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Abstract. Principles of optimality provide an interesting al-
ternative to modeling hydrological processes in detail on
small scales and have received growing interest in the last
years. Inspired by the more than 20 years old concept of min-
imum energy dissipation in river networks, we present a cor-
responding theory for subsurface flow in order to obtain a
better understanding of preferential flow patterns in the sub-
surface. The concept describes flow patterns which are opti-
mal in the sense of minimizing the total energy dissipation at
a given recharge under the constraint of a given total porosity.
Results are illustrated using two examples: two-dimensional
flow towards a spring with a radial symmetric distribution of
the porosity and dendritic flow patterns. The latter are found
to be similar to river networks in their structure and, as a
main result, the model predicts a power-law distribution of
the spring discharges. In combination with two data sets from
the Austrian Alps, this result is used for validating the model.
Both data sets reveal power-law-distributed spring discharges
with similar scaling exponents. These are, however, slightly
larger than the exponent predicted by the model. As a further
result, the distributions of the residence times strongly dif-
fer between homogeneous porous media and optimized flow
patterns, while the mean residence times are similar in both
cases.

1 Introduction

Preferential flow due to heterogeneity is one of the most im-
portant topics in subsurface hydrology. In many cases, large
parts of the uncertainty in modeling subsurface flow and

transport arise from preferential flow patterns which are ei-
ther not known in detail or too small-scaled to be included
explicitly in the model.

Preferential flow patterns may be the result of external pre-
design, but may also be created by the flow itself. Fractured
aquifers and reservoirs mainly fall into the first category.
Fractures may be opened at high fluid pressures (hydraulic
fracturing, fluid-induced seismicity), but the basic structure
of the preferential flow pattern is still governed by the geo-
logic predesign here. In contrast, the role of predesign is less
clear for preferential flow in soils and in karstified aquifers.
In particular, the formation of conduit patterns in karst has
been addressed by several modeling studies (e.g.,Groves
and Howard, 1994; Howard and Groves, 1995; Siemers and
Dreybrodt, 1998; Kaufmann and Braun, 1999, 2000; Liedl
et al., 2003; Dreybrodt et al., 2005; Kaufmann et al., 2010;
Gabrovšek and Dreybrodt, 2011; Hubinger and Birk, 2011),
pioneered by early work ofKiraly (1979). Although there
may be some predesign, too, it is generally believed that the
solution of material by the flow causes a strong tendency to-
wards self-organization of the flow pattern.

The idea to derive self-organizing heterogeneity from prin-
ciples of optimality instead of small-scale, physically based
models has received growing interest in the last years. While
McDonnell et al.(2007) considered optimization in hydrol-
ogy as a visionary concept some years ago, the rapidly in-
creasing number of publications related to several topics in
hydrology (e.g.,Kleidon and Schymanski, 2008; Kleidon
and Renner, 2013; Kleidon et al., 2013, 2014; Zehe et al.,
2010, 2013; Westhoff and Zehe, 2013) shows that it has left
this level and even gained predictive power now.

Published by Copernicus Publications on behalf of the European Geosciences Union.



4278 S. Hergarten et al.: Minimum energy dissipation in subsurface flow

The idea to explain the morphology of river networks
from the concept of minimum energy dissipation is the per-
haps oldest application of optimization principles in hydrol-
ogy receiving considerable interest. It even dates back to the
early 1990s (Howard, 1990; Rodriguez-Iturbe et al., 1992a,
b; Rinaldo et al., 1992) and turned out to be rather success-
ful in reproducing scale-invariant properties of drainage net-
works at earth’s surface.

The probably most successful application of minimum en-
ergy dissipation to flow processes so far (West et al., 1997)
emerged from the field of physiology. It considers the cardio-
vascular system of mammals as a space-filling hierarchical
network of tubes. The principle of minimum energy dissipa-
tion was shown to result in a scale-invariant structure of this
network, which finally reproduces several allometric scal-
ing relations found in nature. This seminal article was fol-
lowed by several publications also in very prestigious jour-
nals (Enquist et al., 1998, 1999; Banavar et al., 1999; West
et al., 1999a, b) within a few years.

Beyond minimum energy dissipation, the minimum and
maximum production of entropy are the most important vari-
ational principles in nonequilibrium thermodynamics. As ex-
plained, e.g., byMartyushev(2013), both are not opposed to
each other, but refer to different thermodynamic constraints
where maximum entropy production has a wider range of
applicability. Minimum energy dissipation can also be re-
lated to maximum entropy production (e.g.,Županovíc et al.,
2010). So it is the most general concept of nonequilibrium
thermodynamics for application to coupled or spatially dis-
tributed systems in hydrology, and all the recent papers on
optimization in hydrology mentioned above hinge on maxi-
mum entropy production in some sense. However, maximum
entropy production is a thermodynamic principle, and delin-
eating systems or subsystems that indeed act at their ther-
modynamic limit and thermodynamic constraints is nontriv-
ial. As pointed out byWesthoff and Zehe(2013), finding the
properties that have to be maximized or minimized in a given
system is therefore still a challenge.

