper Hanjiang River basin (UHRB). Runoff is the 595 

total amount of monthly inflow to Danjiangkou reservoir divided by basin area. Rainfall is the 596 

mean value of all the rain gauges weighted by area. The unit is in mm. 597 
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Fig. 2.Rainfall and runoff regimes over upper Hanjiang River basin
(UHRB). Runoff is the total amount of monthly inflow (m3) to Dan-
jiangkou reservoir divided by basin area (km2). Rainfall is the mean
value of all the rain gauges weighted by area. The unit is in mm.

2.2 The ESP approach

ESP is a widely used approach for hydrologic forecasting
(Werner et al., 2004), and usually serves as a reference for
validating climate model-based seasonal hydrologic predic-
tion (Wood et al., 2005; Luo and Wood, 2008; Yuan et al.,
2013). The basic idea of ESP is to run a candidate hydrolog-
ical model with observed meteorological forcing through a
spin-up period to the time of the forecast. Then, the model
with the spun-up initial basin state is driven by an ensemble
of forcing (precipitation, temperature, etc.) that is randomly
sampled from the observed historical records (Day, 1985).
An ensemble of the streamflow traces is then generated, con-
taining the information of forcing uncertainty on the forecast
(see Fig. 1 of Wood and Lettenmaier, 2008, for schematic il-
lustration of the ESP approach). The arithmetic mean value
of the ensemble forecasts is selected as the issued forecast.

2.3 Model setup

The hydrological model used in this study is Tsinghua
Representative Elementary Watershed model (referred to as
THREW model) (Tian, 2006). It is a semi-distributed hy-
drological model, based on the theory of representative el-
ementary watershed proposed by Reggiani et al. (1999). The
model consists of a set of balance equations for mass, mo-
mentum, energy and entropy, including associated constitu-
tive relationships for various exchange fluxes, at the scale of
a well-defined spatial domain. Details of the model can be
found in Tian (2006, 2009). The THREW model has been
successfully applied in several previous studies (Mou et al.,

Table 1. Calibration and validation statistics for the simulated
streamflow of UHRB at Danjiangkou reservoir station.

Nash–Sutcliffe efficiency (NSE)
Water

Daily Weekly Monthly balance (WB)

Calibration period
(1970–1980) 0.85 0.98 0.99 −0.06

Validation period
(1981–2000) 0.81 0.96 0.99 −0.05

2008; Yang et al., 2013; Li et al., 2012; Liu et al., 2012; Tian
et al., 2006, 2012).

The study period is 1970–2000, which is divided into two
parts with the purpose of model calibration and validation.
The calibration period is 1970–1980 and the rest is used for
model validation. The model calibration procedure is as fol-
lows: initial values and the reliable ranges of each param-
eter are determined according to the physical attributes of
UHRB and previous THREW modeling experience (see Sun
et al., 2013, for the information of the key parameters in
the model). An automatic optimization algorithm,ε-NSGAII
(Reed et al., 2003; Deb et al., 2002), is then used for fur-
ther calibration. The value of each parameter is finally deter-
mined based on the automatic calibration results. This cali-
bration procedure enables the parameters to bear clear phys-
ical meanings and maintains the performance of the model
as well. The objective function for the automatic calibra-
tion is the Nash–Sutcliffe efficiency coefficient (NSE) (Nash
and Sutcliffe, 1970), as widely used in previous hydrological
modeling studies.

Another water balance related metric WB, together with
NSE, is used to evaluate the performance of the model during
the two periods. WB takes the form as

WB =
Robs− Rsim

Robs
, (1)

whereRobs and Rsim are the total observed and simulated
runoff (in mm), respectively.

The statistics are summarized in Table 1. The THREW
model performs quite well in UHRB. The values of daily
NSE in both the calibration and validation period are above
0.80. The value of monthly NSE is as high as 0.99 (see Yang
et al., 2013, for more detailed evaluations of the THREW
model performance in UHRB). The evaluation statistics in-
dicate that the model accurately captures the dynamics of
the streamflow during 1970–2000 over UHRB, given the ob-
served atmospheric forcing.

