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Abstract. Statistical models of the relationship between pre-

cipitation and topography are key elements for the spatial in-

terpolation of rain-gauge measurements in high-mountain re-

gions. This study investigates several extensions of the clas-

sical precipitation–height model in a direct comparison and

within two popular interpolation frameworks, namely linear

regression and kriging with external drift. The models stud-

ied include predictors of topographic height and slope at sev-

eral spatial scales, a stratification by types of a circulation

classification, and a predictor for wind-aligned topographic

gradients. The benefit of the modeling components is in-

vestigated for the interpolation of seasonal mean and daily

precipitation using leave-one-out cross-validation. The study

domain is a north–south cross section of the European Alps

(154 km× 187 km) that is inclined towards dense rain-gauge

measurements (approx. 440 stations, 1971–2008).

The significance of the topographic predictors was found

to strongly depend on the interpolation framework. In lin-

ear regression, predictors of slope and at multiple scales re-

duce interpolation errors substantially. But with as many as

nine predictors, the resulting interpolation still poorly repli-

cates the across-ridge variation of climatological mean pre-

cipitation. Kriging with external drift (KED) leads to much

smaller interpolation errors than linear regression, but this is

achieved with a single predictor (local topographic height),

whereas the incorporation of more extended predictor sets

brings only marginal further improvement. Furthermore, the

stratification by circulation types and the wind-aligned gra-

dient predictor do not improve over the single predictor KED

model. As for daily precipitation, interpolation accuracy im-

proves considerably with KED and the use of a single pre-

dictor field (the distribution of seasonal mean precipitation)

as compared to ordinary kriging (i.e., without any predictor).

Nonetheless, information from circulation types did not im-

prove interpolation accuracy.

Our results confirm that the consideration of topography

effects is important for spatial interpolation of precipitation

in high-mountain regions. But a single predictor may be suf-

ficient and taking appropriate account of the spatial autocor-

relation (by kriging) can be more effective than the develop-

ment of elaborate predictor sets within a regression model.

Our results also question a popular practice of using linear re-

gression for predictor selection in spatial interpolation; how-

ever they support the common practice of using a climatolog-

ical mean field as a background in the interpolation of daily

precipitation.

1 Introduction

High-mountain ranges contribute to the supply and storage

of freshwater and river flow in many regions of the world

(e.g., Viviroli et al., 2007). The role of mountains in extract-

ing moisture from the atmosphere manifests in numerous

regional anomalies and gradients in the distribution of the

global precipitation climate (e.g., Basist et al., 1994; Schnei-

der et al., 2013). Accurate knowledge of the distribution and

variation of rain and snowfall is crucial for numerous plan-

ning tasks concerned, for example, with water resources, wa-

ter power, agriculture, glaciology and natural hazards (e.g.,

Greminger, 2003; Holzkämper et al., 2012; Machguth et al.,

2009; Yates et al., 2009). A convenient source of informa-

tion is spatial analyses of observed precipitation, obtained
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by interpolation onto a regular grid, comprehensively over

large areas. Such grid data sets have become of interest also

for monitoring climate variations and for evaluating model-

based reanalyses and climate models (e.g., Alexander et al.,

2006; Bukovsky and Karoly, 2007; Frei et al., 2003; Schmidli

et al., 2002).

The construction of accurate precipitation grid data sets

for high-mountain regions is confronted with the challenge of

complex spatial variations. Even with idealized topographic

settings and flow configurations (e.g., isolated hill or ridge,

constant flow), situations can be distinguished where pre-

cipitation maxima occur over the windward slope, the crest,

or the downwind slope of a topographic obstacle (e.g., Sin-

clair et al., 1997; Smith, 1979). Distributions depend on the

height and scale of the obstacle, and the strength, static sta-

bility and moisture profile of the impinging flow. More com-

plex topographic shapes, transient weather systems, convec-

tion, and the drift of hydrometeors quickly complicate the

picture (e.g., Cosma et al., 2002; Fuhrer and Schär, 2005;

Houze et al., 2001; Roe, 2005; Sinclair et al., 1997; Steiner

et al., 2003). Therefore, the distribution of long-term mean

precipitation is, in many regions, a superposition of several

distinct responses to topography, which act at different space

scales, involve several characteristics of the topography (not

just height), and pertain to different flow situations.

A further complication for spatial analysis in mountain re-

gions is posed by the limited spatial density of rain gauges,

the standard device for climatological inference on precipita-

tion. Even in comparatively densely instrumented areas, such

as the European Alps, the networks do not resolve contrasts

between individual valleys and hills explicitly, and they miss

out episodic fine-scale patterns familiar from radar observa-

tions and numerical models (e.g., Bergeron, 1961; Frei and

Schär, 1998; Germann and Joss, 2001; Zangl et al., 2008).

Moreover, the distribution of rain gauges in complex terrain

is often biased, with a majority of measurements taken at val-

ley floors, while steep slopes and high elevations are under-

represented (e.g., Frei and Schär, 1998; Sevruk, 1997). The

sampling bias entails a risk of systematic errors in spatial in-

terpolation that can impinge upon estimates on a larger scale,

such as for averages over river catchments (e.g., Daly et al.,

1994; Sinclair et al., 1997).

In this context, models of the relationship between pre-

cipitation and topography constitute an essential element of

spatial interpolation methods. Their purpose is to enhance

the methods’ capabilities in describing variations not explic-

itly resolved by the observations and to reduce the risk of

systematic errors related to the non-representativity of the

measurement network. Approaches for considering precipi-

tation–topography relationships in interpolation methods can

roughly be grouped into empirical statistical models, us-

ing more or less extensive sets of physiographic predictors

(e.g., Benichou and Le Breton, 1986; Daly et al., 1994; Prud-

homme and Reed, 1998), and simplified physico-dynamical

downscaling models in combination with information on

larger-scale circulation (e.g., Crochet et al., 2007; Sinclair,

1994).

In this study we explore and compare several ideas for the

modeling of precipitation–topography relationships in the

framework of empirical statistical models. Our specific focus

is on models that (a) take account of the multi-scale nature of

the relationship, (b) consider responses both to slope and ele-

vation of the topography, (c) involve a dependency on the di-

rection of the large-scale flow, and (d) examine the potential

of a stratification by circulation types. The value of the dif-

ferent modeling components is assessed in terms of the skill

of a geostatistical interpolation method that has these mod-

els incorporated and is applied for the estimation of fields of

seasonal mean and daily precipitation in a sub-region of the

European Alps.

Systematic topography effects on precipitation are usually

difficult to discern in observations at short timescales (e.g.,

for daily totals). Precipitation–topography relationships are

therefore mostly estimated from long-term averages, which

are then used, via a climatological background field, for the

interpolation of shorter duration totals (Haylock et al., 2008;

Rauthe et al., 2013; Widmann and Bretherton, 2000).

A common model of topography effects is that of a linear

relationship between climatological (seasonal or monthly)

mean precipitation and in situ topographic elevation. Precip-

itation–height gradients have been considered using various

interpolation methodologies, such as: linear regression by us-

ing height as a predictor (e.g., Gottardi et al., 2012; Rauthe

et al., 2013; Sokol and Bližnák, 2009), several variants of

kriging by using a digital elevation model as a secondary

variable (Allamano et al., 2009; Goovaerts, 2000; Hevesi et

al., 1992; Phillips et al., 1992; Tobin et al., 2011), thin-plate

spline interpolation by using height as a third regionalization

variable (Haylock et al., 2008; Hutchinson, 1998), and tri-

angular interpolation by adopting height corrections (Tveito

et al., 2005). The assumption of these procedures is that lo-

cal height is a key explanatory variable of the distribution of

precipitation and that the relationship, commonly estimated

over larger domains, is representative at the scale relevant for

the interpolation (i.e., at and below the spacing of stations).

Three types of extensions of the aforementioned method-

ologies have been proposed: the first introduced a range

of physiographic predictors (not just height) and/or predic-

tors representing smoothed versions of the actual topog-

raphy (e.g., Basist et al., 1994; Benichou and Le Breton,

1986; Gyalistras, 2003; Perry and Hollis, 2005; Prudhomme

and Reed, 1998; Sharples et al., 2005). Additional predic-

tors (e.g., slope, exposure) were found to significantly in-

crease the explained variance compared to only height (e.g.,

Gyalistras, 2003; Prudhomme and Reed, 1998), and dig-

ital elevation models smoothed to resolutions of 5–50 km

(depending on the region) were found to be more power-

ful predictors compared to high-resolution topography (e.g.,

Prudhomme and Reed, 1998; Sharples et al., 2005). Con-

versely, the second extension remains with univariate height
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Figure 1. Map of long-term mean winter precipitation (mm day−1) over the Alpine domain at station locations (dots) for the period

1971–2008. The grey contour lines indicate the Alpine relief (400 m levels) and the red frame delimits the region in which the interpo-

lation methods are tested.

dependencies, but considers the relationship to be spatially

variable (Brunetti et al., 2012; Daly et al., 1994; Gottardi et

al., 2012). The aim is to focus on dependencies at scales that

are not explicitly resolved by the station network and there-

fore are particularly relevant for interpolation. There are dif-

ferent emphases in the two extensions between robustness

and local representativity of the precipitation–topography

model used for interpolation. The third extension of tradi-

tional precipitation–height models is to incorporate informa-

tion on atmospheric flow conditions into the interpolation;

Kyriakidis et al. (2001) constructed new rainfall predictors

by combination of lower-atmosphere flow and moisture with

local terrain height and slope. When used in kriging these

dynamical predictors yielded more accurate interpolations of

the seasonal mean precipitation compared to using only el-

evation. Hewitson and Crane (2005) modified the weighting

scheme of a daily interpolation method to depend on synop-

tic state (discrete types of daily low-level circulation) in or-

der to account for the varying short-range representativity of

station measurements. Gottardi et al. (2012) used the circu-

lation regime of the day under consideration to estimate oro-

graphic effects specifically for different weather conditions.

