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Abstract. Conceptual environmental system models, such

as rainfall runoff models, generally rely on calibration for

parameter identification. Increasing complexity of this type

of models for better representation of hydrological process

heterogeneity, typically makes parameter identification more

difficult. Although various, potentially valuable, approaches

for better parameter estimation have been developed, strate-

gies to impose general conceptual understanding of how a

catchment works into the process of parameter estimation

has not been fully explored. In this study we assess the

effects of imposing semi-quantitative, relational inequality

constraints, based on expert-knowledge, for model develop-

ment and parameter specification, efficiently exploiting the

complexity of a semi-distributed model formulation. Making

use of a topography driven rainfall-runoff modeling (FLEX-

TOPO) approach, a catchment was delineated into three

functional units, i.e., wetland, hillslope and plateau. Rang-

ing from simple to complex, three model setups, FLEXA,

FLEXB and FLEXC were developed based on these func-

tional units, where FLEXA is a lumped representation of

the study catchment, and the semi-distributed formulations

FLEXB and FLEXC progressively introduce more complex-

ity. In spite of increased complexity, FLEXB and FLEXC al-

low modelers to compare parameters, as well as states and

fluxes, of their different functional units to each other, allow-

ing the formulation of constraints that limit the feasible pa-

rameter space. We show that by allowing for more landscape-

related process heterogeneity in a model, e.g., FLEXC, the

performance increases even without traditional calibration.

The additional introduction of relational constraints further

improved the performance of these models.

1 Introduction

Lumped conceptual and distributed physically based mod-

els are the two endpoints of the modeling spectrum, ranging

from simplicity to complexity, which here is defined as the

number of model parameters. Each modeling strategy is char-

acterized by advantages and limitations. In hydrology, phys-

ically based models are typically applied under the assump-

tions that (a) the spatial resolution and the complexity of the

model are warranted by the available data, and (b) the catch-

ment response is a mere aggregation of small scale processes.

However, these two fundamental assumptions are commonly

violated. As a result, the predictive power and hydrological

insight achievable via these models is limited (e.g., Beven,

1989, 2001; Grayson et al., 1992; Blöschl, 2001; Pomeroy

et al., 2007; Sivapalan, 2006; McDonnell et al., 2007; Hra-

chowitz et al., 2013b).

In contrast, lumped conceptual models require less data

for model parameters estimation. This advantage comes at

the expense of considerable limitations. Representing sys-

tem integrated processes, model structures and parameters

are not directly linked to observable quantities. Their es-

timation therefore strongly relies on calibration. To limit
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parameter identifiability issues arising from calibration, these

models are often oversimplified abstractions of the system,

and if inadequately tested they may act as mathematical mar-

ionettes (Kirchner, 2006). They may outperform more com-

plex distributed models (e.g., Refsgaard and Knudsen, 1996;

Ajami et al., 2004; Reed et al., 2004), but often fail to provide

realistic representations of the underlying processes, leading

to limited predictive power (e.g., Freer et al., 2003; Seibert,

2003; Kirchner, 2006; Beven, 2006; Kling and Gupta, 2009;

Andréassian et al., 2012; Euser et al., 2013; Gharari et al.,

2013).

Various strategies have been suggested to allow for in-

creased model complexity and to thereby improve the phys-

ical realism of conceptual models. These strategies included

the attempt to incorporate different data sources in the pa-

rameter estimation process, such as ground- and soil water

dynamics (e.g., Seibert and McDonnell, 2002; Freer et al.,

2004; Fenicia et al., 2008a; Matgen et al., 2012; Sutanudjaja

et al., 2013), remotely sensed evaporation (e.g., Winsemius

et al., 2008), snow dynamics (e.g., Parajka and Blöschl,

2008) or tracer data (e.g., Vaché and McDonnell, 2006; Dunn

et al., 2008; Son and Sivapalan, 2007; Birkel et al., 2011;

Capell et al., 2012; Hrachowitz et al., 2013a). Alternatively,

one may seek to extract more information from available

data, for example through the development of signatures rep-

resenting different aspects of the data (e.g., Gupta et al.,

1998, 2008; Boyle et al., 2000, 2001; Madsen, 2000; Feni-

cia et al., 2006; Rouhani et al., 2007; Khu et al., 2008; Win-

semius et al., 2009; Bulygina and Gupta, 2010; McMillan

et al., 2011; Clark et al., 2011; Euser et al., 2013; He et al.,

2014; Hrachowitz et al., 2014).

Traditional parameter estimation of conceptual models re-

lies on the availability of calibration data, which, however,

are frequently not available for the time period or the spa-

tiotemporal resolution of interest. A wide range of region-

alization techniques for model parameters and hydrologi-

cal signatures have been developed to avoid calibration in

such data scarce environments (e.g., Bárdossy, 2007; Yadav

et al., 2007; Perrin et al., 2008; Zhang et al., 2008; Kling and

Gupta, 2009; Samaniego et al., 2010; Kumar et al., 2010;

Wagener and Montanari, 2011; Kapangaziwiri et al., 2012;

Viglione et al., 2013). However, it is challenging to identify

suitable functional relationships between catchment charac-

teristics and model parameters (e.g., Merz and Blöschl, 2004;

Kling and Gupta, 2009), and only recently did Kumar et al.

(2010, 2013a) show that multi-scale parameter regionaliza-

tion (MPR) can yield global parameters that perform consis-

tently over different catchment scales. In a further study they

successfully transferred parameters obtained by the MPR

technique to ungauged catchments in Germany and the USA

(Kumar et al., 2013b).

Related to these difficulties with parameter identifiabil-

ity, the lack of sufficient representation of processes het-

erogeneity (i.e., complexity) in conceptual models limits

the degree of realism of these models. The concept of

hydrological response units (HRUs) can be exploited as a

strategy for an efficient tradeoff between model simplicity,

required for adequate parameter identifiability, and a suffi-

cient degree of process heterogeneity. HRUs are units within

a catchment, characterized by a different hydrological func-

tion and can be represented by different model structures

or parameters. In most cases HRUs are defined based on

soil types, land cover and other physical catchment charac-

teristics (e.g., Knudsen et al., 1986; Flügel, 1995; Grayson

and Blöschl, 2000; Krcho, 2001; Winter, 2001; Scherrer and

Naef, 2003; Uhlenbrook et al., 2004; Wolock et al., 2004;

Pomeroy et al., 2007; Scherrer et al., 2007; Schmocker-

Fackel et al., 2007; Efstratiadis and Koutsoyiannis, 2008;

Lindström et al., 2010; Nalbantis et al., 2011; Kumar et al.,

2010).

A wide range of studies also points towards the potential

value of using topographical indices, readily available from

digital elevation models (DEMs), to account for process het-

erogeneity (e.g., McGlynn and McDonnell, 2003; Seibert,

2003; McGuire et al., 2005; Hrachowitz et al., 2009; Jencso

et al., 2009; Detty and McGuire, 2010; Gascuel-Odoux et al.,

2010). Because standard metrics of landscape organization,

such as absolute elevation, slope or curvature, as used in the

catena concept (Milne, 1935; Park and van de Giesen, 2004),

are often not strong enough descriptors to infer hydrological

function, alternative concepts have been sought. The devel-

opment of derived metrics such as the Topographic Wetness

Index (Beven and Kirkby, 1979) facilitated an important step

forward, being at the core of TOPMODEL (e.g., Beven and

Kirkby, 1979; Beven and Freer, 2001a), which has proven

to be a valuable approach in specific environmental settings

meeting the assumptions of the model. A different descrip-

tor allowing a potentially more generally applicable and hy-

drologically meaningful landscape classification has recently

been suggested by Rennó et al. (2008): the Height Above the

Nearest Drainage (HAND). Nobre et al. (2011) showed the

hydrological relevance of HAND by investigating long term

groundwater behavior and land use.

