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Abstract. To extend geographical coverage, refine spatial
resolution, and improve modeling efficiency, a computation-
and data-intensive effort was conducted to organize a com-
prehensive hydrologic data set with post-calibrated model
parameters for hydro-climate impact assessment. Several key
inputs for hydrologic simulation – including meteorologic
forcings, soil, land class, vegetation, and elevation – were
collected from multiple best-available data sources and or-
ganized for 2107 hydrologic subbasins (8-digit hydrologic
units, HUC8s) in the conterminous US at refined 1/24◦

(∼ 4 km) spatial resolution. Using high-performance com-
puting for intensive model calibration, a high-resolution pa-
rameter data set was prepared for the macro-scale variable in-
filtration capacity (VIC) hydrologic model. The VIC simula-
tion was driven by Daymet daily meteorological forcing and
was calibrated against US Geological Survey (USGS) Wa-
terWatch monthly runoff observations for each HUC8. The
results showed that this new parameter data set may help rea-
sonably simulate runoff at most US HUC8 subbasins. Based
on this exhaustive calibration effort, it is now possible to ac-
curately estimate the resources required for further model im-
provement across the entire conterminous US. We anticipate
that through this hydrologic parameter data set, the repeated
effort of fundamental data processing can be lessened, so that
research efforts can emphasize the more challenging task of
assessing climate change impacts. The pre-organized model
parameter data set will be provided to interested parties to
support further hydro-climate impact assessment.

1 Introduction

With the advance of high-performance computing and more
abundant historical observation data, hydrologists and water
resource engineers are better equipped to improve the scale,
resolution, and accuracy of hydrologic simulation. Depend-
ing on the need, a suitable hydrologic model may range from
a statistical model (e.g. artificial neural network, ANN) or a
conceptual model (e.g. bucket model) to a more sophisticated
model that can simulate a series of hydrological processes
based on physical mechanisms. However, although a statis-
tical model can generally simulate hydrologic variables well
with fewer predictors, the assumption of stationarity may be
questionable in a changing environment in which many hy-
drologic processes are expected to be disrupted (Milly et al.,
2008). Under such conditions, historical relationships may
not provide fully accurate information about future stream-
flow and water availability. One example is ANN (and the
various related machine learning algorithms). Although these
types of advanced statistical methods are extremely pow-
erful in forecasting reservoir outflows with minimal obser-
vation, the physical relationships among various predictors
cannot be interpreted (Govindaraju and Rao, 2000); this hin-
ders their direct extension across different locations and cli-
mate patterns. Therefore, these methods may not be suitable
choices for climate-related research.

Unlike statistical models, process-based models are theo-
retically justifiable for climate research. Since most hydro-
logic mechanisms are simulated through deterministic laws,
the assumption of stationarity is a lesser issue. However,
a high number of observations and parameters is required
to drive process-based models. For instance, a distributed
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rainfall–runoff model may require fine-resolution inputs of
vegetation, precipitation, temperature, solar radiation, topog-
raphy, and many other soil properties to simulate various
hydrologic processes such as evapotranspiration, infiltration,
vegetation root absorption, snowmelt, and runoff generation.
With increasing complexity in model resolution, scale, and
processes, the required computational resources also increase
exponentially. As a result, it is generally more challenging
to conduct a process-based hydrologic simulation for a large
study area with fine spatial resolution. A tradeoff usually
must be made between scale and resolution because of re-
source limitations.

Numerous studies have investigated the hydrological im-
pacts of climate change in the US using process-based mod-
els (Mote et al., 2005; Christensen et al., 2004; Payne et al.,
2004; Maurer et al., 2002; McCabe and Hay, 1995; Hamlet
and Lettenmaier, 1999; Wolock and McCabe, 1999; Ashfaq
et al., 2010). Output from global climate models (GCMs) is
usually downscaled, bias corrected, and used in conjunction
with hydrologic models to assess future water availability.
However, owing to resource limitations, many hydro-climate
impact assessments either are focused on smaller US re-
gions or provide lower spatial resolution (Christensen et al.,
2004; Payne et al., 2004; Maurer et al., 2002; McCabe and
Hay, 1995). Repeated efforts may be needed for fundamen-
tal data processing and model calibration, and these may un-
avoidably reduce the amount of computing time available for
the more challenging task of assessing climate change im-
pacts. To extend geographical coverage, refine spatial reso-
lution, and make hydro-climate impact assessment more ef-
ficient, a comprehensive set of calibrated physical parame-
ters is desired that can provide the most up-to-date, high-
resolution watershed soil, vegetation, elevation, and other
hydrologic characteristics. If a fine-resolution hydrological
model parameter data set could be pre-organized, generally
calibrated, and constantly updated, it would enable numerous
researchers to easily extend hydro-climate impact assessment
efforts to different watersheds.

One major structural difference between climate and hy-
drologic models is their respective requirements for vertical
and horizontal resolution. Although spatial resolution is rel-
atively less critical for current GCMs, they do need more
vertical layers to better simulate the boundary layer and tro-
pospheric processes that govern complex land–atmosphere–
ocean interactions at varying timescales. However, horizon-
tal resolution is the dominant factor for hydrologic models,
since complicated topography and heterogeneous land sur-
face characteristics have the greatest impacts on model per-
formance. Previous studies have shown that runoff is sensi-
tive to spatial variations in soil properties, precipitation in-
puts, and topography (Haddelenad et al., 2002; Nijssen et
al., 2001; Sharif et al., 2007; Dooge and Bruen, 1997; Merz
and Plate, 1997; Shah et al., 1996; Wolock and Price, 1994)
and finer resolution data input would result in better model
performance in comparing simulated and observed discharge

(Shrestha et al., 2006). Additionally, fine-resolution hydro-
logical model parameter data sets are needed to explore tasks
such as identifying climatic controls on the spatial variabil-
ity of hydrologic parameters; performing statistical analysis
between climatic variables and land surface processes and
states; and developing subgrid parameterization approaches
for hydrologic parameters, particularly in wet and dry con-
ditions. Therefore, to enhance the performance of hydro-
logic simulations for climate change impact assessment, one
would need to simultaneously improve both spatial resolu-
tion (for hydrologic research needs) and geographical cover-
age (for climate change research needs). Maurer et al. (2002)
has developed a long-term hydrologically consistent data set
for the conterminous US at 1/8◦ (∼ 12 km) spatial resolu-
tion for water and energy budget studies. The data set was
recently extended by Livneh and Lettenmaier (2013) for the
time period of 1915–2011 with a refined 1/16◦ (∼ 6 km) res-
olution. With the continuous improvement of spatial reso-
lution through regional climate models (e.g. North Ameri-
can Regional Climate Change Assessment Program and Co-
ordinated Regional Climate Downscaling Experiment), re-
fined climate projections will soon become available. A cor-
responding enhancement of hydrologic models is hence re-
quired for detailed hydro-climate impact assessment.

