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Abstract. In eastern East Africa (the southern Ethiopia, east-

ern Kenya and southern Somalia region), poor boreal spring

(long wet season) rains in 1999, 2000, 2004, 2007, 2008,

2009, and 2011 contributed to severe food insecurity and

high levels of malnutrition. Predicting rainfall deficits in this

region on seasonal and decadal time frames can help de-

cision makers implement disaster risk reduction measures

while guiding climate-smart adaptation and agricultural de-

velopment. Building on recent research that links more fre-

quent East African droughts to a stronger Walker circulation,

resulting from warming in the Indo–Pacific warm pool and

an increased east-to-west sea surface temperature (SST) gra-

dient in the western Pacific, we show that the two dominant

modes of East African boreal spring rainfall variability are

tied to SST fluctuations in the western central Pacific and

central Indian Ocean, respectively. Variations in these two

rainfall modes can thus be predicted using two SST indices –

the western Pacific gradient (WPG) and central Indian Ocean

index (CIO), with our statistical forecasts exhibiting reason-

able cross-validated skill (rcv ≈ 0.6). In contrast, the current

generation of coupled forecast models show no skill during

the long rains. Our SST indices also appear to capture most

of the major recent drought events such as 2000, 2009 and

2011. Predictions based on these simple indices can be used

to support regional forecasting efforts and land surface data

assimilations to help inform early warning and guide climate

outlooks.

1 Introduction

1.1 How understanding trends can lead to better

drought predictions

Since 2003, scientists from the University of California,

Santa Barbara’s Climate Hazards Group, the US Geological

Survey, the Universitat de Barcelona, the National Ocean and

Atmospheric Administration’s (NOAA) Earth Systems Re-

search Laboratory, Physical Science Division, Climate Anal-

ysis Branch, and the National Aeronautics and Space Admin-

istration have been working to improve the US Agency for

International Development’s Famine Early Warning System

Network’s (FEWS NET) drought early warning capabilities

for eastern Africa. In this introduction, we describe how our

deepening understanding of boreal spring rainfall trends can

lead to useful new SST indices that support better drought

prediction.

Early FEWS NET research focused on developing better

Ethiopian rainfall archives and historical time series, which

revealed substantial 1980–2004 rainfall declines in key crop

growing areas in the southern half of the country (Funk et

al., 2003). Further diagnostic analysis of SST and precipita-

tion (Verdin et al., 2005; Funk et al., 2008; Hoell and Funk,

2013a, b; Lyon and DeWitt, 2012; Williams and Funk, 2011)

suggested that the recent appearance of very warm areas

(> 29 ◦C) in the south-central Indian Ocean and equatorial

western Pacific has led to an increase in local precipitation

over the ocean but reduced rainfall over eastern Africa via

a Rossby wave-like (Gill, 1980) atmospheric response. One
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study (Funk et al., 2008) examined the canonical correlation

between moisture transports over eastern Africa and reanal-

ysis precipitation over the Indian Ocean and found that in-

creased precipitation over the southern central Indian Ocean

(CIO, 0–15◦ S, 60–90◦ E) is associated with decreased east-

erly low-level moisture flows into the Horn of Africa. Further

confirmation of this relationship was obtained from a sim-

ulation using the Community Atmospheric Model (CAM),

which suggested that anomalous diabatic heating over the In-

dian Ocean decreased onshore moisture transports (Funk et

al., 2008).

These diagnostic analyses were later extended by using

a combined principal component analysis (PCA) based on

zonal surface winds, 500 hPa vertical velocities, rainfall and

SSTs over the tropical Indo–Pacific area (IPA) (Williams

and Funk, 2011). The leading principal component (PC) was

shown to represent a low-frequency oceanic warming sig-

nal associated with an enhancement of the Indian branch

of the Walker circulation increased warm pool precipitation

and with declining rainfall in eastern Africa and the cen-

tral equatorial Pacific. Specifically, Figs. 7 and 8 of Williams

and Funk (2011) identified enhanced low-level convergence

and increases in convection over the warm pool, subsidence

over the eastern Horn of Africa, westerly surface zonal wind

anomalies over the northern equatorial Indian Ocean, and re-

ductions in total atmospheric precipitable water over eastern

Africa.

While the first mode of Williams and Funk’s (2011) com-

bined PCA exhibited a strong secular trend and tracked

closely with global average temperatures (r = 0.86), the sec-

ond mode varied on interannual timescales and was strongly

related to the El Niño–Southern Oscillation (ENSO), with

a negative correlation of -0.75 between its time series and

the Niño 4 SST index (5◦ S–5◦ N, 160◦ E–150◦W). Like

the IPA PC1 “trend mode”, the second mode (in one of

its phases) was associated with drying over East Africa via

anomalies in the Indian Ocean’s Walker circulation

The IPA PC1, which was linked to warming in the Indo–

Pacific warm pool, appeared to be associated with East

African (EA) drought in two ways. First, PC1 helps explain

the downward 1980–2009 rainfall trends across the eastern

portions of the Greater Horn of Africa. Second, it was hy-

pothesized that the enhanced subsidence associated with the

increasing PC1 mode would be even stronger when occur-

ring in combination with a La Niña event. Indeed, La Niña

events also produce increased upward motion over the equa-

torial Indo–Pacific and increased subsidence and higher sur-

face pressures over East Africa (Nicholson and Kim, 1997;

Nicholson and Selato, 2000; Ogallo, 1988). To test this hy-

pothesis, 1950–2009 La Niña events were categorized into

warm warm-pool and cool warm-pool groups (based on the

IPA PC1) and composited. Composites of La Niña events dis-

played a much stronger negative precipitation anomaly over

eastern Africa when the warm pool was warmer. Since the

warm pool has exhibited a strong increase in temperature

over the past few decades, this corresponded with a stronger

La Niña teleconnection in the recent period (Williams and

Funk, 2011). In particular, over eastern East Africa compos-

ites of low PC1/La Niña events had standardized precipita-

tion index (SPI) (McKee et al., 1993) values of about −0.1,

while composites of high PC1/La Niña events had SPI values

ranging from −0.4 to −0.8. In the summer of 2010, when

our NOAA partners predicted that there was a high proba-

bility for the development of a strong La Niña, FEWS NET

used composites of high PC1/La Niña events to provide early

warning of the devastating 2011 drought (Ververs, 2011).

