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Abstract. We present an automatic method for parameter-1 Introduction

ization of a 3-D model of the subsurface, integrating litho-

logical information from boreholes with resistivity models

through an inverse optimization, with the objective of further In @ large-scale geological and hydrogeological modeling
detailing of geological models, or as direct input into ground- context, borehole data seldom provide an adequate database
water models. The parameter of interest is the clay fractiondue to low spatial density in relation to the complexity of the
expressed as the relative length of clay units in a depth interSubsurface to be mapped. Conversely, dense areal coverage
val. The clay fraction is obtained from lithological logs and ¢an be obtained from geophysical measurements, and air-
the clay fraction from the resistivity is obtained by establish- Porne electromagnetic (EM) methods in particular are suit-
ing a simple petrophysical relationship, a translator function,able for 3-D mapping, as they cover large areas in a short
between resistivity and the clay fraction. Through inversionPeriod of time. However, the geological and hydrogeologi-
we use the lithological data and the resistivity data to deterc@l parameters are only mapped indirectly, and an interpre-
mine the optimum spatially distributed translator function. tation of the airborne results is needed, often based on site-
Applying the translator function we get a 3-D clay fraction specific relationships. Linking electrical resistivity to hydro-
model, which holds information from the resistivity data set l0gical properties is thus an area of increased interest, as re-
and the borehole data set in one variable. Finally, wekuse Viewed by Slater (2007).

means clustering to generate a 3-D model of the subsurface !ntegrating geophysical models and borehole information
structures. We apply the procedure to the Norsminde survey?@s proved to be a powerful combination for 3-D geologi-

in Denmark, integrating approximately 700 boreholes andc@l mapping (Jgrgensen et al., 2012; Sandersen et al., 2009),
more than 100 000 resistivity models from an airborne survey@nd several modeling approaches have been reported. One
in the parameterization of the 3-D model covering 156km Way of building 3-D models is through a knowledge-driven
The final five-cluster 3-D model differentiates between clay (cognitive), manual approach (Jergensen et al., 2013a). This
materials and different high-resistivity materials from infor- ¢an be carried out by making layer-cake models composed

mation held in the resistivity model and borehole observa-Of Stacked layers or by making models composed of struc-
tions, respectively. tured or unstructured 3-D meshes where each voxel is as-

signed a geological/hydrogeological property. The latter al-
lows for a higher degree of model complexity to be incor-
porated (Turner, 2006; Jgrgensen et al., 2013a). The cogni-
tive approach enables various types of background know-
ledge such as the sedimentary processes, sequence stratig-
raphy, etc. to be utilized. However, the cognitive modeling
approach is difficult to document and to reproduce due to its
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subjective nature. Moreover, any cognitive approach will beclay as material described as clay in a lithological well log
quite time consuming, especially when incorporating largeregardless the type of clay: clay till, mica clay, Paleogene
airborne electromagnetic (AEM) surveys, easily exceedingclay, etc. This term is robust in the sense that most geolo-
100 000 resistivity models. gists and drillers have a common conception on the descrip-
Geostatistical modeling approaches such as multiple-pointion of clay and it can easily be derived from the litholog-
geostatistical methods (Daly and Caers, 2010; Strebelleical logs. The clay fraction is then the cumulated thickness
2002), transition probability indicator simulation (Carle and of clay layers in a depth interval divided by the length of
Fogg, 1996), or sequential indicator simulation (Deutsch andhe depth interval. The CF procedure integrates lithological
Journel, 1998) provide models with a higher degree of ob-information from boreholes with resistivity information, typ-
jectivity in shorter time compared to the cognitive, man- ically from large-scale geophysical AEM surveys. We obtain
ual modeling approaches. An example of combining AEM the CF from the resistivity data by establishing a petrophysi-
and borehole information in a transition probability indicator cal relationship, a translator function, between resistivity and
simulation approach is given by He et al. (2014). Geostatisthe CF. Through an inverse mathematical formulation we use
tical modeling approaches based primarily on borehole datahe lithological borehole data to determine the optimum pa-
often face the problem that the data are too sparse to regrameters of the translator function. Hence, the 3-D CF model
resent the lateral heterogeneity at the desired spatial scal&olds information from the resistivity data set and the bore-
Including geophysical data enables a more accurate estimdiole data set in one variable. As a last step, we cluster our
tion of the geostatistical properties, especially laterally. Thismodel space represented by the CF model and geophysical
could be determination of the transition probabilities and theresistivity model using-means clustering to form a struc-
mean lengths of the different units. However, the geophysi-tural 3-D cluster model, with the objective of further detail-
cal data also open the question of to what degree the differing for geological models, or as direct input into groundwater
ent data types should be honored in the model simulationsnodels.
and estimations. Combined use of geostatistical and cog- Lithological interpretation of a resistivity model is not triv-
nitive approaches can be a suitable solution in some casdal since the resistivity of a geological media is controlled
(Jeorgensen et al., 2013b; Raiber et al., 2012; Stafleu et alhy porosity, pore water conductivity, degree of saturation,
2011). Direct integration of borehole information and ge- amount of clay minerals, etc. Different, primarily empiri-
ological knowledge as prior information into the inversion cal, models try to explain the different phenomena, where
of the geophysical data is another technique for combiningArchie’s law (Archie, 1942) is the most fundamental empir-
the two types of information and thereby creating better geo-ical model, taking the porosity, pore water conductivity, and
physical models and subsequently better geological and hythe degree of saturation into account, but does not account for
drological models (Hoyer et al., 2014; Wisén et al., 2005). electrical conduction of currents taking place on the surface
Geological models are commonly used as the basis foof the clay minerals. The Waxman and Smits model (Wax-
hydrostratigraphical input to groundwater models. However,man and Smits, 1968) together with the dual-water model of
even though groundwater model predictions are sensitive t&lavier et al. (1984) provides a fundamental basis for widely
variations in the hydrostratigraphy, the groundwater modeland repeatedly used empirical rules for shaly sands and ma-
calibration is non-unique, and different hydrostratigraphic terial containing clay (e.g., Bussian, 1983; Sen, 1987; Revil
models may produce similar results (Seifert et al., 2012). and Glover, 1998). However, in a sedimentary depositional
Sequential, joint, and coupled hydrogeophysical inver-environment, it can be assumed in general that clay or clay-
sion techniques (Hinnell et al., 2010) have been used to infich sediments will exhibit lower resistivities than the non-
form groundwater models with both geophysical and tra-clay sediments, silt, sand, gravel, and chalk. As such, dis-
ditional hydrogeological observations. Such techniques userimination between clay and non-clay sediments based on
petrophysical relationships to translate between geophysicakesistivity models is feasible and the CF value is a suitable
and hydrogeological parameter spaces. For applications iparameter to work with in the integration of resistivity mod-
groundwater modeling using electromagnetic data, see, foels and lithological logs. A 3-D CF model or clay/sand model
instance, Dam and Christensen (2003) and Herckenrath etill also contain key structural information for a groundwa-
al. (2013). Also, clustering analyses can be used to delineateer model, since it delineates the impermeable clay units and
subsurface hydrogeological properties. Fuzayeans clus-  the permeable sand/gravel units.
tering has been used to delineate geological features from With the CF procedure we use a two-parameter resistivity-
measured EM34 signals with varying penetration depthsto-CF translator function, which relies on the lithologi-
(Triantafilis and Buchanan, 2009) and to delineate the poroseal logs providing the local information for the optimum
ity field from tomography-inverted radar attenuation and ve-resistivity-to-CF translation. Hence, we avoid describing the
locities and seismic velocities (Paasche et al., 2006). physical relationships underlying the resistivity images ex-
We present an automatic procedure for parameterizatiomlicitly.
of a 3-D model of the subsurface. The geological parameter First, we give an overall introduction to the CF proce-
we map is the clay fraction (CF). In this paper we refer to dure, and then we move to a more detailed description of
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the different parts: observed data and uncertainty, forward