All these ideas built on empirical evidence that the mesoscale

precipitation distribution in complex terrain varies consider-

ably between days with different large-scale flow conditions

(Cortesi et al., 2013; Schiemann and Frei, 2010).

In this study we build on, extend, and test ideas of all

three extensions in a subregion of the European Alps. We

compare several sets of physiographic predictors with regard

to their relevance for high-resolution precipitation interpola-

tion. Apart from including height and directional gradients,

our set encompasses predictors at several spatial scales si-

multaneously in order to explicitly distinguish between pat-

terns resolved and unresolved by the station network. We

also compare the role of predictor setting between multi-

variate linear regression and kriging with external drift to

assess how a model of spatial autocorrelation (kriging) can

compensate for extensive predictor sets. We further examine

the possibility of stratifying seasonal means by independent

analyses for composites of a circulation-type classification

and by including predictors of the pertinent circulation ter-

rain effect. Most of our analyses focus on interpolations of

seasonal mean precipitation, but we also assess the relevance

of circulation-type dependent background fields for the in-

terpolation of daily precipitation. Essential for all our com-

parisons is that interpolation errors will be examined as a

function of topographic height and for both systematic and

random error components. The main purpose of our study is

to gain insight into the role of different approaches to precip-

itation–topography modeling, but some of our analyses also

explore possibilities to improve an interpolation method pre-

viously developed for the generation of a precipitation grid

data set for the entire Alpine region (Isotta et al., 2013).

The region of the European Alps is an interesting ex-

ample for studying interpolation procedures and pertinent

models of the precipitation–topography relationship. There

is an exceptional density of long-term rain-gauge observa-

tions (see Fig. 1), which allows modeling approaches of

larger complexity than in sparsely-gauged mountain regions.

Moreover, there is a broad range of topographic scales (from

hundreds of kilometers for the main ridge down to a few

kilometers for individual massifs) and variations in ridge

height (2000–3000 m for the main ridge down to a few

hundredmeters for adjacent hill ranges). Accordingly, the
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Figure 2. (a) Map of the study domain, a section of the Alpine ridge (see also Fig. 1). The topography is indicated by grey-shaded contour

lines (spacing 250 m). The station network is indicated by colored circles representing long-term mean winter (DJF) precipitation in mm/day.

The thick black line represents the national borders between Germany (top), Austria (middle) and Italy (bottom). (b) Bar plot of the distri-

bution with height (x axis, m m.s.l.) of the number of stations (grey, left y axis) and the number of grid points in a 1 km DEM (red, right

y axis).

distribution of mean precipitation reveals several nested pat-

terns of the precipitation response that is indicative of its

multi-scale nature (see Fig. 1).

This study is part of the project European Reanalysis and

Observations for Monitoring (EURO4M). The outline of the

study is organized as follows: in Sect. 2 we introduce the

study domain and the data. The methods of spatial analysis

and the procedure of evaluation are described in Sect. 3. The

results of the evaluation are then presented and discussed in

Sect. 4, and the conclusions of this study are drawn in Sect. 5.

2 Study domain and data

In this study we consider a subdomain of the Alps

(11◦–13◦ E, 46.85◦–48.5◦ N) that covers an area of

(154 km× 187 km) and extends from the flatlands of Bavaria

(southern Germany) over the northern slopes of the Alpine

ridge (on the border between Germany and Austria) towards

the inner Alpine region of Tyrol (Inn and Salzach valleys of

Austria and northern Italy). The domain is indicated in Fig. 1

(red frame) and a detailed topographic map is depicted in

Fig. 2a. Our choice is motivated by the comparatively simple

large-scale pattern of the topography here, so that the do-

main can be considered as a cross section through an elon-

gated west–east-oriented ridge, extending from flatlands over

foothills to high mountains with major inner mountain val-

leys (from north to south). As opposed to a larger domain

with more convoluted topography, the intermediate complex-

ity eases the exploration of potential physiographic predic-

tors but still comprises the challenges encountered with dis-

tinct and typical climates of the entire Alpine ridge. In ad-

dition, the selected domain disposes of a homogenous and,

compared to other regions, very dense coverage with rain

gauges (cf. Fig. 1).

The rain-gauge data for this study (Fig. 2a) were obtained

from the German Weather Service (DWD, for Germany),

from the Austrian Federal Ministry of Agriculture, Forestry,

Environment and Water (for Austria) and from Servizio Me-

teorologico and Ufficio Idrografico Bolzano Alto Adige (for

Italy). The data set is a subset of 440 stations out of a pan-

Alpine compilation of high-resolution daily rain-gauge time

series extending over the period 1971–2008 (Isotta et al.,

2013). On average the station density is 1 station per 70 km2,

corresponding to a typical inter-station distance of 8.5 km, a

very dense coverage over a high-mountain region.

Like in other mountainous regions, the distribution of the

stations in our study domain has a limited representativity

with respect to terrain height (Fig. 2b). High-elevation areas

(> 1500 m m.s.l.) are significantly underrepresented. For ex-

ample, elevations above 1500 m m.s.l. contribute about 25 %

of the total area but are represented with only 6 % of the sta-

tions. This setting involves a risk of precipitation estimates

for high-elevation areas being biased due to inaccurate inter-

polation between valley stations. This will be given particular

attention in the assessment of interpolation methods later.

The rain-gauge time series underwent different quality

control procedures at the original data providers. In addi-

tion they were jointly checked rigorously for raw errors af-

ter compilation using criteria of temporal and spatial consis-

tency and physical plausibility (for details see Isotta et al.,

2013). One problem with the quality of the data is, however,

posed by the systematic measurement error emanating from

wind-induced undercatch, wetting, and evaporation losses

Hydrol. Earth Syst. Sci., 18, 4543–4563, 2014 www.hydrol-earth-syst-sci.net/18/4543/2014/
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(Groisman and Legates, 1994; Neff, 1977; Sevruk, 2005).

Sevruk (1985) and Richter (1995) estimate the systematic

measurement error in the Alps to range from about 7 % (5 %)

over the flatland regions in winter (summer) to 30 % (10 %)

above 1500 m m.s.l. The data used in this study are not cor-

rected for these systematic errors. Indeed, water balance con-

siderations in the Alps have challenged existing correction

procedures (Schädler and Weingartner, 2002; Weingartner

et al., 2007). The systematic errors may affect the strength

and estimation of empirical precipitation–topography rela-

tionships. However, given that the spatial variability of mean

precipitation across the domain (see the example in Fig. 2a)

is much larger than the range of expected systematic errors,

we assume that these errors do not significantly affected the

conclusions of the present study.

Our statistical analyses are conducted with estimates of

mean precipitation at the above stations, that is, with sea-

sonal means over a multi-year period or with means over

all days belonging to the same class of a daily circulation-

type classification. The fact that many rain-gauge series ex-

tend over a part of the full 38-year period only requires care

in establishing robust and comparable mean values. For this

purpose quantitative tests have been carried out, aiming at

determining the minimum number of days required to build

a mean value of a given accuracy. The tests were conducted

with bootstrap experiments (sampling across days) over the

time series of the 20 most complete station records. The error

metric is based on the relative mean root-transformed error

presented in Sect. 3.4. Our accuracy requirement was that

the probability of a sampling error larger than 10 % of the

“full” mean (i.e., mean over the complete time series) should

be smaller than 5 %. The error thresholds are somewhat arbi-

trary but are chosen to guarantee reliable climatic estimates

(compared to the spatial variations) while retaining enough

data. The resulting minimum requirement of the available

length of the time series varies between season and circu-

lation class. Stations not fulfilling this minimum requirement

are discarded from the analysis. As a result the station sam-

ple varies between analyses with different seasons and be-

tween seasonal and circulation-type stratifications. Typically,

the selection procedure eliminates 5–15 % of the total num-

ber of stations, leaving between 317 and 420 time series de-

pending on stratification.

The circulation-type classification chosen in this study is

the PCACA classification (Philipp et al., 2010; Yarnal, 1993).

