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Abstract. Water supply sources for irrigation (e.g. rivers in NNBW. After the 2020s, MSR was predicted to approach
and reservoirs) are critically important for agricultural pro- the critical limit, and ADD would account for 11-23 % of the
ductivity. The current rapid increase in irrigation water use total requirements in the 2040s.

is considered unsustainable and threatens food production.

In this study, we estimated the time-varying dependence of

irrigation water requirements from water supply sources,

with a particular focus on variations in irrigation area dur- 1 Introduction

ing past (1960-2001) and future (2002—2050) periods using

the global water resources model, HO8. The HO8 model carnrrigation is crucial to satisfying increasing food demands
simulate water requirements on a daily basis at a resolutiorffBruinsma, 2003; De Fraiture et al., 2007). In many coun-
of 1.0° x 1.0° latitude and longitude. The sources of irriga- tries, food production requires intensive levels of water with-
tion water requirements in the past simulations were specidrawal for irrigation, which can deplete water supply sources
fied using four categories: rivers (RIV), large reservoirs (LR) or even cause them to run dry. When these sources are
with a storage capacity greater than £.00° m®, medium-  depleted, a decline in future food production is expected
size reservoirs (MSR) with storage capacities ranging from(Hanjra and Qureshi, 2010). It is highly unlikely that we
1.0x 10°m3 to 3.0x 1P m3, and non-local non-renewable will be able to depend on existing irrigation water sources
blue water (NNBW). The simulated results from 1960 to (e.g. rivers, reservoirs and aquifers) in the future, for two
2001 showed that RIV, MSR and NNBW increased signif- main reasons.

icantly from the 1960s to the early 1990s globally, but LR  First, many major rivers, including the Yellow River, the
increased at a relatively low rate. After the early 1990s, theColorado River, the Rio Grande, the Syr Darya and the Amu
increase in RIV declined as it approached a critical limit, Darya, are now diminished in their lower reaches due to di-
due to the continued expansion of irrigation area. MSR andversions and impoundments for irrigation. For example, the
NNBW increased significantly, during the same time period, Yellow River experienced a persistent decline in observed
following the expansion of the irrigation area and the in- annual runoff from 1960 to 2000 (Piao et al., 2010), which
creased storage capacity of the medium-size reservoirs. Wvas largely attributed to water use for irrigation (Tang et al.,
also estimated future irrigation water requirements from the2008). Diversion of water to support cotton plantations via
above four water supply sources and an additional water supan inefficient irrigation system has led to the retreat of the
ply source (ADD) in three future simulation designs; irriga- Aral Sea (Peachey, 2004).

tion area change, climate change, and changes in both irriga- Second, many countries are excessively using groundwa-
tion area and climate. ADD was defined as a future increaseer (Gleeson et al., 2012) as they struggle to satisfy their
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growing water demands. Critical groundwater depletion haghe water use scenarios and the latest climate change sce-
been detected by the NASA Gravity Recovery and Cli- narios for the 21st century using the HO8 model. Hanasaki
mate Experiment satellites (GRACE) in northwestern Indiaet al. (2013a) developed water use scenarios depicting five
(Rodell et al., 2009) and many other basins where intensiveglobal situations under the latest socio-economic scenarios.
irrigation is prevalent (Famiglietti et al., 2011; Ddll et al., Wada et al. (2014) quantified the impact of projected global
2012). climate change on total irrigation water requirements among
A number of global-scale water resource models havethe multi-water resource models described above and among
been used to estimate spatial and temporal variations in wateeveral global climate models (GCMs) under the highest
resources in the 20th century due to changes inirrigated areagreenhouse gas emission scenario (Van Vuuren et al., 2011).
as well as atmospheric forcing conditions (e.g. HaddelandHowever, to our knowledge, no study has estimated irriga-
et al., 2006; Hanasaki et al., 2006, 2008a, b, 2010; Rost etion water requirements from various water supply sources,
al., 2008; Doll et al., 2009; Liu et al., 2009; Wisser et al., in terms of spatial and temporal analyses for past and future
2010; Biemans et al., 2011; Wada et al., 2011; Pokhrel etonditions.
al., 2012b). The results of these model simulations have in- In this study, we estimated the time-varying dependence
dicated that an expansion of irrigation and/or the construc-of irrigation water requirements from various water supply
tion/operation of reservoirs in a typical catchment would sources on a global scale, accounting for variations in the irri-
have a gradual and significant influence on the hydrologi-gation area and meteorological forcing conditions from 1960
cal cycle. Those studies showed that water use and the corie 2050, using the HO8 model. For the past period of 1960—
struction/operation of reservoirs caused a significant chang@001, the sources of irrigation water were classified into the
in the seasonal pattern of water flow at continental and globafollowing four categories: rivers, large reservoirs, medium-
scales. Thus, the change affected the amount of water avaikize reservoirs, and NNBW. For the future period from 2002
able from various water supply sources for irrigation. to 2050, an estimate was made of irrigation water require-
Global-scale water resource models have also simulatethents from the four water supply sources and a newly de-
irrigation water requirements from various water supply fined water supply source, termed “additional water supply
sources. DOll et al. (2012) quantified the effects of irriga- source” (ADD), which is defined as an increase in NNBW
tion water requirements from surface water and groundwafrom the past to the future.
ter on variations in water storage for the period from 1901 The structure of this study is as follows. Section 2 presents
to 2002 using the global water resources model Water GAPa brief description of the model and the data collected. Sec-
Wada et al. (2012b) calculated the contribution of differ- tions 3 and 4 describe settings of model simulations and the
ent water sources (i.e. blue water (renewable surface wavalidation of our model outputs. Sections 5 and 6 present the
ter and groundwater), non-renewable groundwater and nonresults of our analysis (global and country-based dependence
local water resources) to irrigated crops, over the period fromof net irrigation water requirements on water supply sources),
1960 to 2000, using the global water resources model PCRincluding sensitivity analyses. Section 7 comprises the dis-
GLOBWB. Biemans et al. (2011) estimated the irrigation cussion and concluding remarks.
water supply from surface water, reservoirs and other sources
using the dynamic global vegetation and hydrology model
LPJImL, with a particular focus on the reservoir module 2 Methods and data
based on Haddeland et al. (2006) and Hanasaki et al. (2006).
Hanasaki et al. (2010) estimated the irrigation water requireqn this section, we gave descriptions of the model and re-
ments from different sources for major crops and livestockquired data (Fig. 1 and Table 1), which include two types of
products and the level of global virtual water exports us-input, meteorological forcing and geographical data, to drive
ing the global water resources model HO8 (Hanasaki et al.the HO8 model.
2008a, b; hereafter, “HO8 model”). In Hanasaki et al. (2010),
the virtual water supply source was specified using two cat2.1 Model description
egories, green water and blue water, which were involved in
the global hydrological cycle. Blue water was further divided We used the HO8 model to estimate net irrigation water re-
into three subcategories: rivers, medium-size reservoirs, anquirements (Hanasaki et al., 2008a, b). This model can simu-
non-renewable non-local blue water (NNBW). late both natural hydrological water flows and anthropogenic
Concerning future water use simulations, the change invater withdrawals globally on a daily basis at a resolution of
total irrigation water requirements under climate changel.(® x 1.(° latitude and longitude using meteorological and
and the irrigation water use scenario for the 21st centurygeographical input data (Fig. 1). The meteorological vari-
have been discussed previously (e.g. Haddeland et al., 2014ples used in the HO8 model are air temperature (K), specific
Hagemann et al., 2013; Hanasaki et al., 2013a, b; Liu et al.humidity (kgkg™1), wind speed (m3s!), surface pressure
2013a; Schewe et al., 2014; Wada et al., 2014). Hanasaki €Pa), downward shortwave and longwave radiation (Wn
al. (2013b) projected global total water requirements underand precipitation (kg m?s~1). The model consists of five
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Figure 1. Schematic diagram of irrigation water requirements from various water supply sources in the HO8 model.