. . . S f 2 3
modeling, inversion and minimization, and clustering. Last Translator Resistivity
we demonstrate the method in a field example with resis- function models
tivity data from an airborne SkyTEM survey combined with

I Forward |

!

quality-rated borehole information.

Data

4

2 Methodology " Clay Clay
fraction < Consistency? ><4— fraction

Conceptually, our approach sets up a function that best de{ litho. log resistivity

scribes the petrophysical relationship between clay fraction A

and resistivity. Through inversion we determine the optimum Inversion

parameters of this translator function by minimizing the dif- Output

ference between the clay fraction calculated from the resis-

s L Optimum
tivity models @res) and the observed clay fraction in the transIaF;or function
lithological well logs o).

A key aspect in the CF procedure is that the translator ¢

function can change horizontally and vertically, adapting to

" o 3D clay fraction
the local conditions and borehole data. The calculation is car- y

] ] il S 6 model
ried out in a number of elevation intervals (calculation inter-
vals) to cover an entire 3-D model space. Having obtained the ¢
optimum and spatially distributed translator function we can 7 3D
transform the resistivity models to form a 3-D clay fraction clustering

model, incorporating the key information from both the re-
sistivity models andl the lithological logs into one parameter. Figure 1. Conceptual flowchart for the CF procedure and clustering.
The CF procedure is a further development to three dimen-
sions of the accumulated clay thickness procedure by Chris-

tiansen et al. (2014), which is formulated in 2-D. hole (named¥iqg) is calculated as the cumulative thickness
The flowchart in Fig. 1 provides an overview of the CF of |ayers described as clay divided by the length of the inter-
procedure. The observed clay fractiobidg) is calculated  va|. By using this definition of clay and clay fraction we can
from the lithological logs (box 1) in the calculation inter- easily calculatediog in depth intervals for any lithological
vals. The translator function (box 2) and the resistivity mod- yg|| log, as the example in Fig. 2a shows. Having retrieved
els (box 3) form the forward response, which produces ahe w4 values, we then need to estimate their uncertainties
resistivity-based clay fraction (box 4) in the different calcu- sjnce a variance estimateg, is needed in the evaluation of
lation intervals. The parameters of the translator function ar&ne misfit 10U es
updated during the inversion to obtain the best consistency The drillings are conducted with a range of different meth-
betweenlresandWiog. The outputis the optimum resistivity-  ods. This has a large impact on the uncertainties of the litho-
to-CF translator function (box 5), and when applying this to |ogical well log data. The drilling methods span from core
the reSiStiVity models (the forward response of the final iter'dri”ing resumng in a Very good base for the ||th0|ogy C|as_
ation), we obtain the optimunirres and block kriging is used  sification to direct circulation drillings (cuttings are flushed
to generate a regular 3-D CF model (box 6). to the surface between the drill rod and the formation) result-
The final step is &-means clustering analysis (box 7). ing in poorly determined layer boundaries and a very high
With the clustering we achieve a 3-D model of the subsurfacesk of introducing contamination into the samples due to the
delineating a predefined number of clusters that represenyavel time from the bottom to the surface. Other parameters
zones of similar physical properties, which can be used agffecting the uncertainty of th@jog are, to mention a few
inputin, for example, a detailed geological model or as strucimportant ones, sample intervals and sample density, accu-

tural delineation for a groundwater model. racy of the geographical positioning and elevation, and the
The subsequent paragraphs detail the description of the ingredibility of the driller.

dividual parts of the CF procedure.