However, this lumped calibration strategy might only
present the overall performance of the model during the
whole simulation period. It is not necessary a guarantee of
the performance over each sub-period (e.g., dry seasons). We
will present further details of another model calibration strat-
egy used in this study in the next section.
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(a) Forecast window 600 
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(b) Lead time 602 

Figure 3. Schematic illustration of (a) Forecast Window and (b) Lead time. 603 

604 
Fig. 3. Schematic illustration of(a) Forecast Window and(b) Lead
time.

3 Results

In this section, we present the evaluation of the impacts of
IC and FC on the forecast within different forecast windows
(see Sect. 3.1 for the definition of forecast window) and at
two contrasting initial states. The combined effects of IC and
FC is then discussed by defining a new parameterβ. The
effect of MU (the uncertainty of model parameters) will be
examined in Sect. 3.2.

3.1 The impact of IC and FC

3.1.1 Definition of forecast window (FW)

A forecast window (FW) proposed in this study can be re-
garded as an integration time window initiating from the
forecast date. It differs from lead time, which is a frequently
used term in hydrologic forecasting (see Fig. 3). Lead time is
the gap between the time that the forecast is issued and the
occurrence of the forecasted variable. For example, if we are
interested in the total streamflow volume of this July, suppos-
ing the forecast time is issued some day in January, then the
lead time should be about 6 months (the time gap between
January and July). The model needs to run from January till
the end of July. In this context, this study focused on the cases
with no lead time (equal to zero). They could be regarded as
“real-time” forecasts but with different FWs. The forecasted
variable is the integral streamflow volume within each FW.

3.1.2 Evaluation of the impact of IC and FC

“Virtual” experiments are designed in this section for the rea-
son of avoiding the incorporation of model uncertainty (MU)
effect. In these “virtual” experiments, the forecasts are evalu-
ated against retrospective streamflow simulations (driven by
actual atmospheric forcing) instead of actual streamflow ob-
servations, assuming that the model is “perfect”. The design
of the experiment is summarized in Table 2. Eight differ-

Table 2. Details of the experiment designs (for different forecast
window).

Initial Forecast Ensemble Hindcast
forecast date windows members period

1 February 7 days, 15 days,

31 1970–2000
30 days, 60 days,

1 July 90 days, 120 days,
150 days, 183 days

ent forecast windows are set: 7, 15, 30, 60, 90, 120, 150
and 183 days. We also chose two contrasting forecast dates,
1 February and 1 July of each year (in the middle of the win-
ter and summer season, respectively), representing the dry
and wet initial states of the basin. The seasonal regime of
soil moisture bears a similar but flattened shape compared to
the precipitation regime in Fig. 1, based on which the two
initial dates were selected (figure not shown). Each set of the
forecasts were made for a 30 yr period (from 1970 to 2000).

The results are evaluated by using the Pearson correlation
coefficientρ. ρ decreases with the extension of forecast win-
dow for both initial dates (Figs. 4 and 5). However, the pat-
terns are a little different. For the dry scenario (the initial date
is 1st February),ρ is 0.99 for the 7-day window, and grad-
ually drops below 0.50 for the window exceeding 90 days;
while for the wet scenario (the initial date is 1 July), the
maximum correlation coefficient is 0.70 for the 7-day fore-
cast window, and quickly reduces to 0.46 for 30-day window.
The forecasts almost equal the climatological mean when the
forecast window exceeds 90 days under this scenario. The
contrasting behaviors of the two scenarios indicate that the
consistency of the forecast seems to bear a wider range of
forecast windows for the dry scenario.

To further illustrate the impact of IC / FC and their rela-
tive role in the forecast, we employed an analytical frame-
work, as developed by (Wood and Lettenmaier, 2008) and
used by Li et al. (2009). It is effective to discern relative im-
pacts of IC and FC on the forecasts, as well as the dynamic
competence of the two factors with the increase of forecast
window. The basic idea of this framework is to re-sort the
forecasts according to IC (soil moisture) and FC (precipita-
tion forcing). Two-dimensional images are produced based
on the resorted matrix of the forecasts. The columns of each
2-D image in Figs. 6 and 7 can be regarded as a reverse-ESP
(R-ESP) approach which was introduced by Wood and Let-
tenmaier (2008) (see also Fig. 2 of Li et al., 2009, for more
details of R-ESP and ESP). The basic idea of R-ESP is to
drive an ensemble of ICs, which are derived by resampled
meteorological ensembles during the spin-up period, using
the accurate meteorological forcing. R-ESP reveals the influ-
ence of IC uncertainty on the forecast, while ESP focuses on
the impact of FC. The patterns of the images reflect the rela-
tive impact of IC and FC: if these are horizontally structured,
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Figure 4. Evaluation of the ESP approach for different forecast windows. The initial forecast date 606 