sub-models for land surface hydrology (Robock et al., 1995), d. non-renewable non-local blue water (NNBW), which
crop growth (Krysanova et al., 2000), river routing (OKi comprises the remaining demand and can be deter-
and Sud, 1998), reservoir operation (Hanasaki et al., 2006)  mined by assuming an unlimited water supply source.
and anthropogenic water withdrawal (Hanasaki et al., 2010). Hanasaki et al. (2010) originally added this term as a
The crop growth sub-model estimates planting and harvest-  conceptual water supply source; it was termed NNBW
ing dates, and the land surface hydrology sub-model calcu- by Rost et al. (2008) and Hanasaki et al. (2010). In this
lates daily evapotranspiration from irrigated cropland. The study we defined NNBW as an unlimited supply source,
consumption-based irrigation water demand is determined as  which is available everywhere without limit.

the irrigation water requirement for maintaining soil mois- ) i

ture at 60 % in the top 1 m of irrigated cropland during the IR can be supplied from the four possible sources above as
cropping period. In the case of paddy fields, soil moisture is/0/lOWS:

maintained at 100 % of the field capacity to meet the condi-

tion of paddy inundation. Here, we set the soil moisture toIR =RIV+ LR + MSR + NNBW. @
be maintained at 60 % of the field capacity for crops OtherFirst, RIV and LR are supplied to fulfil IR. When RIV be-

than rice, because wheat, a major global crop, is grown With, oo \navailable as a water supply source, IR is, in turn,
soil moisture at 50-60 % of field capacity in many irrigated derived from MSR. When the MSR are depleted, water is

areas E)Allgn et aclj., 19383{. Thehirriglatiqn Wgter rgquirement iswithdrawn from NNBW to fulfil IR.
seftlto .e?m 30 ?yst I'e orel t fe paonim%o g/te, 'g%fgi‘/s'r?ht € We should note that reservoir treatments differed from
Soll maisture content finearly from © 1o o or 0- 1€ reservoir to reservoir depending on the storage size. Large

total irrigation water requirement defined in the above way IS aservoirs control river discharge in the model and set op-
' erating rules for individual reservoirs along each river. For

known as the “net irrigation water requirement” (IR) (Smith
1992). It should be noted that return flow and delivery IossIarge reservoirs where the primary purpose was not irriga-

ar? n?]t mclt;\ded In th'_s model. ithd | sub-model (Fiq. 1 tion water supply, the reservoir operating rule was set to
n the anthropogenic water withdrawal sub-model (Fig. )'minimise inter-annual and sub-annual river discharge vari-

irrigation water requwem_ents from various water _su_pply ation. For large reservoirs in which irrigation water supply
sources were abstracted in the following order of priority to was the primary purpose, daily release from the reservoirs
meet the IR: was proportional to the irrigation water requirement in the
a. the river flow (RIV), which is a naturalised flow regime; lower reaches. Medium-size reservoirs were not treated in-
dividually. Instead, their storage capacities were aggregated
for each calculated grid cell. Runoff produced by the land
surface hydrology module initially runs into the medium-
size reservoirs in the same grid. Then excess water beyond
the storage capacity of the medium-size reservoir flows into
c. medium-size reservoirs (MSR) with storage capacitiesthe river channel after runoff, as determined by the land sur-
ranging from 1.0x 10° m3 to 3.0x 10° m3; and face hydrology module. Here, we assumed that medium-size

b. large reservoirs (LR), which are determined by subtract-
ing the river flow including large reservoirs with a stor-
age capacity greater than x0L.0° m3, from those with-
out large reservoirs;

Hydrol. Earth Syst. Sci., 18, 4289431Q 2014 www.hydrol-earth-syst-sci.net/18/4289/2014/
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reservoirs used 100 % of their storage capacity. Finally, thenational statistics from 1900 to 2003 (Freydank and Siebert,
river discharge was calculated from the gridded runoff and2008).
the remaining river discharge, which was routed through the First, to prepare the data set of changes in the annual irri-

TRIP (Oki and Sud, 1998) river routing map. gation area, we used the GMIA as a base map. Second, we
obtained the annual rate of change from 1960-2001 using
2.2 Meteorological forcing data data from Freydank and Siebert (2008). Finally, we rescaled

each grid in the aggregated map on a country-by-country

To prepare the meteorological forcing data for the past pe-baS',S using the annual rate of chfa\nge, deno.ted' as histori-
riod (1960-2001), we used two data sets. One was WATCH@! imigation map (HIM) data. This method is similar to

(WATer and global CHange project) forcing data (Weedonthat use(_JI by Wisser et al. (_20_10)_and Pokhrel et al. (201_2b).
et al., 2011, hereafter, “WFD data set’) based on the 40-We confirmed whether the irrigation areas were constrained

year European Centre for Medium-Range Weather Forecast‘@’ithin croplands using a historical evol_ution of cro_pland ar-
Re-Analysis (ERA-40), which consists of 6 hourly near- eas (Ramankutty and Foley, 1999), which was calibrated us-

surface meteorological forcing data for 1958-2001, with aing a remotely sensed global land-cover classification data

spatial resolution of 05x 0.5°. For validation and sensitiv- set (Loveland et al.,_ 2.000.)‘ .

ity analysis, we used the WFD data set. The other data set We prepared an Irrigation area scenario for the future pe-
used was the WATCH driving data (hereafter, “WDD data riod (2002._2050)' In this scenario, we assumgd ! hat to meet
set’) of three GCMs, namely CNRM, ECHAMS and IPSL food requwements, the future irrigation area will increase in
(Hagemann et al., 2011). The period covered by these data groportion to .populatlon growth on a glo_bgl sc_ale (Oki and
1960-2001, and the same forcing variables are available agar_\ae_, 2006; Shen et“al., .2008)' Thls. |r"r|gat|on area sce-
for the WFD data set. For the past period, the WDD datalamno s base_d on the medlur_n scenario _from among the
set was based on the 20C3M experiment, which was perghre_e pOp.u|.a.tIOI’l growth scenarios of the United Nations Eop-
formed in the third phase of the Coupled Model Intercom- ulation Division (UN, 2011). We used a future popula}tlon
parison Project (CMIP3). We used the WDD data set to Cal_growth rate of 0.9 % per year on a global scale according to

culate future increase in NNBW from simulation results of thT:_methozd othhen er;[ aI.rEZOOS): | irrigati f
the past with those of future. igure 2a shows the change in total irrigation area from

For the future period from 2002 to 2050, we also usedl%o to 2050. The HIM reflects the large-scale dynamics of

the WDD data set based on the IPCC AR4 high_emiSSiOndevelopment of the irrigated area over the 20th century, re-

A2 scenario of CMIP3 (Nakicenvoic et al., 2000), which con- \zle?“nfogs eg(pagzlgg Ilr:] arﬁa from ]X&OG. "T” n 1960 to .
tains daily near-surface meteorological forcing data with a™ X3 O ;noﬁ Il<n 5 . t.h urt errr218r5€8 O:.r wnge;tll)onhscenamo
spatial resolution of 05x 0.5°. Daily precipitation and air was . m™ In the year - lgure SNOWS the

temperature data in the WDD data set were bias-corrected tglfference in irmgation area between 1960 and 2000. Irmga-

make them consistent with those of the WED data set usllOn areas have been increasing in India, China, Pakistan and

ing the method described by Piani et al. (2010). All vari- the United States. Subdivision of the HIM into single- and

ables (precipitation, air temperature, downward shortwavedouble'crOpping irrigated areas was achieved by multiplying

and longwave radiation, specific humidity, and wind speed)H”VI d_ata by the irrigation intensity data published by Doll
in the WDD data set were interpolated from the spatial res—and Siebert (2002).
olution of the climate model using a combination of bilinear
and inverse distance interpolation. Both the WFD and WDD
data sets represent a spatially aggregated median value wi

a 1.0 x 1.C° grid resolution.