It uses daily mean sea level pressure distributions as input for

a hierarchical cluster analysis of principal components. The

classification catalog used here was taken from an applica-

tion of PCACA in the framework of COST Action 733 over

an extended Alpine domain, using sea level pressure fields

from ERA40 and ERA-Interim (Dee et al., 2011; Uppala et

al., 2005) and with a target number of 9 clusters (Weusthoff,

2011). The choice of the 9-types classification (PCACA9)

is a compromise between differentiation of daily circulation

patterns and robustness of mean values (i.e., enough days

within a weather class). In a comprehensive intercomparison,

PCACA9 was found to be particularly skillful in explaining

the distribution of mesoscale daily precipitation in the Alpine

region (Schiemann and Frei, 2010). The geostrophic wind

fields for each of the clusters were calculated from sea level

pressure composites based on ERA40 (Uppala et al., 2005).

3 Methods and experiments

Our study on the significance and utility of physiographic

predictors for spatial interpolation firstly deals with seasonal

mean precipitation, wherein topographic effects on the dis-

tribution stand out more clearly from spatial variations of

episodic nature. The methodological framework employed

is that of kriging with external drift (KED; Schabenberger

and Gotway, 2005), an interpolation model with a component

for multilinear dependence on pre-defined variables (exter-

nal drift or trend, here a set of topographic predictors) and

a component of spatial autocorrelation. Two limiting cases

of KED will also be considered for comparison: multi-linear

regression models (LM), which comprise the linear depen-

dence on topographic predictors only (i.e., no spatial auto-

correlation), and ordinary kriging (OK) with only the spa-

tial autocorrelation component included (i.e., omitting de-

pendence on predictors). As topographic predictors, a set of

candidates will be considered, including elevation (e), gradi-

ents (g) in two cardinal directions (across and along the main

ridge), and the gradient in the direction of the geostrophic

wind of circulation types (v). Various spatial scales of these

predictors are considered in combination, representing vari-

ations of the topography at and beyond scales of 1, 5, 10, 25

and 75 km, respectively. The different method settings and

predictor sets will be compared by means of a leave-one-out

cross-validation, examining statistics of the systematic and

random errors of the interpolation and their dependence on

elevation.

Secondly, we compare the quality of daily precipitation in-

terpolations when using various climatologies (with different

predictor sets: seasonal or circulation-type stratification) as a

background reference (Widmann and Bretherton, 2000). As

in the seasonal experiments, KED will provide the method-

ological framework for the daily interpolation, but using the

previously determined background reference fields as trend

variables.

The following subsections describe in detail the method-

ological setup (Sect. 3.1), the derivation and usage of the

topographic predictor sets (Sect. 3.2), the method for daily

interpolation (Sect. 3.3), and the cross-validation procedure

(Sect. 3.4). Table 1 lists the experiments conducted for sea-

sonal precipitation with the different methods and predictor

sets, using the acronyms just introduced. The experiments

conducted for daily interpolation are listed in Table 2.
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Table 1. Interpolation experiments conducted for long-term seasonal mean precipitation. Interpolation method, predictors used and the total

number of predictors included.

Acronym Interpolation method Predictors Number of predictors

LM1e Multi-linear regression.

Topographic predictors only.

Spatial autocorrelation neglected.

Elevation (e) only 1

LM3e – Elevation (e) at 3 spatial scales

(75, 25 and 1 km).

3

LM9eg – Elevation (e) at 3 spatial scales

– Topographic gradient (g) at 3 spatial scales

– Two sets of scales:

(i) 75, 25 and 1 km

(ii) 10, 5 and 1 km

9

OK Ordinary kriging

Spatial autocorrelation only,

no topographic predictors.

– 0

KED1e Kriging with external drift

Topographic predictors and

spatial autocorrelation.

Stratification by season.

Elevation (e) only 1

KED3e – Elevation (e) at 3 spatial scales (75, 25 and 1 km) 3

KED9eg – Elevation (e) at 3 spatial scales

– Topographic gradient (g) at 3 spatial scales

– Two sets of scales:

(i) 75, 25 and 1 km

(ii) 10, 5 and 1 km

9

KED1e+ Kriging with external drift

Season stratified by circulation

types (+).

Elevation (e) only 1

KED6ev+ – Elevation (e) at 3 spatial scales

– Wind-aligned topographic gradient (v) at

3 spatial scales

– Set of spatial scales: 75 ,25 and 1 km

6

KED9eg+ – Elevation (e) at 3 spatial scales

– Topographic gradient (g) at 3 spatial scales

– Set of spatial scales: 75, 25 and 1 km

9

Table 2. Interpolation experiments conducted for daily precipitation. The name of a scheme is a combination of the name of the daily scheme

and the background field used.

Acronym Interpolation method Background field

OK(·) Ordinary kriging of daily precipitation

(square-root-transformed)

none

KED(KED1e) Kriging with external drift KED1e, long-term seasonal mean derived

with elevation (1 km) as predictor

KED(KED1e+) Kriging with external drift KED1e+, long-term seasonal mean over days

of circulation type, derived with elevation

(1 km) as predictor

SYMAP(PRISM) SYMAP PRISM, long-term seasonal mean derived

with PRISM

KED(OK) Kriging with external drift OK (long-term seasonal mean derived with

OK,

no topographic predictors)
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3.1 Interpolation methods

For the interpolation concept, the present study builds on

kriging with external drift (Schabenberger and Gotway,

2005) and two simplified limit cases of it. KED belongs to

a broad class of geostatistical interpolation methods that es-

timate values at target locations as the best linear, unbiased

combination of sample observations, assuming that the field

of interest is a realization of a second-order stationary Gaus-

sian process (see e.g., Cressie, 1993; Diggle and Ribeiro,

2007). KED considers the observations Y at sample loca-

tions s as a random variable of the form (see e.g., Diggle

and Ribeiro, 2007)

Y (s)= µ(s)+Z(s), µ(s)= β0+

K∑
k=1

βk · xk(s). (1)

Here, µ(s) describes the deterministic component of the

model (also termed external drift or trend) and is given as

a linear combination of K predictor fields xk(s) (also termed

trend variables) plus an intercept β0. The βk are denoted as

trend coefficients. Z(s) describes the stochastic part of the

KED model and represents a random Gaussian field with a

zero mean and a second-order stationary covariance struc-

ture. The latter is conveniently modeled by an eligible para-

metric semi-variogram function describing the dependence

of semi-variance as a function of lag (possibly with a direc-

tional dependence).

In our application of KED for seasonal mean precipita-

tion, the trend variables xk(s) are specified as fields of to-

pographic predictors (elevation and gradient) that have been

precalculated from a high-resolution digital elevation model

as further detailed in Sect. 3.2. Several different sets of pre-

dictors will be considered and the accuracy of the pertinent

interpolations will be compared by cross-validation.

In all our applications, the semivariogram is assumed to

be exponential with a nugget, sill, and range as parameters.

Despite the two-dimensional character of our study domain

(i.e., ridge aligned in the east–west direction), we have cho-

sen an isotropic variogram model in all our experiments. The

reason for this is that the deterministic model component in

KED comprises the angular asymmetry of the variations in

precipitation implicitly via predictor fields that represent the

orientation of the ridge. Predictors of height and slope, es-

pecially at larger space scales, vary in the north–south di-

rection more than in the west–east direction. Introducing an

anisotropy in the stochastic model part (variogram) would

likely compete with the significance of these predictors for

interpolation. As a consequence, the results would become

very specific to our study domain with its simple geography,

where the absence of predictors can be compensated for by

variogram anisotropy. In a more complex domain – e.g., with

a topography orientation changing across the region – such

a compensation is far less effective and the incorporation of

informative predictors more decisive. In this study, we are in-

terested in predictor dependence in this more general setting,

which is why we deliberately refrain from the added flexi-

bility with anisotropic variograms. The choice of the expo-

nential variogram was motivated by simplicity. Preliminary

sensitivity experiments with a spherical variogram (again al-

lowing for nugget) did show very minor differences in results

compared to the exponential model.

All model parameters (trend coefficients and variogram

parameters) are estimated jointly using the method of re-

stricted maximum likelihood (Schabenberger and Gotway,

2005), which accounts for biases from limited sample

size/large predictor sets. The utilization of a likelihood-based

estimation procedure is central in our application. Estimating

trend coefficients and variogram parameters jointly means

that the procedure implicitly distinguishes between varia-

tions in the observations that are better explained by the

predictors and variations that are better explained by spatial

covariance (spatial continuity). This procedure ensures opti-

mality of the parameter estimates and consistency of assump-

tions with the stochastic model of Eq. (1) (see also Diggle

and Ribeiro, 2007). Prior estimation of predictor coefficients

by linear regression followed by ordinary kriging of resid-

uals, an estimation procedure frequently applied, has a risk

of disturbing spatial autocorrelation when the relationship to

predictors is the sole source for explaining variance in the

regression step.