Explicitly invoking the co-evolution of topography, veg-

etation and hydrology, Savenije (2010) argued that catch-

ments, as self-organizing systems, need to fulfill the contrast-

ing hydrological functions of efficient drainage and sufficient

water storage to allow, in a feedback process, topography and

vegetation to develop the way they did. These distinct hydro-

logical functions can be associated with different landscape

elements or HRUs as defined by HAND and slope, such that

each HRU is represented by a model structure best represent-

ing its function in the ecosystem (cf. Savenije, 2010).

While HAND-based landscape classification can poten-

tially show a way forward, it does not solve the problem

arising when moving from lumped to HRU-guided, semi-

distributed model formulations: multiple parallel model

structures typically result in an increased number of param-

eters, which, when not adequately constrained, may increase

equifinality and thereby limit predictive uncertainty (e.g.,
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Gupta and Sorooshian, 1983;Beven, 2006;Gupta et al., 2008).

To better satisfy the contrasting priorities of model complex-

ity and predictive power, new strategies are sought to more

efficiently utilize the modelers’ understanding of the system,

particularly when for constraining the feasible model-

and parameter space is scarce (e.g., Gupta et al., 2008;

Wagener and Montanari, 2011; Singh and Bárdossy, 2012;

Andréassian et al., 2012; Gharari et al., 2013; Hrachowitz

et al., 2013a; Razavi and Tolson, 2013).

In contrast to earlier attempts to constrain models using

multiple evaluation criteria or a priori information on catch-

ment properties such as land use or soil type (e.g., Koren

et al., 2008), this study tests the utility of a different and so

far underexploited type of constraint, based on a priori un-

derstanding of the system. The concept of topography-driven

conceptual modeling involves the identification of HRUs that

operate in parallel. Linked to the technique of regularization

(e.g., Tikhonov, 1963; Engl et al., 1996), this opens the pos-

sibility to impose semi-quantitative, expert knowledge based,

relational constraints of catchment behavior on model pa-

rameters, similar to what was suggested by Pokhrel et al.

(2008) and Yilmaz et al. (2008). In contrast to those studies,

the suggested concept introduces relations between parallel

HRUs exclusively based on hydrological reasoning to ensure

that similar processes between parallel model structures are

represented in an internally consistent way, thereby reducing

the feasible parameter space. The advantage of this method

is that there is only minimal need to quantify the constraints

or the prior parameter distributions (e.g., Koren et al., 2000,

2003; Kuzmin et al., 2008; Duan et al., 2006), while allowing

for a meaningful and potentially more realistic representation

of the system in which each model component is, within cer-

tain limits, constrained to do what it is designed to do, rather

than allowing it to compensate for data and model structural

errors.

The objective of this paper is to test the hypothesis that

application of model constraints based on expert knowledge

(regarding relations between parameters, fluxes and states) to

semi-distributed conceptual models defined by a hydrologi-

cally meaningful, topography-based, landscape classification

system combined can (1) increase model internal consistency

and thus the level of process realism as compared to lumped

model setups, (2) increase the predictive power compared

to lumped model setups and (3) reduce the need for model

calibration.

2 Study area and data

The outlined methodology will be illustrated and tested

with a case study using data of the Wark catchment in the

Grand Duchy of Luxembourg. The catchment has an area

of 82 km2 with the catchment outlet located downstream of

the town of Ettelbrück at the confluence with the Alzette

River (49.85◦ N, 6.10◦ E, Fig. 1). With an annual mean

precipitation of 850 mm yr−1 and an annual mean poten-

tial evaporation of 650 mm yr−1 the annual mean runoff is

approximately 250 mm yr−1. The geology in the northern

part is dominated by schist while the southern part of the

catchment is mostly underlain by sandstone and conglom-

erate. Hillslopes are generally characterized by forest, while

plateaus and valley bottoms are mostly used as crop land and

pastures, respectively. Drogue et al. (2002) quantified land

use in the catchment as 4.3 % urban areas, 52.7 % agricul-

tural land and 42.9 % forest. In addition they reported that

61 % of catchment is covered by permeable soils while the

remainder is characterized by lower permeability substrate.

The elevation varies between 195 to 532 m, with a mean

value of 380 m. The slope of the catchment varies between 0

and 200 %, with a mean value of 17 % (Gharari et al., 2011).

The hydrological data used in this study include dis-

charge measured at the outlet of the Wark catchment, poten-

tial evaporation estimated by the Hamon equation (Hamon,

1961) with temperature data measured at Luxembourg air-

port (Fenicia et al., 2006); and precipitation measured by a

tipping bucket rain gauge located at Reichlange. The tempo-

ral resolution used in this study is 3 h.

3 FLEX-TOPO framework

Realizing the potential of “reading the landscape” in a sys-

tems approach (cf. Sivapalan et al., 2003), Savenije (2010)

argued that due to the co-evolution of topography, soil and

vegetation, all of which define the hydrological function of

a given location, an efficient, hydrologically meaningful de-

scriptor of topography together with land use could be used

to distinguish different HRUs. HAND, which can be loosely

interpreted as the hydraulic head at a given location in a

catchment, may be such a descriptor as it potentially allows

for meaningful landscape classification (e.g., Rennó et al.,

2008). It was argued previously (Gharari et al., 2011) that,

in central European landscapes, HAND can efficiently dis-

tinguish between wetlands, hillslopes and plateaus. These

are landscape elements that may also be assumed to fulfill

distinct hydrological functions (HRUs) in the study catch-

ment (Savenije, 2010). Wetlands, located at low elevations

above streams, are characterized by shallow ground water

tables with limited fluctuations. Due to reduced storage ca-

pacity between ground water table and soil surface, poten-

tially exacerbated by the relative importance of the capil-

lary fringe, wetlands tend to be saturated, and thus con-

nected, earlier during a rainfall event than the two other

landscape elements with arguably higher storage capacity,

thus frequently becoming the dominant source of storm flow

during comparably dry periods (e.g., Seibert, 2003; McG-

lynn et al., 2004; Molénat et al., 2005; Blume et al., 2008;

Anderson et al., 2010; Kavetski et al., 2011). The domi-

nant runoff process in wetlands can therefore be assumed to

be saturation overland flow. In contrast, forested hillslopes,
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Figure 1. (a) Location of the Wark catchment in the Grand Duchy of Luxembourg, (b) digital elevation model (DEM) of the Wark catchment

with cell size of 5 m× 5 m, (c) local slopes (%) in the Wark catchment derived from a DEM with resolution of 5 m× 5 m [–], (d) HAND of

the Wark catchment derived from a DEM with resolution of 5 m× 5 m [m], (e) the classified landscape units wetland, hillslope and plateau

using the combined HAND and slope thresholds of 5 m and 11 %, respectively (from Gharari et al., 2011).

landscape elements with steeper slopes than the wetlands

or plateaus, require a balance between sufficient storage ca-

pacity and efficient drainage to develop and maintain the

ecosystem (Savenije, 2010). A dual system combining suf-

ficient water storage in the root zone and efficient lateral

drainage through preferential flow networks, controlled by a

suite of activation thresholds as frequently observed on hill-

slopes (e.g., Hewlett, 1961; Beven and Germann, 1982; Sidle

et al., 2001; Freer et al., 2002; Weiler et al., 2003; McNamara

et al., 2005; Tromp-van Meerveld and McDonnell, 2006a, b;

Zehe and Sivapalan, 2009; Spence, 2010) can be seen as the

dominant mechanism. Finally, plateaus are landforms with

low to moderate slopes and comparably deep ground water

tables. In absence of significant topographic gradients and

due to the potentially increased unsaturated storage capacity,

it can be hypothesized that the primary functions of plateaus

are sub-surface storage and groundwater recharge (Savenije,

2010). Although plateaus may experience infiltration excess

overland flow in specific locations, the topographical gradi-

ents may not be sufficient to generate surface runoff con-

nected to the stream network (Liu et al., 2012). In the FLEX-

TOPO approach the proportions of the hydrologically dis-

tinct landscape units, i.e., HRUs, in a given catchment need

to be determined on the basis of topographical and land cover

information. Subsequently suitable model structures and pa-

rameterizations (read constitutive functions) will be assigned

to the different HRUs (Clark et al., 2009; Fenicia et al., 2011;

Hrachowitz et al., 2014). The integrated catchment output,

i.e., runoff and evaporative fluxes, can then be obtained by

combining the computed proportional outputs from the indi-

vidual HRUs. Note that the three landscape classes tested for

suitability in this study, i.e., wetland, hillslope and plateau

together with their assumed dominant runoff process are de-

signed for the Wark catchment and are likely to be different

for other environmental settings (e.g., Gao et al., 2014).