2.3.2 Reservoir data

e estimated the storage capacity of large- and medium-size
reservoirs in each grid to determine the impact of a change
in water supply in each year. The International Commission

2.3 Geographical data on Large Dams (ICOLD, 1998) defines a large reservoir as
o one having a storage capacity greater thanx110° m® and
2.3.1 lrrigation areas provides information on geophysical location, construction

year, maximum storage capacity and function. In this study,
We prepared annual irrigation area distribution maps (spatiaive used 548 large reservoirs based on ICOLD (2003) data
resolution: 1.0 x 1.0°) for the period of 1960-2001 to esti- (Hanasaki et al., 2006; Pokhrel et al., 2012b).
mate irrigation water requirements. Data of “areas equipped We prepared the historical development and spatial dis-
for irrigation” are available from the University of Frank- tributions of storage capacity data for medium-size reser-
furt's Food and Agriculture Organisation (FAO) Global Map voirs from 1960 to 2001. We determined the geophysical
of Irrigation Areas (GMIA) for 1998-2002 at a spatial reso- location, dam construction year, and storage capacity of
lution of 5arcmin (Siebert et al., 2007). Time series data of6862 reservoirs from the Global Reservoir and Dam database
areas equipped for irrigation per country are available from(GRanD; Lehner et al., 2011). We spatially aggregated the

www.hydrol-earth-syst-sci.net/18/4289/2014/ Hydrol. Earth Syst. Sci., 18, 428810 2014
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Figure 2. Global total area equipped for irrigation under historical irrigation map (HIM) datd Ka) during the period of 1960-2000
and irrigation scenarios due to population growth during the period of 2000-2050 and global total poa)atiod the difference in area
equipped for irrigation (kr%) for the years 2000-1960®).

storage capacity of medium-size reservoirs from the GRanDaggregated storage capacity of medium-size reservoirs from
database in each year at a°1x01.0° grid resolution and the GRanD database at the national scale was greater than
country scale. ICOLD (1998) defines medium-size reservoirghe total capacity in ICOLD (2003), we used the distribution
as those with a storage capacity ranging from>a 10° m3 map of the aggregated storage capacity at the grid scale.

to 3.0x 10° m® and provides the only total national capac-  Figure 3a presents the change in global total cumulative
ity of global medium-size reservoirs. If the total capacity in storage capacity of large and medium-size reservoirs, from
ICOLD (2003) was greater than the aggregated storage cat240 and 1385 krhin 1960 to 4427 and 3084 khin 2000,
pacity of medium-size reservoirs from the GRanD databaseespectively. The cumulative storage capacity of large reser-
at the national scale, the geographical distribution of thevoirs for irrigation increased little after the 1970s, and was
remaining storage within each country was then weightedess than the increase for hydropower capacity in Fig. 3a.
in proportion to population (Klein Goldewijk et al., 2011). Figure 3b shows the difference in the storage capacity of
This procedure is supported by Hanasaki et al. (2010), whanedium-size reservoirs for the years 2000-1960. In China,
demonstrated a positive correlation between the total popstorage capacities have increased substantially.

ulation of a country and the storage capacity of its reser-
voirs. Finally, we obtained the time-dependent storage ca= 3 3
pacity of medium-size reservoirs by incorporating the dis-

tribution map of the aggregate_d. storage capacity from _theAIthough we focused on global changes in the IR, we also
GRanD database and the remaining storage:. In contrast, if th<‘—.';'stimated industrial and domestic water withdrawals because

Industrial and domestic water withdrawal

Hydrol. Earth Syst. Sci., 18, 4289431Q 2014 www.hydrol-earth-syst-sci.net/18/4289/2014/
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they commonly share the same water supply sources as irrithe year 2000, from the global land use data published by Erb

gation withdrawals. etal. (2007), were used as a proxy for the gridded distribution
The total water withdrawals for industrial and domestic of industrial water withdrawal because Otaki et al. (2008)

use were estimated on a grid scale, primarily based on stafound that industrial water consumption correlated well with

tistical data for the period 1960-2001. First, at the countrythe extent of urban areas in an analysis in Japan and China.

scale, the water withdrawals for each sector (i.e. irrigation,The adjusted total population (Klein Goldewijk et al., 2011)

industrial, and domestic use) from FAO (2012) were usedwas used as a proxy for the gridded distribution of domestic

as base data. Some countries provide time series data, som&ter withdrawal, as in previous studies (Vérosmarty et al.,

provide discontinuous data, and others provide only single2000; Oki et al., 2001; Shen et al., 2008).

year data. For countries in which time series data were avail-

able, we conducted a linear interpolation to fill the gaps be-

tween data. Elsewhere, discontinuous data or data for a sirs Model simulations

gle year were calculated by multiplying the regionally scaled , ) . , i

evolving ratio of withdrawal from Shiklomanov (1999). In Table 1 summarises the input data of five simulation settings;

this manner, we prepared water withdrawal data for variougU"ther input data details are given in Sect. 2. Past simula-
countries for 1960—2001. tions for the period of 1960-2001 were executed using two

The water withdrawal data (1960-2001) were then down_different sets of meteorolt_)gical _forcing data (the WFD and
scaled to a resolution of £ 1.0°. Infrastructure areas for WPD data sets). Future simulations for the period of 2002~
2050 were also performed for three different future scenario

www.hydrol-earth-syst-sci.net/18/4289/2014/ Hydrol. Earth Syst. Sci., 18, 428810 2014
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settings, using the outputs of three different GCMs, based orthe future period (2002—-2050) and the storage capacity of
the WDD data set. These settings are discussed in the followreservoirs in 2000. We assumed that the storage capacities of

ing two sections. large and medium-size reservoirs, as well as those of indus-
trial and domestic water withdrawals, remained unchanged
3.1 Past simulations for the period of 1960—-2001 between 2000 and 2050.
_ . _ _ For both future and past simulation periods, dR
3.1.1 Simulations using WATCH forcing data were met by four water supply sources: R\, LRic.y,

d the irriaati , ¢ . MSRc,,, and NNBWc_,, listed in order of priority (de-
We computed the irrigation water requirements from vari- ;. ineq in Sect. 2.1). Because we fixed the storage capac-

ous water supply sources using the WFD data set and 98ties of large and medium-size reservoirs at those of the

ographical data such as the irrigation area data, reservoSr,ear 2000, the growth in water requirement was mainly
data, and the industrial and domestic water withdrawal (as'sustained by NNBW¢ , in our future simulation. In other
sy .

described in Sect. 2) during the past period from 1960 towords, the growth in NNBW,, can be partly attributed

2001. The total irrigation water requirement of this simula- to the fixed capacities of large and medium-size reservoirs.