Given the motivation, a data- and computation-intensive
effort was performed in this study. A widely used hydro-
logic model, variable infiltration capacity (VIC), was chosen
as the baseline hydrologic model in this initial effort. Using
multiple state-of-the-art geospatial data sets for the conter-
minous US, various key hydrologic model inputs – includ-
ing topography, soil characteristics, vegetation, land surface
classification, meteorological forcing, and runoff observation
– were organized in a nationally consistent 1/24◦ (∼ 4 km)
grid and grouped by the US Geological Survey (USGS) 8-
digit hydrologic unit code (HUC8 or subbasin; Seaber et
al., 1987). Since precipitation and other hydrologic variables
are highly resolution dependent (Gao et al., 2006), the re-
finement from the commonly used 1/8◦ (∼ 12 km) resolu-
tion (e.g. Maurer et al., 2002; Mitchell et al., 2004) will al-
low more flexibility in characterizing detailed hydrologic re-
sponses, particularly for extreme hydrologic events. In addi-
tion, to spatially increase the model accuracy across different
geographical locations, each HUC8 subbasin was calibrated
independently through a computationally intensive exercise.
By using a multi-site (watershed) calibration approach, we
hope that the model performance can be consistently im-
proved across various subbasins. This approach of refining
model performance uniformly across all HUC8 subbasins
is new and different from previous studies (e.g. Maurer et
al., 2002). A parallelization scheme was developed for each
of the 2107 HUC8 subbasins to greatly reduce the required
computation time. Using high-performance supercomputing,
an exhaustive model calibration exercise was then performed
to improve the model accuracy across the conterminous US.
The calibrated model was evaluated using USGS observed
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Fig. 1.Effect of spatial resolution in hydrologic modeling.

runoff, and the evaluation showed that the parameter data set
results in satisfactory performance for most US HUC8 sub-
basins. In Sect. 2, the data source and methodology used to
develop the parameter data sets are described. The current
model performance is presented in Sect. 3, and a summary
and conclusions are provided in Sect. 4.

2 Data and methodology

2.1 Study area and assessment grids

The effect of spatial resolution on hydrologic modeling is il-
lustrated in Fig. 1 for the Ashley–Brush Subbasin in Utah
(HUC8 ID 14060002). Based on the 1/3 arcsec-resolution
(∼ 10 m) USGS national elevation dataset (NED; Gesch et
al., 2002), the average elevation was computed for both 1/24◦

(∼ 4 km) and 1/8◦ (∼ 12 km) grids. Flow direction and flow
accumulation were then derived using standard geographi-
cal information system (GIS) software. Grids with flow ac-
cumulation values of greater than 20 in Fig. 1a and greater
than 2 in Fig. 1b are marked in grey, illustrating the locations
of rivers seen by computer models. Three USGS gauge sta-
tions (09261700, 09263500, and 09271550) are also marked
in Fig. 1. Whereas the 1/24◦ grids can capture two streams,
the 1/8◦ grids fail to depict the system. Without additional in-
formation, the hydrological model might consider both out-
lets (09263500 and 09271550) as being located on the same
river, which would directly affect the model calibration and
validation. In addition, most of the 1/8◦ grids flow to the
neighboring subbasin instead of to the two outlets because
of the insufficient spatial resolution for this watershed.

Therefore, to refine hydro-climate assessment from the re-
gional to the watershed scale, spatial resolution is key. After
evaluating the available resources, it was decided to select
4 km as the targeted resolution, which would require 9 times
the computational resources needed for the commonly used
12 km grids, plus some additional effort for large data set

management and quality control. The 4 km grids selected
herein in fact follow the same configuration as the Parameter-
elevation Regressions on Independent Slopes Model meteo-
rological data sets (PRISM; Daly et al., 2002), with the north
boundary extending to 53◦ N to cover the entire Columbia
River basin on the Canadian side. Since PRISM is recog-
nized as the most accurate grid-based monthly meteorolog-
ical observation of precipitation and temperature based on
ground-based meteorological stations, it is convenient to use
the same grid configuration for future model evaluation and
comparison. Each 4 km grid was given a unique identifier
and further labeled with USGS HUC8 IDs. While our fo-
cus in this paper is on the conterminous US, some headwater
basins in Canada (e.g. British Columbia) and Mexico also
contribute to the downstream hydrology and should eventu-
ally be considered. As a placeholder, the watershed boundary
outside the conterminous US was obtained from the USGS
National Hydrography Dataset Plus, version 1 (EPA/USGS,
2010). When the forcing and parameter data are available,
they are also organized in a consistent format. Further sim-
ulation and calibration for the non-US region will be con-
ducted in future studies. Overall, there are∼ 480 000 grid
points and 2107 HUC8s in 18 hydrologic regions (HUC2)
in the conterminous US. HUC2 and HUC8 are illustrated in
Fig. 2.

2.2 Meteorological forcing

“Meteorological forcing” refers to the required meteorolog-
ical inputs for hydrologic modeling, including precipitation,
temperature, wind speed, and others. Conventionally, these
values are looked up from surface weather observation sta-
tions (e.g. National Weather Service Cooperative Observer
Program) and then spatially interpolated for further hydro-
logic application. However, given the heavy data processing
requirements, such an approach is not applicable for large-
scale hydrologic simulation; therefore, pre-processed grid-
based observations are primarily used.

www.hydrol-earth-syst-sci.net/18/67/2014/ Hydrol. Earth Syst. Sci., 18, 67–84, 2014



70 A. A. Oubeidillah et al.: A large-scale, high-resolution hydrological model parameter data set

Fig. 2. Study area in this study. The smaller polygons represent the hydrologic subbasins (HUC8) and the larger polygons with thicker grey
boundaries represent the hydrologic regions (HUC2). The 2-digit numbers represent the HUC2 ID.

Several meteorological forcing data sets are commonly
used in hydrologic studies for the conterminous US. These
data sets are either fully based on observation or partially
assimilated through weather forecasting models. Four were
selected for consideration in this study: PRISM, Maurer,
Daymet, and North American Regional Reanalysis (NARR).
PRISM provides accurate grid-based observations of pre-
cipitation and temperature by considering topographical ef-
fects and some other adjustment factors (Daly et al., 2002,
2008). It is available on a monthly timescale from 1895 to
the present and provides 1/24◦ (∼ 4 km) spatial resolution
(http://www.prism.oregonstate.edu/). Maurer et al. (2002) is
a widely used forcing data set for hydrologic studies (Livneh
and Lettenmaier, 2013). It is based on observation and is
available on a daily timescale from 1950 to 2010 in 1/8◦

(∼ 12 km) spatial resolution. Targeted for fine-scale eco-
logical studies, Daymet (Thornton et al., 1997) is another
commonly used meteorological data set based on ground-
based meteorological stations (White et al., 2006; Keane
et al., 2008; Manter et al., 2005). Daymet is available on
a daily timescale from 1980 to the present at a projected
1 km spatial resolution (http://daymet.ornl.gov/dataaccess).
NARR (Mesinger et al., 2006) is an assimilated meteorolog-
ical reanalysis data set that provides a complete set of me-
teorological variables (e.g. pressure, wind). It is available on
a 3 h timescale from 1979 to the present at a 36 km horizon-
tal grid spacing. Some other new meteorological forcing data
sets are also available (e.g. Abatzoglou, 2013).