A complication of adopting KED in the present study is

posed by the assumption of a multivariate Gaussian with sta-

tionary variance in space for the stochastic component (the

residuals of the trend). This condition is rarely met with pre-

cipitation data, which have a distribution bounded by zero,

positive skewness, and shows larger variance in areas of high

versus low precipitation. Partial remedy of this can be made

with a prior monotonic transformation of the data, the appli-

cation of KED in transformed space, and subsequent back-

transformation of the estimated kriging distribution. The pro-

cedure, commonly known as trans-Gaussian kriging (Sch-

abenberger and Gotway, 2005), has been adopted in all KED

experiments of the present study, using the Box–Cox power

transformation (Box and Cox, 1964):

Y ∗ =

 Y λ− 1

λ
λ 6= 0

log(Y ) λ= 0

. (2)

Here we prescribe the transformation parameter at λ=

0.5, which corresponds to a square root transformation of

the data. This choice is motivated by analyses of Erdin et

al. (2012) showing that a formal estimation of λ (by max-

imum likelihood) did not significantly alter the best esti-

mates compared to when it was prescribed at 0.5; the change

was, however, significant for the kriging uncertainty. Finally,

the back-transformed results of KED were obtained, in the

present study, following a numerical procedure described in

Erdin et al. (2012).
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It is worth noting here that the Box–Cox transforma-

tion improves compliance with model assumptions only

with respect to non-stationarity related to the skewness of

precipitation amounts. Precipitation intermittency (the exis-

tence of contiguous dry/wet areas) is responsible for non-

stationarities that the transformation does not eliminate. Note

that, with λ= 0.5, transformation (2) maps all dry measure-

ments to –2. Methods have been proposed to deal with in-

termittency explicitly in the spatial modeling of precipitation

(e.g., Fuentes et al., 2008; Schleiss et al., 2014; Seo, 1998).

These were not considered in our application. While inter-

mittency violates model assumptions in the interpolation of

daily precipitation, this is not an issue for the interpolation of

seasonal climatological means.

The KED model of Eq. (1) comprises two simplifying spe-

cial cases that will be considered in this study as alterna-

tive methods of spatial interpolation. The first is to assume

that Z(s) is a spatially uncorrelated Gaussian field with zero

mean and constant variance. This corresponds to the classi-

cal linear regression model (hereafter denoted as LM) with

estimates at location s determined by the linear combination

of predictors only. As with KED we apply the linear regres-

sion case with square-root-transformed data and appropri-

ately back-transformed results. The LM method is used here

for comparative purposes because it is often adopted as an

exploratory tool to constitute suitable predictor sets for KED.

It is important to note, however, that the best estimate of the

linear model µLM(s) is not equal to the deterministic part of

KED µKED(s) because the estimates for the parameters βk
differ with or without consideration of spatial autocorrela-

tion.

The second special case of the KED model (1) is that

in which topographic predictors are omitted, i.e., presum-

ing βk =0 (k =1,..,K), and assuming the spatial variations

in the observations are purely the result of a second-order

stationary process. This is the limit of ordinary kriging. As

with the other methods, OK is used here with square-root-

transformed data. Differences in the performance of KED

and OK describe the value added by topographic predictors.

Nonetheless, the best estimate fields of OK are not equal to

the stochastic component of KED because the parameter es-

timates differ.

All computations are done in R (R Core Team, 2012) using

the geostatistics package geoR (Diggle and Ribeiro, 2007).

3.2 Predictors for the interpolation of long-term mean

precipitation

The topographic predictors used in this study are based on

the DEM of the Shuttle Radar Topography Mission (SRTM;

Farr et al., 2007). SRTM was obtained using both C- and

X-band microwave radars and has originally a resolution of

about 90 m. In this study we use the SRTM elevation model

on a 1 km grid of the Lambert Azimuthal Equal Area Co-

ordinate Reference System (ETRS89-LAEA; Annoni et al.,

2001).

The three main topographic predictors considered are

fields of elevation and gradients in the two cardinal direc-

tions across the ridge (north–south) and along the ridge

(east–west). Several predictors for each of these quantities

will be considered, describing variations in elevation and gra-

dients at different space scales. These were derived from

smoothed versions of the original DEM, after applying a

Gaussian kernel with window widths of 1, 5, 10, 25 and

75 km, respectively. A predictor set that involves, for exam-

ple, elevation and gradients at three space scales comprises

a total of nine different predictor fields: three for elevation,

three for the north–south gradient and three for the east–west

gradient. Values of the predictors at the station locations were

always taken from the nearest grid cell of the predictor fields.

Care was required to avoid co-linearity between predic-

tors when combining several of them for the various space

scales. To this end, predictors for a scale were defined as the

difference between the variable at that scale and the same

variable at the next larger scale. For example, the 25 km ele-

vation predictor in a set involving the scales 1, 25 and 75 km

is obtained by calculating the difference between the 25 km

and the 75 km smoothed versions of the DEM.

Apart from analyzing fields of seasonal mean precipitation

directly from seasonal mean station observations, we also in-

vestigate the potential for recombining a seasonal mean field

from several separate spatial analyses for average precipi-

tation within the classes of a circulation-type classification.

Precipitation–topography relationships may be more clearly

established under conditions of similar large-scale circula-

tion, and this could assist the derivation of a seasonal mean

field through further stratification.

The consideration of circulation types permits the intro-

duction of an additional circulation-guided topographic pre-

dictor. It is defined as

Gw(s,λ,k)=∇e(s,λ) ·
V
(k)
g (s)∥∥∥V (k)
g (s)

∥∥∥ , (3)

where ∇e(s,λ) denotes the gradient of the topographic ele-

vation (valid for smoothing scale λ at location s), V
(k)
g (s) de-

notes the geostrophic wind of circulation class k at location

s, and Gw describes the topographic gradient along the di-

rection of the geostrophic wind and will be denoted as wind-

aligned gradient for brevity. As with the topographic gradi-

ents along the cardinal directions, Gw is considered to de-

pend on spatial scale. The geostrophic wind was determined

from the sea level pressure composites of the circulation-

type classification (PCACA9 see Sect. 2), originally given

on a 0.5◦ grid, by interpolation (Gaussian kernel) onto the

1 km grid of the DEM and subsequent calculation of the

geostrophic wind. Note that for Gw the smoothing is applied

to elevation e(s) only because the geostrophic wind field is

already smooth as a result of the coarse resolution of the
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Figure 3. Illustration of Gw, the wind-aligned gradient, for two

classes of the PCACA9 circulation-type classification: (a) north-

easterly flow in summer, and (b) southwesterly flow in fall. The

example fields are valid for a smoothing scale of 5 km. The topog-

raphy is depicted in grey lines (spacing 250 m) and the streamlines

of the geostrophic wind are shown by the blue curves.

underlying sea level pressure field and its smooth interpo-

lation to the digital elevation model (DEM) grid.

Figure 3 illustrates examples of the wind-aligned gradient

Gw obtained for two circulation types of the PCACA9 classi-

fication. The marked change ofGw across topographic crests

(and across valleys) is evident, as well as its distinct spatial

distribution between the two circulation types with their dis-

tinct sea level pressure gradient (geostrophic wind) over the

domain.

Consideration of Gw as a candidate predictor is obviously

motivated by ideas of upslope orographic rainfall enhance-

ment and rain shadowing on the lee of mountains. Indeed, at

the scale of the entire ridge, such flow-related precipitation

anomalies are clearly evident with the PCACA9 circulation-

type classification, at least in fall, winter and spring (see

Schiemann and Frei, 2010).

Apart from Gw as defined in Eq. (3) we have also exper-

imented with an alternative definition that has omitted the

normalization of the geostrophic wind. Such a predictor was

previously considered in Johansson and Chen (2003) and in

Kyriakidis et al. (2001), for example. However, our experi-

ments showed less explanatory power for precipitation in our

study domain compared to Gw as defined in Eq. (3). In the

following, we considerGw simply as an alternative to the to-

pographic gradients along the two cardinal axes and will ex-

amine how this replacement (together with the stratification

of circulation types) affects interpolation quality for seasonal

mean precipitation in the domain.

3.3 Interpolation of daily precipitation

Our experiments on the interpolation of daily precipitation

also make use of the concepts of kriging with external drift

and ordinary kriging (Sect. 3.1) as used for the interpola-

tion of seasonal mean precipitation. However, rather than

using the topographic predictors directly as trend variables,

the daily interpolation adopts fields of seasonal mean or

circulation-type mean precipitation as trend variables. Pre-

cipitation measurements at short timescales usually exhibit

large spatial variations from which systematic topographic

effects are difficult to estimate. The solution followed here is

to inject this information via pre-calculated long-term aver-

ages. The approach is somewhat related to the common use

of climatological mean fields as reference (e.g., New et al.,

2000; Widmann and Bretherton, 2000), but instead of adopt-

ing the reference as scaling factor, the approach uses it as the

trend variable in KED.

Following the main focus of our study on precipita-

tion–topography relationships, we conduct experiments with

daily interpolations and shed light on the role of the clima-

tological reference fields. To this end the interpolation errors

are compared between different specifications of the trend

variable (see Table 2 for a list of experiments). The trend set-

tings include (a) a long-term seasonal mean built with topo-

graphic predictors– experiment KED(KED1e); (b) the long-

term mean of the day’s pertinent circulation type–experiment

KED(KED1e+); (c) a representation of the seasonal clima-

tology that has not used topographic predictors–KED(OK).