tion (IRwrp,y, wherey means year) were defined as value of Hence, we defined an additional water supply source, termed
IR, and the irrigation water requirements from various wa-«xppy - » (determined from Eq. 2 below), as NNB,—
Y . ’ Y

ter supply sources of this simulation _(R,WDJ, LRwrD, y, NNBWwbp, 10005 and separated the NNBW, into two
MSRwrp.y and NNBWyep, ) were defined as value of RIV, ¢ 50nents. In this study, ADB, is considered as the ad-
LR, MSR and NNBW in each year. Throughout the entire pe- yiisna| NNBW in the future compared with the 1990s, and
riod, the crop types and crop intensity were unqhanged fro"bossibly and partly allocable into L&, and MSRc., if
those used by Leff et al. (2004) and Doll and Siebert (20020 gir capacity increases. Although we could set construc-
for the year 1990. For results of annual irrigation water re-tion of new reservoirs in the future. subdivision of ARD

quirement from vario.us water supply_ sources during the Pasfyio LRic.,, MSRc., and NNBWc., requires development
period (1960-2001) in Sect. 5, the simulations relied mainly ¢ sonarios based on the future construction of spatially ex-

on the .VV.FD data set. For validation in Sect. 4 and sensmwtypIiCit reservairs, which is beyond the scope of this study.
analysis in Sect. 6, we also used the WFD data set.

) _ ) . 3.2.2 Simulations with a sole climate change scenario
3.1.2 Simulations using WATCH driving data

) . Second, we estimated RIV, LR, MSR, NNBW and ADD us-
To determine the change from the past to future conditions, g,q 4 sole climate change scenario for the future period 2002—
continuous simulation using consistent meteorological forc-ogs50. |n these experimental simulations (hereafter, “CC”
ing data is required. As discussed in Sect. 2.2, the WFD dat@jmy|ations), we used the WDD data set projected by three
set is inconsistent with the WDD data set, with the excep-gcs for the future period of 2002—2050 as the metrolog-
tion of air temperature and precipitation values. Therefore,icy| forcing data. The total irrigation water requirements of
we simulated irrigation water requirements from various wa-the cC simulations (IBc ,) were defined as the ensemble
ter supply sources using the WDD data set (®Bb.y,  medians of IR values on the basis of three GCMs. In the
LRwpp.y; MSRwpp,, and NNBWypp, ) for the past pe-  cc simulations, the irrigation areas remained unchanged be-

riod (1960-2001). Geographical data were identical to theyyeen 2000 and 2050. All other settings were identical to
WEFD simulation in Sect. 3.1.1. These simulation results weréyngse in Sect. 3.2.1.

used to calculate the difference between the future and past
periods. 3.2.3 Simulations with both irrigation area and climate

. _ ) change scenarios
3.2 Future simulations for the period of 2002—-2050

Third, we also estimated RIV, LR, MSR, NNBW and ADD
3.2.1 Simulations with a sole scenario of irrigation area the future water Supp'y source Components using both the
change irrigation area and climate change scenarios for the period
) ) 2002-2050. In the simulation with the scenarios of irrigation
First, we estimated whether RIV, LR, MSR and NNBW 504 and climate change (hereafter, #CC” simulations),
would increase with future changes in the |r.r|gat|o_n area f.orfor metrological forcing data we used the WDD data set from
the future period of 2002-2050. In these simulations of ir-, .66 GCMs with future changes in irrigation areas for the
rigation area change only (hereafter, “IC” simulations), we nerioq 2002-2050. The total irrigation water requirements of
used the WDD data set for the period of 1990-2000 as thgne | cC simulations (IR..cc ,) were also defined as the
meteorological forcing data. The total irrigation water re- onsemble median IR of the three GCMs. All other settings

quirement of the IC simulations (IR ) was defined as the yara jdentical to those described in Sects. 3.2.1 and 3.2.2.
ensemble median value of IR on the basis of three GCMs,

estimated from the irrigation area scenario in each year of
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The new water supply source in each year of the fu- 102
ture period (2002—-2050) for three future simulations, termed A FAO(2012)
X ® Liuand Yang (2010) . b
ADDgjm,y, was defined as

#8 Siebert and Dol (2008) » e
— L]
IRsiM,y = RIVsim,y + LRsimM,y + MSRsjm, y 5w B
£
+ NNBWwbpDp,1990s+ ADDs)m, y (2 :; ‘e
S ° Resg x
x &% 4
ADDsgim,y=NNBWs)\,y —NNBWwpp 1990s and NNBWsv, ,=NNBWwpp,1990s 8\ N . .‘. X"";
ADDsiy,y=0 and NNBWs i,y =NNBWsi, T 07 L e ut™
’ : i i o x2S 0
if NNBWSIM,y>NNBWWDD,19905> g * & 'i“:g.x.° ‘;
if NNBW sim,y <NNBWwpp,1900s / > . x..‘o.“.
. . . =] Py
where the subscript SIM denotes the simulation, namely, IC, & 100} oo, 8 2% * =
CC or IC+CC, as discussed above. Lo e
® o‘: “‘M i .
... A* ® o xa o
. . po) : ". :
4 Validation 10118%e s - ~ — s
10 10 10 10 10

. . Previous studies (2000) [km? yr1]
Figure 4 compares the {fp 2000results from our HO8 sim-

ulation with irrigation water requirements from three previ- Figure 4. Comparison of IRyrp, 2000 (km3yr—1) with previous

ous studies. The previous studies (Siebert and Déll, 2008studies (crosses: Siebert and Dd6ll, 2008; circles: Liu and Yang,
Liu and Yang, 2010; FAO, 2012) assumed that the to-2010; triangles: FAO, 2012).

tal irrigation water requirements could be estimated based

on the dependence on blue water use, which is defined

as extraction from surface and/or subsurface water bodie§ Results

(e.g. rivers, reservoirs, and aquifers). Even though there

were different degrees of uncertainty between the previ-5.1 Global-based dependence of net irrigation water

ous models and the HO8 model (e.g. inconsistencies among  requirements on water supply sources

input data or parameterisations), the correlations between

our IRwrp 2000 and the results of these previous studies Figure 5a and b show annual changes and ratios in the global
were high: 0.99 for FAO (2012)N = 90), 0.89 for Liu and  Net irrigation water requirements from four water supply
Yang (2010) (v = 172) and 0.98 for Siebert and Dol (2008) sources for 1960-2001 and from five water supply sources
(N =39). In particular, we found that our {ip 2000 values for 2002-2050. The estimated and projected net irrigation
in both the United States and China agreed well with thosevater requirements from various water supply sources using
of the previous studies. The \}RDyzooova]ueS for India and the WFD and WDD data sets in the 1960s, 1990s and 2040s
Pakistan (Wthh typ|ca||y have h|gh water use) were overes-are presented in Table 2. There were Only small differences
timated compared with previous results. On the other hand(—1.9 to 9 %) between the 10-year average requirements us-
most countries with an Ngrp, 2000< 100km?3 yr~1 had lower ing the WDD and WFD data sets in the 1960s and 1990s. We
correlation coefficients. The distributions of over- and under-0nly described the results using the WFD data set in the past
estimates did not depend on the experimental period. period.