3.1 Landscape classification

As the objective of FLEX-TOPO is to efficiently extract

and use hydrologically relevant information from worldwide

readily available topographic data, i.e., DEMs, the Height

Above the Nearest Drainage (HAND; Rennó et al., 2008; No-

bre et al., 2011; Vannametee et al., 2014) is a potentially pow-

erful metric to classify landscapes into HRUs with distinct

hydrological function, as discussed above. Testing a suite

of HAND-based classification methods Gharari et al. (2011)

found that results best matching observed landscape types

could be obtained by using HAND together with the local

slope. Based on a probabilistic framework to map the desired
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HRUs which were then compared with in situ observations

they obtained a threshold for HAND and slope of approxi-

mately 5 m and 11 % for the Wark catchment. Following that,

wetlands were defined to be areas with HAND≤ 5 m. Areas

with HAND> 5 m and local slopes> 11 % were classified as

hillslopes, while areas with HAND> 5 m and slope≤ 11 %

were defined as plateaus. The HAND and slope map of the

study catchment together with the classified landscape enti-

ties (wetland, hillslope and plateau) are presented in Fig. 1.

The proportion of the individual HRUs wetland, hillslope,

and plateau are 15 %, 45 %, and 40 %, respectively.

3.2 Model setup

In this study a lumped conceptual model of the Wark catch-

ment, hereafter referred to as FLEXA, is used as similar

lumped conceptual models are frequently used in catch-

ment hydrology (e.g., Merz and Blöschl, 2004; Clark et al.,

2008; Perrin et al., 2008; Seibert and Beven, 2009; Feni-

cia et al., 2014). The above discussed concept of FLEX-

TOPO (Savenije, 2010) is thereafter tested with a step-

wise increased number of parallel landscape units (FLEXB,

FLEXC), thereby increasing the conceptualized process het-

erogeneity and thus the model complexity. The core of the

three model setups is loosely based on the FLEX model

(Fenicia et al., 2006, 2008b).

3.2.1 FLEXA

This model setup represents the catchment in a lumped

way. The FLEXA model structure consists of four stor-

age elements representing interception, unsaturated, slow

(i.e., groundwater) and fast responding reservoirs (i.e., pref-

erential flow and saturation overland flow). A schematic il-

lustration of FLEXA is shown in Fig. 2a. The water bal-

ance equations and constitutive functions used are given in

Table 2.

Interception reservoir (SI)

The interception reservoir is characterized by its maximum

storage capacity (Imax [L]). After precipitation (P [L T−1])

enters this reservoir the excess precipitation, hereafter re-

ferred to as effective precipitation (Pe [L T−1]), is distributed

between the unsaturated (SU), slow (SS) and fast (SF) reser-

voirs. Interception (I [L T−1]) is then dependent on the po-

tential evaporation (Epot [L T−1]) and the amount of water

stored in the interception reservoir (SI).

Unsaturated reservoir (SU)

The unsaturated reservoir is characterized by a parameter that

loosely reflects the maximum soil moisture capacity in the

root zone (SU,max [L]). Part of the effective precipitation (Pe)

enters the unsaturated zone according to the coefficient Cr,

which here is defined by a power function with exponent β

[–], reflecting the spatial heterogeneity of thresholds for ac-

tivating fast lateral flows from SF. This coefficient Cr will

be 1 when soil moisture (SU) is lower than a specific per-

centage of maximum soil moisture capacity (SU,max) defined

by relative soil moisture at field capacity (FC [–]), meaning

that the entire incoming effective precipitation (Pe) at a given

time step is stored in the unsaturated reservoir (SU). The soil

moisture reservoir feeds the slow reservoir through matrix

percolation (Rp [L T−1]), expressed as a linear relation of

the available moisture in the unsaturated zone (SU) and the

maximum percolation capacity (PPer [L T−1]). The reverse

process, capillary rise (RC), feeds the unsaturated reservoir

from the saturated zone. Capillary rise (RC [L T−1]) has an

inverse linear relation with the moisture content in the unsat-

urated zone and is characterized by the maximum capillary

rise capacity (C [L T−1]). Soil moisture is depleted by plant

transpiration. Transpiration is assumed to be moisture con-

strained when the soil moisture content is lower than a frac-

tion Lp [–] of the maximum unsaturated capacity (SU,max).

When the soil moisture content in the unsaturated reservoir

is higher than this fraction (Lp) transpiration is assumed to

be equal to the available potential evaporation (Epot− I ).

Splitter and transfer functions

The proportion of effective rainfall which is not stored in the

unsaturated zone, i.e., 1−Cr, is further regulated by the par-

titioning coefficient (D [–]), distributing flows between pref-

erential groundwater recharge (RS [L T−1]) to SS and water

that is routed to the stream by fast lateral processes from SF

(e.g., preferential flow or saturation overland flow, RF). Both

fluxes are lagged by rising linear lag functions with parame-

ters Nlagf and Nlags, respectively (Fenicia et al., 2006).

Fast reservoir (SF)

The fast reservoir is a linear reservoir characterized by reser-

voir coefficient SF.

Slow reservoir (SS)

The slow reservoir is a linear reservoir characterized by reser-

voir coefficient SS.

3.2.2 FLEXB

As discussed above, a range of process studies suggested that

wetlands can frequently exhibit storage–discharge dynamics

that are decoupled from other parts of a catchment, in partic-

ular due to their typically reduced storage capacity and close-

ness to the stream. FLEXB explicitly distinguishes wetlands

from the rest of the catchment, the remainder (i.e., hillslopes

and plateaus), which is represented in a lumped way, to ac-

count for this difference. The FLEXB model setup therefore

consists of two parallel model structures which are connected

with a common groundwater reservoir (Fig. 2b), similar to

www.hydrol-earth-syst-sci.net/18/4839/2015/ Hydrol. Earth Syst. Sci., 18, 4839–4859, 2015
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Figure 2. The model structures for (a) FLEXA, (b) FLEXB and (c) FLEXC.

what has been suggested by Knudsen et al. (1986). One ma-

jor difference between the two parallel structures is that cap-

illary rise is assumed to be a relevant process only in the wet-

land, while it is considered negligible in the remainder of the

catchment due to the deeper groundwater. Further, since the

wetlands are predominantly ex-filtration zones of potentially

low permeability, preferential recharge is considered negli-

gible in wetlands. The areal proportions of wetland and the

remainder (i.e., hillslope and plateau) of the catchment are

15 % and 85 %, respectively (Gharari et al., 2011).

3.2.3 FLEXC

This model setup offers a complete representation of the

three HRUs in the study catchment: wetland, hillslope and

plateau (Fig. 2c). The formulation of the wetland module in

FLEXC is identical to the one suggested above for FLEXB.

The hillslope HRU is represented by a model structure re-

sembling the FLEXA setup. Plateaus are assumed to be dom-

inated by vertical fluxes, while direct lateral movement in

the form of Hortonian overland flow is considered negli-

gible compared to those generated from hillslope and wet-

land HRUs. Therefore the plateau model structure does not

account for these fast fluxes. Analogous to FLEXB, the

FLEXC setup is characterized by one single groundwater

reservoir linking the three dominant HRUs in this catchment.