To compare differences, the four selected meteorologi-
cal forcing data sets were processed to a consistent format
on the 4 km grids described in Sect. 2.1. Spatial interpola-
tion was performed for both Maurer and NARR from 1/8◦

(∼ 12 km) and 36 km to 1/24◦ (∼ 4 km) for direct compar-
ison. The 3 h wind speed from the lowest layer in NARR
was used to calculate mean daily wind speed for compari-
son with the wind speed provided by Maurer et al. (2002).

Spatial aggregation was performed for Daymet to gather in-
formation from 1 km to 1/24◦ (∼ 4 km) horizontal grid spac-
ing. Overall, daily precipitation and minimum and maximum
temperatures are available from 1980 to 2010 for Maurer,
Daymet, and NARR; but daily wind speed is available only
for Maurer and NARR. An overall comparison is presented in
Sect. 3.1. Methodologically speaking, aggregation is consid-
ered to be more justifiable than interpolation since it does not
result in information loss. The direct interpolation of Maurer
and NARR to 1/24◦ (∼ 4 km) resolution, while sufficient for
the purpose of comparison at the HUC8 scale in Sect. 3.1,
is questionable for 1/24◦ (∼ 4 km) simulation unless other
factors such as topography and elevation are also considered
during interpolation. Since the main purpose of this study is
not to create a new forcing data set, Daymet was considered
to be the most appropriate choice for 1/24◦ (∼ 4 km) sim-
ulation given its finer 1 km spatial resolution. Daymet may
be further improved through monthly scale bias adjustment
(e.g. Ashfaq et al., 2010), but that was not done in the current
study. For non-US regions in which Daymet is unavailable,
NARR information was used.

2.3 Soil parameters

Soil parameters are mainly used to describe the process of
infiltration and base flow generation in hydrologic modeling.
Given their heterogeneous nature and the lack of an effective
remote sensing method, soil parameters remain the most un-
certain of all parameters. Intensive hydrological model cal-
ibration is usually performed on soil parameters to improve
overall model performance. In this initial effort, the conter-
minous US soil data set (CONUS-SOIL; Miller and White,
1998) was used to provide the required soil information
for hydrologic modeling. CONUS-SOIL was derived from
the State Soil Geographic data set (Schwarz and Alexander,
1995). It provides commonly used soil characteristics, such
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as texture, bulk density, and porosity, arranged in 11 standard
layers ranging from 0 to 2.5 m in depth and is specifically
aimed at hydro-climate applications. The CONUS-SOIL data
set is available in 1 km spatial resolution and is provided in
common GIS formats (e.g. raster or polygon). Each CONUS-
SOIL grid is spatially joined to the 4 km grids (described in
Sect. 2.1) so that the required soil characteristics can be sum-
marized efficiently for further hydrologic application. Future
effort will be invested in collecting soil characteristics for
non-US regions that are not covered by CONUS-SOIL.

2.4 Vegetation parameters

In considering the water budget for a large study domain,
uptake and evapotranspiration from vegetation is a critical
factor, since it has a significant influence on the seasonality of
the simulated hydrology. Because of the rapid improvement
in remote sensing data over the past decade, historical surface
vegetation can now be more effectively captured to support
large-scale hydro-climate simulation.

In this study, both the University of Maryland (UMD)
land cover classification (Hansen et al., 2000) and the Na-
tional Aeronautics and Space Administration Moderate Res-
olution Imaging Spectroradiometer (MODIS) model 15A2
leaf area index (LAI) information were imported. The UMD
land cover classification consists of 14 categories of vege-
tation (e.g. evergreen needleleaf forest, mixed forest) and is
available at 1 km spatial resolution in GeoTIFF format. To
link the 1 km land cover classification to the 4 km grids used
in this study, a conversion table for these two grid systems
was developed. Both grids were first converted to polygons
and then spatially intersected to form a massive table that
contains the overlapping surface area of each spatial unit and
the unique identifiers from both data sets. This massive con-
version table was then used to summarize the portion of the
UMD land cover classification in each 4 km grid efficiently.

To capture the seasonal pattern of surface vegetation, the
MODIS15A2 LAI was included. LAI, defined as the green
leaf area per unit of ground area (leaf area/ground area), is
a widely used dimensionless canopy index. Depending on
the type of vegetation, LAI may show significant seasonal
trends. The historical time series of LAI were constructed
using MODIS remote sensing data. The MODIS15A2 infor-
mation is available every 8 days and is stored in HDF format
at approximately 1 km spatial resolution in sinusoidal projec-
tion. For consistency with the UMD land classification, the
MODIS LAI values were spatially interpolated to the UMD
1 km grids. The interpolated 8 day LAI values were then ag-
gregated for each month and linked to the 4 km grids via the
same conversion table developed for the UMD grids. Over-
all, the monthly LAI time series are organized from 2003 to
the present and can be used to support various hydrologic ap-
plications. The overall statistics are summarized in Sect. 3.2.

2.5 Elevation and topography

Elevation and topography have a significant influence on sur-
face hydrology. For instance, slope directly affects flow ve-
locity, and local topographical depressions may create im-
poundments and delay surface runoff. Snow accumulation
and snowmelt are also closely related to elevation. To re-
fine the spatial resolution of a hydro-climate assessment, a
fine-resolution elevation data set is needed. In this study,
the 1/3 arcsec-resolution (∼ 10 m) USGS NED (Gesch et al.,
2002) was used for the conterminous US. NED is a seamless
data set with the best available raster elevation data in the
US. Similar to the treatment of UMD grids, each NED grid
was labeled with a unique 4 km grid identifier. Average ele-
vation, average slope, and the histogram of the elevation at
each 4 km grid were then computed. For regions outside the
US, the 90 m Shuttle Radar Topography Mission elevation
was used instead (Farr et al., 2007). The pre-organized infor-
mation can be processed efficiently for further applications.

2.6 Observed streamflow and runoff

Historical hydrologic observations are required for model
calibration and validation. Two types of observations,
streamflow and runoff, can be used to support hydrologic
model calibration. Gauge-based streamflow observations di-
rectly measure flow discharge at a specific river section.
Comprehensive daily flow observations can be obtained from
the USGS National Water Information System (NWIS) for
more than 22 000 current and retired gauge stations through-
out the US.