On a global scale, Rrp 2000 (1302 kn? yr—1) was over- Concerning simulations of the past period of 1960-
estimated when compared to the range of results reported001 using the WFD data set, estimated water require-
previous|y’ name|y 824 to 1181 k?]"yr_l (Siebert and Dall, ments increased as follows: from 340 km to 48(?‘&”1_1 for
2008; Liu and Yang, 2010; FAO, 2012; Wada et al., 2012b).RIVwrp, from 16 to 29kmiyr~? for LRwrp, from 218 to
IRWED, 2000Was ~ 30 % larger than the average of previous 423 kn?yr~* for MSRwrp and from 163 to 259 kyr—*
results. This inconsistency may be due to differences in thdor NNBWwrp. The IRyrp showed a continuously increas-
physical processes and boundary conditions used in the mod?d trend. The RIVyrp displayed a continuously increasing
els. Given that lower correlations were most apparent fortrend to the early 1990s, but i p increased very little due
Asian countries, which are dominated by paddy cultivationto the limited capacity of large reservoirs for irrigation (see
(e.g. Thailand, Bangladesh, Indonesia, Japan), it is recomEig. 32). The increasing trend for RR¢p stabilised after the
mended that the water body of paddy fields be considere@arly 1990s. Compared with the other water supply sources,

when using the model to predict agricultural water use. the dependence on RiWp was at its highest level from the
1960s to the 1990s. MSfxp also displayed a continuous in-

creasing trend. Construction of medium-size reservoirs may
have increased to meet the growingyf caused by the ex-
pansion of irrigated areas. There was not much difference in
the total values of MS&rp and RIMyep at the end of the
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Figure 5. Annual changes in global net irrigation water requirementsam<) from four water supply sources (RIV, LR, MSR and NNBW)

using the WFD and WDD data sets for 1960—2001, and global net irrigation water requireme?ﬁ;s(ﬁmfrom five water supply sources
according to the IC simulation (R{¥, LR|c, MSRc, NNBW,c and ADD), the CC simulation (RI¥¢c, LRcc, MSRcc, NNBWcc and

ADDcc) and the IG+ CC simulation (RIMc+cc, LRic+cc, MSRc+cc, NNBWc+cc and ADDic+cc) for the period 2002—205@); the
percentage contributions (%) of different water supply sources to the totdd)IRn the past and future periods, results of the ensemble
median for the WDD data set of three GCMs are provided. Outer shades show the maximum and minimum for the all meteorological forcing
data.

past period. NNBW{rp increased gradually from the 1960s NNBWwep increased substantially from 1997 to 2000 (see
on a global scale. The growth rate of NNBM¥p as an ir-  more details in Sect. 6.2 and Table 5). The NN&W$ 2000
rigation water supply source increased noticeably after thevhich approached RiWrp 2000 and MSRyrp, 2000 Met the
1970s. Due to atmospheric forcing conditions and an expantarger demand for global water supply in terms of irrigation
sion of the global irrigation area from the 1960s to the 1990s water use.

NNBWuwep increased by 1.6 times. The reason for thisisthat Figure 6a shows the spatial distribution of the difference
RIVwep, LRwrp and MSRyrp were depleted previously, in MSRwgp between 1960 and 2000. The largest increases
due to the order of priority of water supply sources. The are due to the doubling in size of the storage capacities of
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Figure 6. Distributions of the differences in MSfg=p (10° m3) between 1960 and 204@) and the differences in NNBWgp (10° m3)
between 1960 and 20@D).

medium-size reservoirs and irrigation areas from 1960 tothe three GCMs were relatively large. These results imply
2000 in northern India and the Yellow River basin in China that future water increases will be relatively large due to
(Figs. 2b and 3b). Figure 6b shows the spatial distribution ofthe increasing irrigation area rather than the effect of cli-
the difference in NNBW/rp between 1960 and 2000. The mate change. RI¥ 2040s RIVcc 20a0sand RIVic+cc,2040s
largest increase occurred because the irrigation areas doincreased only marginally compared to RiWp 1900s This
bled from 1960 to 2000 in the High Plains aquifer region of result indicates that current RIV and LR have already nearly
the United States, northwestern India, Pakistan, and northreached their critical limits for irrigation water use. MR
eastern China (Fig. 2b); however, the storage capacities 0MMISRcc and MSRc:cc as well as RIVc, RIVee and
medium-size reservoirs did not increase (Fig. 3b). RIV|c+cc did not increase significantly. MGKR MSRcc and
Concerning future simulations for the period of 2002— MSR,c+cc exceeded RIV¢, RIVce and RIVic+cc (Fig. 5a)
2050 using the WDD data set, estimated water require-after the 2020s. Therefore, compared with other water sup-
ments increased as follows: 629, 449 and 578km? ply sources, the dependence on M&Rc 2040swas highest,
for RIVic2040s RIVce 2040s and RIVicrcc 20405 respec-  accounting for almost 33 % of the |&cc 2040sin Fig. 5b
tively; 50, 31 and 44 kﬁ’lyr‘l for LRic 2040s LRcc 2040s and Table 2. MSR 2040s and MSRc+cc 20405 Were both
and LRc+cc,2040s respectively; 635, 448 and 638 Riyr—1 1.5 times greater than MSFp.1990s
for MSRic 2040s MSRcc 20405 and MSRc+cc 20405 Fespec- ADD|c and ADDc+cc, which were highlighted
tively; and 275, 153 and 443Kyr—1 for ADDc 2040s future increases in NNBW and NNBWc+cc from
ADDc 2040s and ADDc+cc 20405 respectively (Table 2). NNBWwpp,1990s Were predicted to increase significantly
IRic+cc and IRc also rose substantially, byv63 and  along with an increase in IR and IRc+cc. In contrast,
~54%, in future simulations. However, §3 projected @ ADDcc was relatively small along with the approximately
an increasing trend of 11 %, and the differences among constant IRc. In addition, the annual variations in ARJg
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Table 2. Contributions of global average net irrigation water requirements from various water supply sources to the total net irrigation water
requirement (kmyr—1 and %) using the WFD and WDD data sets, and irrigation aredskg@®yr—1) in the 1960s, 1990s and 2040s. IC,

CC, and IG+ CC denote simulations with a sole scenario of irrigation area change, a sole scenario of climate change and a scenario with
both irrigation area and climate change, respectively.

Simulations Meteorological Irrigation IR RIV LR MSR NNBW ADD
forcing areas (krhyr—1, %)
data (16 km2yr—1y
WED 737 340 16 218 163
(100) (46) (2 (30 (22
1960s Past 15 -
669 327 12 197 133
WDD (100) (49 () (29 (20)
1191 480 29 423 259
WFD (100) (40) (20 (36) (22)
1990s Past 2.6 -
1200 473 33 434 260
WDD (100) (39) (3) (36) (22)
Ic WDD 3.9 1849 629 50 635 260 275

(100) (34) (3 (39 (14) (15)

2040s  Future 1341 449 31 448 260 153
cc WDD 26 (100) (34) (2) (33) (200 (11)