Comparison of these settings with an ordinary kriging based

direct interpolation–experiment OK(·)–will clear up the ben-

efit of using climatological reference fields in daily interpola-

tion. Note that in contrast to the interpolation of climatic av-

erage where most of the stations have non-zero precipitation

values, daily measurements can sometimes report dry con-

ditions everywhere. Since kriging cannot operate with zero

variance, the precipitation field is set to zero in this particular

case. Finally, we compare the results obtained in this study

using KED over a small cross section of the Alps with results

obtained from a previously developed deterministic interpo-

lation scheme that was applied for daily precipitation over

the entire Alpine ridge (Isotta et al., 2013). The trans-Alpine

method builds on a version of PRISM (Daly et al., 1994,

2002; Schwarb, 2001) for monthly long-term mean fields and

on SYMAP (Frei et al., 1998; Shepard, 1984) for the daily

relative anomalies from the mean. The experiment will be de-

noted as SYMAP(PRISM). Results from this method rely on

a cross-validation table previously calculated and provided

by Isotta et al. (2013).

3.4 Evaluation

Our comparison and discussion of the various interpola-

tion experiments is based on systematic leave-one-out cross-

validations, rejecting one by one all the stations of the do-

main and estimating pertinent interpolations at the location

and with the predictors for that station.

Two error scores will be used to summarize the perfor-

mance of the methods. The first is a measure of the rela-

tive bias (B) and corresponds to the ratio of predicted (pi)

over observed (oi) precipitation totals, averaged over all (or
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a subset of n) rain gauges:

B =

∑n
i=1pi∑n
i=1oi

. (4)

The second score is the relative mean root-transformed error

E, defined as

E =

1
n

∑n
i=1

(√
pi −
√
oi
)2

1
n

∑n
i=1

(√
ō−
√
oi

)2
. (5)

Here o is the spatial average of the observations over all (or

a subset of n) stations. The numerator represents a sort of

mean squared error, but with square-root-transformed data.

The transformation is introduced here to avoid excessive de-

pendence on large precipitation values and hence to obtain

a more balanced sensitivity on errors across the frequency

distribution. The denominator then represents some sort of

spatial variance of the transformed values and this is used

as a reference against which errors of the prediction are

measured. Values of E are always greater than zero. Values

smaller than 1 mean that typical errors are smaller than the

spatial variations. Values larger than 1 mean that the predic-

tion has larger errors compared to a simple prediction of the

spatial mean and this can be considered a non-skillful predic-

tion.

Depending on the data stratification and interpolation

method, between 317 and 420 stations are available for esti-

mation and interpolation. To ensure maximum comparability

of the evaluation results, however, we use a fixed set of 317

stations to calculate the above error scores.

4 Results

4.1 Interpolation of mean precipitation

4.1.1 Linear regression

Linear regression is often considered an exploratory frame-

work with which potential predictors for a trend model of

KED can be compared. We therefore develop our discussion

starting with results from the special case when spatial au-

tocorrelation is neglected and then pursue the changes when

introducing autocorrelation in combination with topographic

predictors.

The number of possible regression models with three vari-

ables (elevation, north–south gradient, east–west gradient)

and six different spatial scales is very large. We have se-

lected three of them for our discussion because of their il-

lustrative purposes. The simplest (LM1e; see Table 1) only

has elevation at the finest spatial scale (1 km) as predictor. It

is a traditional and wide spread model of topography effects

on precipitation (see Sect. 1). The second (LM3e; see Ta-

ble 1) also involves elevation only, but at three different space

scales (75, 25, 1 km). The third model (LM9eg; see Table 1)

Table 3. Adjusted R2 for three linear models (see Table 1) and for

each season.

LM1e LM3e LM9eg

DJF 0.01 0.42 0.59

MAM 0.05 0.52 0.66

JJA 0.1 0.51 0.73

SON 0.1 0.44 0.57

involves elevation and gradients (in both cardinal directions)

at the three space scales (75, 25, 1 km). Experiments with

all five space scales (including 5 and 10 km) showed that the

three selected scales led to the largest values in adjusted R2.

There were slight variations in the “optimal” model choice

between seasons but the prescription of the three scales did

not significantly lower the explanatory power.

Note that a formal and automated model selection proce-

dure (using step-wise linear regression) was not feasible in

our application, because the predictors for one scale depend

on those retained for other scales (elimination of co-linearity;

see Sect. 3b).

Table 3 lists values of adjustedR2 for the three selected re-

gression models. The overall pattern is very similar between

the seasons. Topography at the finest scale only (LM1e) ex-

plains a very low proportion of the spatial variance in the

observations. This is not too surprising considering that the

distribution of mean precipitation is mainly characterized by

anomalous wet conditions along the northern foothills and

dryer conditions in the high-elevation interior of the ridge

(see e.g., Fig. 2a; results for other seasons are not much

different). Obviously local elevation does not explain this

larger-scale pattern well. The situation improves when in-

volving elevation at three space scales (1, 25 and 75 km):

LM3e explains a considerable portion of the precipitation

variability across the domain. Finally, the largest explained

variance is obtained when topographic gradient fields are

included (LM9eg). Now the predictor set involves a large-

scale pattern (the north–south gradient at the coarsest scale)

that distinguishes between flatland, foothills and inner Alps,

i.e., the major large-scale contrasts in the precipitation field

that was a major obstacle for the previous two models. In-

terestingly, the coefficient (and statistical significance) of the

1 km elevation predictor is much larger in this comprehen-

sive model than in the simple model LM1e. This suggests

that there is some dependence on local elevation in the dis-

tribution, but this was difficult to represent in the elevation-

only models because it is superimposed by a larger-scale

north–south profile that is itself poorly explained by eleva-

tion.

Despite its decent values in explained variance, the nine-

predictor model LM9eg shows elementary deficiencies in re-

producing the distribution of rain-gauge measurements in

the domain. These are illustrated for the example of DJF
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Figure 4. Distribution of DJF long-term mean precipitation (mm per day) as estimated by (a) a multi-linear regression using elevation and

gradients at three spatial scales (75, 25 and 1 km, LM9eg) as predictors, (b) ordinary kriging (no topographic predictors), (c) kriging with

external drift using the same predictors an in (a). Color-filled circles represent observations at rain-gauge stations. Red squares denote areas

mentioned in the text. The topography is depicted with orange lines (spacing 500 m).

mean precipitation in Fig. 4a. Precipitation is systematically

overestimated over a wide flatland belt adjacent to the ridge

(see full red square), underestimated along the foothills and,

again, overestimated in interior parts of the ridge (see dashed

red square). Apparently the larger-scale topographic predic-

tors provide, in linear combination, only a partial match to

the observed north–south profile, and the resulting prediction

tends to smooth out some of the variations. Similar types of

deficiencies (differing in exact location) were evident with

other combinations, with the full set of space scales, and dur-

ing other seasons. There was always clear spatial clustering

in the prediction errors (regression residuals). It seems that,

even with quite comprehensive predictor sets, it is difficult

to capture in a regression model all aspects of the precipita-

tion field resolved by the station network. Surprisingly, this

is even the case with the comparatively simple north–south

profile of this study, for which the construction of a suitable

predictor set may have first looked easy.

4.1.2 Kriging

Ordinary kriging seeks to represent the precipitation distri-

bution entirely without topographic predictors. The corre-

sponding estimation (Fig. 4b) has a smooth appearance but

reproduces the characteristic north–south contrasts between

flatland, foothills and inner Alps. Hence, OK amends some

of the regional deficiencies of the linear regression model of

Fig. 4a (see red squares). However, in the inner Alpine re-

gion, several rain gauges with anomalously wet conditions

(mostly at mountain peak stations) are represented as isolated

spots. It appears as if some elevation dependency that is not

explicitly resolved by the station network is missed because

of the absence of predictors in OK.

Figure 4c depicts the result obtained with KED, i.e., in-

tegrating predictors and spatial autocorrelation, using the

comprehensive three-scale elevation and gradients model as

trend (KED9eg). The distribution shows the superposition

Figure 5. North–south precipitation profile as estimated by the three

interpolation methods LM9eg, OK, and KED9eg (see Table 1). DJF

long-term mean precipitation (lower x axis, mm day−1) serves as

a function of latitude (y axis, ◦ N). The dashed line indicates the

height profile (upper x axis, m) as a function of latitude.

of a spatially smooth pattern (similar to OK, Fig. 4b) and a

small-scale pattern with topographic features that are not ex-

plicitly resolved by the station network (similar to LM9eg).

The consideration of spatial autocorrelation has amended for

the deficiencies of LM9eg in representing the larger-scale

north–south profile (red squares). Moreover, the strong con-

trasts between mountain stations (moist) and valley stations

(dry) in the interior Alps are now integrated via an elevation

(and gradient) dependence at small scales.