is 1
st
 February.  607 

608 

Fig. 4.Evaluation of the ESP approach for different forecast windows. The initial forecast date is 1st February.
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 609 

Figure 5. The same as Figure 4 but the initial forecast date is 1st July. 610 

611 

Fig. 5.The same as Fig. 4 but the initial forecast date is 1st July.

the forecasts are largely determined by IC, and FC has a rel-
atively small impact; while FC dominates the forecast if the
image is vertically structured. A “hatched” image indicates a
combined influence of IC and FC.

Organized structures could be observed in both Figs. 6 and
7. For the forecasts initialized on the 1 February (Fig. 6),
the patterns of the images are characterized by horizontal
stripes for forecast windows less than 60 days (2 months).
The patterns change into more vertical stripes when the win-
dow exceeds 90 days. For the forecast of 90 day forecast win-

dow, a hatched pattern is displayed. IC is the dominant im-
pact on the forecasts within 2 month forecast window when
ESP has most skill; while this dominance changes to FC
for larger forecast windows (exceeding 90 days), and ESP
loses its skill as well. The 90 day window is the divide of
the dominance of the two factors. Both the IC and FC could
impact the forecasts within the 90 day forecast window. For
the forecasts initialized on the 1 July (Fig. 7), the domi-
nance of IC is constrained to 30 days. For the rest of forecast
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 612 

Figure 6. Runoff forecasts (unit: mm) by ESP (row) and R-ESP (column) for UHRB. Forecasts 613 

are initialized on 1
st
 February. Precipitation forcing (units: mm) is sorted from dry to wet in 614 

ascending order, and Initial conditions (units: mm) is sorted from wet to dry in descending order. 615 

The numbers on the horizontal and vertical axis represent the ranks of actual accumulated 616 

precipitation and soil moisture, respectively.  617 

618 

Fig. 6. Runoff forecasts (unit: mm) by ESP (row) and R-ESP (column) for UHRB. Forecasts are initialized on 1 February. Precipitation
forcing (units: mm) is sorted from dry to wet in ascending order, and Initial conditions (units: mm) is sorted from wet to dry in descending
order.
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 619 

Figure 7. The same as Figure 6 but the forecasts are initialized on 1
st
 July. 620 

621 

Fig. 7.The same as Fig. 6 but the forecasts are initialized on 1 July.

windows (exceeding 30 days), FC dominates the forecasts
and the forecast skill decays as well.

The possible explanations for the results are the 1 Febru-
ary represents relatively dry state of the basin within the year,
since it is in the middle of the dry seasons and the antecedent
precipitation is scarce. The lack of soil moisture to the satu-
ration state cannot be easily filled up with subsequent rain-
fall events. Thus, the IC could persist for a long period until
the total rainfall within the forecast window is able to com-
pensate the initial soil moisture anomaly. This could explain
why the “hatched” image occurs for the 90-day case (Fig. 6)

and is converted to “vertical” when the wet season (May to
August) begins. For the wet scenario (forecasts initialized
on the 1 July), the basin has already been saturated or near-
saturated. In this case, the accumulated soil moisture in the
basin will contribute significantly to the future streamflow
regime, just as most snow-dominated basins behave. How-
ever, unlike snow-dominate basins, UHRB will experience
rainy weather in the subsequent months (August, September
and October). Several heavy precipitation events could eas-
ily recharge the basin and eliminate the persistence of the soil
moisture completely, so the IC is not able to persist for a long

Hydrol. Earth Syst. Sci., 18, 775–786, 2014 www.hydrol-earth-syst-sci.net/18/775/2014/



L. Yang et al.: Attribution of hydrologic forecast uncertainty 781

Table 3. Details of the experiment designs (for deriving the rela-
tionships ofβ and the forecast skills).