The individual proportions of wetland, hillslope, and plateau

are 15 %, 45 %, and 40 %, respectively (Gharari et al., 2011).

The proportions of these HRUs are used to compute the total

discharge based on the contribution of each landscape unit.

The connection between the parallel structures of FLEXB

and FLEXC is through the surface drainage network

(the stream network) and through the slow (groundwater)

reservoir.

3.3 Introducing realism constraints in selecting

behavioral parameter sets

With increasing process heterogeneity from FLEXA over

FLEXB to FLEXC, the respective model complexities and

therefore the number of calibration parameters also increase.

This, in the absence of sufficient suitable data to efficiently

constrain a model, typically leads to a situation where pa-

rameters have increased freedom to compensate for errors in

data and model structures, as recently reiterated by Gupta

et al. (2008). In this study, two fundamentally different types

of model constraints were applied to test their value for re-

ducing equifinality in complex model setups, parameter con-

straints and process constraints.
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Table 1. Uniform prior parameter distributions for the three model setups.

FLEXA FLEXB FLEXC

Unit wetland remainder wetland hillslope plateau

Imax mm
Interception storage for forest∗ 2–5

Interception storage for cropland and grassland∗ 1–3

SU,max mm Maximum unsaturated storage 0–500 0–100 0–500 0–100 0–500 0–500

β – Soil moisture distribution exponent 0–5 0–5 0–5 0–5 0–5 0–5

LP – Transpiration coefficient 0.5 0.5 0.5 0.5 0.5 0.5

FC – Relative soil moisture at field capacity 0–0.3 0 0–0.3 0 0–0.3 0–0.3

D – Partitioning fast and slow reservoir 0–1 0 0–1 0 0–1 1

C mm (3 h)−1 Maximum capillary rise rate 0 0–0.3 – 0–0.3 – –

Pper mm (3 h)−1 Maximum percolation rate 0–0.5 0–0.5 0–0.5 0–0.5 0 0–0.5

Nlagf 3 h Lag time for flux to fast reservoir 1–7 1–3 1–5 1–3 1–5 –

Nlags 3 h Lag time for preferential recharge 1–7 – 1–7 – 1–7 1–7

KF 3 h−1 Fast reservoir coefficient 0–1 0–1 0–1 0–1 0–1 –

KS 3 h−1 Slow reservoir coefficient 0.005–0.05 0.005–0.05 0.005–0.05

∗ Inferred from Breuer et al. (2003).

Table 2. Water balance equations and constitutive functions used in FLEXA.

Reservoir Water balance equations Constitutive functions

Interception reservoir 1SI
1t =P −Pe− I Pe =

{
0 SI < Imax

(SI − Imax)/1t SI = Imax

I =

{
Epot Epot1t < SI

SI/1t Epot1t ≥ SI

Unsaturated reservoir
1SU
1t =Ru− T −RP+RC Ru=CrPe Cr =

{
1 −

[
(SU−SU,max FC)
(SU,max−SU,max FC)

]β
SU ≥ SU,maxFC

1 SU < SU,maxFC

T =KT

(
Epot − I

)
KT =

{ [
SU

SU,max Lp

]
SU < SU,maxLp

1 SU ≥ SU,maxLp

Rp=
[
SU/SU,max

]
Pper

RC=
[
1 −

(
SU/SU,max

)]
C

Fast reservoir 1SF
1t =RF,lag−Qf RF= (1−D)(1 − Cr) Pe

RF,lag=R
∗
FNlagf

Qf=KF SF

Slow reservoir
1SS
1t =RS,lag−Qs+RP−RC RS=D(1 − Cr) Pe

RS,lag=R
∗
S
Nlags

Qs=KS SS

∗ is the convolution operator.

3.3.1 Parameter constraints

Inequality conditions between parameters of parallel model

units, hereafter referred to as parameter constraints, were

imposed before each model evaluation run. These a priori

constraints ensure that the individual parameter values for

the same process in the parallel units, reflect the modeler’s

perception of the system. For example, it can be argued that

the maximum interception capacity (Imax) of a forested HRU

needs to be higher than that of a non-forested one. In the

absence of more detailed information this does not only al-

low overlapping prior distributions but it also avoids the need

for quantification of the constraints themselves. In the fol-

lowing, a set of parameter constraints imposed on the dif-

ferent model structure are listed. The applicability of each

parameter constraint for every model structure is summarized

in Table 3. The subscripts w, h, and p indicate parameters for

wetland, hillslope, and plateau, respectively.

Interception

Different land cover proportions of individual landscape

units, here wetlands, hillslopes and plateaus, can be used to

define the relation between interception thresholds (Imax) of

these individual units. The land uses are defined as two gen-

eral classes for this case study: (1) forested areas, (2) crop-

land and grassland areas. The maximum interception capac-

ity (Imax) for each landscape entity can be estimated from

the proportion of land-use classes and their maximum in-

terception capacities, selected from their respective prior
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distributions as given in Table 1:

Imax,w = awImax,forest+ bwImax,crop-grassland, (1)

Imax,h = ahImax,forest+ bhImax,crop-grassland, (2)

Imax,p = apImax,forest+ bpImax,crop-grassland. (3)

The proportions of forested area are indicated with aw, ah and

ap for wetland, hillslope, and plateau and are fixed at 42 %,

60 %, and 29 %, respectively. The proportions of cropland

and grassland areas are indicated by bw, bh, and bp for wet-

land, hillslope, and plateau and are fixed at 58 %, 40 %, and

71 %, respectively. Moreover the parameter sets which are

selected for maximum interception capacity of forest are ex-

pected to be higher than cropland or grassland:

Imax,crop-grassland < Imax,forest. (4)

Lag functions

Preferential recharge (RS) is routed to the slow reservoir by a

lag function. Due to a deeper groundwater table on plateaus

it can be assumed that the lag time for (RS) is longer for

plateaus than for hillslopes. It can also be assumed that the

lag function used for fast reservoir for hillslopes is longer

than for wetlands due to the on average higher distance and

therefore longer travel times from hillslopes to the stream.

Nlags,w ≤Nlags,h ≤Nlags,p (5)

Soil moisture capacity

Wetlands have shallower groundwater tables than the other

two landscape entities in this study. Therefore the unsat-

urated zone of wetland should have a lower maximum

soil moisture capacity (SU,max) than hillslopes and plateaus.

Moreover, as hillslopes in the study catchment are predomi-

nantly covered with forest, it can, due to the deeper root zone

of forests, be expected that the maximum unsaturated soil

moisture capacity (SU,max) in the root zone of hillslopes is

deeper than the other two landscape entities.

SU,max,w < SU,max,p < SU,max,h (6)

Reservoir coefficients

The reservoir coefficient of the wetland fast reservoir (KF)

is assumed to be higher than reservoir coefficient of the hill-

slope fast reservoir as, once connectivity is established, the

flow velocities of saturation overland flow in wetlands are

assumed to exceed the integrated flow velocities of preferen-

tial flow networks (cf. Anderson et al., 2009). Likewise, the

reservoir coefficient of the slow reservoir should be lower

than both wetland and hillslope fast reservoirs.

KS <KF,h <KF,w (7)

The reservoir constraints can be applied to all models while

the other constraints can only be applied to FLEXB and

FLEXC.

3.3.2 Process constraints

In contrast to the parameters constraints discussed above,

which are set a priori, process constraints are applied a pos-

teriori. Only parameters which generate model flux and state

dynamics in agreement with the modeler’s perception of

these dynamics are retained as feasible. Hence, while with

the use of parameter constraints there is no need to run

the model for rejected parameter sets, here it is necessary

to run the model to evaluate it with respect to the process

constraints.