It is interesting to realize that the three discussed interpo-

lation methods yield markedly different estimates not just re-

gionally, but also when aggregated over larger scales. This is

www.hydrol-earth-syst-sci.net/18/4543/2014/ Hydrol. Earth Syst. Sci., 18, 4543–4563, 2014
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Figure 6. Error statistics for the interpolation of mean DJF precip-

itation using different interpolation models (see Table 1 for model

acronyms). (a) Relative bias B (dimensionless, Eq. 3) and (b) rel-

ative mean root-transformed error E (dimensionless, Eq. 4, log-

scale) of a leave-one-out cross-validation. Results are shown for

four elevation classes. Horizontal dashed lines represent the scores

over all stations. The vertical bars represent the number of stations

per elevation class (right axes).

further illustrated in Fig. 5, which depicts the results of Fig. 4

when averaged over latitude bands (along the ridge). OK and

KED9eg both represent a moist anomaly at the foothills, cen-

tered at an elevation of about 1200 m m.s.l. This anomaly

is much less pronounced and more wide-spread in LM9eg.

Towards the inner Alpine region the three methods yield

markedly different areal estimates with OK being much dryer

than the regression model and KED. OK and KED differ by

between 5 and 25 % in this area. In the inner Alpine region,

it is not entirely clear, at this point, which of the methods

are more realistic. Clearly there is a risk of general underes-

timates by OK due to the absence of topography dependence

Table 4. Relative bias B calculated over all stations for different

seasons using different interpolation models (see Table 1 for model

acronyms).

Winter Spring Summer Fall

LM1e 0.971 0.993 1.000 1.000

LM9eg (10, 5, 1 km) 0.981 0.997 1.004 1.003

LM3e (75, 25, 1 km) 0.976 0.996 1.002 1.002

LM9e (75, 25, 1 km) 0.979 0.997 1.003 1.001

OK 0.995 1.004 1.007 1.007

KED1e 0.989 1.002 1.006 1.005

KED9eg (10, 5, 1 km) 0.990 1.003 1.008 1.006

KED3e (75, 25, 1 km) 0.989 1.002 1.006 1.005

KED9e (75, 25, 1 km) 0.989 1.002 1.006 1.005

Table 5. Relative mean root-transformed error E calculated over all

stations for different seasons using different interpolation models

(see Table 1 for model acronyms).

Winter Spring Summer Fall

LM1e 1 0.972 0.931 0.929

LM9eg (10, 5, 1 km) 0.749 0.717 0.641 0.787

LM3e (75, 25, 1 km) 0.571 0.482 0.475 0.570

LM9e (75, 25, 1 km) 0.438 0.366 0.278 0.452

OK 0.217 0.237 0.104 0.173

KED1e 0.114 0.111 0.066 0.099

KED9eg (10, 5, 1 km) 0.109 0.105 0.062 0.098

KED3e (75, 25, 1 km) 0.114 0.111 0.066 0.099

KED9e (75, 25, 1 km) 0.109 0.101 0.063 0.095

in conjunction with poor sampling of high-elevation areas.

But there is also a risk that KED suffers from overestimates

if, for example, the elevation dependence estimated over the

full domain is not representative of the inner Alps.

In the following we assess the relative performance of a

range of interpolation models from the above three categories

by means of a systematic leave-one-out cross-validation. Re-

sults are depicted for DJF mean precipitation in Fig. 6. The

two panels are for B (Fig. 6a, ratio) and for E (Fig. 6b, di-

mensionless; see Sect. 3.4 for the definition of the scores).

To better visualize the effects of the various interpolation

schemes, both error scores are calculated separately for the

stations within four elevation ranges. Here, we discuss the

results more extensively for the case of DJF mean precipita-

tion, but very similar results – and similar interpretations –

were found for the other seasons. This is supported by Ta-

bles 4 and 5, which list a summary of the error scores for all

seasons.

When averaged over all stations the values of bias are

small, varying between 0.97 and 0.995 depending on the

method (Fig. 6a, dashed lines). The largest underestimate

(3 %) is obtained for LM1e (the linear model with local ele-

vation as single predictor). More significant biases are, how-

ever, found in individual elevation ranges. This is particularly
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so for the linear regression model LM1e and for ordinary

kriging. The lack of topographic predictors in OK impinges

upon the interpolation at high elevation. Here OK system-

atically underestimates by about 30 %. This deficiency is

mostly corrected with interpolation models that incorporate

topographic predictors (LM9eg and KED9eg). The explicit

modeling of topography allows for a compensation of the ef-

fects of non-representative vertical distribution of the station

sample. In the framework of KED, this remedy is almost as

good with only one predictor (KED1e) as with many pre-

dictors (KED9eg). In the linear model framework, however,

in situ elevation alone provides a poor model of the spatial

distribution (see also Table 3), and this is reflected in large

and alternating biases between the elevation ranges. An in-

terpretation of this difference may be seen in the fact that

the estimated coefficient for the 1 km elevation predictor is

quite different between LM1e and KED1e. It seems that the

consideration of spatial autocorrelation in KED1e permitted

for a much more realistic separation between small-scale el-

evation dependence (modeled by the predictor) and larger-

scale precipitation variations (modeled by the autocorrela-

tion part). In contrast, LM1e attempts to capture larger-scale

and small-scale variations with one single linear dependence

by construction. It is then likely that larger-scale variations

(such as the north–south profile) disturb a realistic estimate

of the small-scale elevation dependence.

The limited accuracy of linear regression models in pre-

dicting the spatial variations of seasonal mean precipitation

is most evident in the relative error scoreE (Fig. 6b, Table 5).

Values are close to the critical value of 1, where prediction

errors are comparable to the magnitude of spatial variations

(see Sect. 3.4). There is improvement when including more

predictors (e.g., LM9eg vs. LM1e), but considerable errors

remain even with comprehensive predictor sets. This reflects

results previously seen in Fig. 4a. Note that the inclusion of

the gradient at the 75 km scale (the largest considered) yields

the smallest errors. Obviously, this predictor is essential for

a regression model to capture the characteristic north–south

profile.

The OK model (no topographic predictors) has much

smaller errors than the regression models, except for the

highest elevation range (Fig. 6b). OK profits from its explicit

account for spatial autocorrelation, which permits the repro-

duction of larger-scale variations (e.g., the north–south pro-

file) from the information at neighboring stations (see also

Fig. 4b). In our application this methodological feature yields

considerably smaller errors than a comprehensive predictor

set in a regression model, at least for low and intermedi-

ate elevation ranges. At large elevations, however, the OK

model suffers large E values (close to 1), which reflects the

large bias there (see also Fig. 6a) and the poor reproduction

of wet conditions at inner-Alpine mountain stations (see also

Fig. 4b).

The family of KED models, which include both to-

pographic predictors and spatial autocorrelation, yield the

smallest interpolation errors of all models (E scores, Fig. 6b,

Table 5). In comparison to OK, the improvement is modest

in the lower elevation classes but substantial at higher ele-

vation. The inclusion of topographic predictors seems to be

central for reducing the caveats of OK in the inner-Alpine

region (biases and over-smoothing of small-scale variations,

see also Fig. 4). But the KED models also yield markedly

smaller errors (at all elevations) compared to using the pre-

dictors in a linear regression.

Between the different KED models (with different predic-

tor sets) there are only marginal differences in the scores

(Fig. 6b, Table 5). Values of E are roughly the same for

the model with only one predictor (elevation at the 1 km

scale, KED1e) and models with elaborate predictor sets (e.g.,

KED3e, KED9eg). At first sight this is surprising given that

the scores for linear regression models appeared to be sen-

sitive to the predictor sets. Our explanation of this result is

that the role of topographic predictors is distinct between

linear models and KED. Linear models are in need of ge-

ographic predictors to capture the full distribution. The 25

and 75 km predictors are therefore highly relevant. In KED,

however, the part of the distribution that is well resolved by

the station network can be represented by the spatial auto-

correlation component (kriging), while topographic predic-

tors are primarily used to describe smaller-scale variations

not explicitly resolved by the station network. Here the 25

and 75 km predictors may be virtually unnecessary. The dis-

tinct role of topographic predictors in the two model families

is also reflected in differences in the statistical significance

and quantitative values of the predictor coefficients (βk; see

Eq. 1). In all the KED models the 1 km elevation predictor

is by far the most statistically significant, whereas in the lin-

ear models other predictors (notably the 75 km topography

gradient) are occasionally more significant.

Experiment KED9eg (10, 5, 1 km) involves predictors at

spatial scales all smaller than the station spacing. Still there

seems to be little added value compared to the model with

the 1 km elevation predictor only (KED1e, see Fig. 6b and

Table 5). It is unclear whether this result implies that the ad-

ditional predictors (5 and 10 km elevations and gradients) are

indeed not very relevant (on top of the 1 km elevation) for

describing small-scale precipitation variations in the Alps.

There may be insufficient sampling of these predictors in the

station sample considering that most of the inner-Alpine sta-

tions are in valleys or on mountain tops.

Note that E shows a general U shape for the more skill-

ful interpolation models (Fig. 6b), implying that relative er-

rors are larger (smaller) at low and high (intermediate) eleva-

tions. This pattern is also related to the definition of the score,

which uses spatial variance within the elevation classes as a

reference (see denominator in Eq. 3). Larger values of E at

low elevations are primarily because of the small variance

in precipitation measurements over the flatland. In fact the

numerator of E increases monotonically with elevation.
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Figure 7. Error statistics for the interpolation of mean DJF pre-

cipitation using interpolation models that utilize information from

a circulation classification (see Table 1 for model acronyms).