1961 576 44 638 260 443
(1000 (29 (@ @3 (13 (@

IC+CC wDD 3.9

and ADDc:cc were significant. With an increase in tem- Compared with other water supply sources, NN@¥y¥ in-
perature and precipitation variability due to the anticipatedcreased the most in the United States. The\@ly, LRwrp
climate change scenario of CMIP3, additional water supplyand MSRyrp values in the United States were generally
sources could be needed during specific seasons when watsmall, and they stagnated after the 1960s. Thus, the increased

shortages become more prominent. IR generated by the expansion of the irrigation area was re-
plenished with NNBWyrp.
5.2 Country-based dependence of net irrigation water Concerning future simulations for the period of 2002—
requirements on water supply sources 2050, IRc and IRc+cc increased according to the expansion

of the irrigation area, whereas ¢8 decreased, compared to

Figure 7a and b present annual changes and ratios in the n&éRwpp 2000due to climate change in India, Pakistan and Iran.
irrigation water requirements from four water supply sourcesConversely, IRt increased, whereas §8 and IRc+cc de-
(RIV, LR, MSR and NNBW) for 1960-2050, and an addi- creased, compared to Wap 2000 due to climate change in
tional water supply source (ADD) for 2002—2050 in China, the United States, China and Mexico. ARPcc 2040sin In-
India, Pakistan, the United States, Mexico and Iran (the coundia and Pakistan accounted for 28 and 45 % o£1Bc 20405
tries with the highest levels of irrigation water use world- respectively. ADLx: 2040sin India, Pakistan and the United
wide). These changes had large variations. The results of serstates, accounted for 14, 26 and 16 % ofclRaos re-
sitivity tests (shown in Sect. 6.2) indicated that this is primar- spectively. ADQ:c 2040sin India and Pakistan accounted for
ily due to climate variation. 14 and 25% of IRc 2040s respectively. These results im-

The IRyrp for all countries increased from the 1960s to ply that additional water would be needed in any cases of
1990s. The RIep supply for IRyep in all countries in- irrigation area change and/or anticipated climate change in
creased very little after the early 1990s. Pakistan and Chindndia and Pakistan. Compared with India, Pakistan, Mexico
had the highest dependence on Rib. MSRwrp showed  and Iran, additional water would not be needed as much in
an increasing trend. India, Mexico and Iran had the highesthe United States when the impacts of climate change are af-
dependence on MSfp. NNBWywep also displayed an in-  fected. However, in China, there was little need for additional
creasing trend, particularly after the early 1980s in Chinawater in any of the cases, because the simulation results indi-
and India, the early 1990s in Mexico and the late 1990scated that China could still use the enormous storage capacity
in Iran. These temporal changes in NNBW are associateaf its medium-size reservoirs.
with the expansion of irrigated areas in these countries.
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Figure 7. Annual changes in net irrigation water requirements from four water supply sources (RIV, LR, MSR and NNBW) using the WFD
and WDD data sets during 1960-2001, and global net irrigation water requirements from five water supply sources according to the IC
simulation (RIMc, LR|c, MSR,c, NNBW,c and ADD), the CC simulation (RI¥¢c, LRcc, MSRcc, NNBWcc and ADDcc) and the

IC + CC simulation (RIVc+cc, LRic+ccy MSRc+ccy NNBW,cicc and ADDc+cc) for 2002—2050 in India, Pakistan, China, the United

States, Mexico and Irafa). The percentage contribution of the different water supply sources to IR for the six cob}riesthe past and

future periods, results of the ensemble median for the WDD data set from the three GCMs are provided. Outer shades show the maximum

and minimum for all the meteorological forcing data.
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Table 3. Sensitivity study of the total global net irrigation water requirements in the year 2000 with regard to target soil moisture levels,
surface albedo and double-cropping.

Experimental designs Conditions WeD,2000 Change rate

(km3yr—1) (%)

This study
1. Target soil moisture level  60%
of irrigation (except paddy) 1302 -
2. Land surface albedo Seasonal change
3. Cropping option Double
Sensitivity tests
1. Target soil moisture levels 75% 1585 +21.7
of irrigation (except paddy)
2. Land surface albedo Fixed at 0.23 1211 -7.0
3. Cropping option Single 1081 -7.1
6 Sensitivity tests studies did not include this factor (Siebert and Ddll, 2008;
Liu and Yang, 2010; Wada et al., 2012b).
from various water supply sources the target soil moisture level, land surface albedo and the op-

tion for double-cropping. In the year 2000, an increase in the
target soil moisture level from 60 to 75 % resulted ina 21.7 %
increase in IRFp,2000 When the albedo value was fixed
at 0.23, the IR/ep 2000Was reduced by 7.0 %. Furthermore,

when the model considered only single-croppingyHs, 2000

Evaluations of model performance based on sensitivity testgjacreased by 17.0%. Thus, changes in these three parame-
can be helpful in determining the uncertainty of estimated re-rs could increase or decrease the total water requirement
sults. Target soil moisture levels, land surface albedo, and opyy, ~ 20 9,

tion for double-cropping are the most critical parameters with

regard to model performance for estimating the total waterg 1 2  Storage capacity of medium-size reservoirs

requirements (Doll and Siebert, 2002). Thus, we investigated

the sensitivity of these three parameters ta/#3 2000 Although we assumed that the entire capacity of medium-
In the HO8 model, the target soil moisture level strongly in- size reservoirs is useable for storing water, this is unrealis-

fluences irrigation water use because it determines the leveic: a considerable fraction of the capacity should be spared

of soil moisture for consumption-based irrigation water de-for dead and surcharge storage. Table 4 lists the results of

mands. With the exception of rice, all crops in the original our H0O8 model reducing the storage capacity of medium-

HO8 model set the target soil moisture level to 75 % duringsize reservoirs by 90, 70, 50, 30 and 10%. When storage

the growing season. However, in this study we used a targegapacity use declined from 90 to 10 %, M&R, 2000 Was

soil moisture level of 60 %. decreased from-2.8 to —47.7 %, while RIMyrp 2000 and
Surface albedo is a critical parameter related to evaporaNNBWywrp 2000 increased from 10.4 and 4.8 % to 16.2 and

tion, due to alterations in surface-available energy. Previougs.4 %, respectively. Our findings indicate that storage ca-

studies using water resource models (Siebert and D6ll, 2008acity strongly influences the calculation not only of MSR

Liu and Yang, 2010; Wada et al., 2012b) have adopted amut also of RIV and NNBW.

albedo value of 0.23 for all seasons because they selected the

FAO Penman-Monteith method (Allen et al., 1998). In this 6.2 Contributions of changes in irrigation areas and the

study, we followed Hanasaki et al. (2008a, b) and used albedo WFD data set to the NNBW increase from 1997 to

data from the second Global Soil Wetness Project, in which 2000

albedo values vary from 0.1 to 0.3, according to the stage of

the cropping season (Hanasaki et al., 2008a, b, 2010). In our past simulations using the WFD data set, we found an
The double-cropping schedule is important for water re-increase in NNBWep in the period from 1997 to 2000, as

source management. The HO8 model has a double croppinghown in Fig. 5a. The difference between NNBRMb 2000

option based on crop intensity data published by Déll and(332kn?yr—1) and NNBWyrp 1997 (268 kn?yr—1) from

Siebert (2002). We took this into account, but some otherour past simulations was 64Rwr—1. This could be

6.1.1 Target soil moisture levels, land surface albedo
and option for double-cropping
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Table 4. Sensitivity study of MSRyrp,2000with regard to 90, 70, 50, 30 and 10 % storage capacity in medium-size reservoirs.

Storage MSRyrp 2000 Change RIWyrp 2000 Change  NNBWyrp 2000 Change
capacityof  (kn?yr~1)  rate %) (kndyr 1)  rate (%) (kndyr—1) rate (%)

medium-size
reservoirs
This study 100 % 436 - 481 - 332 -
Sensitivity 90 % 424 —-2.8 531 +10.4 348 +4.8
tests 70% 404 7.4 534 +11.0 366 +10.2
50% 373 —-14.4 538 +11.9 392 +18.1
30% 322 —26.1 544 +13.1 437 +31.6
10% 228 —47.7 559 +16.2 516 +55.4

Table 5. Sensitivity analysis for the contribution of NNBY}p using combinations of irrigation areas and meteorological forcing conditions
in the years 1997 and 2000 for the globe, India and Pakistan.