Initial Forecast Ensemble Hindcast
forecast date windows members period

1 Jan, 1 Feb, 3 days, 7 days,

31 1970–2000
. . . . . . 15 days, 20 days
1 Nov, 1 Dec 30 days, 45 days,

60 days, 90 days

period. It seems that the persistence of IC is not solely deter-
mined by the magnitude of the initial anomaly, but also by
the subsequent meteorological conditions. The forecast skill
of the ESP approach is determined by the combined effects
of IC and FC, which will be examined by defining a new
parameter in the next section.

3.1.3 Combined effects of IC and FC

Based on the analyses in Sect. 3.1.2, we propose a new pa-
rameter that tries to synthesize the effect of IC and FC on
the forecasts and generalize the relationships to the forecasts
with more diverse ICs. The new parameter beta (β) is a di-
mensionless ratio of total initial water storage and incoming
rainfall within forecast windows, defined here as

β = log(Rsm/Rp), (2)

whereRsm is the total initial water storage (e.g., soil mois-
ture, residual water in the river, expressed as “depth” and the
unit is mm), representing the influence of IC;Rp is the total
rainfall (in mm) within the forecast windows, representing
the influence of FC. We take the logarithm of the ratio for
mathematical reasons.

We employed MARE (mean absolute relative error) as the
evaluation metric of the forecasts. The form is

MARE =
1

n

n∑
i=1

∣∣∣∣Fsti − Obsi
Obsi

∣∣∣∣ × 100%, (3)

where Fsti and Obsi are the forecasted and observed total
streamflow volume within forecast windows, respectively; n
is the number of forecast years, andn = 30 in this study.

A new set of forecast windows are used, these are 3, 7, 10,
15, 20, 30, 60 and 90 days, since the ESP approach presents
no skill for the forecasts beyond 90 days in this study. The
first day of each month is chosen as the forecast date. The
details of the experiment are summarized in Table 3. The
experimental configurations in this section are also devoid
of model uncertainty. An exponential function (y = aebx) is
employed to fit the relationship between the parameter (β)

and evaluation metric (MARE) of the forecasts. The param-
eters and evaluation values (R2) of the fitted lines are listed
in Table 4.

34 

 

 622 

Figure 8. Scatterplots of β and MARE. The curves are fitted exponential lines for each group of 623 

forecasts with the same forecast window. The parameters of the lines are summarized in Table 4. 624 

625 

Fig. 8.Scatter plots ofβ and MARE. The curves are fitted exponen-
tial lines for each group of forecasts with the same forecast window.
The parameters of the lines are summarized in Table 4.

The accuracy of the forecasts increases exponentially with
β, corresponding to our above analysis that the forecasts skill
will be mainly determined by IC if the initial water storage
has a comparatively larger value than the total rainfall within
the forecast windows. However, the variability of total pre-
cipitation within forecast window also plays a role. As shown
in Fig. 8, the forecast accuracy becomes less sensitive toβ

as the forecast window increases. This is probably because
the total rainfall within larger forecast windows enables the
basin to be fully recharged several times, which eliminates
the persistence of IC. In addition, the inter-annual variabil-
ity of the total rainfall decays with the integrating time win-
dow (e.g., the variability of seasonal precipitation is usu-
ally smaller than that of weekly precipitation), which should
come as no surprise. Thus, a larger value of total precipita-
tion with smaller variability will induce smaller sensitivity of
forecast accuracy toβ.