(a) Relative bias B (dimensionless, Eq. 3) and (b) relative mean

root-transformed error E (dimensionless, Eq. (4), log scale) of a

leave-one-out cross-validation. Results are shown for four elevation

classes. Horizontal dashed lines represent the scores over all sta-

tions. The vertical bars represent the number of stations per eleva-

tion class (right axes).

4.2 Stratification by circulation types

In this section we examine the potential of considering cir-

culation types for the derivation of interpolated mean sea-

sonal precipitation fields. Two extensions will be considered.

Table 6. Relative bias B calculated over all stations for different

seasons using different interpolation models (see Table 1 for model

acronyms).

Winter Spring Summer Fall

KED1e+ 1 0.998 1.005 1

KED6ev+ 1 0.999 1.005 1

KED9eg+ 1 0.999 1.005 1

KED9eg 0.989 1.002 1.006 1.005

Table 7. Relative mean root-transformed error E calculated over all

stations for different seasons using different interpolation models

(see Table 1 for model acronyms).

Winter Spring Summer Fall

KED1e+ 0.113 0.104 0.062 0.092

KED6ev+ 0.105 0.095 0.061 0.089

KED9eg+ 0.106 0.095 0.059 0.090

KED9eg 0.109 0.101 0.063 0.096

The first deals with a substratification of the season. For this

purpose several KED interpolation models are adopted sep-

arately for each class of the circulation classification. The

resulting fields of mean precipitation for each class are sub-

sequently recombined into a seasonal mean field by weight-

ing according to the classes’ frequency. Experiments adopt-

ing this substratification are labeled with a “+” sign (see

Table 1). The second extension deals with the circulation-

dependent predictor Gw as outlined in Sect. 3.2. The wind-

aligned gradient is considered here as an alternative to the

gradients in the two cardinal directions. The experiment in-

volving this topographic predictor is labeled with the letter

“v” (KED6ev+; see Table 1). KED6ev+ uses three differ-

ent components of the Gw field corresponding to three space

scales (1, 25 and 75 km). These were derived by the smooth-

ing procedure and removal of colinearities, just as with the

previous predictor fields (see Sect. 3b). Our results were de-

rived with the nine-class PCACA9 classification as described

in Sect. 2.

Cross-validation results from these experiments are de-

picted in Fig. 7, again for B and E, using the same format as

in Fig. 6. Note that these are scores for a mean seasonal (here

DJF) precipitation field, not a field for the mean of a circula-

tion class. Hence the scores include errors from the recombi-

nation over the classes. Results using circulation classifica-

tion input are compared against a direct interpolation of sea-

sonal means using the previously adopted model KED9eg.

Results of the two scores for other seasons are listed in Ta-

bles 6 and 7.

With all tested interpolation methods, the biases are

smaller than 2 % (5 %) below (above) 1000 m m.s.l. (Fig. 7a).

The interpolation with circulation classes (KED1e+,

KED6ev+, KED9eg+) exhibits a slightly different bias pat-
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tern compared directly to that of seasonal means (KED9eg),

with a smaller underestimation at elevations between 1500

and 3500 m and a larger overestimation between 1000 and

1500 m. But these differences (and the bias values them-

selves) are much smaller than typical random errors, and

there is not much value in using them for a relative assess-

ment of the methods. The conclusion is that stratification by

circulation class and usage of a wind-aligned gradientGw do

not significantly change the bias pattern of the interpolation

methods.

Comparison of the different methods in terms of E

(Fig. 7b) reveals that all interpolation methods have a very

similar error pattern. Neither the stratification by circula-

tion class alone (with conventional predictors, KED1e+ and

KED9eg+) nor the consideration of a wind-aligned gradi-

ent (KED6ev+) can significantly improve over the interpola-

tion of mean seasonal values (KED9eg). The overall scores

(dashed lines) are slightly better for the stratification meth-

ods with gradient (KED9eg+) and wind-aligned gradient

(KED6ev+) predictors (see also Table 7), but the direct sea-

sonal method (KED9eg) is superior at three of the four ele-

vation classes.

We have tested several alternative definitions of a circula-

tion dependent predictor deviating from that in Eq. (3). These

included the introduction of an asymmetry between upslope

and downslope gradients, truncating the Gw field to only

measure upslope gradients, including the wind speed (i.e.,

discarding the denominator in Eq. 3), and a simple model for

an ageostrophic wind component. None of these alternative

definitions led to significantly different results.

There are several possible reasons why circulation class

information did not improve interpolation accuracy in our

application. The region may be geographically too simple or

too small to reveal the benefits of a predictor that builds on

spatially variable wind directions. The large-scale wind field

(derived from a coarse resolution sea level pressure field)

may be of limited representativity for the true air flow in such

a complex topography. The variability of airflows within a

circulation class may be large, so that systematic topographic

effects do not necessarily manifest at the small space scales

addressed by the Gw predictor. The station sample may not

sample the Gw predictor field adequately. Finally, there may

be larger sampling errors involved because less stations could

be used in the estimation of means for circulation classes due

to the minimum constraint employed to ensure robustness in

temporal sampling (see Sect. 2).

4.3 Interpolation of daily precipitation

In this section we compare and evaluate several options for

extending the KED interpolation framework for daily precip-

itation. The main purpose of this comparison is to investigate

how sensitive the accuracy of a daily interpolation scheme

is to various options of integrating small-scale topography-

related information. Simultaneously we compare the KED-

based daily models with results from a previously imple-

mented deterministic daily interpolation scheme that was cal-

ibrated over a much larger area (the entire Alpine region) and

was used for a popular data set of trans-Alpine daily precipi-

tation (Isotta et al., 2013).

Table 2 lists the interpolation models compared here and

Fig. 8 depicts results from some of these models for a

day with widespread and intense precipitation in the study

domain. All KED models considered adopt the stochastic

concept of Eq. (1) but with one of the previously deter-

mined climatological mean fields as trend rather than with

the topographic predictors themselves. The trend field for

KED(KED1e) is the mean seasonal field KED1e that was

derived with the 1 km elevation predictor. Recall that this

version of the mean seasonal distribution showed cross-

validation skills comparable to other versions with compre-

hensive predictor sets (Fig. 6). The precipitation for the ex-

ample day (Fig. 8a) shows small-scale patterns along the

foothills and in the interior of the ridge that reflect patterns

of the trend field. For KED(KED1e+), the trend field is the

mean precipitation for class 9 of the PCACA9 circulation

classification; the example day belongs to this class. Again,

the distribution for the example day (Fig. 8b) bares small-

scale variations reflecting the trend field. There are only

small differences to the result for KED(KED1e) (Fig. 8a) be-

cause the small-scale pattern (not the magnitude) is very sim-

ilar between the mean over the class and the mean over the

season. Our consideration of KED(KED1e+) in the subse-

quent evaluation will answer whether the substratification by

circulation classes can improve interpolation accuracy. As a

reference we also consider the models KED(OK) and OK(·),

which use the OK-based seasonal climatology (Fig. 4b) as

trend or a simple ordinary kriging of the (transformed) daily

values (i.e., no trend), respectively. The distributions for the

example day are very similar and, compared to the other

models, much smoother in appearance (see Fig. 8c).

Figure 8d depicts daily precipitation for the example day

derived by the Alpine-wide SYMAP(PRISM) interpolation.

This procedure uses a seasonal climatology derived from a

local regression approach as background (PRISM, Daly et

al., 1994, 2002; Schwarb, 2001). The result depicted comes

from a 5 km grid interpolation (Isotta et al., 2013) and is

coarser than results for the other models (1 km grid). It shows

more variable and larger peak values than the other mod-

els. In contrast to the KED models with elevation as predic-

tor, PRISM estimates precipitation–height gradients locally

(considering the representativity of surrounding stations) and

this results in more pronounced small-scale variations.

The daily interpolation methods have been quantita-

tively evaluated using cross-validation over all winter days

of 1971–2008 (3400 days). For computational reasons, the

cross-validation of the models was only calculated for the

daily interpolation step, i.e., with the seasonal background

field estimated from all the data including the test station.

Clearly the daily interpolation step contributes the largest er-
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Figure 8. Daily precipitation total (mm) for 13 February 1990

as derived by the daily interpolation methods investigated in

this study. (a) KED(KED1e), (b) KED(KED1e+), (c) KED(OK),

(d) SYMAP(PRISM); see Table 2 for a description of the method

acronyms. The fields of (a–c) were produced on a 1 km grid, and

that of (d) on a 5 km grid.

ror component, but the errors calculated in this simplified

way should be considered as a lower bound of the true er-

rors.

Figure 9 depicts the bias B and the relative mean root-

transformed error E for daily interpolation in winter (DJF)

using the same display format as with Figs. 6 and 7. Note

that E values for daily interpolation are much smaller than

for the climatological case because the space–time variance

in the observations (denominator in Eq. 3) is much larger.