In 2012, new research (Lyon and DeWitt, 2012) suggested

that a 1998 shift in Pacific SSTs had played an important

role in increasing the intensity of the Walker circulation,

thereby drying eastern East Africa. In that study several sets

of atmospheric general circulation model (GCM) simula-

tions were run to isolate the Indian and Pacific effects. In-

dian Ocean forcing produced anomalous circulations similar

to those identified in prior FEWS NET analyses of Indian

Ocean influences (Funk et al., 2005, 2008; Jury and Funk,

2013; Verdin et al., 2005; Williams et al., 2011). The Pacific

Ocean forcing effects were consistent with those identified in

the spring IPA analysis of Williams and Funk (2011).

In 2013 and 2014, FEWS NET scientists built on Williams

and Funk (2011) and Lyon and DeWitt (2012) to bet-

ter explain these teleconnections. Hoell and Funk (2013a)

showed that a stronger western Pacific SST gradient (WPG)

combined with La Niña conditions produced stronger East

African spring drying. Hoell and Funk (2013a) defined the

WPG as the difference between standardized SST in the

Niño 4 region (160◦ E–150◦W, 5◦ S–5◦ N) and the western

Pacific (WP, 130–150◦ E, 0–20◦ N).

The WPG analysis of Hoell and Funk (2013a) is simi-

lar to Williams and Funk (2011), but offers a more trans-

parent physical mechanism: a strong WPG combined with a

cold eastern Pacific produces a strong SST gradient spanning

the entire Pacific Basin; stronger SST gradients are known

to produce larger circulation changes (Lindzen and Nigam,

1987). The temporal response of the WPG combines the

long-term warming trend of the WP (Funk, 2012) with the

strong ENSO-related variations of the Niño 4 regions.

Recent analyses of atmospheric climate model simulations

(Funk et al., 2013; Liebmann et al., 2014) have reproduced

the link between increased negative WPG and reduced East

African rainfall. Here we explore the utility of this index

as a basis for predicting the first principal component of

East African boreal spring precipitation. Recent assessments

(Nicholson, 2014a) have examined multivariate predictions

of East African long rains; our objective here is not to repli-

cate this work, but rather to examine forecasts based on in-

dices linked to our process-based studies of the effects of

stronger Pacific SST gradients. Since global climate models

have almost no skill forecasting the long rains (Mwangi et

al., 2014), the modest cross-validated skills we find here are

still likely to be useful.
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The WPG and CIO indices, furthermore, can link the

process-based studies discussed above with the requirements

of real-time monitoring, climate diagnostics and analyses.

Such analysis helped FEWS NET identify analog years and

effectively communicate risks to decision makers in 2011

(Ververs, 2011) and 2012. Our main point is that there are

important climate indices, beyond the well-known Niño 3.4

(Indeje et al., 2000) and the Indian Ocean dipole (IOD) in-

dices (Saji et al., 1999), that can inform East African climate

outlooks such as the Greater Horn of Africa Climate Out-

look Forum (GHACOF). While these other indices are good

indicators of the region’s boreal fall “short” rains, the WPG

may be preferable during boreal spring because of the high

sensitivity this season exhibits to WP and Niño 4 SST.

1.2 Climate change and Pacific decadal variability

(PDV)

Long-rain declines have been confirmed by many recent

studies (Funk et al., 2012; Liebmann et al., 2014; Lyon

and DeWitt, 2012; Viste et al., 2012), and corroborated by

analyses of normalized difference vegetation index imagery

(Pricope et al., 2013) and satellite-observed soil moisture

(Omondi et al., 2013). Omondi et al. (2013) identify a large

post-2005 decline in the Gravity Recovery and Climate Ex-

periment (GRACE) soil moisture values over the Greater

Horn of Africa. These declines appear consistent with the

detailed 2008–2011 drought analyses provided by Nichol-

son (2014b). The source of the SST forcing behind these re-

cent East African rainfall declines, however, continues to be

a matter of considerable debate.

One interpretation (Funk et al., 2013) is that the re-

cent strengthening of the WPG, warm pool precipitation in-

creases, and related East African precipitation declines, is

a function of anthropogenic warming in the WP combined

with natural decadal cooling in the central Pacific. Both the

WP SST (Hoell and Funk, 2013b) and the magnitude of the

WPG (Hoell and Funk, 2013a) have increased dramatically

over the past 30 years, increasing the frequency of droughts

and the number of opportunities for drought prediction. Hoell

and Funk (2013b) compare the influence of WP, IOD and

ENSO influences on boreal spring East African rainfall, and

find that WP drought influences tend be as strong as or

stronger than IOD and ENSO. This view implies that WP

warming is largely anthropogenic and has contributed to re-

cent East African drying.

An alternative interpretation (Lyon et al., 2013; Yang et

al., 2014) suggests that the dominant driver of recent East

African drought has been PDV, interpreted as linearly de-

trended ENSO-residual changes in Pacific SST. Lyon et

al. (2013) make a convincing and important case for the large

dynamic response associated with the tropical SST anomaly

pattern found in detrended ENSO-residual SST. The research

presented in Lyon and DeWitt (2012), furthermore, helped

motivate the gradient analyses leading to this current pub-

lication. The research presented here, however, suggests that

(i) most of the recent “decadal” variability in detrended west-

ern Pacific SST arises due to anthropogenic warming, so that

(ii) decadal variability of East African long rains can best be

described by a combination of a recent secular decline and

decadal variations. Furthermore, we suggest that (iii) an un-

derstanding of the greater sensitivity of East African precipi-

tation to WP versus Niño 4 warming may help support more

effective precipitation forecasts.