In this paper, we transfer the concept of self-organization
towards minimum energy dissipation from river networks to
subsurface flow patterns and directly derive equations for the
optimal spatial distribution of porosity and permeability. In
principle this is the realization of the vision on preferen-
tial subsurface flow patterns described byMcDonnell et al.
(2007) for the case of saturated flow. A brief review on the
established theory for river networks is presented in the fol-
lowing section, while the more complicated theory for sub-
surface flow is presented in Sect.3.

2 The concept of minimum energy expenditure in river
networks

Scale-invariant properties of river networks have been known
for a long time (Horton, 1945; Hack, 1957), and the idea

to relate these properties to minimum energy dissipation
(Howard, 1990; Rodriguez-Iturbe et al., 1992a, b; Rinaldo
et al., 1992; Rinaldo et al., 1998) seems to be the first sub-
stantial application of optimality principles in hydrology. The
basic idea is that river networks organize in such a way that
the total energy dissipation of the water on its way through
the entire domain is minimized. So it refers to the surficial
part of the water cycle starting where precipitation strikes
the surface and ending when the water reaches the ocean (or
any other fixed reference point).

If changes in kinetic energy are neglected, energy dissipa-
tion can be computed without any knowledge of flow dynam-
ics since the potential energy of the water is dissipated when
it flows downslope in a channel. Then the mean energy dissi-
pation (energy per time) of an individual channel segment is

P = ρgqlS, (1)

whereρ is the density,g the gravitational acceleration,q the
mean discharge (volume per time),l the length, andS the
slope of the segment. In order to find those channel networks
with the lowest energy dissipation (called optimal channel
networks or OCNs), the domain is subdivided into discrete
cells exposed to a uniform precipitation. The centers of the
cells are linked by channel segments in such a way that each
site (except for one or more outlet sites at the boundary)
drains to exactly one neighbored site, but can be supplied by
an arbitrary subset of its neighbors. This leads to dendritic
river networks. The energy dissipation of the entire domain
is readily obtained by summing up the contributions of all
cells (Eq.1):

P = ρg
∑

i

qi liSi . (2)

However, minimizingP without any constraints makes no
sense as the trivial solution is a flat topography where all
slopes vanish, so that there is no potential energy to be dissi-
pated. Therefore, the theory of OCNs introduces a constraint
to the minimization ofP by assuming a relationship between
slope and discharge; namely

S ∝ q−θ , (3)

with θ ≈ 0.5. This relationship was originally found empiri-
cally by Hack(1957) from the analysis of longitudinal river
profiles, but substantiated theoretically later by the so-called
stream-power approach (Howard, 1994). This approach pre-
dicts the erosion rate as a function of slope and discharge and
is the basis of almost all large-scale models of fluvial erosion
in the detachment-limited regime. In this context Eq. (3) can
be interpreted as an equilibrium of erosion and a spatially
constant uplift rate in a homogeneous material. In most con-
siderations (including Hack’s original work and the work on
OCNs), the catchment size is used instead of the dischargeq,
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which makes no difference in case of uniform precipitation
(minus evaporation) in the entire domain.

The OCN concept constrains the minimization of energy
dissipation to steady-state topographies where homogeneous
uplift is balanced by erosion, i.e., following Eq. (3). Inserting
this relation into Eq. (2) leads to

P ∝

∑
i

liq
γ

i , (4)

with γ = 1− θ ≈ 0.5. This expression allows for a minimiza-
tion of the energy dissipation at a given uplift rate (which
itself hides in the constant of proportionality) from the net-
work topology alone without explicitly considering the to-
pography, provided that the precipitation (minus evapora-
tion) is given. In the studies on OCNs, drainage networks
that minimize Eq. (4) (strictly speaking, the version without
the termli that takes into account the length of the river seg-
ments) were determined numerically.

It was found that these OCNs reproduce some well-known
statistical properties of real river networks, such as the rela-
tionship between river length and catchment size and the sta-
tistical distribution of the catchment sizes, quite well. How-
ever, later studies using simple erosion models (Hergarten
and Neugebauer, 2001; Hergarten, 2002) revealed that some
of the statistical properties can be reproduced even a little
better for river networks exposed to permanently changing
boundary conditions which are clearly above the minimum
energy dissipation. In general, the considered statistical prop-
erties of drainage networks seem to be rather robust, and it
seems to be impossible to tell how close real-world river net-
works are to the thermodynamic limit of minimum energy
dissipation.

In the following section we transfer the concept of min-
imum energy dissipation to subsurface flow. Afterwards we
present two applications to different scenarios and a valida-
tion using spring discharge distributions in order to demon-
strate that the concept may be as powerful as the original
minimum energy dissipation idea for river networks.