It is also noteworthy that although the fitted lines asymp-
totically converge to 0, there will be upper bounds for the
forecast accuracy in reality. As can be observed in Fig. 8,
the upper bounds of forecast skill for 3 days are much higher
than 90 days, indicating that short-term forecasts are poten-
tially more accurate than long-term forecast using the ESP
approach. However, we also notice that short-term forecasts
are not necessarily more accurate than long-term counter-
parts (the relatively larger vertical spans for the smaller fore-
cast window lines in Fig. 8). Since the model is assumed
to be error free, the possible explanation could be the vari-
ability of the total precipitation within forecast windows. For
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 626 

Figure 9. (a) Forecast skills of ESP based on different sets of model parameters; (b) Model 627 

performances for each month. ‘ESP_all year’ (circles) represent using the default parameters of 628 

the model (the whole year). ‘ESP_Dry’ (dots) uses the new-calibrated parameters of the model 629 

(only January to May). 630 

Fig. 9. (a)Forecast skills of ESP based on different sets of model pa-
rameters;(b) model performances for each month. “ESP_all year”
(circles) represent using the default parameters of the model (the
whole year). “ESP_Dry” (dots) uses the new-calibrated parameters
of the model (only January to May).

short-term forecast, the variability of FC should also be con-
sidered in addition to IC, especially for the cases when FC
takes the dominance of the forecast skill.

Figure 8 also shows the potential ability of the ESP ap-
proach to make accurate forecasts within different forecast
windows over UHRB. We note that this analytical framework
of β is able to combine the effects of IC and FC, and provide
a first-order understanding of when and to what extent the
forecast skill may be achieved based on the ESP approach in
UHRB.

The form ofβ proposed in this study is similar to the pa-
rameter kappa (κ) defined by Mahanama et al. (2011). The
forecast window is fixed to three months in their study, which
enables kappa focusing on variance instead of total amount.
In this study, forecast skills need to be evaluated among dif-
ferent forecast windows. It is obvious that the inter-annual
variability of rainfall decays with the extension of the ac-
cumulation period and is also negatively correlated with the
total rainfall within the forecast window. In the newly pro-
posed parameter (β) the inter-annual variability of rainfall
has been, to some extent, expressed in terms of total amount.
However, as discussed above, the variability of FC probably
matters to the skill for short-term forecasts (with small fore-
cast windows), especially when FC instead of IC dominates
the forecast skills. This effect is still absent in the new param-
eter so far. Future studies should introduce the inter-annual
variability of rainfall into the parameter in an explicit way.
The ultimate goal is to propose a proper parameter, based on

Table 4.Parameters of the exponential function and theR2 value in
the relationships ofβ and the forecast skills.

Forecast
windows a b R2

3 days 3153 −1.1 0.90
7 days 1055 −0.89 0.92

10 days 561 −0.77 0.96
15 days 270 −0.62 0.92
20 days 155 −0.49 0.81
30 days 134 −0.54 0.82
60 days 67 −0.43 0.71
90 days 50 −0.32 0.56

which the forecast skill of the ESP approach could be evalu-
ated and compared within different forecast windows.

3.2 The impact of MU

Model uncertainty (MU) is another factor that influences the
forecast. The essence of the ESP approach is to utilize the IC
of the basin provided by the hydrological model through the
spin-up period. Thus, the reliability of the IC greatly impacts
the final accuracy of the forecast. The model used in this
study has been calibrated against NSE, with the evaluation
metrics summarized in Table 1. Although the model presents
a remarkably good performance during the whole simulation
period, its performance in each separate month varies. As
shown in Fig. 9b, the value of NSE is above 0.90 for July,
August, September and October. These four months are also
the wettest during the year in UHRB. For dry months (Jan-
uary to April), NSE is below 0. The value of NSE is−0.58
and−0.64 for March and April, respectively.

Previous studies revealed the problems of model calibra-
tion using single objective function. The mathematical form
of NSE results in the over-weighting of high flows in the
calculation. Even though the simulation of low flow is poor,
NSE will not be affected, since the magnitude is small rela-
tive to the high flow period. In this study, we also carried out
a different model calibration strategy. The low flows (stream-
flow from January to May) are extracted from each year, con-
stituting a new time series. The model is again calibrated
with the same calibration procedure, but only for the new
low-flow time series. NSE is still used as the calibration met-
ric because of its simplicity. The new NSE values for each
month (January to May) are shown in Fig. 9b. Model per-
formance in March, April and May is improved, while for
January and February, the new calibration does not make
any improvement.