1.3 Paper organization

This paper is organized as follows. Section 2 describes our

data sets. Section 3.1 describes our two prediction targets: the

first and second principal components (PC1 and PC2) of East

African precipitation for the 1981–2013 time period, esti-

mated using the new 0.05◦× 0.05◦ gridded Climate Hazards

group Infrared Precipitation with Stations (CHIRPS) data

(Funk et al., 2014). We first briefly describe the CHIRPS pre-

cipitation data set; then we explore the pattern and time series

associated with the first two principal components during the

March–May season. Spatial correlations (Sect. 3.2) between

these principal components and antecedent (January) SST

show that the leading spatial pattern (PC1) exhibits Pacific

SST gradients similar to the WPG (Hoell and Funk, 2013a)

and correlation structures between East African precipitation

and SSTs (Funk et al., 2013; Liebmann et al., 2014; Tier-

ney et al., 2013). The second-mode SST correlation struc-

ture (PC2), however, is similar to the patterns found in ear-

lier studies (Funk et al., 2005, 2008) focused on the CIO.

In Sect. 3.3 we show that the WPG and CIO indices can

be useful large-scale climate indicators when used to pre-

dict PC1 and PC2. We relate PC1 to the WPG, and PC2 to

CIO SST. We then show that these simple indices provide a

reasonable basis for forecasting some East African precipita-

tion extremes. Section 3.4 provides a case study forecasting

the 2014 long rains. Section 3.5 provides a brief analysis of

long–term changes in WPG SSTs in both observations and

model simulations. Section 4 summarizes our results.

2 Data

This study focuses mainly on the relationships between

CHIRPS March–May rainfall over a region extending across

the southern Arabian Peninsula and eastern East Africa (25–

55◦ E, 13◦ S–20◦ N) and the NOAA Extended Reconstructed

SST version 3b for January (ER3b) (Smith et al., 2008).

The CHIRPS precipitation study region was selected based

on (i) the climatological importance of March–May rainfall,

(ii) a known sensitivity to Indo–Pacific forcing and (iii) high

underlying levels of food and water insecurity. The study fo-

cuses on Yemen, Djibouti, Eritrea, Ethiopia, Somalia, Kenya,

and Tanzania.
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The 1981–2013 CHIRPS data set (Funk et al., 2014) com-

bines satellite cold cloud duration rainfall estimates with

gauge observations and a high-resolution (0.05◦) precipita-

tion climatology. Comparisons between the CHIRPS fields

and two state-of-the-science data sets: the Global Precipi-

tation Climatology Centre data set (Schneider et al., 2013)

and the Global Precipitation Climatology Project (Adler et

al., 2003) data sets, reveal a reasonable level of correspon-

dence among all three data sources. We compare the major

modes of variability (principal components) of the March–

May CHIRPS with January SSTs from the ER3b (Smith et

al., 2008).

The final section of the analysis presented here considers a

longer time span (1920–2013) using the gridded Global Pre-

cipitation Climatology Centre (GPCC) data set. The anal-

ysis was not pushed further back in time because of con-

cerns about the limited and poor quality East African sta-

tion data (Liebmann et al., 2013). This final section also uses

an ensemble of 53 Phase 5 Coupled Model Intercomparison

Project (CMIP5) simulations from 14 models (Taylor et al.,

2011). In these runs, coupled atmosphere–ocean general cir-

culation models are initialized, allowed to spin up for sev-

eral hundred years, and then used to simulate climate from

1850 onward. The models are driven by observed changes in

greenhouse gasses, solar insolation and aerosols. The models

used are listed in Table 1. These CMIP5 simulations were ob-

tained from the Royal Netherlands Meteorological Institute’s

Climate Explorer.

3 Results

3.1 CHIRPS principal component patterns and time

series

PCA provides a way of compactly summarizing the spa-

tiotemporal variations in data sets. PCA produces matched

sets of principal component time series and spatial patterns

(loading maps, based on the covariance matrix). The first

principal component time series and associated pattern de-

scribes the largest possible amount of the variance by aggre-

gating locations that tend to be positively or negatively cor-

related with each other. At a given time step, multiplying the

PC1 time series value by the associated first principal com-

ponent loading map yields the partial contribution of that PC

to total rainfall. This process can be repeated for the second

component, which explains most of the remaining variance

of the data, after the first principal component has been re-

moved. We will predict the two leading March–May PC1 and

PC2 time series using the January WPG and CIO SST indices

and then use these two components to generate March–May

rainfall prediction maps. The January SST data were cho-

sen as a predictor because the East African climate experts

typically gather in mid-February at the GHACOF to produce

a regional forecast for East Africa. PCA provides an alterna-

Table 1. Coupled ocean–atmosphere models used in this study.

Modeling group

Commonwealth Scientific and Industrial Research Organization

(CSIRO) and Bureau of Meteorology (BOM), Australia

Canadian Centre for Climate Modelling and Analysis

National Center for Atmospheric Research

Community Earth System Model Contributors

Centre National de Recherches Météorologiques/Centre Européen

de Recherche et Formation Avancée en Calcul Scientifique

EC-EARTH consortium

The First Institute of Oceanography, SOA, China

NOAA Geophysical Fluid Dynamics Laboratory

NASA Goddard Institute for Space Studies

Met Office Hadley Centre

Institute for Numerical Mathematics

Institut Pierre-Simon Laplace

Atmosphere and Ocean Research Institute (The University of ,

Tokyo) National Institute for Environmental Studies, and Japan

Agency for Marine-Earth Science and Technology

Max-Planck-Institut für Meteorologie (Max Planck Institute for

Meteorology)

tive to the definition, analysis and prediction of homogeneous

rainfall areas (cf. Nicholson 2014a). For most forecasting ap-

plications, the analysis of homogeneous areas is preferable.