2.2 Forward data — the translator function
2.1 Observed data — lithological logs and clay fraction

For calculating the clay fraction for a resistivity modéies,
The common parameter derived from the lithological logswe use the translator function as shown in Fig. 2b, which is
and resistivity data sets is the clay fraction (Fig. 1, boxesdefined by annjoy and arm, parameter. With the CF pro-
1-4). The clay fraction of a given depth interval in a bore- cedure we primarily want to determine resistivity threshold
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Figure 2. (a) Example of how a lithological log translates intolgyg and how a resistivity model translates iniges, for a number of
calculation intervals. The resistivity values and the resulting clay fraction values are stated on the bars, but are also indicated by color
according to the color scales of Fig. (b) The translator function returns a weight;, between 0 and 1 for a given resistivity value.

The translator function is defined by the two parametggy, andmyp. In this example ther g, andmyp parameters are 40 and %0n,
respectively.

values for a clay—sand interpretation of the resistivity mod-function, defined as
els. Thin geological layers are often not directly visible in
( : ( Y _mup—mlow)>

the resistivity models, whereas they will most often appear iny (,) — 0.5 . erfc
carefully described boreholes. The length of the calculation

intervals reflects the resolution capability of the geophysical K = erfc1(0.05)

method of choice, which means that in some cases the calcu- ’

lation intervals contain both sand and clay layers when im-wheremq, andmp are defined as the resistivity) at which
posed on the lithological logs. The translator function mustthe translator function\ (p), returns a weight of 0.975 and
therefore be able to translate resistivity values as partly clayd.025, respectively (thé value scales the erfc function ac-
and partly sand to obtain consistency with the lithological cordingly). For a layered resistivity model thiges value in
logs. This is possible with the translator function in Fig. 2b, one calculation interval is then calculated as

wheremoy, andmyp represent the clay and sand cut-off val- N

ues. Thus for resistivity values belowioy the layer is en- g o= — . W (oi) - 1, 2)
tirely clay (weight~ 1) and for resistivity values aboveyp 2ot i1

the layer is entirely sand or non-clay (weighD). whereN is the number of resistivity layers in the calculation

Many functions fulfilling the above criteria could have . : . T
.. _.interval ;) is the clay weight for the resistivity in layer
been chosen, but we use the one shown because it is dnl.— terval, W(pi) Is the clay weight for the resistivity in laye

ferentiable throughout while being flat at both ends and’ 1S the thickness of the resistivity layer, ant}; is the

fully described by iust tw rameters. The translator fun length of the calculation interval. In other wordg, weights
ully described by Just two parameters. The transiator UnC-y, o ik ness of a resistivity layer, so for a resistivity below
tion (W(p)) is mathematically a scaled complementary error

miow the layer thickness is counted as cld¥ ¢ 1) while
for a resistivity abovenp the layer is counted as non-clay
(W ~0). Figure 2a shows how a single resistivity model is
translated intolesin numbers of calculation intervals.

The resistivity models are also associated with an uncer-
tainty, and if the variance estimates of the resistivities and

@)

(mup - mlow)
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Translator function lated from theW,es values for the given calculation interval
and can normally be approximated well with an exponen-
tial function, which then enters the kriging interpolation. The
code Gstat (Pebesma and Wesseling, 1998) is used for krig-
ing, variogram calculation, and variogram fitting. Hence, for
the output estimates of thi,, both the original variance of
Yesand the variance on the kriging interpolation itself is in-
cluded to provide total variance estimates of g, values
(029, which are needed for a meaningful evaluation of the
data misfit at the borehole positions.

2.3 Inversion — objective function and minimization

The inversion algorithm in its basic form consists of a non-
linear forward mapping of the model to the data space:

W obs = Gmirye + elog, (3

.4 translator funetion .
3p-grid 112 where §Wqps denotes the difference between the observed

Figure 3. The translator function and 3-D translator function grid. data Wiog) and the nonlinear mapping of the model to the
Each node in the 3-D translator function grid holds a setgf and data spaceres). dmiue represents the difference between
miow. The mup andmgy parameters are constrained to all neigh- the model parameters:(yp, miow) of the true, but unknown,

boring parameters as indicated with the black arrows from the blackranslator function and an arbitrary reference model (the ini-
center node. tial starting model for the first iteration, then at later iterations

the model from the previous iteratiorn)eg is the observa-
tional error, ands denotes the Jacobian matrix that contains

hick for th hvsical model iiabl the partial derivatives of the mapping. The general solution
thicknesses for the geophysical models are available, we takg, y,o honjinear inversion problem of Eq. (1) is described by

these into account. The propagation of the uncertainty fro”bhristiansen et al. (2014) and is based on Auken and Chris-
the resistivity models to théesvalues is described in detail tiansen (2004) and Auken et al. (2005)

in Christiansen et al. (2014). The objective functionQ, to be minimized includes a data

T.O ?".'OW f(z; varlatlor|1, poth Iateral:y angverfc(ljcgllya ";_ thz term, Rqat, and a regularization term from the horizontal and
resistivity-tolres translation, a regular 3-D grid is defined | . ical constraintsReon. RatiS given as

for the survey block (Fig. 3). Each grid node holds one set of

myp andm oy Parameters. The vertical discretization follows 2

the clay fraction calculation intervals, varying between 4 and 1 Ndat (\IJ|Og,,» — Ules i)

20 m increasing with depth. The horizontal discretization is Rdat= N > ) (4)

typically 0.5-2km and a 2-D bilinear horizontal interpola- dat =1 %

tion of themyp andmiow is applied to define the translator ) 5.