Process constraints are defined for dry and wet periods as

well as for peak, high, and low flows. Here wet periods were

defined to be the months from November to April, while

the dry periods in the study catchment occur between May

and October. The thresholds for distinguishing between high

and low flow were chosen to be 0.05 and 0.2 mm (3 h)−1

respectively for dry and wet periods. Furthermore, events

during which discharge increases with a rate of more than

0.2 mm (3 h)−2 are defined as peak flows. Note that in the fol-

lowing the subscripts peak, high and low indicate peak, high,

and low flows. The applicability of each process constraint

for every model structure is summarized in Table 3.

Transpiration

Transpiration typically exhibits a clear relationship with

the normalized difference vegetation index (NDVI, Szilagyi

et al., 1998). Therefore the ratios between NDVI values of

different landscape units can serve as constraints on modeled

transpiration obtained from the individual parallel model

components. A rough estimation of the ratio between transpi-

ration from plateau and hillslope can be derived from LAND-

SAT 7 images. For this ratio, seven cloud free images were

selected (acquisition dates of 20 April 2000, 6 March 2000,

11 September 2000, 18 February 2001, 6 March 2001,

26 March 2001 and 29 August 2001). The ratio of transpira-

tion between hillslope and plateau (Rtrans) can be estimated

by assuming a linear relation (Szilagyi et al., 1998) with

slope of α and intercept zero between transpiration and mean

NDVI for each landscape unit (µNDVI).

Rtrans =
αµNDVI,h

αµNDVI,p

=
µNDVI,h

µNDVI,p

(8)

Mean (µRtrans) and standard deviation (σRtrans) of the tran-

spiration ratio (Rtrans) can be used to estimate acceptable lim-

its of the transpiration ratios for hillslope and plateau. There-

fore the annual transpiration can be confined between two

values as follows:

µRtrans− σRtrans <

∑
Thdt∑
Tpdt

< µRtrans+ σRtrans. (9)

Based on the mean (µRtrans= 1.2) and standard deviation

(σRtrans= 0.2) of the seven LANDSAT 7 images used, the
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Table 3. The applicability of different parameter and process constraints for the three different model structures, FLEXA, FLEXB and

FLEXC.

Parameter constraints Process constraints

Interception Lag Soil Reservoir Transpiration Runoff Preferential Fast

functions moisture coefficients coefficient recharge component

capacity discharge

FLEXA
× ×

FLEXB
× × × × × ×

FLEXC
× × × × × × × ×

following process constraint on transpiration from hillslope

(Th) and plateau (Tp) was imposed:

1.0<

∑
Thdt∑
Tpdt

< 1.4. (10)

Similar constraints can be imposed between transpiration

fluxes from wetland, hillslope or plateau; however, the spatial

resolution of LANDSAT 7 data with resolution of 30 meters

is coarser than the required 20 m DEM resolution for dis-

tinguishing wetlands from other landscape entities (Gharari

et al., 2011).

Runoff coefficient

The runoff coefficient is a frequently used catchment signa-

ture (e.g., Sawicz et al., 2011; Euser et al., 2013) and can

be used as a behavioral constraint (e.g., Duan et al., 2006;

Winsemius et al., 2009). In this study the runoff coefficients

of dry and wet periods as well as the annual runoff coef-

ficient were used. Parameters that result in modeled runoff

coefficients that substantially deviate from the observed ones

are therefore discarded. In case of absence of suitable runoff

data, the long-term mean annual runoff coefficient can be es-

timated from the regional Budyko curve using for example

the Turc–Pike relationship (Turc, 1954; Pike, 1964; Arora,

2002). However, in this study, the runoff coefficients of each

individual year and their respective dry and wet periods were

used and determined the mean and standard deviation of the

runoff coefficients for these periods. Here, as a conservative

assumption, the limits are set to three times the standard devi-

ation around the mean runoff coefficient. Note that the runoff

coefficient is the only process constraint that is not related to

model structure in this study and can therefore also be ap-

plied to the lumped FLEXA setup.∑
Qm1t∑
P1t

< 0.43 (11)

∑
Qm1t∑
P1t

> 0.16 (12)

∑
Qm,dry1t∑
Pdry1t

< 0.36 (13)

∑
Qm,dry1t∑
Pdry1t

> 0 (14)

∑
Qm,wet1t∑
Pwet1t

< 0.71 (15)

∑
Qm,wet1t∑
Pwet1t

> 0.40 (16)

Preferential recharge

The slow reservoir can be recharged by both preferential

and matrix percolation from the unsaturated reservoirs. Here,

hillslopes and plateaus contribute to the slow reservoir by

preferential recharge. It can be assumed that in a realistic

model setup the long term contribution volume of preferen-

tial recharge ratio between hillslope and plateau should not

be unrealistically high or low. For example, it can be assumed

unrealistic that the ratio is zero or infinity, meaning that one

landscape unit is constantly feeding the slow reservoir while

another one is not contributing at all. To avoid such a prob-

lem, a loose and very conservative constraint was imposed

on the ratio of contribution of the two fluxes.

0.2<

∑
RS,h1t∑
RS,p1t

< 5 (17)

Fast component discharge

During dry periods, hillslopes and plateaus can exhibit sig-

nificant soil moisture deficits, limiting the amount of fast

runoff generated from these landscape elements. In contrast,

due to their reduced storage capacity, wetlands are likely to

generate fast flows at lower moisture levels, thus dominat-

ing event response during dry periods (cf. Beven and Freer,

2001b; Seibert, 2003; Molénat et al., 2005; Anderson et al.,

2010; Birkel et al., 2010). It can thus be assumed that for peak

flows during dry periods, the fast component of wetlands

(Qf,w,dry,peaks) contributes more to runoff than the fast com-

ponent of hillslopes (Qf,h,dry,peaks). In contrast, high flows
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during wet periods are predominantly generated by fast reac-

tion from hillslopes (Qf,h,wet;Qf,h,wet,high) rather than of wet-

land (Qf,w,wet; Qf,w,wet,high). This process constraint is also

applied to FLEXB.∑
Qf,h,dry,peaks1t∑
Qf,w,dry,peaks1t

< 1 (18)∑
Qf,h,wet,high1t∑
Qf,w,wet,high1t

> 1 (19)∑
Qf,h,wet1t∑
Qf,w,wet1t

> 1 (20)

3.3.3 Calibration algorithm and objective functions

Based on uniform prior parameter distributions as well as

on the parameter and process constraints the model was

calibrated using MOSCEM-UA (Vrugt et al., 2003). How-

ever penalizing the objective function(s) based on the num-

ber of unsatisfied constraints, can lead to non-smooth ob-

jective functions that can cause instabilities in the search

algorithm and the generation of invalid results. To resolve

this issue, a recently developed stepwise search algorithm

was used to find parameter sets that satisfy both parame-

ter and process constraints (Gharari et al., 2014), and these

parameter sets were then used as initial sampling param-

eter sets for MOSCEM-UA (instead of traditional Latin

Hypercube sampling).

The models were evaluated on the basis of three differ-

ent objective functions to emphasize different characteristics

of the system response: (i) the Nash–Sutcliffe efficiency of

the flows (Nash and Sutcliffe, 1970, ENS), (ii) the Nash–

Sutcliffe efficiency of the logarithm of the flows (ENS,log)

and (iii) the Nash–Sutcliffe efficiency of the flow duration

curve (ENS,FDC). These criteria evaluate the models’ abil-

ity to simultaneously reproduce high flows, low flows and

flow duration curves respectively. While the year 2001 was

used as warm up period, the model setups were constrained

and calibrated for the year 2002–2005 and validated for year

2006–2009 (see below) and vice versa (see Supplement).

3.4 Model validation and parameter evaluation

To assess the value of incorporating parameter and process

constraints in increasingly complex models a four-step pro-

cedure was followed.