Another observational product, the USGS WaterWatch
runoff (Brakebill et al., 2011), was found to be more useful
in this study. Derived from the comprehensive NWIS gauge
observation, WaterWatch runoff is the assimilated time se-
ries of flow per unit of area calculated for each contermi-
nous HUC8 subbasin. For each HUC8 subbasin, multiple
NWIS gauge stations located within or downstream of the
HUC8 were used to estimate the runoff generated locally at
each HUC8. The contributing drainage areas (both gauge-
to-HUC8 and HUC8-to-gauge) were converted as weighting
factors to merge runoff time series from all stations. As a
result, gauges with drainage coverage most similar to that
of the particular HUC8 received the highest weights. There-
fore, the influence of highly regulated gauge stations (usually
with large drainage coverage across multiple HUC8s) could
be reduced. This approach may effectively assimilate stream-
flow observations from multiple gauge stations as a consis-
tent areal HUC8 runoff measurement that has a unit simi-
lar to that for precipitation (depth/time). WaterWatch runoff
is available monthly from 1901 to the present. Note that
WaterWatch runoff is based on an earlier version of water-
shed boundaries and was found to be slightly different from
the new watershed boundaries adopted in Sect. 2.1. Using
the polygon shapefiles from both versions of the watershed
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boundaries, a conversion table based on overlapping drainage
areas was developed to adjust the WaterWatch runoff to a
consistent watershed boundary for further comparison.

Although WaterWatch runoff is a promising new data set
for hydro-climate studies and has been found useful in Ash-
faq et al. (2013) and Sale et al. (2012), there are some ques-
tions and limitations that deserve further exploration. For in-
stance, for HUC8 subbasins with very few gauge stations
(e.g. arid regions in the central US), data accuracy and qual-
ity would be an issue. In addition, since the exact weight-
ing factors for each station are not published by USGS, it
would be difficult to examine and further quantify the influ-
ence of highly regulated stations (e.g. reservoir or diversion)
in WaterWatch runoff. Nevertheless, for the purposes of ini-
tial model development and calibration, WaterWatch should
be an ideal choice given its consistent format across various
subbasins. Future detailed studies on the accuracy of Water-
Watch runoff would be highly useful.

2.7 Baseline hydrologic model application

In this study, the widely used VIC model (Nijssen et al.,
1997; Liang et al., 1994, 1996; Cherkauer et al., 2002) was
selected as the baseline hydrologic model for the contermi-
nous US. VIC has been successfully tested in a many hy-
drologic studies and large river networks (Gao et al., 2010;
Ashfaq et al., 2010; Su et al., 2005; Nijssen et al., 1997, 2001;
Bowling et al., 2004; Lohmann et al., 1998). The current VIC
model studies were mostly conducted at 1/8◦ spatial resolu-
tion (∼ 12 km). Given its wide acceptance and the fact that it
can be directly implemented for parallel computing, the VIC
model was considered the most suitable baseline hydrologic
model for this initial effort. VIC is a process-based hydrolog-
ical model that simulates evapotranspiration, snow pack, sur-
face runoff, base flow, and other hydrologic mechanisms at
daily or subdaily time steps. The water and energy balances
are solved for multiple elevation bands and vegetation types,
which allows the model to capture the subgrid-scale vari-
ability of these land surface features. The model simulates
all processes in each grid cell independently in an equally
spaced grid. Infiltration and runoff are estimated using the
VIC model curve, which uses the soil moisture content of
the upper two soil layers to approximate the spatial variabil-
ity of surface saturation. The empirical Arno curve is used to
generate base flow based on the soil moisture content in the
bottom layer (Cherkauer and Lettenmaier, 2003). A routing
algorithm external to the VIC model can then be used to sim-
ulate the streamflow at a specified location by routing runoff
and base flow from each grid cell (Lohmann et al., 1998).

VIC requires a large number of parameters, including
soil, vegetation, elevation, and daily meteorological forc-
ings, at each grid cell. By taking daily precipitation, maxi-
mum/minimum temperature, and wind speed as inputs, VIC
computes potential evapotranspiration using the Penman–
Monteith equation (see Maidment, 1993). Other forcings,

including shortwave and long-wave radiation, relative hu-
midity, and vapor pressure, are estimated using algorithms
from MTCLIM (Kimball et al., 1997; Thornton and Run-
ning, 1999) at subdaily time steps (3 h). Additionally, sub-
daily temperatures are estimated within the model as a pa-
rameterization of maximum/minimum temperature (Bohn et
al., 2013).

For soil physical properties, the CONUS-SOIL informa-
tion was divided into three layers covering the total depth
from 0 to 2.5 m (CONUS-SOIL layers 1 and 2 to VIC model
layer 1, CONUS-SOIL layers 3–7 to VIC model layer 2,
and CONUS-SOIL layers 8 and 9 to VIC model layer 3).
The 1 km CONUS-SOIL information was then aggregated to
4 km grids. When a three-layer configuration was used, a to-
tal of 53 soil parameters was required, including saturated
hydrologic conductivity, initial soil moisture, bulk density,
layer thickness, fraction of soil moisture at wilting point, and
some other conceptualized parameters such as the variable
infiltration curve parameter (binfilt ), which required further
calibration. Although CONUS-SOIL contains a number of
different soil characteristics, only a few are directly called
out in the VIC model soil parameter file (e.g. bulk density).
Most VIC soil parameters are derived from porosity and soil
texture class according to a standard index table provided by
the VIC modeling group. A few other non-soil parameters
requested in the soil parameter file – such as the average an-
nual air temperature, average annual precipitation, average
elevation, and slope (used to derive the maximum velocity of
the base flow) – were derived from Daymet and NED. If the
CONUS-SOIL information was totally unavailable for a spe-
cific grid point, the information from the nearest grid point
was used instead.

The VIC model vegetation parameter file describes the
number and percentage of vegetation types in each grid cell.
The conversion table described in Sect. 2.4 was used to effi-
ciently summarize the UMD vegetation classification to the
format requested by VIC. To improve the characterization
of surface vegetation, a data-intensive enhancement was ap-
plied to import the monthly LAI observation from MODIS at
each 4 km grid. The monthly LAI was first computed from
the 2003–2008 MODIS at each 1 km UMD grid and then
converted to the subgrid vegetation information in the VIC
model format. Although the time frame between UMD (be-
fore 2000) and MODIS LAI (2003–2008) is somewhat in-
consistent, given that there is no suitable alternative, both
data sets are considered to be the best proximity for the actual
vegetation class and LAI.

To better represent snow accumulation and snowmelt, sub-
grid elevation band information can be set up (i.e. frac-
tions of the grid area with their corresponding mean ele-
vations). Since NED provides a much finer spatial resolu-
tion (10 m) than the 4 km grid, the subgrid elevation band
can be described in considerable detail. However, the ele-
vation band should also be considered in terms of the re-
quired computation resources. It was found that the required
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Table 1.Selected VIC parameters for calibration.

Parameter Range Units Description

binfilt 0.001∼ 0.8 N/A Variable infiltration curve parameter
exp 8∼ 30 N/A Exponent of the Brooks–Corey drainage equation
thick2 0.1∼ 2 m Thickness of soil layer 2
Ds 0∼ 1 N/A Fraction of the maximum velocity of base flow where nonlinear base flow begins
Ws 0.5∼ 1.0 N/A Fraction of maximum soil moisture where nonlinear base flow occurs

computational time is roughly proportional to the number of
elevation bands; therefore, in some flat regions, it might not
be worthwhile to use multiple bands. For flexibility, instead
of creating elevation bands at fixed intervals, the histogram
of elevation at each 4 km was summarized. Depending on the
required research question and the available resources, a suit-
able number of elevation bands can be generated in the VIC
model format efficiently.