The bias of the daily interpolation (Fig. 9a) reveals sim-

ilar features to those in the climatic case. Methods without

consideration of topographic predictors in the climatolog-

ical background field (OK(·) and KED(OK)) are prone to

considerable underestimates at high elevations. The inclu-

sion of topographic predictors in the climatology reduces this

bias a lot (KED(KED1e) and KED(KED1e+)). The results

differ only slightly between a seasonal and a circulation-

class climatology as trend, the latter being slightly better.

The SYMAP(PRISM) system is largely unbiased, except at

the highest elevation class, where it underestimates by about

10 %. Our results confirm that the use of a high-resolution

climatology as a background, a widely used concept for the

interpolation of daily precipitation (e.g., Haylock et al., 2008;

Rauthe et al., 2013; Widmann and Bretherton, 2000), indeed

contributes to reducing biases over complex terrain.
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Figure 9. Error statistics for the interpolation of daily precipita-

tion in winter (DJF, 1971–2008) using the interpolation models

of Table 2 (see also Sect. 3). (a) Relative bias B (dimensionless,

Eq. 3) and (b) relative mean root-transformed error E (dimension-

less, Eq. 4, log scale) of a leave-one-out cross-validation. Results

are shown for four elevation classes. Horizontal dashed lines rep-

resent the scores over all stations. The vertical bars represent the

number of stations per elevation class (right axes).

The relative ranking of methods in terms of E (Fig. 9b) is

similar in all elevation classes, but the differences are largest

at high elevations. The KED models that employ a climatol-

ogy with topographic predictors score best (KED(KED1e)

and KED(KED1e+)). There is no clear preference between

the methods using a seasonal mean or a circulation-class

mean as trend. Obviously the categorical information on

large-scale circulation did not improve daily interpolation.

This may seem surprising considering that the classification
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utilized (PCACA9) distinguishes Alpine precipitation distri-

butions better than others (Schiemann and Frei, 2010). A

likely reason for this is that the circulation responses of pre-

cipitation in the study region are more clearly established at

larger scales, but less so at scales below the station spacing

which matter most for spatial interpolation.

The KED(KED1e) and KED(KED1e+) methods ex-

hibit clearly better B and E scores than the Alpine-wide

SYMAP(PRISM) interpolation in the highest elevation class

(Fig. 9). Several reasons may contribute to these differences.

Firstly, the distance-angular weighting scheme of SYMAP

uses prescribed weighting functions, whereas the weight-

ing in KED is optimized and flexibly estimated day by day

(semi-variogram). Secondly, the local estimation of precip-

itation–topography relationships in PRISM may be more

prone to sampling errors (small local station sample) than

the trend coefficients in KED1e and KED1e+ (see also the

large small-scale variations in the example of Fig. 8d). Fi-

nally, KED allows for a multiplicative adjustment of the

background field and hence is more flexible to “adjust” the

background field to the concrete distribution of a day. In

this comparison one should, however, take into account that

SYMAP(PRISM) was designed and calibrated for a much

larger area. The KED approach as used here for a subregion

of the Alps might become inappropriate for the climatolog-

ical diversity of the entire ridge given its assumption of sta-

tionarity in trend and variogram parameters (see e.g., Phillips

et al., 1992).

5 Conclusions

Modeling the relationship between precipitation and topog-

raphy is essential for the construction of accurate precip-

itation grid data sets by statistical interpolation. Here we

have investigated several extensions of the classical precip-

itation–height model, including predictors of slope in addi-

tion to elevation, a multi-scale decomposition of the predic-

tors, a circulation-type dependence of the relationship, and

the inclusion of a wind-aligned gradient predictor. Variants

of these extensions have been proposed previously, but their

effect on interpolation accuracy has not been systematically

evaluated and mutually compared so far. Station measure-

ments in our study region (a cross section of the European

Alps) show imprints of slope effects and coarser-scale to-

pography in the distribution of mean seasonal precipitation.

Intuitively one would therefore expect that the considered ex-

tensions could improve interpolation accuracy.

Our experiments illustrate that the benefit from complex

predictor sets (elevation and slope, multiple scales) in the in-

terpolation of seasonal mean precipitation depends strongly

on the statistical modeling framework. In a linear regression

framework there is a clear benefit in the sense that cross-

validation errors (random and systematic) are reduced with

more predictors included. However, even with nine predic-

tors, the resulting interpolation is unsatisfactory. It poorly

replicates the characteristic changes from the flatland over

the foothills to the inner section of the ridge as revealed by

the station measurements. Linear regression would require

many more predictors for a decent reproduction of this pat-

tern because all spatial variations need to be modeled with

predictors.

For kriging with external drift (predictors with spatially

correlated residuals), however, the role of a complex pre-

dictor set was found to be much smaller. Local elevation

(a 1 km digital elevation model) was found to be essential

for reducing the systematic underestimates and large ran-

dom errors observed at high elevations with ordinary kriging

(no predictors). In fact, the simple one-predictor KED model

was substantially better than the linear regression model with

nine predictors. But the inclusion of more complex physio-

graphic predictor sets in KED did bring only marginal addi-

tional improvement. Neither topographic slopes nor a wind-

aligned gradient could effectively reduce the cross-validation

errors. Interpolation results with comprehensive multiscale

predictor sets in KED were very similar to those of the one-

predictor model and the inclusion of circulation-type depen-

dence had only small effects. It seems that a large portion of

the spatial precipitation variation in our study region is cap-

tured by a model of spatial autocorrelation directly from the

measurements (kriging) and that a simple digital elevation

model was sufficient (but essential) to correct for interpo-

lation errors emanating from the nonrepresentative vertical

distribution of stations.

Linear regression is often considered an exploratory

framework in spatial interpolation to identify potential pre-

dictors for a trend model of KED. This practice is some-

what questioned by the results of our study. We find a strong

contrast of sensitivity to predictor choice between the two

methods. Linear regression tends to suggest larger predic-

tor sets than are actually necessary in KED. Our results with

KED were not measurably degraded by the inclusion of non-

informative predictors. However, this resistance is dependent

on the estimation procedure. Our approach of estimating the

trend coefficients and variogram parameters jointly by max-

imum likelihood (see Sect. 3.1) permits the estimation pro-

cess to distinguish between predictor dependence and spa-

tial autocorrelation implicitly (Diggle and Ribeiro, 2007).

This distinction is more restricted in an alternative estima-

tion procedure, often referred to as residual kriging or de-

trended kriging (Martínez-Cob, 1996; Phillips et al., 1992;

Prudhomme and Reed, 1999), where predictor coefficients

and variogram parameters are estimated in disjoint steps (re-

gression followed by simple kriging of residuals). This will

make the method more prone to errors in predictor choice.

Regression kriging, yet another estimation procedure (Hengl

et al., 2007; Pebesma, 2004; Tadić Perčec, 2010), uses an it-

erative procedure and should be similarly robust to predictor

choice like the likelihood-based estimation used in our study.
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Our experiments for daily precipitation illustrate that the

utilization of a climatological background field (seasonal cli-

matology) reduces interpolation errors significantly, partic-

ularly systematic errors at high elevations in comparison to

direct interpolation. The large spatial variability of daily pre-

cipitation complicates robust estimation of systematic topo-

graphic responses directly from the daily data, but a clima-

tological background field can pick up some of these pat-

terns, which translates into smaller interpolation errors. This

result supports a practice widely used in the construction of

short-term precipitation grid data sets but rarely verified so

far (Harris et al., 2013; Haylock et al., 2008; Isotta et al.,

2013; Rauthe et al., 2013). Clearly the topographic effects

evident in mean precipitation are not necessarily representa-

tive of all weather conditions. Our results, however, suggest

that estimating these effects separately for typical circulation

types does not significantly improve the performance com-

pared to a seasonal background. This result may depend on

the region considered and the circulation-type classification

chosen. In any case, the classification we have experimented

with here was previously shown to explain precipitation vari-

ations in the Alps better than other common classification

schemes (Schiemann and Frei, 2010).

The daily KED interpolation method using a seasonal

mean climatology as background has turned out to perform

better in the Alpine cross section compared to the method

used for a grid data set over the entire Alpine region (Isotta et

al., 2013). This may hint at ways of methodological improve-

ment, but it is premature to value the two methods with re-

gard to their suitability over the entire Alpine region. On the

one hand, the existing method makes compromises in order

to meet very diverse conditions in climate and station den-

sity. On the other hand, extending the KED approach over

the entire region raises questions about the representativity

of “globally” estimated trend coefficients and variogram pa-

rameters. Moreover, on a practical side, the KED approach

may become computationally very demanding with several

thousands of stations.

The results of our study are likely dependent on the set-

ting of our study region, such as the density of the sta-

tion network, the complexity of the topography, and the di-

versity of weather patterns. In other regions where the sta-

tion network is coarser and hence the nearest observations

are less informative, extended predictor sets may become

more relevant. Nevertheless, our results call for prudence in

our expectations into seemingly versatile topographic pre-

dictors for filling the information between in situ measure-

ments. Clearly, sensitivity experiments like those conducted

can help to make a parsimonious choice and to ensure robust-

ness of the final interpolation method.
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