We have used PCA values in this illustrative study because

they provide, by definition, representative time series that de-

scribe the highest possible precipitation variance. They there-

fore provide insight into regional precipitation–SST relation-

ships, and can help benchmark forecast relationships used in

regional land surface models as in Shukla et al. (2014a, b).

Figure 1 shows the first and second principal compo-

nent maps and time series for our extended East African re-

gion. The principal components were calculated based on

the 1981–2013 covariance matrix. PC1 and PC2 explained

26 and 12 %, respectively, of the total rainfall variance in the

study region. Experiments with different spatial domains in-

dicated very little (substantial) sensitivity to variations in the

north–south (east–west) limit and size of domain, especially

for PC1. This sensitivity and the temporal loading patterns

of PC1 indicate that we are primarily focusing on the east-

ern East Africa region, identified as a homogenous area by

Nicholson (2014a) and Liebmann et al. (2014).

Figure 1a and b show the changes in standardized precipi-

tation associated with PC1 and PC2. The spatial loading pat-

terns have been scaled by the 1981–2013 trends in PC1 and

PC2, and then divided by the standard deviation of rainfall

at each location. This provides an estimate of the 33-year

Hydrol. Earth Syst. Sci., 18, 4965–4978, 2014 www.hydrol-earth-syst-sci.net/18/4965/2014/
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Figure 1. (a) 33-year changes in standardized March–May precipitation associated with the trend in PC1. (b) same for PC2. (c) 33-year

changes in standardized March–May precipitation associated with a linear trend. (d) Standardized time series of PC1 (solid red line) and

PC2 (dashed blue line). (e) Eigenvector loadings for PC1. (f) Same for PC2.

change in the standardized precipitation associated with the

first and second mode. The linear trend in PC1 is significant

(p= 0.03), the trend in PC2 is not (p= 0.11).

This can help us understand the contributions of changes

in the first and second principal components to the total ob-

served trends (shown in Fig. 1c). Standardized changes are

shown to emphasize the emergent food security risks in the

red areas of Fig. 1c. In these regions rainfall has declined by

more than half a standard deviation, greatly increasing the

frequency of below-normal crop and pasture conditions.

Figure 1a indicates substantial rainfall declines associated

with PC1, extending from northern Tanzania through Yemen,

with the strongest standardized declines being found just

north of the Equator, but with large declines (more than half

a standard deviation) occurring in a large part of the domain.

Figure 1b was created in an identical fashion, using PC2.

This pattern tends to emphasize off-equatorial regions of

Tanzania, northern Ethiopia, Eritrea, and Djibouti, but PC2

does not appear to have contributed substantially to recent

rainfall declines. Figure 1d shows the time series for these

two principal components. Figure 1e and f show the rainfall

loading patterns associated with PC1 and PC2. The first prin-

cipal component identifies many intense drought years: 1984,

1992, 1999, 2000, 2004, 2008, 2009, and 2011. The negative

PC2 values in 1988, 2003, 2008, 2009, and 2013 were as-

sociated with dryness in Tanzania and Ethiopia, but not near

the Equator. Both time series exhibit substantial interannual

variations. PC1 indicates substantial declines between 1981

and 2013.

The total rainfall trend for this period is presented in

Fig. 1c. This trend pattern suggests that the substantial rain-

fall declines that have occurred over the last 33 years (1994–

2013) can be ascribed largely to the first leading mode. We

next examine the relationships between the corresponding

time series and antecedent January SST. The analysis of Jan-

uary SST can inform regional food security outlooks, pro-

viding sufficient lead time to shape contingency plans, guide

resource distribution, and help preposition humanitarian as-

sistance before long rainy season droughts begin.

3.2 Correlations with January SST

The correlation results presented here (Fig. 2a) use a 1994–

2013 period because the studies discussed above (Funk et

al., 2008; Hoell and Funk, 2013a, b; Lyon and DeWitt, 2012;

Verdin et al., 2005; Williams and Funk, 2011) indicate a re-
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Figure 2. (a) Correlations between March–May CHIRPS PC1 and January SSTs; (b) same for the CHIRPS PC2. Values have been screened

at a 10 % significance level. Boxes in (a) and (b) show the regions used to the define the WPG and CIO SST indices.

cent increase in the sensitivity of East African precipitation

to Indo–Pacific SST forcing. This increase in sensitivity is

likely related to the long-term WP warming trend (Williams

and Funk, 2011; Hoell and Funk, 2013b), an increase in the

Indian branch of the Walker circulation (Williams and Funk,

2011; Liebmann et al. 2014), and a stronger WPG (Hoell and

Funk, 2013a). Changes in these climate conditions accompa-

nied by a future transition to a warmer central Pacific Ocean

(as predicted by climate change models) might weaken the

boreal spring teleconnection pattern.

It should be noted that the strength of these SST corre-

lations depend on the time period analyzed. As discussed

in Funk et al. (2013) or Liebmann et al. (2014), the strong

negative correlation structure shown in Fig. 2a has only

manifested since the mid 1990s. Running correlations with

Niño 3.4 SSTs indicate weak relationships before that pe-

riod (Funk et al., 2013). Analyses of 1948–1987 climate data

(Hastenrath et al., 2011), furthermore, indicate weak telecon-

nections between Kenyan boreal spring rainfall and the at-

mospheric circulation over the Indian Ocean. As the mean

Walker circulation has intensified (L’Heureux et al., 2013),

however, the East African drought impacts of La Niña-like

SST patterns has intensified (Williams and Funk, 2011) due

to the influence of a stronger WPG (Hoell and Funk, 2013a),

resulting in the type of correlation structure shown in Fig. 2a.

Atmospheric global circulation models (AGCMs) have also

been used to confirm the plausibility of this correlation pat-

tern (Hoell and Funk, 2013b; Liebmann et al., 2014; Lyon

and DeWitt, 2012).