2.8 Calibration through high-performance computing

Although the process-based models incorporated various ex-
plicit physical mechanisms, given the complexity of hydro-
logic phenomena, parts of the processes still relied on con-
ceptual statistical parameterization. As a result, several non-
physically based parameters required further calibration be-
fore a model could be put to use. Calibration was also re-
quired for those parameters with high measurement uncer-
tainty (e.g. most of the soil parameters), since they may af-
fect the performance of hydrologic modeling significantly.
Nevertheless, a full hydrologic calibration is extremely re-
source intensive, especially when the model application re-
quires fine resolution and sophisticated mechanisms. As rec-
ommended by other studies, calibrating the model at multiple
locations at a small scale may improve streamflow predica-
tion (Chien et al., 2013; Zhang et al., 2008; Wang et al., 2012;
Jetten et al., 2003). For example, Jetten et al. (2003) conclude
that predicting the hydrologic response at a single watershed
outlet may result in the phenomenon of “predicting the cor-
rect result for the wrong reasons” and suggested using multi-
site calibration within a watershed to reduce the possibility of
accurate simulation at a single watershed outlet from a com-
bination of locally inaccurate simulations. For this reason, we
performed a first-order modeling calibration for each HUC8
consistently through a computationally exhaustive algorithm
to improve the overall model performance. This large-scale
calibration was mainly targeted at narrowing the possible
range of suitable parameter values in each HUC8. Depend-
ing on the needs of future research, further fine calibration
can be performed efficiently.

Following the sensitivity analysis by Demaria et al. (2007),
five sensitive VIC parameters were selected for calibration,
including the variable infiltration curve parameter (binfilt ), ex-
ponent of the Brooks–Corey drainage equation (exp), thick-
ness of soil layer 2 (thick2), fraction of the maximum velocity

of base flow at which nonlinear base flow begins (Ds), and
fraction of maximum soil moisture at which nonlinear base
flow occurs (Ws). Although other VIC parameters could also
be important (e.g. thickness of soil layer 3, thick3), they
were not considered in the current effort given the compu-
tational resource limitations. Although the soil parameters
were obtained with a pre-specified soil depth, the thickness
of soil layer 2 (root layer) was treated as a parameter and
can be changed during calibration. Given that the USGS Wa-
terWatch runoff can provide an estimate of local runoff at
each HUC8, our calibration was performed by matching the
simulated total monthly runoff (base flow+ surface runoff)
to the observed WaterWatch monthly runoff. In other words,
the offline routing model was not used, a decision similar to
that of Demaria et al. (2007). For each parameter, three com-
binations, including the upper and lower bounds and the sug-
gested default values, were chosen for calibration (Table 1).
A total of 243 (35) parameter scenarios were then prepared.
The VIC model simulation was driven by Daymet daily me-
teorological forcing (precipitation and minimum/maximum
temperature) and NARR daily wind speed from 1980 to
2008. Year 1980 was treated as the model startup period,
1981–2000 as the calibration period, and 2001–2008 as the
validation period. The VIC model simulation was performed
in 3 h time steps using the energy and water balance mode.
VIC version 4.1.1 was used in the current study, and the
recently released VIC 4.1.2 will be incorporated after the
model development work has been stabilized.

To effectively manage the data flow, all forcing, soil, veg-
etation, global parameter, and output flux files were orga-
nized in separate HUC8 folders. Depending on the total wa-
tershed area, all grid points within a HUC8 were subdivided
into 16, 32, or 48 computation units. Each computational unit
had separate global, soil, vegetation, and elevation parame-
ter files and could be executed independently. Computation
was performed using Oak Ridge National Laboratory’s Ti-
tan supercomputer, a Cray XK7 system with 18 688 com-
putational nodes, each equipped with four quad-core CPUs
and two GPU cards. The extensive simulation exhausted
∼ 1.5 million CPU-hours (i.e. the number of CPUs multi-
plied by the average hours used by each CPU), approxi-
mately 171 calendar years if done by a single-core desktop
machine. Note that we had originally planned to use a 10-
layer elevation band during calibration, but it would have

www.hydrol-earth-syst-sci.net/18/67/2014/ Hydrol. Earth Syst. Sci., 18, 67–84, 2014



74 A. A. Oubeidillah et al.: A large-scale, high-resolution hydrological model parameter data set

Table 2.Matrices used for model calibration and evaluation.

Matrix Name Equation

R2 Coefficient of determination

[
n∑

t=1

(
Ot −O

)(
Yt −Y

)]2

[
n∑

t=1

(
Ot −O

)2

][
n∑

t=1

(
Yt −Y

)2

]

Nash Nash–Sutcliffe model efficiency coefficient 1−

n∑
t=1

(Ot −Yt)
2

n∑
t=1

(
Ot −O

)2

MAE Mean absolute error 1
n

∑n
t=1 |Ot − Yt|

RMSE Root mean square error
√

1
n

∑n
t=1 (Ot − Yt)

2

resulted in a huge increase in the required computational time
(an estimated 15 million CPU hours, approximately) over our
allowable resource. Given that the current calibration was tar-
geted for total monthly runoff and was less affected by the
elevation band, a one-layer elevation band was used. When
hydro-climate projections are produced for future research,
multiple elevation bands will be implemented.

Four statistical matrices, the coefficient of determination
(R2), Nash–Sutcliffe model efficiency coefficient (Nash),
mean absolute error (MAE), and root mean square error
(RMSE), were used to evaluate model performance. The ma-
trices are summarized in Table 2, in whichOt andYt rep-
resent the observed and modeled monthly total runoff from
month 1 ton, andO andY represent the mean ofOt andYt.
For each HUC8, daily total runoff was computed by sum-
ming base flow and surface runoff at each 4 km grid and
then aggregated up to calculate the HUC8 monthly runoff
(Yt). The observed monthly runoff (Ot) from the USGS Wa-
terWatch was then used for model evaluation. In addition to
runoff analysis, the simulated 1 April snow water equivalent
(SWE) was compared with the snow course observations.
The results are reported in Sect. 3.4.

3 Results and discussions

3.1 Differences among forcing data sets

To understand the differences among four selected forcing
data sets (Maurer, PRISM, Daymet and NARR), an over-
all comparison was performed (illustrated in Fig. 3). Aver-
age daily maximum temperature (Tmax), daily minimum tem-
perature (Tmin), annual total precipitation (P ), and average
wind speed (W ) from 1980 to 2008 for each of the 2107
HUC8s were computed for comparison. The correlation co-
efficients among the HUC8 average values were also com-
puted. Given PRISM’s high accuracy (Daly et al., 2008), it is
placed on thex axis as the target for comparison. Figure 3a

illustrates the difference forTmax. Although both Maurer and
Daymet are close to the PRISM observation, NARR seems
to be much warmer in most of the HUC8s. The difference is
not as significant forTmin in Fig. 3b, where most of the data
sets are similar to each other; NARR is slightly warmer than
the Daymet and Maurer data sets. The warm bias of NARR
was also reported by Royer and Poirier (2010). Additionally,
Daly et al. (2008) showed a cold bias in the Daymet data set
compared with the PRISM January minimum temperature,
whereas differences between PRISM and Daymet July max-
imum temperatures are relatively small. For the difference
of P , a consistent observation can be made in Fig. 3c. Both
Daymet and Maurer are closer to PRISM, but NARR is more
divergent than the other data sets. Daly et al. (2008) showed
that the differences ofP , Tmin andTmax between Daymet and
PRISM were more prominent in the western US than in the
east. They also indicated that Daymet tended to be drier than
PRISM in some locations and wetter in others; this was be-
cause Daymet did not resolve rain shadows well owing to an
inability to recognized topographic facets. Given that wind
speed is available only for Maurer and NARR, only one set
of points is plotted in Fig. 3d. A significant difference can
be seen in the two data sets, with a correlation coefficient of
around 0.28.