function uniquely at the positions of the resistivity models. WhereéNaat is the number ofl/oq values and;” is the com-
To migrate information of the translator function from re- bined variance of théth Wiog (013,) and Wres (0,25 given as

gions with many boreholes to regions with few or no bore-

holes, horizontal and vertical smoothness constraints are ap-, 2 2%

plied between the translator functions at each node point ai = Clog, i + Otesi- ®)

shown in Fig. 3. Choosing appropriate constraints is base . L . N
on the balance between fitting the data while having a rea(ijrhe inversion is performed in logarithmic model space to

sonable model. The balance is site and data specific, b'Rrevent negative parameters, afighn is therefore defined
would typically be based on visual evaluations comparing
the results against key boreholes. The smoothness constraints

1 e (In(m)) = Inomp)?

furthermore act as regularization and stabilize the inversionp _ (6)
con — 2 ’
scheme. Neon = (In(er.;))
Finally, we need to estimatées values at thel|oq posi-
tions (namedl/,o for evaluation. We estimate thi,;val-  wheree; is the regularizing constraint between the two con-

ues by performing a point kriging interpolation of thges strained parameters; andm; of the translator function and
values and associated uncertainties within a search radius d¥¢qn, is the number constraint pairs. Thevalues in Eq. (6)
typically 500 m. The experimental semi-variogram is calcu- are stated as constraint factors, meaning that; dactor of
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¢ VT A measure of distance. We use theneans algorithm in MAT-
NORWAY | LAB R2013a, which has implemented a two-phase search,
d ‘ batch and sequential, to minimize the risk of reaching a local
minimum (Wu, 2012) K -means clustering can be performed
on several variables, but for variables to impact the clustering
SWEDEN equally, data must be standardized and uncorrelated. The CF
model and resistivity model are by definition correlated. We
use principal component analysis (PCA) to obtain uncorre-
lated variables.

‘DENMA.RK PCA is a statistical analysis based on data variance for-
} N K2 — mulated by Hotelling (1933). The aim of a PCA is to find
NNy ’ linear combinations of original data while obtaining maxi-

‘ AN :

- e o mum variance of the linear combinations (Hardle and Simar,
’ - 2012). This results in an orthogonal transformation of the
F original multidimensional variables into a space where di-
\ mension one has largest variance, dimension two has second
§ largest variance, etc. In this case the PCA is not used to re-
duce variable space but only to obtain an orthogonal repre-
sentation of the original variable space to use in the clustering
analysis. Principal components are orthogonal and thus un-
correlated, which makes the principal components useful in
the subsequent clustering analysis. The PCA is scale sensi-
tive and the original variables must therefore be standardized
Naat- R2.+ Neon - R2 prior to t.he analysis. Becau;e the principal components have
0= at’ Tdat ™ “Teon  Feon (7)  no physical meaning, a weighting of the CF model and the
(Ngat+ Neon) resistivity model cannot be included in themeans cluster-
ing. Instead the variables are weighed prior to the PCA.

GERMANY

1

Figure 4. The black square marks the Norsminde survey area.

1.2 corresponds approximately to a model change2i %.
In total the objective functio® becomes

Furthermore, is it possible to add prior information as a prior
constraint on the parameters of the translator function, which

just adds a third component @ in Eq. (7) similar toR¢on in 3 Norsminde case

Eq. (6).

The minimization of the nonlinear problem is performed The Norsminde case model area is located in eastern Jutland,
in a least-squares sense by using an iterative Gauss—Newt@enmark (Fig. 4), around the town of Odder (Fig. 5) and cov-
minimization scheme with a Marquardt modification. The ers 156 kr, representing the Norsminde Fjord catchment.
full set of inversion equations and solutions are presented imhe catchment area has been mapped and studied intensely in
Christiansen et al. (2014). the NiCA research project in connection with nitrate reduc-
tion in geologically heterogeneous catchments (Refsgaard et
al., 2014). The modeling area has a high degree of geolog-
ical complexity in the upper part of the section. The area is

The delineation of the 3-D model is obtained through a haracterized by Paleogene and Neogene sediments covered

k-means clustering analysis, which distinguishes groups o . . ; .
X o L y glacial Pleistocene deposits. The Paleogene is composed
common properties within multivariate data. We have based; . .
. . ..~ of fine-grained marl and clay, and the Neogene layers consist
the clustering analysis on the CF model and the resistivity ; ; . : )
. . . . “of marine Miocene clay interbedded with deltaic sand lay-
model. Other data which are informative for structural delin- . :
) . . . . ers (Rasmussen et al., 2010). The Neogene is not present in
eation of geological or hydrological properties can also be in- i
X ) . the southern and eastern part of the area, where the glacial
cluded in the cluster analysis. For example, this could be geo- " : .
X e . : sediments therefore directly overlie the Paleogene clay. The
logical a priori information or groundwater quality data. The Paleogene and Neodene lavers in the region are frequently in
resistivity model is part of the CF model, but is reused for . 9 9 A 9 q y

the clustering analysis because the representation of IithoI-Clsed by Pleistocene buried tunnel valleys, and one of these is

ogy used in the CF model inversion has simplified the gec)_present in the southern part, where it crosses the model area

logical heterogeneity captured in the resistivity model. to great depths with an overall E-W orientation (Jargensen

K-means clustering is a hard clustering algorithm used toand Sandersen, 2006). The Pleistocene deposits generally ap-

group multivariate data. A-means cluster analysis is iter- pear very heterogeneous, and according to boreholes they are

ative optimization with the objective of minimizing a dis- composed of glacial meltwater sediments and til.
tance function between data points and a predefined number
of clusters (Wu, 2012). We have used Euclidean length as a

2.4 Cluster analysis
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Figure 5. (a) Resistivity model positions for the SkyTEM survey and the ground-based TEM soungtnd@orehole locations, quality
(shape), and drill depth (color). Quality 1 corresponds to the highest quality and 4 to the lowest quality. The red dashed line outlines the
catchment area (156