3.4.1 Evaluating models with constrained but

uncalibrated parameter sets

First, all parameter sets that satisfy all the applied constraints

were evaluated for their ability to reproduce the observed hy-

drograph; these parameter sets are referred to as constrained

but uncalibrated parameter sets because they were obtained

without any calibration to the observed hydrographs. Us-

ing these parameter sets, the mean performance of the three

constrained but uncalibrated models FLEXA, FLEXB and

FLEXC, was evaluated using the three objective functions

(ENS, ENS,log, ENS,FDC). Note that FLEXA , FLEXB and

FLEXC have an increasing number of constraints and so this

tests both whether the higher complexity models also result

in better model performance and how the predictive uncer-

tainty is affected by increased complexity and model real-

ism. To investigate how well the hydrographs match the ob-

served hydrograph, the simulated 95% uncertainty intervals

were generated and uncertainty was estimated as the area

contained within the 95% uncertainty intervals.

To further study the effect of constraints on the per-

formance and uncertainty of constrained but uncalibrated

parameter sets, three benchmark models were considered

in which the aforementioned constraints were not applied.

This simply means the models can produce any possible

output without any restriction on parameters, fluxes and

states. However the percentages of each landscape for model

FLEXB and FLEXC remains intact.

3.4.2 Evaluating models with constrained and

calibrated parameter sets

In the second step, the three models FLEXA, FLEXB and

FLEXC were calibrated while being constrained to the pa-

rameter space that satisfies all of the imposed parameter

and process constraints. Calibration was performed using a

multi-objective strategy (ENS,ENS,log,ENS,FDC), and the ob-

tained Pareto optimal model parameters are referred to as

constrained and calibrated.

Uncertainty intervals were evaluated based on the con-

strained and calibrated Pareto members and the uncertainty

was estimated on the basis of the area within the uncertainty

bands.

Again, the results were compared to the calibrated but un-

constrained benchmarks.

3.4.3 Comparison of model performance and

uncertainty for constrained but uncalibrated and

constrained and calibrated parameter sets

To assess the added value of incorporating constraints in

higher complexity models, the performance and uncertain-

ties of the three models FLEXA, FLEXB and FLEXC were

compared for both the constrained but uncalibrated and the

constrained and calibrated case during calibration and vali-

dation periods.

3.4.4 Comparison of modeled hydrograph components

for different model structures

One of the main reasons for imposing constraints on

model parameters is to ensure realistic internal dynam-

ics. Comparing different fluxes contributing to the mod-

eled hydrograph can provide insights into the perfor-

mance of imposed constraints on the model. The effect of
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imposing behavioral constraints on fast and slow components

of the three models structures, FLEXA, FLEXB and FLEXC

is compared visually. The fast component of the lumped

model, FLEXA, is compared with fast components of FLEXB

that are wetland and remainder of catchment and fast compo-

nents of FLEXC which are wetland and hillslope. This visual

comparison is based on normalized average contribution of

each component for Pareto optimal parameter sets in every

time step.

4 Results and discussion

4.1 Evaluating the performance of constrained but

uncalibrated parameter sets

The median and the 95 % uncertainty intervals of the perfor-

mance of modeled hydrographs for constrained but uncali-

brated parameter sets is presented in Table 4 for the 2002–

2005 calibration and 2006–2009 validation periods together

with their (unconstrained) benchmarks. The lumped FLEXA

model has only one parameter and one process constraint,

i.e., the reservoir coefficient and the runoff coefficient, re-

spectively. Hence, this model is free within the limits of this

relatively weak condition, resulting in a wide range of feasi-

ble parameter sets, many of which cannot adequately repro-

duce the system response. As a consequence, the overall per-

formance is poor (ENS,median= 0.18, ENS,log,median= 0.05,

ENS,FDC,median= 0.39) (Table 4, Fig. 3).

FLEXB, run with the set of constrained but uncali-

brated parameters shows a substantial improvement in over-

all performance (ENS,median= 0.56, ENS,log,median= 0.33,

ENS,FDC,median= 0.87) compared to FLEXA, as FLEXB not

only allows for more process heterogeneity but, more im-

portantly, it is conditioned with an increased number of

constraints.

The additional process heterogeneity and constraints

allowed by FLEXC, results in the highest overall perfor-

mance for all three objective functions (ENS,median= 0.66,

ENS,log,median= 0.36, ENS,FDC,median= 0.93) (Table 4,

Fig. 3).

These results clearly illustrate that the imposed relational

constraints force the model and its parameters towards a

more realistic behavior, which significantly improves model

performance. Additionally, the comparison of result of the

three models with their unconstrained benchmarks (Table 4)

clearly shows that the incorporation of constraints improves

the median performance and 95 % uncertainty intervals of

all the models by rejecting parameter sets that violate the

constraints and cannot reproduce certain aspects of the re-

sponse patterns. In addition, the comparison between the

unconstrained benchmark models themselves suggests that

more complex model structures improve the performance,

implying that model structures themselves already contain

a considerable degree of information even in absence of any

constraints or calibration attempts.

The 95 % uncertainty areas mapped by simulated hydro-

graphs indicate that FLEXC, which might be expected to

produce the highest uncertainty interval due to its complex-

ity, is providing a lower uncertainty compared to FLEXB.

Although FLEXC cannot outperform FLEXA in terms of a

narrower uncertainty interval in the validation period, overall

performance of this model is better than FLEXA as discussed

earlier (Table 4, Fig. 3).

Flipping calibration and validation gave equivalent results,

which are, for brevity, provided in Table S1; Fig. S1 in the

Supplement.

4.2 Evaluating the performance of constrained and

calibrated parameter sets

The comparison of the constrained and calibrated model se-

tups shows that all three models setups can reproduce the

hydrograph similarly well (Table 5, Fig. 4). FLEXA ex-

hibits a slightly better calibration performance, based on

ENS,log,median, compared to the other two model setups. This

can partly be attributed to the lower number of parame-

ters which leads, with the same number of samples, to a

more exhaustive sampling of the parameter space and a

smoother identification of Pareto optimal solutions. In addi-

tion, FLEXA has the lowest number of imposed constraints,

i.e., only the runoff coefficient and one parameter constraints,

compared to FLEXB and FLEXC. This allows the model

more freedom in exploiting the parameter space to produce

mathematically good fits between observed and modeled sys-

tem response in the calibration period.

For the validation period, arguably more important for

model assessment because it provides independent informa-

tion on model consistency (cf. Klemeš, 1986; Andréassian

et al., 2009; Euser et al., 2013) and predictive uncertainty,

the performances of the three model setups exhibit quite dif-

ferent patterns (Table 5). The simplest model, the lumped

FLEXA, is characterized by performance deterioration from

calibration to validation. In contrast, FLEXB and FLEXC ex-

hibit a performance improvement in the validation period.

Although the increase in performance is subjected to the na-

ture of the forcing and observed discharge data in calibration

and validation period, and formally no meaningful compar-

ison between Nash–Sutcliffe efficiencies for different peri-

ods can be made, these results nevertheless indicate that the

more complex model structure together with its constraints

performs in a more stable manner outside of the calibration

period. When flipping the calibration and validation periods

the difference between model performance in calibration and

validation is not as strong (Table S2). A possible explana-

tion could be that the observed data quality is not informative

enough for calibration (period 2002–2005). Constraints then

prevent the model to over-fit and thus enable the models to

maintain a more reliable performance outside the calibration
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Table 4. The median model performances (in brackets their corresponding 95 % uncertainty intervals) and the area spanned by the 95 %

uncertainty interval of hydrograph derived from uncalibrated parameter sets which satisfy the complete set of constraints for the three

model setups FLEXA, FLEXB and FLEXC, for the three modeling objectives (ENS, ENS,log, ENS,FDC) in the calibration (2002–2005) and

validation (2006–2009) periods. The italic values indicate performance and 95 % uncertainty interval of hydrograph for the unconstrained

benchmark models.

