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Abstract. The humanitarian crises caused by the recent
droughts (2008–2009 and 2010–2011) in East Africa have
illustrated that the ability to make accurate drought forecasts
with sufficient lead time is essential. The use of dynamical
model precipitation forecasts in combination with drought
indices, such as the Standardized Precipitation Index (SPI),
can potentially lead to a better description of drought du-
ration, magnitude and spatial extent. This study evaluates
the use of the European Centre for Medium-Range Weather
Forecasts (ECMWF) products in forecasting droughts in East
Africa. ECMWF seasonal precipitation shows significant
skill for March–May and October–December rain seasons
when evaluated against measurements from the available in
situ stations from East Africa. The forecast for October–
December rain season has higher skill than for the March–
May season. ECMWF forecasts add value to the consensus
forecasts produced during the Greater Horn of Africa Cli-
mate Outlook Forum (GHACOF), which is the present op-
erational product for precipitation forecast over East Africa.
Complementing the original ECMWF precipitation forecasts
with SPI provides additional information on the spatial ex-
tent and intensity of the drought event.

1 Introduction

Droughts have major economic and humanitarian im-
pacts because rain-fed agriculture is the backbone of most
economies in East Africa. The agricultural sector accounts
both directly and indirectly for approximately 51, 42, and
25 % of Kenya’s, Uganda’s and Tanzania’s gross domes-
tic product (GDP) respectively (Eguru, 2012). Over the last
5 decades, East Africa has experienced at least one ma-
jor drought per decade (FAOSTAT, 2000), and there is a

tendency of an increasing frequency and intensity of these
events (AMCEN, 2011). Damage to the agricultural sector
leaves the region exposed to the risk of famine, as demon-
strated by the widespread famine and humanitarian crises
caused by the two major droughts in the last decade (2008–
2009 and 2010–2011). The ability to make accurate drought
predictions with adequate lead time is therefore essential
(Luo et al., 2008).

In a bid to ensure consistent access and interpretation
of climate information, the World Meteorological Organi-
zation (WMO) initiated Regional Climate Outlook Forums
(RCOFs) in various parts of the world. To coordinate ac-
tion over the Greater Horn of Africa region, which the East
African countries are part of, the Greater Horn of Africa Cli-
mate Outlook Forum (GHACOF, 2014) are held three times
a year before the relevant rainy periods (March–May, July–
August, October–December). In preparation for each forum
meteorologists from the National Meteorological and Hy-
drological Services (NMHSs) of Kenya, Uganda, Tanzania,
Rwanda, Burundi, Ethiopia, Somalia, Djibouti, Eritrea, Su-
dan, and South Sudan (Fig. 1) convene at the Intergovern-
mental Authority on Development (IGAD) Climate Predic-
tion and Applications Centre (ICPAC) to issue a joint fore-
cast for the forthcoming season.

The forecast relies on a plethora of information. Firstly
the analysis is performed on a sub-country level. Each coun-
try has been divided into homogeneous zones using princi-
pal component analysis (PCA) on a high-density historical
precipitation data set. From this analysis only one represen-
tative rain gauge station was identified for each of the homo-
geneous zones. To issue a forecast for the next season, data
from the representative stations are correlated with observed
global sea surface temperature (SST) fields up to 6 months
prior to the rainy season to identify ocean regions with a
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Fig. 1. Countries that participate in the Greater Horn of Africa Cli-
mate Outlook Forum (GHACOF; outlined) and homogenous zones
over East African countries (coloured polygons) for which observa-
tions were available.

significant influence on the precipitation patterns (correlation
values> 0.5). SSTs from these ocean regions are used to de-
velop forecast models using linear regression.

Afterward the forecast is upscaled to country level by com-
paring with forecasts made in neighbouring countries. If the
forecasts do not agree, the forecasters look at historical years
with similar SST patterns to select analogue situations for
the target year. The forecasts are also compared with dynami-
cal forecasts from several international centres. These centres
were in 2006 assigned by the World Meteorological Organi-
zation (WMO) to deliver global seasonal forecasts as WMO
Global Producing Centres (GPCs) for long-range forecasts.
They have to release seasonal forecasts with global coverage
and up to 4 months of lead time. The outcome is consolidated
into what is known as theconsensus forecastfor the Greater
Horn of Africa (Ogallo et al., 2008). The main product is a
map showing the probability for the rainfall of the incom-
ing season to be in one of the terciles – above normal, near
normal or below normal – of the rainfall distribution as ob-
served by the local rain gauge network. The consensus fore-
cast is then used by the national meteorological services to
disseminate press releases with advisories of expected floods
(droughts) in zones with forecasts above (below) normal con-
ditions.