A further comparison of high/low daily quantiles is shown
in Fig. 4. The mean annual 95 % quantile of daily maxi-
mum temperature (Tmax,95, Fig. 4a), 5 % quantile of daily
minimum temperature (Tmin,05, Fig. 4b), 95% quantile of
daily precipitation (P95, Fig. 4c), and 95% quantile of daily
wind speed (W95, Fig. 4d) from 1980–2008 are plotted for
each HUC8. Since PRISM is available only in a monthly
scale, it is not included in the comparison. ForTmax,95,
Daymet remains similar to Maurer, but the difference be-
tween NARR and others becomes more significant. The com-
parison ofTmin,05 is similar to that ofTmin (Fig. 3b), but
some HUC8s seem to be much cooler in Maurer than in
Daymet. For high precipitationP95, although Daymet, Mau-
rer, and NARR are generally linearly correlated, Daymet was

Hydrol. Earth Syst. Sci., 18, 67–84, 2014 www.hydrol-earth-syst-sci.net/18/67/2014/



A. A. Oubeidillah et al.: A large-scale, high-resolution hydrological model parameter data set 75

0 10 20 30 40

0

10

20

30

40

PRISM T
max

 (C)

D
ay

m
et

/M
au

re
r/

N
A

R
R

 T
m

ax
 (

C
) (a) T

max
     ρ

P,D
 = 1.00

     ρ
P,M

 = 1.00
     ρ

P,N
 = 0.94

−10 0 10 20 30

−10

0

10

20

30

PRISM T
min

 (C)

D
ay

m
et

/M
au

re
r/

N
A

R
R

 T
m

in
 (

C
) (b) T

min
     ρ

P,D
 = 1.00

     ρ
P,M

 = 0.99
     ρ

P,N
 = 0.98

0 1000 2000 3000 4000
0

1000

2000

3000

4000

PRISM P (mm/yr)

D
ay

m
et

/M
au

re
r/

N
A

R
R

 P
 (

m
m

/y
r) (c) P

     ρ
P,D

 = 0.99
     ρ

P,M
 = 1.00

     ρ
P,N

 = 0.98

 

 

NARR Maurer Daymet

2 4 6 8
1

2

3

4

5

6

7

8

NARR W (m/s)
M

au
re

r 
W

 (
m

/s
)

(d) W
     ρ

N,M
 = 0.28
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Fig. 5.Maps of mean daily wind speed.
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Fig. 6.The MODIS leaf area index summarized by the UMD land cover classification.

found to consistently provide a higher value than Maurer and
NARR. That is not a surprise, since precipitation is highly
resolution dependent (Gao et al., 2006); therefore, the finer
resolution Daymet should report precipitation extremes more
accurately at the 4 km scale. In other words, even using the
same ground-based observations, the precipitation extremes
calculated at 12 km resolution will be smoothed further than
those calculated at 4 km; and it is unlikely that such spatial
variability can be faithfully reconstructed from coarser res-
olution to finer resolution. ForW95, the comparison is very
similar to that forW (Fig. 3d).

To understand the differences, the geographical wind
speed patterns are plotted in Fig. 5. Clearly, the inconsis-
tency should be from the differences in the original data
sources. The wind speed provided in Maurer’s data set was
calculated from the coarser-resolution reanalysis data set and
hence shows a smoother pattern in Fig. 5b. Given that NARR
can provide a more delicate local wind speed pattern, the
NARR wind speed was chosen as the default wind speed in
this study.

3.2 Monthly and annual statistics of LAI

To examine the variability of the MODIS LAI, the monthly
and annual average LAI are plotted in Fig. 6. For each UMD
class, the mean monthly MODIS LAI values were calculated
for the entire conterminous US from January 2003 to De-
cember 2008. The monthly average LAI values are shown in
Fig. 6a, in which the highest LAI values are found for ever-
green broadleaf, deciduous broadleaf and mixed forest, and
the lowest LAI values for bare ground, open shrubland, and
closed shrubland. In terms of seasonal pattern, the LAI val-
ues for evergreen broadleaf are consistently high across all
seasons. Both deciduous broadleaf and mixed forest have the
strongest seasonal variation and can be larger than evergreen
broadleaf during summer. The annual averages are plotted
in Fig. 6b and further broken down to 18 conterminous US
hydrologic regions in Fig. 7. Given that the annual variabil-
ity is not significant in both figures, it should be justifiable
to calculate the required VIC monthly vegetation parameters
by averaging the monthly MODIS LAI values from 2003 to
2008. This simplification is needed because the current VIC
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Fig. 7. Summary of MODIS leaf area index (m2 m−2, y axis) from 2003 to 2008 (x axis) by the UMD land cover classification for each US
hydrologic region.

model does not allow dynamic vegetation simulation. It is in-
teresting to note that the LAI values reported in the urban and
built land class are not among the smallest. Those results may
be explainable by considering that the findings are based on
1 km grid resolution, and at that resolution, many suburban
areas are still covered by vegetation.

3.3 Difference between runoff aggregation and routing

To simulate streamflow in the VIC model, a separate rout-
ing model developed by Lohmann et al. (1998) was required.
The routing model simulated a channel network with a num-
ber of nodes, each of which represented information from a
grid cell. A unit hydrograph was then used to route the simu-
lated surface runoff and base flow through a channel network
using a linearized St. Vennant’s equation (Lohmann et al.,
1998). The routing model required five types of input: flow
direction, grid area fraction, flow velocity, watershed bound-
ary mask, and gauge locations. Whereas flow direction, grid
area fraction, and watershed boundary can be derived from
digital elevation models, flow velocity and unit hydrograph

involve larger uncertainty and cannot be easily estimated. As
discussed in Sect. 2.1, the resolution of digital elevation mod-
els also has a significant influence on the accuracy of river
networks.

