

Online supplement

Kummu et al: Climate-driven interannual variability of water scarcity in food production: a global analysis

A. Regions

B. Hydrobelts

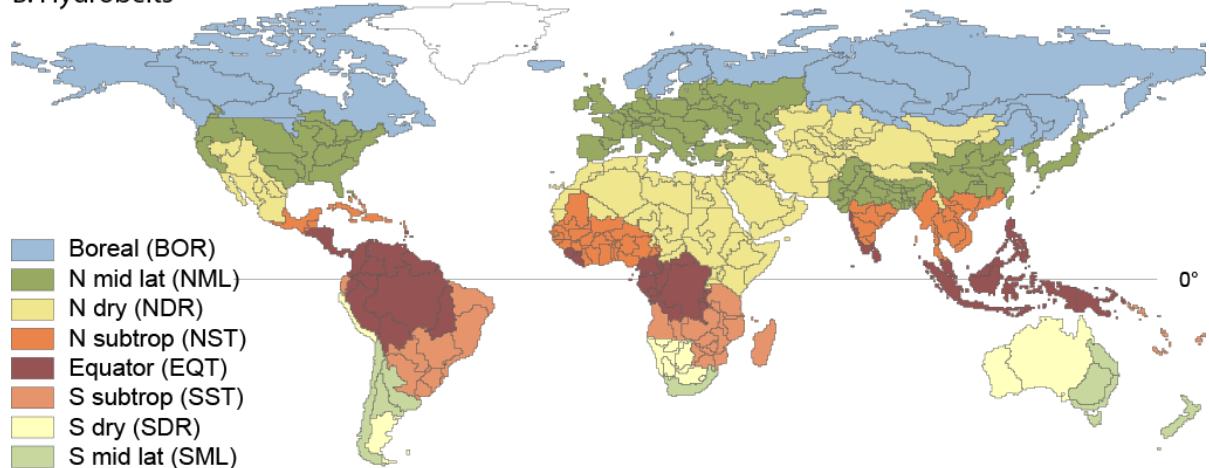


Fig S1. Division of FPUs to A: administrative regions (United Nations, 2000; Kummu et al., 2010) and B: hydrobelts (Meybeck et al., 2013). Note: the hydrobelt boundaries differ here slightly from the original, as hydrobelts crossed some FPU borders, and thus each FPU was aggregated to a hydrobelt with largest share in that FPU in question.

Table S1. Regional results for green-blue water scarcity frequency; See illustrations in Fig 3A in the main paper.

Region	Population	0%	0-25%	25-50%	50-75%	75-100%	100%	Grand Total
Australia and Oceania	29,198,205	100%						100%
Central America	169,414,768	90%		10%				100%
Eastern Asia	1,484,822,477	57%	5%	5%	10%	7%	17%	100%
Eastern Europe and Central Asia	391,175,459	85%	1%		5%	2%	7%	100%
Latin America	348,256,247	93%		1%		6%		100%
Middle and Southern Africa	605,305,081	54%	13%	4%	5%	12%	12%	100%
Middle East	257,268,709	24%	2%			6%	68%	100%
North Africa	173,300,517	16%	32%	1%	0%	25%	26%	100%
North America	309,635,372	100%						100%
South Asia	1,345,367,745	10%	8%	6%	1%	8%	66%	100%
Southeastern Asia	517,658,581	99%					1%	100%
Western Europe	410,875,355	98%	2%					100%
Grand Total	6,042,278,516	57%	5%	3%	4%	6%	24%	100%

Table S2. Results by hydrobelts for green-blue water scarcity frequency; See illustrations in Fig 3B in the main paper.