ENS ENS,log ENS,FDC 95 % uncertainty

area [mm]

FLEXA
Calibration

0.18 [0.09, 0.29] 0.05 [−0.40, 0.49] 0.39 [0.25, 0.69] 1325

0.16[−0.16, 0.30] 0.10[−1.11, 0.51] 0.35[−0.12, 0.67] 1814

Validation
0.23 [0.12, 0.39] 0.29 [−0.02, 0.59] 0.45 [0.28, 0.76] 1243

0.18[−0.37, 0.39] 0.29[−2.53, 0.56] 0.38[−0.35, 0.76] 1888

FLEXB
Calibration

0.56 [0.00, 0.73] 0.33 [−1.36, 0.65] 0.87 [0.66, 0.95] 1827

0.44[−1.03, 0.72] 0.07[−3.06, 0.60] 0.77[0.05, 0.93] 2615

Validation
0.52 [−0.06, 0.77] 0.45 [−1.15, 0.73] 0.89 [0.62, 0.99] 2042

0.45[−1.44, 0.76] 0.30[−3.50, 0.73] 0.81[0.08, 0.97] 2993

FLEXC
Calibration

0.66 [0.22, 0.75] 0.36 [−2.37, 0.70] 0.93 [0.82, 0.96] 1274

0.54[−0.24, 0.75] 0.34[−2.30, 0.69] 0.86[0.60, 0.94] 2015

Validation
0.67 [−0.06, 0.80] 0.50 [−0.33, 0.74] 0.95 [0.88, 0.99] 1294

0.59[−0.11, 0.79] 0.58[−2.89, 0.75] 0.93[0.65, 0.99] 2287
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Figure 3. The observed hydrograph and the 95 % uncertainty interval of the modeled hydrograph derived from the complete set of constrained

but uncalibrated parameter sets for the three different model setups (a) FLEXA, (b) FLEXB and (c) FLEXC for 2 years (2002–2003) of

calibration.

period. In contrast, if the calibration period is informative

(period 2006–2009), constraints may not affect performance

outside the calibration period that much. However constraints

remain necessary to reduce model uncertainty both during

calibration and validation. In addition to formal performance

and uncertainty measures, it can be seen visually in Fig. 4

that FLEXC can adequately predict the high flows during a

dry period, while FLEXA misses most of the peaks.

4.3 Comparison of constrained but uncalibrated and

constrained and calibrated models

The following comparison of the performances of FLEXA,

FLEXB and FLEXC for constrained but uncalibrated, con-

strained and calibrated and their unconstrained benchmarks

is focused on ENS only, for the reason of brevity (Fig. 5,

gray box plots indicate the benchmark models). In Fig. 5a

and b the model performances based on the constrained but
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Table 5. The median model performances (in brackets their corresponding Pareto uncertainty intervals) and the area spanned by the uncer-

tainty interval of the hydrograph derived from the Pareto optimal solutions of the constrained and calibrated model setups FLEXA, FLEXB

and FLEXC for the three modeling objectives (ENS, ENS,log, ENS,FDC) in the calibration (2002–2005) and validation (2006–2009) periods.

The italic values indicate performance and 95 % uncertainty interval of hydrograph for the benchmark models (without any constraints).

ENS ENS,log ENS,FDC 95 % uncertainty

area [mm]

FLEXA
Calibration

0.71 [0.51, 0.83] 0.80 [0.70, 0.85] 0.97 [0.95, 0.99] 709

0.71[0.51, 0.84] 0.79[0.68, 0.85] 0.97[0.95, 0.99] 732

Validation
0.63 [0.45, 0.78] 0.73 [0.65, 0.80] 0.95 [0.93, 0.97] 844

0.63[0.46, 0.78] 0.73[0.63, 0.80] 0.95[0.93, 0.97] 870

FLEXB
Calibration

0.75 [0.50, 0.80] 0.71 [0.40, 0.79] 0.96 [0.92, 0.98] 790

0.74[0.51, 0.80] 0.72[0.46, 0.82] 0.96[0.92, 0.98] 826

Validation
0.76 [0.32, 0.82] 0.79 [0.63, 0.85] 0.97 [0.93, 1.00] 999

0.72[0.45, 0.82] 0.78[0.48, 0.84] 0.96[0.94 0.99] 986

FLEXC
Calibration

0.74 [0.53, 0.82] 0.72 [0.47, 0.81] 0.96 [0.92, 0.98] 763

0.74[0.48, 0.82] 0.71[−0.17, 0.83] 0.96[0.90, 0.98] 864

Validation
0.78 [0.45, 0.82] 0.83 [0.72, 0.85] 0.99 [0.98, 1.00] 927

0.73[0.42, 0.83] 0.78[−0.05, 0.85] 0.98[0.95, 0.99] 1047
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Figure 4. The observed hydrograph and the 95 % Pareto uncertainty interval of the modeled hydrograph for constrained and calibrated

parameter sets for the three different model setups (a) FLEXA, (b) FLEXB and (c) FLEXC for the 2 years (2008–2009) of validation period.

uncalibrated parameter sets, that satisfy the full set of con-

straints, are shown for the calibration and validation periods.

As discussed in detail above, although uncalibrated, increas-

ing the number of constraints from FLEXA to FLEXC in-

creases the overall performance of the models while reducing

uncertainty (Fig. 5c and d; note that these are zoom-ins). Fur-

ther, comparison to the uncalibrated benchmarks, suggests

that improving the model structure based on landscape units

in itself substantially increases the performance of the model.

However additional constraints will eventually reduce the un-

certainty and improve the performance (Fig. 5a and b).

Figure 5e compares model performance based on con-

strained and calibrated parameter sets for the calibration pe-

riod. When comparing the individual model performances of

the constrained and calibrated models during the validation

period (Fig. 5f), it can be seen that FLEXA not only shows the

strongest performance deterioration compared to the calibra-

tion period but also that FLEXA is also the model with the

poorest performance in the validation period. This implies
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Figure 5. Model performance (ENS) based on constrained but uncalibrated (a–d) and constrained and calibrated (e–f) parameter sets for

calibration (2002–2005) and validation (2006–2009) periods for the three different model setups FLEXA, FLEXB and FLEXC. Note that

(c) and (d) are zoom-ins of (a) and (b) and the gray box-plots represent the unconstrained benchmark models. The box plots indicate the

median value in red and 25 and 75 % quartile. Whiskers represent the 1.5 times the interquartile range (IQR) and the red crosses show

outliers.

that although FLEXC is the most complex model, the realism

constraints together with landscape related structure imposed

on this model generate the most reliable outputs when used

for prediction, i.e., in the validation period. When the calibra-

tion and validation periods are switched, the performance of

FLEXC remains comparable to above, although in this case

FLEXA performs best during validation (see Fig. S5). This

strongly underlines that the widely accepted notion of com-

plex models necessarily being subject to higher predictive

uncertainty is not generally valid when the feasible param-

eter space can be constrained based on assumptions of real-

istic functionality of a catchment. As explained earlier, this

also indicates that when the data of the calibration period are

not sufficiently informative, imposing constraints will force

the model to perform better outside the calibration period.

In addition, a second crucial aspect was revealed by com-

paring constrained but uncalibrated and constrained and cal-

ibrated models. It can be seen that constrained but uncal-

ibrated FLEXC, shows significant improvement in perfor-

mance approaching the performance of the calibrated lumped

model, FLEXA. Interestingly, it was found that in validation

the constrained but uncalibrated FLEXC can, depending on

the performance measure used and the information content

of the calibration period (i.e., climatic variability and data

quality), reach the performance level of the constrained and

calibrated FLEXA (Figs. 5 and S5). This highlights the value

of semi- and non-quantitative hydrological expert knowl-

edge for finding suitable model parameter sets for ungauged

basins.