The correlations (Fig. 2a) between the March–May PC1

(solid red line in Fig. 1d) and the preceding January SST

field indicate that a stronger than normal west-to-east warm-

to-cool Pacific SST gradient over the tropical Pacific is asso-

ciated with dry conditions over most of the Horn of Africa,

consistent with earlier findings (Tierney et al., 2013; Lyon

and DeWitt, 2012; Liebmann et al., 2013; Hoell et al., 2013;

Hoell and Funk, 2013b; Funk et al., 2013). The blue and

red boxes denote the Niño 4 and WP regions; the WPG in-

dex is estimated as the SST difference between these regions

following Hoell and Funk (2013b). The WPG is calculated

by subtracting WP SSTs from Niño 4 SSTs; this difference

is typically negative. A more negative WPG value denotes

a strengthening of the climatological equatorial Pacific SST

gradient.

The correlation pattern associated with PC2 (Fig. 2b) iden-

tifies warming in the Indian Ocean with drying in parts of the

Horn of Africa, particularly Ethiopia and Tanzania. These re-

sults are also consistent with prior research focusing on the

causes of Ethiopian rainfall declines, which identified tele-

connections to the Indian Ocean (Williams et al., 2011; Funk

et al., 2005; Jury, 2010). While other regions in Fig. 2b ex-

hibit significant correlations, we focus here on the CIO be-

cause of prior literature and the plausible physical telecon-

nection between this region and the adjacent Greater Horn of

Africa. Nonetheless, warming in the central Pacific also ap-

pears to be associated with East African drying (in contrast

to the pattern associated with PC1).

3.3 Using January WPG and CIO indices to predict

March–May CHIRPS PC1 and PC2

Two regression prediction time periods for the PC1 time se-

ries were compared: 1981–1993 (Fig. 3a) and 1994–2013

(Fig. 3a). The PC1 variance explained by the WPG index

over the 1994–2013 time period was substantially larger,

with the WPG index explaining 50 % of the PC1 variance

as opposed to 10 % over the 1981–1993 time period. Over

the 1994–2013 time period, the regression slope between the

March–May CHIRPS PC1 and the January WPG index in-

dicates a modest negative relationship (not shown), with a

decrease of 1 standard deviation in the WPG (designating a

stronger Niño 4 to WP gradient) associated with a 0.5 stan-

dardized deviation decrease in PC1. In this study, which

focuses on developing a framework to anticipate the next

drought, we use the regression coefficients from the shorter

time period to estimate rainfall associated with PC1 based

on the western Pacific SST gradient index (WPG), while

emphasizing the need to monitor the stationarity of the La

Niña–East Africa teleconnection. The strength of this mod-
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est teleconnection is quite similar to results obtained from

ECHAM5 simulations (Liebmann et al., 2013).

For the PC2 time series we used a regression based on the

full period of record (1981–2013), since the negative rela-

tionship between SST in the CIO region (0–15◦ S, 60–90◦ E)

and PC2 was found to be robust throughout the time pe-

riod evaluated. The corresponding 1981–2013 regression ex-

plained 33 % of the total variance of PC2. For every standard

deviation increase in CIO SSTs, PC2 declined−0.6 standard

deviations.

The two leading CHIRPS principal components during

the period March–May over East Africa relate, respectively,

to SST anomalies in the Pacific and Indian oceans (Fig. 2)

during January. Figure 3a–c show scatterplots of the cross-

validated 1994–2013 PC1, 1981–1993 PC1 and 1981-2013

PC2 estimates. The cross-validation was carried out using a

“leave-one-out” algorithm. Each year’s data was withheld,

the regression coefficients re-estimated and the regression es-

timate for the withheld year compared to the corresponding

observed data. The y axes depict the observed March–May

principal components from the CHIRPS data. The time se-

ries of these components are also plotted in Fig. 1d. The

x axes represent jack-knifed regression estimates of these

PCs based on either the WPG or CIO indices calculated from

January SST. Over the past 20 years, the combination of win-

tertime La Niña conditions and warm western Pacific SSTs

(large negative WPG) presage low PC1 values (Fig. 3a). The

three most extreme dry (low PC1) seasons in this period

(1999, 2000 and 2011) are captured well (dark black dia-

monds). Over the 1981–1993 period, the PC1 WPG relation-

ship was weak (Fig. 3b), consistent with the aforementioned

reports of weak zonal connections in the Indo–Pacific region

(Hastenrath et al., 2011). The skill of the CIO index, comes

more from distinguishing between high PC2 values associ-

ated with relatively cool Indian Ocean SSTs between 1981

and 1996 and low PC2 values related to the warm Indian

Ocean conditions that have persisted since 1997. These time

periods are denoted respectively with diamonds and triangles

in Fig. 3c.

These simple WPG and CIO indices can thus be used to

predict PC1 and PC2, which can then be multiplied against

their loading maps and summed to produce hindcasts of East

African March–May rainfall. The correlation between these

forecasts and observed 1994–2013 CHIRPS rainfall is shown

in Fig. 3d. The eastern Horn of Africa, southern Tanzania,

Eritrea, Djibouti, and Yemen all exhibit positive correla-

tions. One region of northern Tanzania is poorly represented,

and exhibits negative correlations. While rainfall in northern

Tanzania has been declining (Fig. 1c), these declines seem

poorly related to WPG/PC1 or CIO/PC2 changes. Regional

climate change simulations (Cook and Vizy, 2013) have sug-

gested that this region may be more sensitive to changes

in trans-Congo moisture transports, while drying in Kenya,

southern Somalia and southern Ethiopia might be related to

changes in the Somali jet.

Figure 3. (a) Scatterplot of 1994–2013 March–May PC1 observa-

tions (y axis) and cross-validated PC1 estimates based on January

WPG SSTs (x axis). (b) Same but for 1981–1993. (c) Scatterplot

of 1981–2013 March–May PC2 observations (y axis) and estimates

based on January WPG SSTs (x axis). The 1981–1996 and 1997–

2013 time periods are denoted respectively with diamonds and tri-

angles. (d) 1993–2013 correlation between forecasts and observed

rainfall.