Hydrobelt	Population	0%	0-25%	25-50%	50-75%	75-100%	100%	Grand Total
Boreal	210,586,285	100%		0%				100%
Northern Mid Latitude	3,050,054,031	51%	4%	5%	4%	4%	32%	100%
Northern Dry	727,553,475	25%	11%	1%	10%	16%	37%	100%
Northern Sub-Tropical	1,007,074,982	59%	6%	3%	2%	11%	19%	100%
Equator	604,513,955	97%		1%			3%	100%
Southern Sub-Tropical	342,816,490	78%	12%	1%		5%	3%	100%
Southern Dry	35,180,354	36%	4%			56%	4%	100%
Southern Mid Latitude	64,498,944	71%	27%	1%				100%
Grand Total	6,042,278,516	57%	5%	3%	4%	6%	24%	100%

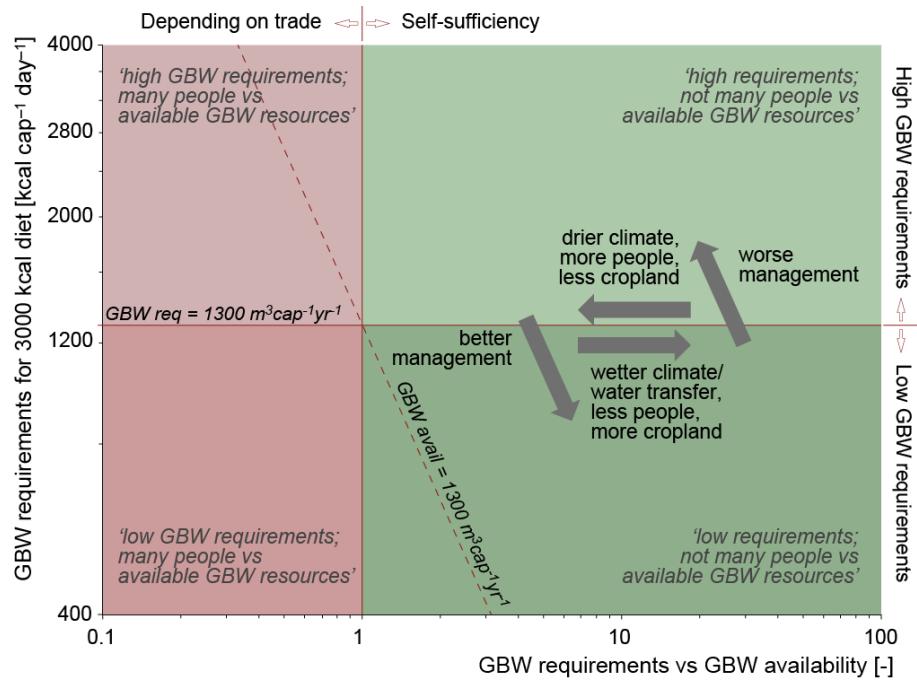


Fig S2. Green-blue water (GBW) matrix. Green-blue water (GBW) requirements for the reference diet is at y-axis and GBW availability ratio (i.e. GBW availability vs GBW requirements) at x-axis. When the GBW requirements are higher than the GBW availability (x-axis < 1), an area is considered to be under GBW scarcity. The dashed red line re-presents the threshold for GBW scarcity in Rockström et al. (2009), i.e. GBW availability of $1300 \text{ m}^3 \text{ cap}^{-1} \text{ yr}^{-1}$, and thus provides a comparison to their method. Note: log10 scale in both axes.

References

- Kummu, M., Ward, P. J., de Moel, H., and Varis, O.: *Is physical water scarcity a new phenomenon? Global assessment of water shortage over the last two millennia*, *Environmental Research Letters*, 5, 034006, 10.1088/1748-9326/5/3/034006, 2010.
- Meybeck, M., Kummu, M., and Dürr, H. H.: *Global hydrobelts and hydroregions: improved reporting scale for water-related issues?*, *Hydrol. Earth Syst. Sci.*, 17, 1093-1111, 10.5194/hess-17-1093-2013, 2013.
- Rockström, J., Falkenmark, M., Karlberg, L., Hoff, H., Rost, S., and Gerten, D.: *Future water availability for global food production: The potential of green water for increasing resilience to global change*, *Water Resour Res*, 45, W00A12, doi:10.1029/2007WR006767 2009.