3.1 Borehole data The boreholes are assigned points in the different categories
and finally grouped into four quality groups according to
In Denmark, the borehole data are stored in the nationatheir total score. Boreholes in the lowest quality group (4)
database Jupiter (Mgller et al., 2009), dating back to 1926are primarily boreholes with low sample frequencies (less
which is an archive for all data and information obtained than one sample per 10 m), low accuracy in geographical po-
by drilling. Today, the Jupiter database holds informationsition, and/or drilled as geophysical shot holes for seismic
about more than 240000 boreholes. All borehole layers inexploration.
the database are assigned a lithology code, which makes it The locations, quality ratings, and drill depths of the bore-
easy to extract the different types of clay layers for the calcu-holes are shown in Fig. 5b. The drill depths and quality rat-
lation of theWwog values in the different calculation intervals. ings are summarized in Fig. 6. As the top bar in Fig. 6 shows,
For the model area, approximately 700 boreholes are4 94 of the boreholes are categorized as quality 1, 46 % as
stored in the database. Based on borehole meta-data foungliality 2, 32 % as quality 3, and 18 % as quality 4. The un-
in the database, we use an automatic quality-rating systengertainties of thebioq values for the quality groups 1-4 are
where each borehole is rated from 1 to 4 (He et al., 2014)based on a subjective evaluation and are defined as 10, 20,
The ratings are used to assign different uncertainty (weightsgo, and 50 %, respectively. The number of boreholes drasti-
to the lithological logs/thal|og values in the CF-procedure.  cally decreases with depth as shown in Fig. 6. Thus, while
The meta-data used for the quality-rating are as follows: about 100 boreholes are present at a depth of 60m, only 25

) ) ) ) o o boreholes reach a depth greater than 90 m.
— drill method: auger, direct circulation, air-lift drilling,

ete.; 3.2 EMdata

— vertical sample density;
The major part of the model area is covered by SkyTEM
— accuracy of the geographical position: GPS or manualdata, and adjoining ground-based transient electromagnetic
map location; (TEM) soundings are included in the resistivity data set
(Fig. 5a).
The SKyTEM data were collected with the newly de-
— drilling purpose: scientific, water abstraction, geophys- Veloped SkyTEMO! system (Schamper et al., 2014b). The

— accuracy of the elevation: differential GPS or other;

ical shot holes. etc. SkyTEMO! system has the ability to measure very early
times, which improves the resolution of the near-surface geo-
— credibility of drilling contractor. logical layers when careful system calibration and advanced
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layers a.s.l. and 8 m for layers b.s.l.,, which results in 40

>?(I)I calculation intervals. Hence, in total, the model grid holds

520 16 x 18 x 40= 11520 translator functions each holding two
= .30 parameters. Translator functions in the 3-D grid situated
£ 240 above terrain, below DOI of the resistivity models, and out-
:g ~50 side geophysical coverage does not contribute at all, and are
g only included to make the translator function grid regular
= >60 for easier computation/bookkeeping. The effective number
o >70 of translator functions is therefore close to 5200.

>80 0.2/km’? Quality | The regularization constraints between neighboring trans-

>90 [ 0.1/km? 1 lator functions nodes are set relatively loose to promote a

>100 [] 0.1/km? . . ] predominantly data driven inversion problem. In this case we

0 200 400 600 800 use horizontal constraint factors of 2 and vertical constraint

Borehole counts factors of 3. This roughly allows the two parameters of the
Figure 6. Number of boreholes vs. drill depth for the Norsminde translator funCtlo_n to Vary.by a fagtor of 2 (horizontal) a_nd
survey area. The bars show how many boreholes reach a certaf factor of 3 (vertical) relative to adjacent translator function
depth. The value to the right of the bars specifies the number of@rameters. The resulting variations in the translator model
boreholes per kfat the different depths. The color coding of the grid are a trade-off between data, data uncertainties, and the
bars marks the borehole quality grouping. constraints (Eq. 7). A spatially uniform initial translator func-
tion was used withv oy =35 Qm andmyp =55Qm.
To create the final regular 3-D CF model tiig.s values
processing and inversion methodologies are applied (Schanfrom the geophysical models, thigyg values from the bore-
per et al., 2014a). The recorded times span the interval fronfholes, and associated variances are used in a 2-D kriging in-
~ 3 us to 1-2 ms after end of the turn-off ramp, which gives aterpolation for each calculation interval. The 2-D grids are
depth of investigation (DOI) (Christiansen and Auken, 2012)then stacked to form the 3-D CF model. Tigg values are
of approximately 100 m for an average ground resistivity of primarily used to close gaps in the resistivity data set where
50Qm. The SkyTEM survey was performed with a dense boreholes are present, as seen for the large central hole in
line spacing of 50 m for the western part and 100 m line spacthe resistivity survey (Fig. 8b), which is partly closed in the
ing for eastern part (Fig. 5a). Additional cross lines were CF model domain (Fig. 8d) by borehole information. In or-
made in a smaller area resulting in a total of 2000 line km forder to match the computational grid setup of a subsequent
the complete survey. The sounding spacing along the linegroundwater model, a horizontal discretization of 100 m is
is approximately 15m, resulting in a total of 106 770 1-D used for the 3-D CF model grid. In this case the dense EM
resistivity models. The inversion was carried out in a spa-airborne survey data could actually support a finer horizontal
tially constrained inversion setup (Viezzoli et al., 2008) with discretization (25-50 m) in the CF model.
a smooth 1-D model formulation (29 layers, with fixed layer ~ Thek-means clustering is performed on two variables, the
boundaries), using the Aarhusinv inversion code (AukenCF model and resistivity model, in a 3-D grid with regu-
et al., 2014) and the Aarhus Workbench software packagéar horizontal discretization of 100 m and vertical discretiza-
(Auken et al., 2009). The resistivity models have been termi-tion of 4 m between 96 and O ma.s.I. and 8 m between 0 and
nated individually at their estimated DOI, calculated as de-120 mb.s.I. CF model values range between 0 and 1 and have
scribed by Christiansen and Auken (2012). therefore not been standardized. The resistivity values have
The ground-based TEM soundings originate from map-been log-transformed and standardized by first subtracting
ping campaigns in the mid-1990s. The TEM soundingsthe mean and then dividing by four times the standard devia-
were all acquired with the Geonics TEM47/PROTEM sys- tion. The standardization of the resistivity was performed in
tem (Geonics Limited, 2012) in a central loop configuration this way to balance the weight between the two variables in
with a 40 m by 40 m transmitter loop. One-dimensional lay- the clustering. A five-cluster delineation is presented for the
ered resistivity models with three to five layers were used inNorsminde case in the Results section.
the interpretation of the TEM sounding data.
3.4 Results
3.3 Model setup
CF modeling results from the Norsminde area are presented
The 3-D translator function grid has a horizontal discretiza-in cross sections in Fig. 7 and as horizontal slices in Fig. 8.
tion of 1 km, with 16 nodes in the direction and 18 nodes The total misfit of Eq. (7) is 0.37, but, probably more in-
in the y direction. Vertically the model spans from 100 m teresting, the isolated data fit (Eq. 1) is 1.26, meaning that
above sea level (a.s.l.) (highest surface elevation) to 120 mwe fit the data almost to the level of the assigned noise. Fig-
below sea level (b.s.l.). The vertical discretization is 4 m for ure 7a and b show the inversion results of #hgy andmyp
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Figure 7. Northwest—southeast cross sections (vertical exaggerefipriocation and orientation of the cross sections are marked in Fig. 8.