Figure 4 shows forecast and observed rainfall anomaly

maps for a selection of dry and wet seasons. While the index-

based forecasts tend to underestimate the variance of the

rainfall, the ability to discriminate between wet and dry sea-

sons at a regional scale seems promising. Likewise, although

the ability to discriminate between normal and above-normal

PC1 values seems limited (Fig. 3a), extremely dry years ap-

pear to be fairly well predicted. Thus our index-based predic-

tions can capture some of the extreme drought years (2000,

2009, 2011), but do not predict well some of the above-

normal wet seasons (such as 2006 and 2013). SST compos-

ites of wet, normal, and dry seasons (not shown) indicate a

much more well-defined structure during dry seasons, with

most dry years being associated with a strong WPG. Be-

tween 1994 and 2013, strong WPG events have been associ-

ated with observed rainfall ranging from normal to far below

normal (Fig. 3a). When WPG conditions are neutral or in-

dicative of El Niño-like conditions, the relationship between

the WPG and EA long rains seems quite weak (Fig. 3a).
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Figure 4. Forecasts and observed March–May SPI values for 2000, 2006, 2009, 2010, 2011 and 2013.

We hypothesize that there may be a nonlinear East African

precipitation response to WP and Niño 4 SST variations

caused by the interaction of the long-term warming trend and

ENSO. Over the past 20 years, during La Niña events, the ef-

fects of the long-term WP warming trend and cold Niño 4

SST act to reinforce each other, making droughts more pre-

dictable. During neutral or El Niño-like conditions, instead,

the two effects cancel out and East African precipitation

may be more influenced by less predictable Indian Ocean

SST, variations in the Madden–Julian Oscillation (Pohl and

Camberlin, 2006), or internal atmospheric dynamics. With-

out the combined influences of warm WP and La Niña condi-

tions, these natural weather variations may play a more dom-

inant role in producing normal or above-normal East African

precipitation.

3.4 A case study addressing the 2014 long rains

Here we briefly describe how the WPG and CIO indices were

used in February of 2014 to produce an operational forecast

for FEWS NET. This case study provides an example of how

these indices might be used in the context of a GHACOF

forecast setting. Despite weak forecasts for the onset of El

Niño conditions, the ocean in January of 2014 exhibited sub-

stantial warm (cold) conditions in the WP (Niño 4) region,

indicating a strong WPG (Fig. 5a). CIO conditions (Fig. 5a)

were close to neutral, or slightly warm. Given that the re-

gression between 1994–2013 East African March–May stan-

dardized precipitation index and the January WPG indicates

reasonable levels of skill (r = 0.57) and is able to identify

the worst drought years (recall Sect. 3.3), this regression was

used to produce a forecast for modestly below-normal rain-

fall (X in Fig. 5b). This forecast and the assumption of Gaus-

sianity was used to derive tercile-based probability forecasts,

indicating normal to below-normal rains (Fig. 5c).

While no forecast methodology should be validated based

on a single season, the FEWS NET prediction made in Febru-

ary of 2014 proved to be reasonably accurate. Strong Pa-

cific gradient (WPG) conditions persisted into April and

May. While March 2014 rains were above normal, April and

May totals were very low over much of Kenya and south-

ern Ethiopia (Fig. 5d), with rainfall rank imagery indicating

that the 2014 rains were among the 5 driest of the 1981–

2014 period in those regions. Time series of Kenyan/southern

Ethiopian April–May rainfall from the GPCC and CHIRPS

archives (Fig. 5e) place this dry season in deeper historical

context. The region used in the areal averages (shown as the

red polygon in the inset on Fig. 5e) covers all of Kenya ex-

cept the Western and Nyanza provinces, south-central and

southeastern Ethiopia. Including 2014, in this region 16 of

the 24 April–May seasons since 1991 (66 %) have received
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Figure 5. (a) January 2014 SST anomalies. (b) Scatterplot of observed and hindcast East African March–May SPI values. Bold diamonds

denote 2000, 2009 and 2011. The bold X marks the forecast for 2014 made in February of 2014. (c) 2014 forecast rainfall tercile probabilities.

(d) April–May 2014 CHIRPS rainfall ranks. (e) Time series of GPCC and CHIRPS April–May rainfall for Kenya (excluding the Nyanza and

Western provinces) and south-central and southeastern Ethiopia, as indicated by the inset map in (e).

less than 190 mm of rainfall, the 1930–1980 average. We

therefore conclude that at least some of the most extreme dry

seasons seem to be predictable and associated with strong

WPG conditions.

3.5 Examining long time series of East African rainfall

and SSTs

We briefly examine long time series of East African rain-

fall and SSTs. Our objective is to place recent East African

rainfall declines in a deeper historical context. We have av-

eraged the GPCC interpolated gauge data set over our entire

study region (25–55◦ E, 13◦ S–20◦ N), converted the result-

ing time series into an EA SPI time series (McKee et al.,

1993), smoothed the results with 10-year running means, and

plotted the results in Fig. 6a. Between 1920 and 1980, the

GPCC time series exhibits interdecadal oscillations, indica-

tive of the climate sensitivity of this semiarid region. After

1980, the GPCC begins a large decline to arrive at a very

low decadal average SPI of −0.7. We have used a regression

based on 1930–2012 January WP and Niño 4 SST data to

create standardized estimates of the WPG time series. This

gives us a way to quantify the relative influence of WP and

Niño 4 SST changes. The results indicate an almost one-to-

one correspondence between WP SST changes and the East

African SPI time series: 1◦ of WP warming is associated with

about one standardized anomaly decrease in rainfall. The re-

gression coefficient between the EA SPI and WP SST was

−0.997. The sensitivity to Niño 4 SST changes is substan-

tially less and of the opposite sign; 1◦ of Niño 4 warming

is associated with about a +0.4 standardized anomaly in-

crease in rainfall. The regression coefficient between EA SPI

and Niño 4 SST was +0.419. These results seem plausible

given the very warm average SST found in the warm pool

(∼ 29 ◦C). Relatively small increases in temperatures in the

warm pool are associated with relatively large increases in

moist entropy and precipitation (Folkins and Braun, 2003).