Although the major purpose of a routing model is to ac-
count for the travel time of river flow, this step may rea-
sonably be skipped in smaller watersheds (i.e. when travel
time is short) by using a simpler runoff aggregation method
(Demaria et al., 2007). To evaluate the difference, a compara-
tive analysis was performed for two randomly selected USGS
gauge stations. Both gauge 01047000 in HUC01030003 and
02342500 in HUC03130003 have experienced little or no
anthropogenic disruption and have complete records from
1980 to 2008. Routing models were set up to calculate
streamflow at these two gauge stations. The simulated total
monthly runoff (surface runoff+ base flow) and monthly av-
erage streamflow are illustrated in Fig. 8; runoff observations
were taken from WaterWatch and gauge observations from
NWIS. The correlation coefficient (ρ) between the observed
and simulated runoff/streamflow was also calculated.
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Fig. 8. The comparison between observed and simulated runoff (left panels) and observed and simulated streamflow (right panels). Gauge
01047000 is located at HUC01030003 and gauge 02342500 is located at HUC03130003.
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Fig. 9.The USGS WaterWatch observed runoff versus the VIC simulated annual total runoff (surface runoff+ base flow) for both calibration
and validation periods for each HUC8 subbasin.

Generally speaking, the model performance showed large
similarities for both approaches, with correlation coefficients
between simulation and observation varying from 0.8 to 0.9.
Although the travel time was not modeled in the runoff ag-
gregation approach, the extra uncertainty induced by the
routing model was also avoided (e.g. flow speed, routing res-
olution), so pros and cons exist for both methods. Given that
our main objective was to provide a first-order calibrated hy-
drological parameter data set to expedite further efforts at
fine calibration, it is more efficient and consistent to cal-
ibrate VIC for each HUC8 through the runoff aggregation
approach. Also, since it is extremely time-consuming to de-
velop reasonable routing models for all HUC8s in the US, the

runoff aggregation approach is an easier alternative than spa-
tially examining the model performance for a great number
of watersheds in the US.

3.4 Overall model performance

Overall model performance is illustrated in Fig. 9. For each
HUC8, the WaterWatch-observed and VIC-simulated total
annual runoff (base flow+surface runoff) were computed for
both calibration and validation periods. The correlation co-
efficientsρ between observed and simulated HUC8 annual
runoff are 0.954 in the calibration period and 0.940 in the
validation period, which is satisfactory overall. The results
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Table 3.Summary of median HUC8 matrices for each hydrologic region.

Median statistics

Calibration period (1981–2000) Validation period (2001–2008)

R2 Nash MAE RMSE R2 Nash MAE RMSE
(mm yr−1) (mm yr−1) (mm yr−1) (mm yr−1)

01 New England 0.843 0.826 12.2 17.8 0.829 0.810 14.4 21.2
02 Mid-Atlantic 0.825 0.798 9.8 14.3 0.824 0.746 11.1 15.4
03 South Atlantic–Gulf 0.830 0.807 10.0 14.2 0.813 0.705 10.9 14.8
04 Great Lakes 0.757 0.703 9.2 13.1 0.748 0.633 9.7 14.0
05 Ohio 0.849 0.824 10.4 14.9 0.865 0.823 10.8 14.6
06 Tennessee 0.809 0.776 12.5 16.9 0.815 0.766 12.7 17.8
07 Upper Mississippi 0.713 0.668 8.5 12.6 0.764 0.692 9.0 12.8
08 Lower Mississippi 0.774 0.704 16.7 23.4 0.744 0.596 17.8 24.9
09 Souris–Red–Rainy 0.488 0.416 3.6 6.3 0.421 0.269 4.9 8.1
10 Missouri 0.368 0.156 2.8 4.0 0.433 −0.296 2.7 3.5
11 Arkansas White–Red 0.562 −0.006 8.9 12.2 0.596 −0.921 9.0 11.7
12 Texas Gulf 0.519 −0.442 11.1 14.8 0.573 −1.929 14.1 17.8
13 Rio Grande 0.078 −63.106 5.4 6.8 0.060 −56.580 5.2 6.4
14 Upper Colorado 0.339 0.113 5.0 6.6 0.409−0.767 4.3 5.7
15 Lower Colorado 0.160 −12.028 7.2 9.0 0.130 −34.077 4.7 5.3
16 Great Basin 0.394 −0.183 6.1 8.0 0.415 −2.020 5.6 7.0
17 Pacific Northwest 0.669 0.527 15.2 21.3 0.652 0.478 13.3 18.2
18 California 0.702 0.590 9.6 17.1 0.689 0.255 8.4 14.4

represent an improvement from 0.906 using an uncalibrated
4 km data set (i.e. with default parameters) and from 0.877
(Fig. 10) using the Ashfaq et al. (2010) 12 km data set, both
with a much larger spread.

To examine the model performance in different sea-
sons, Fig. 9 is further broken down into winter (December-
January-February, DJF), spring (March-April-May, MAM),
summer (June-July-August, JJA), and fall (September-
October-November, SON) in Fig. 11. It can be observed that
the current parameter set works best in winter, withρ = 0.966
in the calibration period andρ = 0.954 in the validation pe-
riod. A strong dry winter bias is observed in some HUC8s,
which require further calibration for future application. Fol-
lowing winter, the model performance in spring and fall re-
mains good, withρ greater than 0.929 in the calibration pe-
riod and 0.908 in the validation period. The worst model
performance is observed in summer, withρ = 0.866 in the
calibration period and 0.830 in the validation period. The
worse performance in summer is not surprising. Since we are
calibrating monthly time series across different seasons, the
Nash–Sutcliffe coefficient will be controlled more by wet-
ter months (winter) than drier months (summer). If the fu-
ture focus is on summer months, different objective functions
should be designed and used for further model adjustment.

In Fig. 9, it can be seen that the current parameter sets
overestimate runoff in multiple drier HUC8s. To spatially
examine the model performance for the entire contermi-
nous US, the observed and simulated annual runoff,R2,
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Fig. 10. The 1960–1999 USGS WaterWatch observed runoff ver-
sus the VIC simulated annual total runoff (surface runoff+ base
flow) for each HUC8 subbasin using the Ashfaq et al. (2010) 1/8◦

(∼ 12 km) resolution data set.

Nash, MAE, and RMSE for each HUC8 are illustrated in
Fig. 12. The median values of the HUC8 evaluation matrices
in each hydrologic region are also summarized in Table 3.
From Fig. 12a and b, it can be seen that VIC generally cap-
tures the spatial patterns of WaterWatch runoff. However, the
simulated runoff is higher in many HUC8s, especially in very
dry regions such as the Rio Grande (HUC 13), Lower Col-
orado (HUC 15), Texas (HUC 12), Great Basin (HUC 16),

www.hydrol-earth-syst-sci.net/18/67/2014/ Hydrol. Earth Syst. Sci., 18, 67–84, 2014



80 A. A. Oubeidillah et al.: A large-scale, high-resolution hydrological model parameter data set

0 1000 2000
0

500

1000

1500

2000

Obs. DJF R (mm)

S
im

. D
JF

 R
 (

m
m

) (a) Calibration
 ρ

DJF
 = 0.966

0 1000 2000
0

500

1000

1500

2000

Obs. MAM R (mm)

S
im

. M
A

M
 R

 (
m

m
) (b) Calibration

 ρ
MAM

 = 0.941

0 1000 2000
0

500

1000

1500

2000

Obs. JJA R (mm)