(a) Themqy, parameters of the translator functi¢n) Themyp parameters of the translator functige) The resistivity section with boreholes

within 200 m of the profile superimposed. Black and yellow vertical bars show the position of boreholes: black blocks mark the clay layers,
and yellow blocks mark sand and gravel layéd}.Clay fraction section and boreholes (same boreholes as plotted in the resistivity section).

parameters in section view. The vertical variation in the trans- The resistivity cross section in Fig. 7c and the slice sec-
lator is pronounced in the resistivity transition zones, becauséion in Fig. 8c reveal a detailed picture of the effect of the
sharp layer boundaries have a smoother representation in ttgeological structures seen in the resistivity data. Generally, a
resistivity domain. good correlation with the boreholes is observed. Translating
For the deeper part of the model (deeper than 10 m b.s.l.)the resistivities, we obtain the CF model presented in Figs. 7d
the translator functions vary less. This corresponds well toand 8d. The majority of the voxels in the CF model have val-
the general geological setting of the area with relatively ho-ues close to 0 or 1. This is expected since the lithological
mogenous clay sequences in the deeper part, but it is alslegs are described as binary clay/non-clay, dngl values
a result of very limited borehole information for the deeper not equal to 0 or 1 can only occur if both clay and non-clay
model parts. The general geological setting of the area is alstithologies are present in the same calculation interval in a
clearly reflected in the translator function in the horizontal particular borehole.
slices in Fig. 8a and b. The eastern part of the area with low- From evaluation of the result in Figs. 7d and 8d, it is ob-
estmow Values (dark blue in Fig. 8a) and lowesty, values  vious that the very resistive zones are translated into a CF
(light blue/greenin Fig. 8b) corresponds to the area where th&alue close to 0 and the very conductive zones are translated
highly conductive Paleogene clays are present. In the westinto CF value close to 1. Focusing on the intermediate re-
ern part of the area, the cross section intersects the glaciaistivities (20—6d2m) it is clear that the translation of resis-
complex, where the clays are mostly tills, and highesy tivity to CF is not one to one. For example, the buried val-
andmyp values are needed to get the optimum translation. ley structure (profile coordinate 6500-8500 m, Fig. 7d) has
mostly high-resistivity fill with some intermediate resistivity
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Figure 8. Horizontal slices at 2mb.s.l. cropped to the catchment area (dashed(@ih@he m|q,y parameters of the translator function
superimposed on the 1 km translator function grid (black d@$)Themyp parameters of the translator function superimposed on the 1 km
translator function grid (black dots{c) Resistivity slice (interpolated). Note that no EM data are available around the town of Odder (see
Fig. 5a), resulting in a “hole” in the resistivity mafal) Resulting CF model. The hole in the resistivity map is partly closed here because CF
values from boreholes are available in this area.

zones. In the CF section, these intermediate resistivity zonesast—west-striking buried valley to the south (Fig. 9c) primar-
are translated into zones of high clay content, consistent withily represented by clusters 1 and 2.
the lithological log at profile coordinate 7000 m that contains  The histograms in Fig. 10 show how the original variables,
a 25m thick clay layer. The CF section sharpens the layethe CF model, and the resistivity model are represented in
boundaries compared to the smooth layer transitions in thehe five clusters. Clusters 3 and 5 have resistivity values al-
resistivity section. The integration of the resistivity data and most exclusively below 1&m and CF values above 0.7, but
lithological logs in the CF procedure results in a high degreemostly close to 1. In the resistivity model space, clusters 2
of consistency between the CF results and the lithologicaland 4 represent high and intermediate resistivity values, re-
logs, as seen in the CF section in Fig. 7d. spectively, with some overlap, while cluster 1 overlaps with
Horizontal slices of the 3-D cluster model are shown in both clusters 2 and 4. Figure 10 also clearly shows that both
Fig. 9. The near-surface parts of the model (Fig. 9a, b) arghe resistivity values and the CF values contribute to the fi-
dominated by clusters 2 and 4, while the deeper parts of thaal clusters. The clusters 1, 2, and 4 span only part of the
model (Fig. 9c, d) are dominated by clusters 3 and 5, with theresistivity space with significant overlaps (Fig. 10a), while
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they are clearly separated in the CF model space and spza) 36 masl
the entire interval (Fig. 10b). The opposite is observed for
clusters 3, 4, and 5, which are clearly separated in the resis
tivity space (Fig. 10a), but strongly overlap in the CF model
space (Fig. 10b).