These empirical results suggest that boreal spring EA pre-

cipitation exhibits a greater sensitivity to WP warming.

These WP and Niño 4 slope parameters can be used to es-

timate EA SPI as shown in Fig. 6a (r = 0.55, p= 0.05, based

on 7 DOF – degrees of freedom). Note that while these es-

timates fail to recreate the 1920–1980 decadal oscillations,

they do capture well the post-1990 GPCC decline. While the

EA SPI peaks during the 1930s and 1980s and declines dur-

ing the 1950s, these changes do not seem well represented

by the WP and Niño 4 variations. This suggests that the WP

and Niño 4 influences on EA precipitation are not strongly

modulated by PDV. While deviations around our regression

estimates are likely related to PDV (Yang et al., 2014), these

PDV contributions have probably not produced, alone, the

observed−0.7 decline in the GPCC SPI time series (Fig. 6a).

We can make this case more explicitly by examining in

Fig. 6b the individual WP and Niño 4 time series contribu-

tions to the regression estimate shown in Fig. 6a. The con-

tributions based on the observed WP and Niño 4 time series

are shown along with estimated contributions based on the

CMIP5 ensemble means. The observed curves (solid lines)
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Figure 6. (a) Time series of smoothed standardized GPCC data for the study region (red solid line), and WPG-based estimates of GPCC SPI

(blue dashed line). (b) The western Pacific (red solid line) and Niño 4 (solid blue line) contributions to the EA SPI estimates shown in

blue in (a). Dashed red and blue lines show the WP and Niño 4 contribution estimates based on the mean of a 53-member CMIP5 ensemble.

(c) Observed western Pacific SST anomalies (solid red line), CMIP5 western Pacific SST anomalies (dashed blue line), and linear fits (straight

red and blue lines). (d) Detrended western Pacific SST anomalies (solid red line) and detrended CMIP5 western Pacific SST anomalies

(dashed blue line).

time series were produced by multiplying the WP and Niño 4

SST time series by the regression coefficients used in Fig. 6a

(bWP=−0.997, bN4=+0.419). What this decomposition

(Fig. 6b) suggests is that between the 1920s and 1980s, the

modest drying effect of warming in the WP and the modest

wetting effect of warming in the Niño 4 region more or less

canceled each other out, resulting in little change in the re-

gression estimates shown in Fig. 6a. This may have changed

in the 1990s, as the WP warming accelerated and the high

WP sensitivity led to rapid declines in the estimated WP-

related EA SPI (Fig. 6b). The 1990–2014 SPI increases asso-

ciated with Niño 4 warming (Fig. 6b), however, have not kept

pace, both because of the lower Niño 4 sensitivity, and be-

cause Niño 4 warming has stalled since the beginning of the

post-1998 hiatus (England et al., 2014; Meehl et al., 2013).

While both the WP and Niño 4 regions have warmed, produc-

ing a drying (wetting) effect through the negative (positive)

influence of the WP (Niño 4) regions, the overall drying ef-

fect of the WP warming (based on our regression) appears to

have been greater.

We next examine the relationship between WP SST and

the effects of radiative forcing, as represented by a CMIP5

ensemble. Figure 6c shows the smoothed observed WP SST

time series and the multimodel ensemble mean WP SST

time series from the CMIP5 models listed in Table 1. The

CMIP5 ensemble means were calculated by averaging across

all available simulations. The smoothed time series track

closely (r = 0.89, p= 0.01, based on 7 DOF). Note that there

are “decadal” variations in the radiatively forced CMIP5

SSTs. These fluctuations are caused by the warming im-

pacts of greenhouse gases, changes in solar insolation, and

the cooling effects of aerosols and volcanic eruptions. Be-

cause we have averaged across a large number of simula-

tions, any internal ENSO or PDV signal has been greatly di-

minished. The CMIP5 WP SST increases in the 1930s and

1940s, stabilizes in the 1950s, cools for a brief period in

the 1960s, and increases at an accelerated rate since about

1980. These decadal fluctuations match reasonably well with

changes seen in the observed SST, except for an observed

SST increase in the early 1950s.

It is important to realize that these influences can produce

low-frequency fluctuations that appear similar to natural “in-

ternal” decadal variations. This is shown in Fig. 6d. Linear

fits to the observed and CMIP5 WP SST time series have

been removed and the residuals plotted. Because we have av-

eraged across a large number of CMIP simulations (53), any
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“internal” variations associated with natural climate variabil-

ity should be greatly diminished in the CMIP ensemble mean

time series. Nonetheless, we see large swings in CMIP WP

SST that are caused by changes in radiative forcing. Over-

all, the detrended radiatively forced CMIP5 WP ensemble

SST (dashed blue line, Fig. 6d) correspond closely (r = 0.69,

p= 0.04, based on 7 DOF) with the residuals from a linear fit

to the observed data (solid red line, Fig. 6d). This correspon-

dence suggests that much of the observed decadal and longer

variation around a linear fit to the WP SST data is due to

external radiative forcing, especially over the past 30 years.

New research has highlighted the important climate impacts

associated with the first principal component of detrended

SST (Lyon et al., 2013); Fig. 6d suggests that these detrended

SSTs are likely to have substantial decadal variations influ-

enced by changes in greenhouse gasses, aerosols and insola-

tion. Thus, our results suggest that Western Pacific PDV is

largely driven by changes in radiative forcing.