The consensus forecast is an excellent forum to share
observed data and local knowledge to coordinate natural-
hazard-related political actions in the region. It nevertheless
mostly relies on precipitation monitoring and past experi-
ences to construct drought scenarios for the upcoming sea-
son. Unexpected weather conditions, such as extreme events
outside the climatology, are not taken into account in this
approach, and these conditions are likely to confound the

forecaster’s well-established knowledge. Moreover, the final
product does not provide information on the spatial extent
and intensity of droughts as it is mostly based on station data.

This study builds on the consensus forecast and explores
the possible benefits of integrating the European Centre for
Medium-Range Weather Forecasts (ECMWF) seasonal fore-
casting system product (SYS-4) into the procedure in place.
SYS-4 is issued at the beginning of each calendar month and
provides a 51-member ensemble forecast of precipitation up
to 7 months ahead. If used in an automated system, it could
extend the consensus drought forecast lead time and provide
monthly updates in between the official forecasters’ consen-
sus meetings.

The paper is organised as follows: firstly the quality of the
modelled precipitation is assessed through probabilistic skill
scores in comparison with measurements from the available
in situ network. Then an automated proxy of the consen-
sus forecasts maps is created using the seasonal forecast. Fi-
nally, the capability of the seasonal forecast to complement
the information already contained in the consensus maps is
assessed at different lead times as a prototype of a reliable
product for the future monitoring and forecast of drought in
East Africa.

2 Material and methods

2.1 Observations and forecast data

The East Africa region comprises five countries: Kenya,
Uganda, Rwanda, Burundi, and Tanzania. However, for this
study rain gauge data only from Kenya, Uganda and Tanza-
nia were available. This data set was used for the verifica-
tion of SYS-4. A large part of East Africa experiences two
distinct rainfall seasons: “long rains”, which extend during
March–May (MAM), and a season with “short rains”, which
lasts from October to December (OND). These seasons are
linked to the movement of the Intertropical Convergence
Zone (ITCZ) northward and southward (Nicholson, 1996).
As a part of the consensus effort, the three countries have
been subdivided into 34 homogeneous regions (see Fig. 1 for
the consensus forecast boundaries) in terms of the precipita-
tion climatology. Unfortunately there is no published litera-
ture to refer to how these regions were defined. Nonetheless
the subdivision of these areas is a well-established practice
used in GHACOF. Since this paper seeks to propose a metho-
dology that could provide added information to the forecast-
ers involved in the issuance of the consensus forecasts, it was
decided to use the same subdivisions. Monthly rainfall totals
for each of these 34 homogeneous zones were available for
the period 1961–2009 through dedicated synoptic stations lo-
cated in positions representative of each subregion. This data
set provided both the climate information from which the
consensus forecast anomalies were evaluated and the vali-
dation data for the drought forecasts.
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Past consensus outlooks and seasonal observation maps
for the Greater Horn of Africa (GHA) region were sourced
from the ICPAC as images. For a particular season, precipi-
tation totals from representative stations from all the coun-
tries in the region are divided by the seasonal long-term
mean (1961–1990) and to obtain the percentage of the long-
term mean received in each particular season. The classes
are selected as< 25 % severely dry, 25–75 % moderately dry,
75–125 % normal, 125–175 % moderately wet and> 175 %
severely wet. These values are at station points so, to produce
the maps, interpolation is done.