The CF model does not differentiate between clay types.
in contrast to the EM resistivity data, which have a good res-
olution in the low-resistivity range and are therefore able, to
some degree, to distinguish between clay types. This result
in the two-part clustering of the low resistivity (> 2im) val-
ues as seen in Fig. 10a. ¢) 0 mbsl

4 Discussion
4.1 Translator function, grid, and discretization

The spatially varying resistivity-to-CF translator function
is the key to achieving consistency between the borehole
information and the resistivity models, and the spatial varia- Cluster
tions of the translator modgl account fqr,_ at I_east, two main 5 km 1 5
phenomena: (1) changes in the resistivity—lithology petro- —
physical relationship, and (2) the resolution capability in the Figure 9. Horizontal slices in four depths of the 3-D cluster model.
geophysical results.

The first issue includes spatial changes in the pore water
resistivity, the degree of water saturation, and/or contents of ) ]
clay minerals for the sediments described lithologically as 1€ sécond issue concerns the resolution of the true for-
clay. The spatial variation in the pore water resistivity on this Mation resistivity in the resistivity models. Lithological logs
modeling scale is probably relatively smooth and small andcontain point information with a good and uniform verti-
will therefore only have a minor impact on the resistivity-to- @l resolution. In contrast, AEM data provide a good spatial
lithology/CF translation. Even in the case with larger fluctu- COVerage, but the vertical resolution is relatively poor and
ations in the pore water resistivity (e.g., presence of salindl€creases with depth. Detailed geological layer sequences
pore water), the translator function will automatically adapt Mght only be represented by an average conductivity or only
to this as long as we have borehole information available thaf'@ve & weak signature in the resistivity models. By allowing
resembles the changes and the basic assumption that the clagRatial variation in the translation we can, to some degree,
rich formations are more conductive than coarse-grained sed€S0/ve weak layer indications in the resistivity models by
iments is fulfilled. utilizing the vertically detailed structural information from

In the Norsminde area used in the case history, the groundth® lithological logs via the translator function.
water table is generally located a few meters below the sur- 1h€ resolution in the final CF model is strongly correlated
face and the groundwater is fresh. This means that the neithdP the resolution in the resistivity model, since the resistiv-
pore water resistivity nor the water saturation plays a major'y data set contributes the majority of the information. In
role in the resistivity—clay-fraction relationship and thus the 9&neral, EM methods are sensitive to absolute changes in the
translator function. However, in the case with a thicker unsat-€/€ctric conductivity, which makes the resolution in the low-
urated zone like for the pore water resistivity, the translator'€SiStivity end superior to the resolution of high-resistivity
function will automatically adapt to this situation as long as contrasts. The diffusive behavior of EM methods results

borehole information is available. in a decreasing horizontal and vertical resolution capability
The varying content of clay minerals in the lithologies de-

with depth, and the vertical resolution capability furthermore
scribed as clay will effect the translator model. The correla-

strongly depends on the layer sequence. A sequence of thin
tion between the clay mineral content and resistivity is quite!ithological layering may therefore be represented as a single

strong and could be the key parameter instead of the simpl&€SiStivity layer with an average conductivity, which is obvi-
clay fraction of this procedure, but it would require clay min- ©USly challenging for the geological interpretation. The hor-
eral content values available in boreholes on a large modelindfOntal resolution strongly depends on the sample/line den-

scale, which is why we disregard this approach and use th&'®y ©f the geophysical measurements, but the footprint of
intentionally simple definition of clay and clay fraction. a single measurement sets the lower limit for the horizontal

resolution. The Norsminde airborne SKyTEM survey is con-
ducted with a very dense line spacing, giving a very high
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a) o5 Starting model values for the translator function in the
inversion scheme become important in areas with very low
0 Sster borehole density, primarily the d t of the model do-
2 59 _ ty, primarily the deeper part of the model do-
3 main. The starting model values are selected based on experi-
% 15 ence and by visual comparison of the resistivity models with
o key lithological logs. The horizontal and vertical constraints
“g 10 migrate information from regions with many boreholes to re-
S gions with few or no boreholes. As in most inversion tasks, a
S 5 few initial inversions are performed to fine-tune and evaluate
o the effect of different starting models and constraint setups.
The CF procedure supports both uncertainty estimates on
0 1 3 10 30 100 300 1000 the input data, on the output translator functions, and on the
Resistivity (@m) final CF model. Generally, the uncertainties in the CF model
b) 25 are closely related to the borehole density and quality, as well
Cluster aslr?_solutiodn ar:_d d?_nsityfo_f thet rescilstivity rt'nodels£ 'I_'htg cgl-
@ culation and estimation of input and output uncertainties is
§< 20 described in detail in Christiansen et al. (2014).
< 15 . o
° 4.2 Clustering and validation
(@]
g 10 For the clustered 3-D model, each cluster represents some
S unit with fairly uniform characteristics. It could be hydro-
o ° stratigraphic units where the hydraulic conductivity of the
0 Jm..l““““unmuu cluster units is determined through a subsequent ground-