Year NNBWwED (km3) in  Difference  Contribution of
simulation setting of  2000-1997 irrigation area

irrigation areas changes (%)
1997 2000
NNBWwED (km3) in simulation setting of 1997 268 275 7 11 % (7/64)
Globe meteorological forcing conditions 2000 330 332 -
Difference 2000-1997 (k?r) 62 - 64
Contribution of meteorological forcing conditions (%) 97 % (62/64)
NNBWwep (km3) in simulation setting of 1997 35 44 9 19 % (9/48)
India meteorological forcing conditions 2000 74 83 -
Difference 2000-1997 (kR) 39 - 48
Contribution of meteorological forcing conditions (%) 81% (39/48)
NNBWweD (km3) in simulation setting of 1997 23 23 0 0% (0/20)
. meteorological forcing conditions 2000 43 43 -
Pakistan
Difference 2000-1997 (kl?'r) 20 - 20
Contribution of meteorological forcing conditions (%) 100 % (20/20)

attributable to changes in irrigation area and climatic vari- 2000. The difference in the WFD data set contributed 81 %
ability. In order to quantitatively investigate the contribu- of the increased NNBWrp. In Pakistan, the difference in
tion of these factors we performed sensitivity experimentsmeteorological forcing data contributed all of the increased
to evaluate the contribution ratios of the changes in irriga-NNBWwrp between 1997 and 2000. In both two countries,
tion area and the variations in the WFD data set. We un-variations in the WFD meteorological forcing data set con-
dertook two simulations: in the first, only irrigation areas tributed to increases in NNBWp from 1997 to 2000.

were changed, whereas in the second, only meteorological

forcing data between 1997 and 2000 were changed. We es- | ) ]
timated the NNBWyrp according to these experiments, as /  Discussion and concluding remarks
shown in Table 5. The contribution of meteorological forc-
ing was 62kmyr~! globally. The contribution of changes

in irrigation area was 7 kftyr* when the global irrigation |, yis study, by using the HO8 model and taking into account
area was fixed to the 1997 value. The difference in the mey, ations in the irrigation area for the period of 1960-2001,
teorologmal_forcmg data contnbute_d 97%_of the mcrea;edWe estimated the time-varying dependence of net irrigation
NNBWwrp in both the meteorological forcing data and ir- ater requirements from various water supply sources. Es-
rigation area. In India, expansion of the irrigation area con-y i of RIV, LR, MSR and NNBW on a global scale
tributed 19 % of the increased NNBWp between 1997 and (Fig. 5a and b) revealed that RIV, MSR and NNBW increased

7.1 General findings
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continuously from the 1960s to the early 1990s, but LR in-al. (2011) estimated 40 % global annual average irrigation
creased only marginally. After the early 1990s, RIV was al- extraction from reservoirs over the same period. Not only
most constant, whereas MSR and NNBW continued to in-our numbers, but also the spatial distributions in India and
crease significantly. This finding suggests that RIV has al-China, agreed well with the results of Biemans et al. (2011).
most reached its critical limit as the irrigation area has con-Although these values were very similar, computational pro-
tinually expanded. This indicates that there would not becesses between our results and Biemans et al. (2011) were
enough river water to meet irrigation water requirements dur-different, and differences resulted from the following three
ing irrigation periods. MSR increased according to the in- factors.
creasing storage capacity of medium-size reservoirs. NNBW First, this study presented results for IR, whereas Biemans
increased under the conditions of increased irrigation areat al. (2011) has presented results for water withdrawals,
because RIV and MSR could not fulfil the required supply which include return flows and conveyance losses. Sec-
of water needed for the increased IR. In addition, we pro-ond, the difference in total storage capacity using large and
jected the future dependence on RIV, LR, MSR, NNBW and medium-size reservoirs as input data may lead to different re-
ADD for the period of 2002—2050 according to three future sults. In this study, the time-varying distribution of the stor-
simulations (IC, CC and 1G- CC simulations). In this study, age capacity of large and medium-size reservoirs was de-
ADD was defined as an increase in NNBW from the 1990s.termined from the geographical location and year of dam
In any of the simulations, there were no further increases inconstruction based on data from Lehner et al. (2011) and
RIV, LR and MSR after the 2020s. ICOLD (2003). These methods were described by Hanasaki

Our results, which showed that ¢g increased by~ 10 % et al. (2010) and Pokhrel et al. (2012b). In 2000, the total
from the 1990s to 2040s under the IPCC AR4 high emis-storage capacity of these reservoirs had reached 7531 km
sion scenario of CMIP3, are consistent with those of Wada(Fig. 3a). However, Biemans et al. (2011) used 6308 fon
et al. (2014), who predicted the increase of irrigation wa-the total storage capacity, which was derived from Lehner et
ter withdrawal under the IPCC AR5 highest greenhouse gasl. (2011). Finally, there are differences in the way reservoirs
emission scenario of CMIP5. It should be noted that Wadaare described. In the HO8 model, large reservoirs are treated
et al. (2014) used multi-water resource models, whereas oundividually and geo-referenced to the river network. Then,
study used a sole water resource model (the HO8 model). the river discharge from downstream to a large reservoir is

A continuous increase in irrigated areas would resultregulated by large reservoirs for the purpose of irrigation and
in more ADDc and ADDc+cc on a global scale, par- non-irrigation. LR contributed only to irrigation areas within
ticularly in India, Pakistan and the United States. Associ-the grid cells located downstream of the reservoirs. Medium-
ated with the increases in §g, a significant increase in size reservoirs were accumulated in each calculated grid cell
ADDcc would occur in India and Pakistan due to the in- for use as direct water supply sources. The discharge in each
sufficient water resources from RE¥ 2040s LRcc 2040sand grid cell is not regulated by medium-size reservoir opera-
MSRcc 20405 These requirements varied significantly under tions. Consequently, medium-size reservoirs strongly influ-
climate change, with an accompanying increase in the freence the calculation of other water supply sources (described
quency and magnitude of the risk of floods and droughtsin Sect. 6.1.2) in the HO8 model, whereas large reservoirs
(Kundzewicz et al., 2007; Hirabayashi et al., 2008, 2013).strongly influence the calculation of river discharge. In con-
Climate change causes substantial increases in&fdhd  trast, Biemans et al. (2011) considered all of the reservoirs
ADDc+cc during specific seasons. This casts doubt on theindividually, and found that most rivers, including tributaries,
steadiness and sustainability of regional future food producwere regulated by reservoir operations. This means that irri-
tion (Foley et al., 2011) and the likelihood of maintaining gation water from reservoirs in Biemans et al. (2011) could
safe operating spaces for freshwater use by humanity (Rockbe supplied to a much larger area than LR in this study.
strom et al., 2009).