S
im

. J
JA

 R
 (

m
m

) (c) Calibration
 ρ

JJA
 = 0.866

0 1000 2000
0

500

1000

1500

2000

Obs. SON R (mm)

S
im

. S
O

N
 R

 (
m

m
) (d) Calibration

 ρ
SON

 = 0.929

0 1000 2000
0

500

1000

1500

2000

Obs. DJF R (mm)

S
im

. D
JF

 R
 (

m
m

) (e) Validation
 ρ

DJF
 = 0.954

0 1000 2000
0

500

1000

1500

2000

Obs. MAM R (mm)

S
im

. M
A

M
 R

 (
m

m
) (f) Validation

 ρ
MAM

 = 0.936

0 1000 2000
0

500

1000

1500

2000

Obs. JJA R (mm)

S
im

. J
JA

 R
 (

m
m

) (g) Validation
 ρ

JJA
 = 0.830

0 1000 2000
0

500

1000

1500

2000

Obs. SON R (mm)

S
im

. S
O

N
 R

 (
m

m
) (h) Validation

 ρ
SON

 = 0.908

Fig. 11.The USGS WaterWatch observed runoff (x axis) versus the VIC simulated seasonal total runoff (surface runoff+base flow,y axis)
for both calibration periods(a)–(d) and validation periods(e)–(f) for each HUC8 subbasin. Winter runoff from December to February is
plotted in(a) and(e), while spring runoff from March to May in(b) and(f), summer runoff from June to August in(c) and(g), and fall runoff
from September to November in(d) and(h).

and Arkansas White–Red (HUC 11). To enable a closer look,
both R2 (Fig. 12c) and Nash (Fig. 12d) between the ob-
served and simulated monthly runoff are illustrated. Clearly,
while the current parameter sets may provide satisfactory
results for wetter regions, it is challenging to capture the
monthly runoff time series in drier regions. Further studies in
dry regions are required, since the suitable parameter values
and model setup may have exceeded the currently suggested
ones. This issue may be also related to meteorological forc-
ing. It was noticed that Daymet generally provided higher
precipitation (∼ 25 % greater than PRISM) in dry HUC8s;
and under such a situation, the VIC model cannot be fur-
ther improved unless precipitation is reduced in proportion
to the PRISM values. Other factors such as groundwater that
could not be simulated by VIC, and/or managed flow that was
not captured by WaterWatch runoff, could also affect this er-
roneous runoff simulation. Nevertheless, since these regions
are fairly dry, they in fact have smaller MAE (Fig. 12e) and
RMSE (Fig. 12f) compared with wet regions. Therefore, the
overall impact of wet bias in drier regions may not be signif-
icant since it is on a small scale.

To evaluate the model performance for other variables, the
simulated 1 April SWE was compared with the observed
snow course data used by Mote et al. (2005). Focusing on
the 1981–2000 period, 784 snow stations with complete an-
nual 1 April SWE observations were selected. For each sta-
tion, the simulated 1 April SWE at the nearest grid was
looked up. Since the point observation may be on a different
scale from the grid-based SWE, the correlation coefficient

between observation and simulation is computed for evalua-
tion. The results are summarized in Fig. 13. Figure 13a plots
the histogram ofρ and shows that high correlation coeffi-
cients can be seen in most of the stations. To examine the
statistical significance, the histogram of thep value is plotted
in Fig. 13b. Thep value is less than 0.05 for nearly 700 sta-
tions (i.e. correlation is statistically significant under 5 % sig-
nificance level), which suggests that the simulation may cap-
ture the annual trend for most of the stations. To check the
spatial pattern,ρ values are further plotted in Fig. 13c. Gen-
erally speaking, except for eastern Wyoming, northern Col-
orado, and northern California, the simulated SWE showed
good correlation with observations. As mentioned, the cur-
rent simulation was conducted using one elevation band (for
efficiency of model calibration). With an increase in eleva-
tion bands in future simulations, the performance of snow
simulation could be further improved.

The overall improvement from the computationally in-
tensive calibration exercise is illustrated in Fig. 14. Focus-
ing on Nash (Fig. 14a) and RMSE (Fig. 14b), the cumu-
lative percentage of HUC8s is plotted. In terms of Nash,
around 20 % of HUC8s (∼ 450 HUC8s) were improved from
less than 0.5 to greater than 0.5. In terms of RMSE, the
modeling errors were on average reduced by∼ 5 mm yr−1

for most of the HUC8s. While the best parameters at each
HUC8 were identified, the performance of all examined com-
binations of parameters was also recorded to support fur-
ther assessment. Calculating the sensitivity and trends for
each parameter could make it possible to achieve further
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Fig. 12.Performance of calibrated VIC model at various HUC8s in the conterminous US.

Fig. 13. Correlation coefficients between observed and simulated 1981–2000 1 April snow water equivalent:(a) histogram of correlation
coefficients from 784 selected stations,(b) histogram ofp value, and(c) spatial pattern of correlation coefficients for all selected stations.
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Fig. 14.Model performance before and after calibration, showing improvement.

model improvements with fewer iterations and computa-
tional hours. In other words, the proposed hydrological data
set provides not only the currently best available parameters
but also the tested parameter sensitivity to support further
fine calibration.

4 Summary and conclusion

This study introduces an effort to prepare a comprehen-
sive hydrological model parameter data set for large-scale,
high-resolution climate change impact assessment. Several
key inputs for hydrologic simulation – including meteoro-
logic forcings, soil, land class, vegetation, and elevation –
were collected and organized in refined 4 km grids. Using
high-performance computing, a spatially consistent calibra-
tion was performed for the VIC model. The VIC simu-
lation was driven by Daymet daily meteorological forcing
and was evaluated by USGS WaterWatch runoff observa-
tions for 2107 HUC8 subbasins in the conterminous US.
Overall, 1.5 million CPU-hours were used to develop a post-
calibrated model parameter data set to support fine-scale fu-
ture hydro-climate assessments. The pre-organized model
parameter data set will be provided to interested parties to
support further hydro-climate impact assessment. Although
model calibration may yet be required for particular model
applications, it is hoped the pre-organized data set will help
reduce the amount of effort needed for basic data prepara-
tion and organization. Depending on the specific needs, the
parameter data set can then be further calibrated effectively.

As a result of this exhaustive calibration exercise, it is now
possible to more accurately estimate the resources required
for further model improvement across the entire contermi-
nous US. Calibrating a hydrologic model consistently for
various watersheds can also increase understanding of the
strengths and limitations of a particular hydrologic model
across different climate regions. It can help in determining
the best combination of hydrologic model and meteorologi-
cal forcing data set for specific regions. Although the exten-
sive model calibration was performed for the VIC model, the

computation and data framework were designed in a flexi-
ble manner so that other suitable hydrologic models could be
incorporated in the future. By including multiple hydrologic
model choices, we hope that it can provide flexibility for fur-
ther application and increase understanding of the modeling
uncertainty associated with different hydrologic models in
hydro-climate impact assessment.
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