The model used in this study was the ECMWF seasonal
forecast system-4 (SYS-4; Molteni et al., 2011), which is
a fully coupled system based on the Integrated Forecast
System (IFS) cycle 36r4 atmospheric model version with
TL255 corresponding to roughly 80 km spatial resolution and
the Nucleus for European Modelling of the Ocean (NEMO;
Madec, 2008) ocean model, which has a horizontal resolu-
tion of approximately 1 degree, and 42 levels in the vertical.
On the first calendar day of each month, the system provides
an ensemble of 51 simulations through initial condition per-
turbations derived from a combination of atmospheric sin-
gular vectors and an ensemble of ocean analysis. An exten-
sive hindcast set of 30 yr is also available for model calibra-
tion and verification. The set of hindcasts is initialised using
ERA Interim reanalysis for the period 1981–2010 and has
15 ensemble members. Performances of the system to drive
drought monitoring and forecasting in several African basins
can be found in Dutra et al. (2013b).

2.2 Quantitative assessment of the forecast skill

The skill of SYS-4 precipitation forecasts was evaluated us-
ing standard scores applied to probabilistic forecasts; the
scores are briefly presented in this section, and further details
can be found in Appendix A. The scores include the anomaly
correlation coefficient (ACC; Miyakoda et al., 1972) of the
model and observations and the continuous ranked proba-
bility score (CRPS; Hersbach, 2000). The ACC provides
information on the forecast skill of the ensemble mean
(Hollingsworth et al., 1980; Simmons, 1986), whereas CRPS
is a measure of the probabilistic skill of the forecast. The
skill score that corresponds to the CRPS is the CRPSS.
CRPSS values above (below) zero denote forecast skill bet-
ter (worse) in comparison with reference forecast. The third
score used was the area under the relative operating char-
acteristic (ROC) curve that is based on ratios that measure
the proportions of events and non-events for which warn-
ings (a defined threshold) are forecasted (Mason and Gra-
ham, 2002).

SYS-4’s predictive skill for precipitation over East Africa
was assessed employing the hindcast data set for the period
in which in situ measurements are available. Interpolation of
the forecasts at station location was done using the nearest-
neighbour grid. Analogous analyses were performed using

the average of four nearest points, and mean precipitation
over the region (using the outlines in Fig. 1) providing very
similar results (not shown).

2.3 Qualitative assessment of the forecast skill

Assessment of the added skill of using SYS-4 in the consen-
sus framework was a more challenging task. Both the ob-
served and the outlook maps were used as obtained from
ICPAC since the original data set to reconstruct them was
not available for this study. A quantitative assessment of the
consensus maps was therefore virtually impossible. Instead,
proxies of the consensus forecast maps were generated from
SYS-4 forecasts for a subjective assessment on the basis of
the added information they could potentially provide at a
forecast meeting, such as the GHACOF. The exercise was
repeated for the period of 2000–2010 and for both seasons,
MAM and OND.

From the raw SYS-4 precipitation forecasts, dry and wet
conditions were defined as the probability (or number of en-
semble members) below the 30th percentile and above the
70th percentile of SYS-4’s climatology for a particular sea-
son and lead time respectively. To condense this informa-
tion into a single map for each lead time, the forecasts were
binned into discrete categories as follows: moderately dry if
40 % of the members predicted dry conditions, and the dry
cases were more than wet cases; severely dry if 60 % of the
members predicted dry conditions; and extremely dry if 80 %
of the members predicted dry conditions. The same classifi-
cation was applied for wet conditions, and the rest was clas-
sified as normal (or unclassified).

In addition to raw precipitation forecasts, maps of Stan-
dardized Precipitation Index (SPI) were calculated from
hindcasts (> 30 yr) of SYS-4 precipitation. SPI is the index
recommended by WMO for meteorological drought moni-
toring (WMO, 2009). Its calculation is based on long-term
precipitation records, which are fitted to a cumulative proba-
bility distribution and then transformed into a standard nor-
mal distribution with mean zero for each month (Edwards
and McKee, 1997). The gamma distribution was used in this
paper for the first step in the transformation, and the calcula-
tion was done for each month separately. Positive (negative)
SPI values indicate wet (dry) conditions. SPI can be calcu-
lated for any desired accumulation period, typically ranging
from 1 to 48 months to reflect the impact of drought on the
availability of the different water resources. Recently there
has been increased focus on the use of SPI in drought fore-
casting. For example, Dutra et al. (2013b) proposed a metho-
dology to forecast 3-month SPI for the prediction of meteoro-
logical drought over four basins in Africa based on the SYS-
4 forecasts of precipitation: the Blue Nile, Limpopo, Upper
Niger, and Upper Zambezi. The detailed methodology used
to calculate the SPI from the ECMWF seasonal forecasts is
presented in Dutra et al. (2014). This followed the metho-
dology initially described by Dutra et al. (2013b) and was
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Fig. 2. Anomaly correlation coefficients (ACCs) between precip-
itation anomalies derived from ECMWF SYS-4 forecasts and in
situ measurements during the MAM season for the period 1982–
2009. Black and white dots represent regions where the correlation
is statistically significant (P < 0.05) and insignificant (P > 0.05)
respectively.