0O 02 04 06 08 1 water model calibration, typically constrained by hydrologi-
Clay fraction cal head and discharge data. Groundwater model calibration
of the Norsminde 3-D cluster model has been performed with
Figure 10. Cluster statistics. The histograms show which data from a pre"minary positive Outcome, but more experiments are
the original variables make up the five clust¢eg.The distribution  needed before drawing final conclusions. In this process one
of the regstnwty_data in the five clustei®) The distribution of the needs to evaluate the cluster validity, i.e., how many clusters
CF data in the five clusters. - .
the data can support. Cluster validity can be assessed with
various statistical measures (e.g., Halkidi et al., 2002). The

lateral resolution, which could actually support a finer hori- umber of clusters resulting in the best hydrological perfor-
zontal discretization (25-50 m) in the CF model. The 100 mMance might also be used as a measure of cluster validity.
horizontal discretization of the CF model and cluster model The validity of the clusters and the resulting groundwater
was selected to match the computational grid setup of a supModel is still to be explored in more detail.

sequent groundwater model. A detailed overview of resolu-

tion capabilities of the Norsminde SkyTEM survey is given

by Schamper et al. (2014b), including an extensive compari® Conclusions

son to borehole data.

The horizontal sampling of the translator function should We have presented a procedure to produce 3-D clay fraction
in principle be able to reproduce the true (but unknown) vari-(CF) models, integrating the key sources of information in a
ations in the resistivity-to-CF translation. However, it is pri- well-documented and objective way.
marily the borehole density and secondarily the complexity The CF procedure combines lithological borehole in-
of the petrophysical relationship between clay and resistivityformation with geophysical resistivity models in produc-
that dictate the needed horizontal sampling of the translaing large-scale 3-D clay fraction models. The integration
tor function. In our experience, a horizontal discretization of of the lithological borehole data and the resistivity mod-
the translator function grid of 1-2 km (linearly interpolated €ls is accomplished through inversion, where the optimum
between nodes) is sufficient to obtain an acceptable consigesistivity-to-CF function minimizes the difference between
tency between the lithological logs and the translated resisthe observed clay fraction from boreholes and the clay frac-
tivities. For the deeper part of the model domain where thetion found through the geophysical resistivity models. The

borehole information is sparse, a coarser translator functiofcF procedure allows for horizontal and lateral variation in
grid would be sufficient. the resistivity-to-CF translation with smoothness constraints

as regularization. The spatially varying translator function
is the key to achieving consistency between the borehole
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information and the resistivity models. The CF procedureAuken, E., Christiansen, A. V., Westergaard, J. A., Kirkegaard, C.,

furthermore handles uncertainties in both input and output Foged, N., and Viezzoli, A.: An integrated processing scheme for
data. high-resolution airborne electromagnetic surveys, the SkyTEM

The CF procedure was applied to a 156ksarvey with
more than 700 boreholes and 100 000 resistivity models fro
an airborne survey. The output was a detailed 3-D clay frac-
tion model combining resistivity models and lithological
borehole information into one parameter.

Finally a cluster analysis was applied to achieve a pre-
defined number of geological/hydrostratigraphic clusters in

system, Explor. Geophys., 40, 184-192, 2009.

n{\uken, E., Christiansen, A. V., Kirkegaard, C., Fiandaca, G.,

Schamper, C., Behroozmand, A. A,, Binley, A., Nielsen, E., Ef-
fersg, F., Christensen, N. B., Sgrensen, K. I., Foged, N., and
Vignoli, G.: An overview of a highly versatile forward and
stable inverse algorithm for airborne, ground-based and bore-
hole electromagnetic and electric data, Explor. Geophys., 1-13,
doi:10.1071/EG130972014.

the 3-D model and enabled us to integrate various sourceBussian, A. E.: Electrical conductance in a porous medium, Geo-

of information, both geological and geophysical. The final

physics, 48, 1258-1268, 1983.

five-cluster model differentiates between clay materials andcarle, S. F. and Fogg, G. E.: Transition Probability-Based Indicator

different high-resistivity materials from information held in

Geostatistics, Mathematical Geology, 28, 453-476, 1996.

resistivity model and borehole observations, respectively. ~Christiansen, A. V. and Auken, E.: A global measure for depth of

With the CF procedure and clustering we aim to build 3-D
models suitable as structural input for groundwater models.
Each cluster will then represent a hydrostratigraphic unit and
the hydraulic conductivity of the units will be determined

investigation, Geophysics, 77, 4, WB171-WB177, 2012.

Christiansen, A. V., Foged, N., and Auken, E.: A concept for cal-

culating accumulated clay thickness from borehole lithological
logs and resistivity models for nitrate vulnerability assessment,
J. Appl. Geophys., 108, 69-77, 2014.

through the groundwater model calibration constrained bycjayier, C., Coates, G., and Dumanoir, J.: Theoretical and experi-

hydrological head and discharge data.
The 3-D clay fraction model can also be seen as a binomial

mental bases for the dual-water model for interpretation of shaly
sands, Soc. Petrol. Eng. J., 24, 153-168, 1984.

geological sand—clay model by interpreting the high and lowDaly, C. and Caers, J. K.: Multi-point geostatistics — an introductory
CF values as clay and sand, respectively, as the color scale for overview, First Break, 28, 39-47, 2010.

the CF model example in Figs. 7 and 8 indicates. IntegratiorPam, D. and Christensen, S.: Including geophysical data in ground
and further development of the CF model into more-complex Water model inverse calibration, Ground Water, 41, 178-189,
geological models have been carried out with success (Jgar- 2003.

Deutsch, C. V. and Journel, A. G.: GSLIB: geostatistical software li-
gensen etal., 2013b). brary and user’s guide, Second edition, Oxford University Press,
1998.
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