Considering our purpose here is to examine the influence
of MU (the uncertainty of model parameters) on the fore-
cast accuracy of ESP approach, we will also not endeavor
to improve the model performance for each month, but only
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focus on the accuracy of forecasts on March and April af-
ter the new model calibration. We set the forecast window
to 30 days, which has been frequently used in previous stud-
ies (e.g., Smith et al., 1992; Hashino et al., 2007; Wang et
al., 2011) and proved to be effective under different ICs in
previous section.

The skill of the forecast in ESP approach is evaluated by
SSMSE, defined as

SSMSE = 1−

n∑
i=1

(Fsti − Obsi)2

n∑
i=1

(Obsi − Obs)2
, (4)

where Obsi and Fsti are the observed and forecasted monthly
streamflow volume (in mm), respectively;Obs is the mean
value of the observed streamflow volume (in mm), represent-
ing the climatological forecast; n is the total number of fore-
cast years, andn = 30 in this study. This has the same form
as Nash–Sutcliffe efficiency, but is being used for assessing
the model performances in individual months. A score of 1
corresponds to a perfect forecast.

During October–December, the ESP approach presents
high forecast skill (Fig. 9a). For March and April, the skill
score is far below 0, indicating no forecast skill for this pe-
riod. However, this does not indicate the uselessness of ESP
approach. When the forecasts are made based on the re-
calibrated models (especially for March and April), the skill
scores are significantly improved. The improvement of the
forecast skill in March and April reinforces our hypothesis
that MU (errors in model parameters) influences the forecast
accuracy in the ESP approach, especially for those low flow
events that are difficult to simulate with hydrologic models.

It is noteworthy that the forecast skill score is low in May,
June and July, although the model performs quite well in this
month. The low skill of the forecasts in May, June and July
implies that the ESP approach is no better than climatology
for the monthly streamflow forecast of pre-wet seasons in
UHRB, which probably could be attributed to the combined
effects of FC and IC in this season (as discussed in previous
subsections). For post-wet season forecasts (August, Septem-
ber and October) and pre-dry season forecasts (November
and December), the ESP approach has skill. Our results are
similar to the study of Wood and Lettenmaier (2008), which
showed that the forecast skill is higher during the transition
period from the wet to dry season than otherwise. However,
our analyses also show that the forecast skill is improved in
the post-dry season (March and April, especially) after re-
calibrating the hydrologic model used in the ESP. The fore-
cast skill in January and March is still comparable with that
in post-wet and pre-dry seasons, indicating the potential of
the ESP approach with a well-calibrated hydrologic model.
Future efforts should focus on the improvement of the model
performance in the post-dry season period (January to April).

It should be noted that our analyses on model uncertainty
are preliminary. Considering the forecast skill is always in-
fluenced by the model uncertainty, it is necessary to provide
a complete assessment of the model uncertainty. There are a
large number of studies focusing on the model uncertainty
analyses (e.g., Beven, 1989). Generalized Likelihood Un-
certainty Estimation (GLUE), proposed by Beven and Bin-
ley (1992), proves to be a useful analytical framework, which
could reflect all sources of errors (input, parameter and model
structure) in the modeling process and allow the uncertain-
ties associated with those errors to be carried forward into
the simulations (see Beven and Binley, 1992, for more de-
tails of the framework). Ensemble modeling approaches, for
example, BMA (Bayesian model averaging, Hoeting et al.,
1999), provide possible ways to reduce the uncertainty of the
model structure. However, we assume that the structure of the
model used in this study is “perfect”, and focus on the param-
eter uncertainty only. Future studies should aim to focus on
all the sources of model uncertainty and their influence on
the forecast skill.

4 Conclusions and discussion

In this paper, we have investigated the influence of IC, FC
and MU on hydrologic forecast based on the hindcasts using
ESP approach over UHRB in China. The concept of forecast
window (FW) is introduced in this study and the combined
effects of IC and FC within the forecast window is discussed
by implementing “virtual” experiments without considering
the uncertainty of hydrologic model (structure, parameter,
etc.). The improvement of the model performance also in-
creases the skill of the ESP approach significantly for low
flow forecast, indicating the impact of MU (the uncertainty
of model parameters) on hydrologic forecast. The results are
summarized as below.