4 Summary

Building on recent diagnostic studies, this paper has explored

the utility of two simple SST indices related to the first two

principal components of East African spring rainfall. Inter-

estingly, the two principal component modes were found to

relate to the WPG and CIO, as identified in prior FEWS NET

research focusing on warm pool (Hoell and Funk, 2013a, b;

Liebmann et al., 2014; Williams and Funk, 2011) and cen-

tral Indian Ocean (Funk et al., 2005, 2008) warming. In this

study, warming in the WP and cooling in the Niño 4 re-

gion was related to rainfall deficits across much of the east-

ern Horn of Africa (lower PC1 values; Fig. 1d). Warming in

the CIO was related to declines in Tanzania and the north-

eastern Horn (lower PC2 values; Fig. 1d). Thus, warming in

both the western Pacific and Indian Ocean has likely con-

tributed to declines in PC1 and PC2. These SST changes, oc-

curring since the mid-1980s, can be attributed to increases in

anthropogenic forcing; the CMIP5 ensemble examined here

produced an accurate forecast (Fig. 6c) of decadal WP SST

variations (r = 0.89), and WPG-based regression estimates

link this warming (Fig. 6b) with substantial EA precipita-

tion declines. Even the “decadal” WP variations, denoted

as deviations from a linear trend, are explained by the re-

cent acceleration of anthropogenic warming (Fig. 6d). While

PDV certainly influences Niño 4 SSTs, contributing to a hia-

tus (England et al., 2014) in the Niño 4 contribution to EA

rainfall as shown in Fig. 6b, these influences do not appear

to dominate the recent drying tendencies, which appear to

be mostly explained by the influence of the western Pacific

(Hoell and Funk, 2013b) consistent with the anticorrelation

between records of East African precipitation and western

Pacific SST (Tierney et al., 2013). An important take-home

message of the work presented here is that the high sensitiv-

ity of East Africa to WP warming presents both a risk and an

opportunity. As the warm WP continues to warm we may see

more frequent strong gradient events, similar to the SST con-

ditions during January 2014 (Fig. 5a). Spotting these events,

however, requires attention since they are typically associ-

ated with relatively small SST anomalies, given that the SST

variance in the western Pacific is quite low.

Facing the 21st century, we can be fairly sure that the

combination of warming air temperatures, growing popu-

lation, and increasing demands for food will create an en-

hanced sensitivity to hydrologic extremes in East Africa. At

the same time, the large-scale climate, both in observations

and in CMIP5 models, seems to indicate both a strengthen-

ing of the ENSO signal and the ENSO-residual Walker cir-

culation (Sandeep et al., 2014). These tendencies, like the

WP and Niño 4 time series shown in Fig. 6b, indicate warm-

ing across the Pacific Basin. This warming, however, will

likely appear sporadically in space and time, likely creating

more intense positive or negative SST gradients. Taking ad-

vantage of the predictability created by these gradients will

help us adapt to climate change and our increasing demand

for water. While coupled ocean–atmosphere general circula-

tion forecast models provide a valuable resource, we should

not expect these systems to always reproduce all the details

of climate teleconnections or climate change correctly. The

current generation of models struggle to accurately recreate

seasonal rainfall variations over East Africa’s complex ter-

rain (Mwangi et al., 2014). The simple observationally based

SST indices used here provide a way of partially overcoming

model limitations. More complex statistical models, tailored

to East Africa’s many diverse climate regions, hybrid statisti-

cally coupled model predictions (Shukla et al., 2014a, b) and

mesoscale model simulations might all provide potentially

better ways to build on the predictive relationships explored

here.

It should be stressed, however, that statistical relation-

ships can be nonstationary in nature and should be monitored

closely. For example, running correlations with March–May

Niño 3.4 SSTs (Funk et al., 2013) show an emerging nega-

tive relationship between East African rainfall and Niño 3.4

SST. This teleconnection should be routinely monitored, if

statistical models such as those proposed here are to be used

for hydrologic early warning. Conditions that might indicate

a weakening of the WPG teleconnection would include cli-

mate shifts indicative of a weaker Walker circulation: re-

duced warm pool precipitation, weaker upper-level easterly

flows over the Indian Ocean, and weaker easterly trade winds

over the central equatorial Pacific Ocean. If the central Pa-

cific suddenly warms dramatically, WPG-induced droughts

might become much less frequent.

Whatever the future brings, integrated hydrologic early

warning systems will help us prepare for extremes. To

best address this challenge, multiple sources of informa-

tion should be combined. Rainfall climatologies, such as the

CHIRPS, can help us assess historical risks. Just before the

onset of rains, appropriate SST indices can guide food se-
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curity outlooks and GHACOF projections, as illustrated in

Sect. 3.4. The modest levels of skill of these forecasts far

exceeds the performance of current-generation coupled fore-

cast systems, which show no appreciable skill for the long

rains (Mwangi et al., 2014). Coupled models do, however,

make skillful forecasts over the Indian and Pacific oceans,

and these forecasts can be combined with a statistically con-

structed analog (CA) formulation to make skillful predictions

of East African rainfall (Shukla et al., 2014a).

Once the rainy season begins, land surface conditions

become an additional source of information – predictabil-

ity comes from both the state of the large-scale climate

and the local antecedent soil moisture conditions (Shukla

et al., 2013). Land surface models (LSMs) can add sub-

stantial increases in drought prediction skill by incorporat-

ing the knowledge of initial hydrologic conditions (derived

by forcing the models with observations of rainfall, radia-

tion and air temperature through the time of forecast initial-

ization) in the prediction (Shukla et al., 2013). New hydro-

logic forecast systems that blend these observations with cli-

mate predictions (Sheffield et al., 2013; Shukla et al., 2014b)

hold forth exciting new prospects for better early warning.

Shukla et al. (2014b) describe a hybrid statistically coupled

model forecast system that uses coupled model Indo–Pacific

SST and precipitation forecasts to assign probabilities to past

seasons. WPG-like metrics are used to quantify the simi-

larity between current and past climate conditions. These

probabilities are then used to sample (bootstrap) the histor-

ical LSM forcing archive, preferentially more often select-

ing years considered similar to the current season. This type

of system can incorporate both the observed soil moisture

condition and seasonal forecast information, leading to more

skillful midseason predictions. While it seems likely, at least

under current negative PDV conditions, that East Africa will

continue to face more frequent droughts, rapid advances in

prediction systems may help us to mitigate their impacts.
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