7.3 NNBW in the past simulations
7.2 Comparison of LR and MSR in the past simulations
with a previous work by Biemans et al. (2011) The simulated global total NNBWep 2000 in this study
(332kn?yr—1) was underestimated compared with val-

To our knowledge, no reliable global report on irrigation wa- ues reported in previous studies (ranging from 494 to
ter use has separated surface water into natural (RIV) an840kn?yr—1; see Rost et al., 2008; Biemans et al., 2011;
regulated flows (LR and MSR). Here, we discuss our re-Wada et al., 2012b). Potentially, this underestimation could
sults in comparison with the work of Biemans et al. (2011), have resulted from the different kinds of meteorological forc-
as their work is largely comparable with ours. In our esti- ing data used. The previous studies performed NNBW us-
mation, the ratio of the global annual average net irrigationing the Climatic Research Unit Global Monthly Time Series,
water requirement from reservoirs to IR was 37.5 %, includ-Version 2.1 (CRU TS 2.1) meteorological forcing data set
ing a 2.7 % contribution from LR and a 34.8 % contribution (New et al., 2000). Here, we used the WFD meteorologi-
from MSR, during the period from 1981 to 2000. Biemans etcal forcing data set, which is based on the ERA-40 product.
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The key differences from the CRU TS 2.1 data set are thata) _
the WFD data set used ERA-40 and applied the gauging- 2
undercatch correction of Adam and Lettenmaier (2003) to its
precipitation products. Therefore, RAWp 2000 LRwED 2000
and MSRyep 2000may be overestimated compared with the
actual values, and hence NNBWb 2000 could have been
underestimated.

The spatial distribution of the difference in
NNBWwep 2000 (Fig. 6b) is similar to groundwater de-
pletion predicted by Wada et al. (2010, 2012b). The Wada
et al. (2010) estimated groundwater depletion values
were obtained by assessing groundwater recharge using 3

f=

global-scale hydrological model and subtracting estimates ¢
of groundwater abstraction based on statistical data. Anothel §
attempt was made to include groundwater in global-scale
hydrological models (Ddll and Fiedler, 2008; Doll et al.,
2014). Even though NNBW is not an explicit representation :
of the fossil groundwater in the HO8 model, the difference
between the total of RIV, LR and MSR, and an unlimited Figure 8. Global differences (%) in precipitationP), tempera-
total IR, could partly be attributable to groundwater abstrac-ture (), downward longwave and shortwave radiatid),(humid-
tion. Therefore, we need further verification of the outputs'®_(#). and wind speedW) as simulation inputs for the three
and the hypothesis of the water resource model. Separat%’CMS of th? WDD data set compared to th_e WFD data(agt
estimation of NNBW into non-renewable and non-local and global differences (%) in evapotranspiration (ET), runoif)

. . ) . . X and total irrigation requirement (IR) as simulation outputs for three
water use is required to improve the information available ;s of the WDD data set compared to those results using the

for water management. _ ~ WFD data se{b). Blue bars and ranges show the average and the
Our results demonstrated that temporal trends in the irmaximum and minimum for all the data.

rigation water requirements of the six countries (China, In-

dia, Iran, Mexico, the United States and Pakistan) shown in

Fig. 7a and b were associated with expansion of irrigation’-4 ~ Other uncertainties and limitations in the past
areas. However, the seasonal fluctuations in water require-  Simulations

ments were strongly dependent on variations in meteorolog-

ical forcing conditions because the importance of each Wa_'I'he differences/inconsistencies in meteorological forcing

ter supply source was altered by changes in meteorologigata between the WDD data set taken from the three GCMs

cal forcing-induced surface hydrology (e.g. runoff and dis- and §h¢ WFD data set based on ob;ervation should be noted.
charge). For example, after 1997, NNBb increased sub- P_reC|p|tat|on and temperature data in the W[_)D_data set were
stantially in India and Pakistan (Table 5). We determined thaiPias-corrected against the WFD data set (P_lar_n etal., 2_0_10)'
almost all of the increase in NNBWEp from 1997 to 2000 Howe\_/er, other for(_:mg varla_lble_s_ (e.0. _radlatlon, humidity
was due to variations in the meteorological forcing data. In@"d Wind speed) still have significant biases. We tested the
these countries with the highest numbers of irrigation wa-E0r by comparing differences in the results simulated by
ter users, different events occurred around the same time. [H'€ WDD and the WFD data sets. Figure 8 shows that there
the year 1997, a heavy monsoon caused devastating floods f{€ SMall spreads-(1.6 t0 5.5 %) among the three GCMs in
the Punjab region of Pakistan, near Northwest India (Abba@IObaI precipitation of the _WDD data set compared to the
et al., 2014). The NNBWrp 1097 Was relatively small be- WFD data _set for the period of _1971—2000. On the other
cause the HO8 model stores heavy rainfall as soil moisturd'@nd: the simulated evapotranspiration, runoff and IR using
on land. Conversely, during the monsoon season of the yedf!¢ three GCMs of the WDD data set had relatively large
2000, severe meteorological and vegetative drought occurrefifférences £21.7 t0-5.0 %, ~1.3 to 33.0% and-21.8 to
across Northwest India (Bhuiyan et al., 2006) due to a short-—2-0%. respectlyely) compared to those resu_lts of th_e WFD
age of rainfall (Mall et al., 2006). In the worst case, only data set, respectively. These results are consistent W|th t_hose
~ 40 % of the food production for a normal year was secured ©f Hgd_deland e_t al. (2(_)12) who tested the effects of radla_tlon,
NNBWwep,2000Was relatively large due to water shortages. humidity and wind variables on four large-scale hydrological

Therefore, in India and Pakistan these events contributed t§'094€S that used both bias-corrected forcing and non-bias-
a sudden increase in NNBW from 1997 to 2000. corrected forcing. They mentioned that the absolute values of

simulated evapotranspiration and runoff had large differences
before and after bias correction of the forcing variables.
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According to Sect. 6.1, target soil moisture level, land sur-flows for each region at a global scale. Incorporating these
face albedo and the option for double-cropping were impor-factors into future simulations in the HO8 model, while chal-
tant to the accurate estimation of IR. Setting the storage calenging, is critically important. Additionally, our approach
pacity of medium-size reservoirs also appears to be importandoes not fully reflect regional irrigation practices by which
in the estimation of RIV, LR, MSR and NNBW. Accordingto farmers may adapt several technical and political manage-
Sect. 6.2, storage capacities influenced the estimation of nanent approaches (e.g. Lazarova and Bahri, 2005; Gupta et
only MSR but also RIV and NNBW. The reservoirs cannot al., 2011; Liu et al., 2013b) to increasing irrigation water use
be adequately represented given the available information refrom various water supply sources.
garding their size, purpose and characteristics. Therefore, the
results of this study should be considered alongside the influ7-6 ~ Concluding remarks

ence of limited geographical information on reservoirs.
geograp In total, RIV, LR and MSR might not be able to provide suf-

ficient irrigation water without the construction of new reser-
voirs in the future. If irrigation areas and climate change have
impacts on future water requirements, more irrigation wa-
ter will be required from additional water supply sources.
|ncreasing ADD may contribute to groundwater depletion
(Konikow and Kendy, 2005; Wada et al., 2010; Gleeson et

ulations, we used three GCMs of CMIP3 under only one scedl-» 2012) and may result in sea Ie\_/el rise (Pohkrel et al,
nario, although more than 40 GCMs of CMIP5 are readily 2012a; Wada et al., 2012a). Otherwise, we may require the

available (Taylor et al., 2012). As suggested in other Stud_further development of water supply sources in order to sus-

ies (e.g. Gosling et al., 2011; Haddeland et al., 2011, 2014Ea|n future irrigation.
Hagemann et al., 2013; Hanasaki et al., 2013a, b; Schewe
et al., 2014; Wada et al., 2014; Zhao et al., 2014), multi- AcknowledgementsNe wish to express our deep appreciation
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7.5 Other uncertainties and limitations in the future
simulations

In our future simulations, there could also be potential un-

certainties in the parameterisations from the meteorologica
forcing data set. In the CC simulations and theHCC sim-
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