1. For dry initial states, the forecast is consistently good
within forecast windows up to 90 days. For wet initial
states the persistence decays with the windows exceed-
ing 30 days. The contrasting behaviors of the two sce-
narios highlight the role of IC and FC on the forecast.

2. IC controls the forecast skills within smaller forecast
windows. The dominance of IC on the forecast is
shifted to FC with the increase of the forecast win-
dows. A dimensionless parameterβ is proposed to de-
pict the combined effects of IC and FC. The forecast
skill increases exponentially withβ, and varies greatly
in different forecast windows. The analytical frame-
work ofβ provides a first-order understanding of when
and to what extent the forecast skills may be achieved
based on ESP approach.
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3. The model calibration strategy used in this study em-
phasizes the model behavior during the wet season,
while for the dry season the model behaviors cannot
be guaranteed. This affects the accuracy of the ESP ap-
proach for predicting low flows. By re-calibrating the
model for low flows, the uncertainty of model param-
eters is reduced within the dry season, which signifi-
cantly improves the model performance as well as the
forecast skill in the dry-season period.

4. The performance of the ESP approach for monthly
streamflow forecasts is more skillful during the tran-
sition period from wet to dry than otherwise over
UHRB. For the transition period from dry to wet, the
lower skill of the forecasts could be attributed to the
combined effects of IC and FC, but less to the bi-
ases in the hydrologic model. Other innovative ways
should be explored for monthly streamflow forecasts
during this season (from dry to wet, e.g., by improving
the prediction of future atmospheric forcing using so-
phisticated physical or statistical methods (Zhou et al.,
2011)).

To the best of the authors’ knowledge, the concept of fore-
cast window (FW) is proposed in this study for the first time.
We suggest that the concept of forecast window (FW) might
have some implications on the hydrological forecasts based
on the ESP approach. The dominance of IC and FC within
FWs reflects the potential ability of ESP. For different sce-
narios with various combinations of IC and FC, there should
be certain “behavioral forecast windows” (BFWs), beyond
which ESP-based hydrologic forecasts are not accurate. In
addition, BFW can also be related to the physical attributes of
each basin (e.g., sizes, maximum concentration time, etc.). Li
et al. (2009) disclosed that the basin size matters in the ESP
skill. The relationship derived in this study is only for the
specific basin (UHRB in this study). More different basins
with diverse physical attributes (e.g., size, vegetation condi-
tions, etc.) should be examined in future studies so as to make
the relationship more general. BFW is crucial in the practi-
cal implementation of ESP approach by providing a guide-
line for the design of forecasting systems and the confidence
of the forecast results. However, the framework designed to
examine FW and BFW in this study does not consider lead
time in the forecasts. These can be regarded as zero lead time
scenarios. Besides, the influence of MU is not considered in
the framework. Future studies will further examine the be-
haviors of FW and BFW with varying lead time and model
uncertainty (structure and parameter) incorporated.

There are a number of ways (e.g., pre-processing, post-
processing) to further improve the performance of the ESP
approach. For instance, Yang et al. (2013) improved the fore-
cast skills of ESP approach by using a reduced set of the
ensemble members. The members in the reduced ensemble
were selected from the historical records when they have
the same climate signals (e.g., SOI, PDO) as the forecast

year. Similar studies could be found in Hamlet and Let-
tenmaier (1999), Lamb (2010) and Wang et al. (2011). In-
stead of using the randomly sampled members, the “pre-
processing” process enhances the representativeness of fu-
ture forcing ensembles. Similarly, “post-processing” aims to
remove the bias of the streamflow ensembles, which could
also improve the forecast skill. Possible “post-processing”
methods were evaluated in previous studies (e.g., Kang et
al., 2010; Wood and Schaake, 2008; Hashino et al., 2007).
Shi et al. (2008) demonstrated that “post-processing” could
reduce the forecast error as much as the correction of fore-
cast errors through hydrologic model calibration. Yuan and
Wood (2012) also found that post-processed streamflow fore-
casts directly from a global climate forecast model, where
its land surface model is un-calibrated, has comparable per-
formance to a well-calibrated hydrologic model driven by
downscaled and bias-corrected meteorological forcing.
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