applied on a basin scale. Similar approaches have been also
described by Mo et al. (2012) and Yuan and Wood (2013).
The results display the ensemble mean of the SPI forecasts;
the ensemble mean variance was rescaled for each lead time
to conserve a standard deviation of 1 (see Dutra et al., 2014,
for further details). While each ensemble member of the SPI
forecasts follows the SPI characteristics of mean zero and
standard deviation of 1, the ensemble mean only conserves
the zero mean and tends to have standard deviations lower
than 1. The rescaling of the ensemble mean variance is ap-
plied mainly to keep consistency of the SPI definition, in par-
ticular when presenting the results graphically.

3 Results and discussion

3.1 SYS-4 verification against in situ observations

As expected the predictive skill declines with increasing lead
time (Figs. 2–4). The skill is higher in the OND than in
MAM. Notable is that for both methods, there is higher skill
in lead time 2 than lead time 1 for the OND season. This
could be because of a negative drift of SYS-4’s SSTs over
the NINO 3.4 region (Molteni et al., 2011), which highly
impacts precipitation over East Africa. The fastest drift of
SSTs occurs during the boreal summer months. A bias in the
near-equatorial winds in the west and central Pacific is the

Fig. 3.As Fig. 2 but for the OND season.

Fig. 4. Continuous ranked probability skill score (CRPSS) for
MAM (a) and OND(b). The box plots extend from the minimum
(whiskers), percentiles 10, 30, 50 (white line), 70, 90, and maxi-
mum.

dominant factor in driving an SST bias in the coupled model,
whereby SSTs in the eastern equatorial Pacific drift to cold
conditions (Molteni et al., 2011).

The ROC scores of the quantitative forecasts decline with
increased lead time and there is higher skill for OND than
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Fig. 5.Relative operating characteristic (ROC) scores for MAM (left panels) and OND (right panels). The box plots extend from the minimum
(whiskers), percentiles 10, 30, 50 (white line), 70, 90, and maximum.

Fig. 6.ROC diagrams for MAM(a) and OND (b).

MAM, as in the previous results (Figs. 5 and 6). Over 50 %
of the stations have considerable skill for OND season for all
lead times; this is the case from January for the MAM fore-
cast (Fig. 5). SYS-4 has higher skill for the not dry (normal

and wet) category in MAM for all lead times (Fig. 6). Since
SYS-4 has a cold pool over equatorial Pacific, the seasonal
forecasts always have a higher skill for La Niña conditions,
which are associated with dry conditions over East Africa –
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thus the higher skill for not wet (normal and dry) category in
the OND season (Fig. 6).

The high predictability in the Horn of Africa is well docu-
mented and is due to SYS-4’s ability to capture the telecon-
nection between the Indian Ocean Dipole and ENSO. Gen-
erally, the predictive skill of SYS-4 is better in the OND sea-
son than the MAM season (Dutra et al., 2013a) due to the
documented strong relationship between the OND seasonal
rains and SST and ENSO (Mutai et al., 1998; Nicholson
and Nyenzi, 1990; Ogallo et al., 1988). However, the MAM
season rains have been associated with complex interactions
between many regional- and large-scale mechanisms which
generally induce large heterogeneities in the spatial rainfall
distribution (Beltrando, 1990; Ogallo, 1982) and virtually
negligible correlations with ENSO (Ogallo et al., 1988).