4.4 Comparison of flow contributions from different

model components

The comparison of the fluxes generated from the individual

model components in the three model setups helps to assess

to which degree the model internal dynamics reflect the mod-

eler’s perception of the system and thus to a certain degree

the realism of the models.

Fast and slow responses of each tested model setup have

been visually illustrated in Fig. 6. Predominance of slow re-

sponses of all the three models are indicated by green color;

predominance of fast responses of FLEXA, fast responses of

the remainder of the catchment of FLEXB and fast responses

of hillslope of FLEXC are indicated by red color; wetland

fast responses of FLEXB and FLEXC are indicated by pre-

dominance of blue color.

The colors in Fig. 6 are an illustration using three colors

(red, green and blue) for the models’ responses based on their

weight of contribution to the modeled runoff. As it can be

seen in Fig. 6a the fast component of FLEXA is dominant

just during peak flows and even the recession shortly after

peak flows are accounted for mainly by ground water. Anal-

ysis of the individual model components computed by Pareto

optimal parameter sets (not shown here for brevity), indicates

that some Pareto optimal parameters can generate peak flows

by predominant contributions from slow responses while fast

reaction tends to be inactive during these events.

In accordance with the perception of the system that wet-

lands are predominantly responsible for peak flows during

dry conditions, Fig. 6b and c show that wetland fast re-

sponses in FLEXB and FLEXC control the rapid response
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Figure 6. Comparison between mean proportions of Pareto members for model components of the three model setups in part of the validation

periods (August 2006–June 2007) (a) FLEXA, (b) FLEXB, and (c) FLEXC. The green color indicates the relative contribution of the slow

reservoir for the three different models. Red indicates relative contribution from the fast components, i.e., fast reservoir in FLEXA, fast

reservoir of the remainder of the catchment in FLEXB and fast reservoir of hillslope of FLEXC. The blue color indicates the relative

contribution of fast wetland component of FLEXB and FLEXC.

during wetting up periods (dry to wet transition), before hill-

slope fast processes become more important at higher mois-

ture levels. When the system is saturated the hillslope contri-

bution to modeled runoff becomes significantly higher com-

pared to the wetland response. Note that the response of the

wetland may not correspond well to individual events, as a

consequence of the fact that the corresponding constraint was

set for an aggregated period.

4.5 Wider implications

The results of this study quite clearly indicate that discretiz-

ing the catchment into hydrological response units (HRUs)

and incorporating expert knowledge in model development

and testing is a potentially powerful strategy for runoff pre-

diction, even where insufficient data for model calibration

(e.g., Koren et al., 2003; Duan et al., 2006; Winsemius et al.,

2009) or only comparatively unreliable regionalization tools

are available (e.g., Wagener and Wheater, 2006; Bárdossy,

2007; Parajka et al., 2007; Oudin et al., 2008; Laaha et al.,

2014). It was found that the performance and the predictive

power of a comparatively complex uncalibrated conceptual

model, based on posterior parameter distributions obtained

merely from relational, semi- and non-quantitative realism

constraints inferred from expert knowledge, can approach or

even be as efficient as the calibration of a lumped conceptual

model (Figs. 5 and S3).

Typically it is expected that, if not warranted by data,

models with higher complexity suffer from higher predictive

uncertainty. As stated by Beven (2001): “More complexity

means more parameters, more parameters mean more cali-

bration problems, more calibration problems will often mean

more uncertainty in the predictions, particularly outside the

range of the calibration data.” Thus, more parameters would

allow better fits of the hydrograph but would not necessarily

imply a better and more robust understanding of catchment

behavior or more reliable predictions.

A complex model may include many processes, i.e., hy-

potheses, which can usually not be rigorously tested with the

available data. However, a wide range of previous studies has

demonstrated that hydrologically meaningful constraints can

help to limit the increased uncertainty caused by incorporat-

ing additional processes, i.e., parameters (e.g., Yadav et al.,

2007; Zhang et al., 2008; Kapangaziwiri et al., 2012). These

studies generally include a large set of catchments and try

to relate model parameters to catchment characteristics. Al-

though regional constraints are important, the importance of

expert knowledge on the catchment scale, which leads to bet-

ter understanding of hydrological behavior is highlighted in

this study.

In a similar attempt, Pokhrel et al. (2008, 2012) demon-

strated use of regularization for model parameters and re-

duction of model parameter space dimensionality by link-

ing model parameters using super-parameters to catchment

characteristics. However, no explicit hydrological reasoning
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is typically applied for such “regularization rules” (e.g.,

Pokhrel et al., 2012). On the other hand, Kumar et al. (2010,

2013a) parameterize and successfully regionalize their mod-

els using empirical transfer functions with global parameters,

developed from extensive literature study and iterative test-

ing in a large sample of catchments In contrast, the use of

relational parameter and process constraints, as presented in

this study, is based on semi-quantitative, hydrologically ex-

plicit and meaningful reasoning avoiding the need for empir-

ical transfer functions to link catchments characteristics and

model parameters.

Including prior knowledge for parameters of physically

based models for estimating runoff in ungauged basins was

quite successfully investigated in the past (e.g., Ott and Uh-

lenbrook, 2004; Vinogradov et al., 2011; Fang et al., 2013;

Semenova et al., 2013). These studies specifically indicate

that calibration can be replaced by prior information which is

a significant contribution to Predictions in Ungauged Basins

(PUB). While physically based models need detailed infor-

mation of catchment behavior for model parameters, the here

proposed semi-distributed conceptual modeling framework,

exploiting relational constraints, can be more efficiently

setup using the least prior information necessary. In this

study, the performances and uncertainties of the three tested

model setups for constrained but uncalibrated parameters

indicate the potential of the presented FLEX-TOPO frame-

work for Predictions in Ungauged Basins (PUB). Hence, this

framework can efficiently use expert knowledge for improv-

ing model parameter value selection in complex conceptual

hydrological models, not only to increase model performance

but also to reduce model predictive uncertainty even in the

absence of calibration.

It should be kept in mind that the conclusions of this

study remain at this point only valid for the study catchment.

To generalize the findings of this study more rigorous tests

should be set up (Andréassian et al., 2009) which expand

this presented concept for different time series of a catchment

and also a larger set of catchments such as in recent work of

Gao et al. (2014) and Hrachowitz et al. (2014). Some further

challenges remain, including the need to formulate generic

constraints for any catchment based on available data in an

automated procedure. Likewise it will be necessary to de-

velop a better understanding of model sensitivities to differ-

ent constraints and of the effectiveness and reliability of indi-

vidual constraints. It is also emphasized that the constraints

introduced in this study are based on the authors’ subjective

understanding of catchment behavior and can and should be

discussed further. However, we would like to stress the no-

tion that reaching an agreement on the relations between pa-

rameters and fluxes in different landscape units is potentially

much easier than finding the most adequate parameter values

together with associated uncertainties for a conceptual model

based on field observations or available data on geology or

soil types.

5 Conclusions

This study has tested whether a topography-driven semi-

distributed formulation of a catchment-scale conceptual

model, conditioned by expert knowledge based relational pa-

rameter and process constraints, can increase the level of pro-

cess realism and predictive power while reducing the need

for calibration.

It was found that

1. The performance of models, although uncalibrated, im-

proves by accounting for different topography-based

hydrological response units, even if this introduces ad-

ditional complexity.

2. Imposing relational parameter and process constraints

improves the performance of uncalibrated models and

reduces their uncertainty. This illustrates the potential

value of the combined use of higher complexity mod-

els and relational constraints for prediction in ungauged

basins, where no time series are available for model

calibration.

3. Due to the reduced feasible parameter space, the search

for behavioral parameter sets focuses on the feasible pa-

rameter space only.

4. Imposing constraints prevents the model from over-

fitting on calibration time series and therefore enables

the model to more reliably perform outside the calibra-

tion period.

The Supplement related to this article is available online

at doi:10.5194/hess-18-4839-2014-supplement.
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