3.2 Use of SYS-4 in the consensus framework

Because of the subjective nature of the consensus forecasts,
a purely quantitative assessment of its skill was not possi-
ble. We therefore resorted to performing a qualitative anal-
ysis based on subjective examinations of 11 yr of forecasts.
These analyses were performed independently by the five au-
thors with the aim of judging the advantage SYS-4 would
bring as an added product to the consensus framework.

Three cases were selected and discussed in detail to show-
case the value SYS-4 could have added to the consensus
outlook if it had been provided as precipitation probabilistic
forecast and as SPI forecast. The three cases selected were
seasons with below normal, normal and above normal pre-
cipitation.

In OND 2000, the observed precipitation was normal over
most parts of the Greater Horn of Africa, except for some
extremely wet patches over Ethiopia, Sudan, and Tanzania
(Fig. 7). A significant area over north-eastern Kenya had
moderately dry condition. SYS-4 precipitation forecast had
a consistent signal for dry conditions over most of the re-
gion until August. September and October forecasts shift to
normal conditions over the eastern part and wet conditions
on the northern and western parts. Notable is that the two
forecasts maintain a dry signal over northern Kenya and the
Tanzania and Kenyan coast. When the same analysis was re-
peated with the SPI, a similar forecast evolution to the precip-
itation was observed but spatially smoother. The consensus
outlook predicted climatological conditions for the northern
part, wet conditions for the upper coastline and a small sec-
tion of the western part, and normal conditions for the rest
of the region. If SYS-4 September and October forecasts had
been incorporated in the consensus forecast, then the outlook
could have been adjusted for the Kenya coast, Ethiopia, and
Sudan. That way the outlook would have been closer to the
observations.

OND 2006 was a moderately wet season. From the obser-
vations most of the region experienced moderately wet con-
ditions, and much of the coastal area experienced severely

wet conditions (Fig. 8). The SYS-4 forecast had a wet signal
far off in the ocean during June and August. The propaga-
tion of the wet signal inland happened in October. The same
is seen in the SPI. However, the September forecast has a
signal of moderately wet conditions inland. The consensus
outlook forecasted normal conditions for most of the east-
ern part. If the consensus had been updated in October using
SYS-4 forecast, the wet conditions observed on the eastern
part could have been captured.

MAM 2009 was a moderately dry season for the east-
ern equatorial part of the region. Most of the northern parts
experienced severely dry conditions, and normal conditions
were experienced in the western part (Fig. 9). SYS-4 consis-
tently captured the dry signal, but it only propagated inland
in January and March for both precipitation and SPI. The
consensus outlook predicted dry conditions over the eastern
and a section of the northern part, and the western part had
an above normal forecast. Combining the outlook and SYS-
4’s March forecast would have helped adjust the wet forecast
over Ethiopia and Sudan to dry conditions.

4 Conclusions

The Greater Horn of Africa Climate Outlook Forum takes
place twice a year before the rainy seasons. During the
event, by means of statistical downscaling and local knowl-
edge, forecasters from the national meteorological centres of
Kenya, Uganda, Tanzania, Rwanda, Burundi, Ethiopia, So-
malia, Djibouti, Eritrea, Sudan, and South Sudan issue what
is known as theconsensusforecast for the Greater Horn of
Africa. It consists of a map showing the probability for the
rainfall of the incoming season to be in one of the terciles –
above normal, near normal or below normal – of the observed
climatology.

In this work we have analysed whether or not the avail-
ability of long-range forecasts from ECMWF and the use of
more specific drought indicators such as the SPI would bring
added benefit to what is already in place. As a first step SYS-
4 precipitation forecasts were evaluated against station data
over a vast part of the Great Horn of Africa using the histori-
cal data set which is also the reference for the consensus cli-
matology. Considering the paucity of data in this area and the
difficulty in obtaining a long-term data set, this by itself has
represented a reality check of the performance for the system
in a critical region for drought monitoring. SYS-4 has signifi-
cant skill in forecasting precipitation over the study area with
remarkably high skill in predicting the short rains (October–
December) due to the strong predictability of the sea surface
temperature in the Indian Ocean and the ENSO teleconnec-
tion (Hastenrath et al., 2004). The good performance of the
system over the region is a good starting point; nevertheless
the interest here is to understand if the availability of fre-
quent updates from a dynamical model would add useful in-
formation to the already existing forecaster’s interpretation
of the statistical forecasts. While the subjective assessment
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Fig. 7. SYS-4 probabilistic precipitation forecast for five lead times(a), SYS-4 3-month SPI forecast for five lead times(b), observed
precipitation(c), and GHACOF consensus(d) all for OND 2000.

indicated that there would be an added advantage, no partic-
ular lead time stood out in provision of more information
for the entire period, but in each season there was a lead
time that would have made the consensus forecast better. The
most interesting result is that if a drought index such as the
SPI is used in place of raw precipitation data to generate a
“proxy” of the consensus maps, then not only do the maps
become spatially homogeneous as expected but also infor-
mation about the intensity of the conditions expected in the
coming season are made available. Such information could
be used to support the decision process when issuing advi-
sories for policy actions within the region.

Appendix A

Verification scores

The anomaly correlation coefficient (ACC) for a specific grid
point or station is calculated as the Pearson correlation after
removing the mean annual cycle of the observations (Y ) and
forecasts ensemble mean (X):

ACC =

N∑
i=1

(
Y

′

i X
′

i

)
[

N∑
i=1

(
Y

′

i

2
)]0.5[

N∑
i=1

(
X

′

i

2
)]0.5

, (A1)

whereN is the number of forecasts, the subscripti indicates
the specific verification date, and the superscript′ denotes the
temporal anomaly after removing the mean annual cycle.
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Fig. 8. SYS-4 probabilistic precipitation forecast for five lead times(a), SYS-4 3-month SPI forecast for five lead times(b), observed
precipitation(c) and GHACOF consensus(d) all for OND 2006.

The continuous ranked probability scores (CRPSs;
Hersbach, 2000) is a common tool to evaluate ensemble data:

CRPS=
1

N

N∑
n=1

∞∫
−∞

[
F (x) − H (x − x0)

2
]

dx , (A2)

whereN is the number of forecasts,F(x) the cumulative dis-
tribution function (c.d.f.)F(x) = p(X ≤ x) of the forecasts
x, xo the observations, andH(x−x0) the Heaviside function,
which has the value 0 whenx − x0 < 0 and 1 otherwise. In
order to quantify the skill of the probability score, the skill
score is calculated as

CRPSS= 1−
CRPSF

CRPSR
, (A3)

where CRPSF denotes the forecast score and CRPSR is the
score of a reference forecast of the same predictand. The
most commonly used reference forecasts are persistence and
climatology. In this study, the reference forecast was a ran-
dom sampling from previous years (climatology) with the
same ensemble size as the forecasts. CRPSS values above
(below) 0 denote forecasts that are better (worse) than the
reference forecasts, and the maximum value is 1.

The last score used in this study is the area under the re-
lative operating characteristic (ROC), which is appropriate if
an estimate of false alarm occurrence is important. The ROC
is evaluated for a number of prescribed thresholds, where the
probabilistic forecast is transformed into a binary number of
each category defined by the thresholds. In a probabilistic
forecasting system, there are various thresholds for each fore-
cast category. For each of the thresholds, the correspondence

Hydrol. Earth Syst. Sci., 18, 611–620, 2014 www.hydrol-earth-syst-sci.net/18/611/2014/



E. Mwangi et al.: Forecasting droughts in East Africa 619

Fig. 9. SYS-4 probabilistic precipitation forecast for five lead times(a), SYS-4 3-month SPI forecast for five lead times(b), observed
precipitation(c) and GHACOF consensus(d) all for MAM 2009.

between the forecasts (a sequence of dry or non-dry) and
observations (a sequence of events or non-events) is eval-
uated. This results in a 2 by 2 matrix of the proportion of
events for which a forecast was correctly issued (hit; H),
the proportion of non-events which were incorrectly fore-
casted (false alarm; FA), non-forecasted events (miss; M)
and non-forecasted non-events (correct negative; CN). The
hit rate, defined as H/(H + M), and false-alarm rate, defined as
FA/(FA + CN), give the ROC curve. Details on how to calcu-
late ROC scores can be found in Mason and Graham (2002).
ROC can vary between 0 to 1 (perfect forecast) with values
below 0.5 denoting forecasts with no skill when compared
with a climatological forecast.
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