3 Theory

In the following, we assume steady-state Darcy flow of
an incompressible fluid in an isotropic, but inhomogeneous
porous medium with a hydraulic conductivityK(x). The vol-
umetric flow rate is then given by

q(x) = −K(x)∇h(x), (5)

with the hydraulic potentialh(x). As Darcy’s law neglects ef-
fects of inertia, changes in kinetic energy shall be neglected.
Therefore, the potential energy of the water is completely
dissipated, and the total energy dissipation per time is

P = −ρg

∫
q(x) · ∇h(x)d3x, (6)

= ρg

∫
K(x)|∇h(x)|2d3x, (7)

= ρg

∫
q(x)2

K(x)
d3x, (8)

where the integral extends over the considered domain, and
q(x) = |q(x)|.

The key point of this paper is determining the distribu-
tion of K(x) which minimizes the total energy dissipation.
This can be either achieved by minimizing Eq. (7) with re-
gard toK(x) if h(x) is given or by minimizing Eq. (8) if
q(x) is given. In principle, even a simultaneous minimization
of Eq. (7) with respect to bothK(x) andh(x) can be per-
formed. However, the part referring toh(x) only yields the
mass balance which is shown in the following. If the spatial
distribution of the conductivityK(x) is given, the fieldh(x)

which minimizesP is given by the Euler–Lagrange equation
of Eq. (7):

∂

∂h(x)
P = div

∂

∂∇h(x)
P, (9)

where the derivatives are functional derivatives. This imme-
diately leads to

div(K(x)∇h(x)) = 0, (10)

so that the distribution ofh(x) which minimizes the energy
dissipation automatically satisfies the mass balance for an in-
compressible fluid under saturated conditions as long as there
are neither sources nor sinks. Source and sink terms can be
included by taking into account the potential energy of the
water entering or leaving according to its hydraulic potential.
This minimization is the basis of the variational approach in
finite-element groundwater modeling, but here it just illus-
trates that it makes no difference whether we optimizeK(x)

andh(x) simultaneously orK(x) alone and consider Darcy’s
law with the mass balance separately. As the latter will be
easier in the applications presented in Sect.4, we focus on
the optimization ofK(x) where eitherh(x) or q(x) is given.

Similarly to the surface drainage network optimization, the
optimization ofK(x) has trivial solutions, namelyP → 0 if
K(x) → 0 everywhere (h(x) given; Eq.7) andK(x) → ∞

everywhere (q(x) given; Eq.8). We thus need a constraint
in analogy to the equilibrium of uplift and erosion for river
networks. The idea that the total conductivity, i.e., the con-
ductivity integrated over the entire domain, is given, may be
straightforward at first sight. Alternatively, we can assume a
given total pore space volume:

V =

∫
φ(x)d3x, (11)

whereφ(x) is the porosity. With respect to preferential flow
patterns generated by the flow itself, e.g., in karst systems,
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the second idea is more suitable because the change inV

is the total amount of solid volume that has to be removed
(e.g., dissolved).

In order to minimize the energy dissipation under the con-
straint defined in Eq. (11), the Euler–Lagrange formalism
must be applied to the functionalP − λV instead ofP where
the numberλ is a Lagrange multiplicator. As neitherP nor
V contain derivatives ofφ(x), the result is formally the same
as ifφ was a parameter instead of a function:

∂

∂φ(x)
P = λ

∂

∂φ(x)
V . (12)

While the functional derivative on the right-hand side is al-
most trivial,

∂

∂φ(x)
V (φ) = 1, (13)

computing the left-hand side requires a constitutive law for
the conductivity as a function of the porosity, i.e., a function
K(φ).

Relations between porosity and conductivity have been ex-
tensively studied since the seminal work ofKozeny(1927)
andCarman(1937). The original Kozeny–Carman equation
predicts

K ∝
φ3

(1− φ)2
, (14)

where the factor of proportionality includes a spatial length
scale and the denominator becomes important in case of very
high porosities. As the length scale may change if conduits
are widened, applying Eq. (14) without further considera-
tions may be misleading. So let us first consider the simple
case of parallel tubular conduits of given radiiri . Accord-
ing to the Hagen–Poiseuille law, the total conductivity of this
system is

K ∝

∑
i

r4
i , (15)

while

φ ∝

∑
i

r2
i . (16)

The relation between porosity and conductivity depends on
how additional pore space is distributed among the conduits.
Increasing all radii by the same factorβ is perhaps the sim-
plest concept. Thenφ increases by a factorβ2, while K in-
creases by a factorβ4, resulting in a relationK ∝ φ2.

However, spending all additional pore space volume for
widening the largest conduit is most efficient with regard to
the conductivity. In this case we obtain

∂ logK

∂ logφ
=

φ

K

∂K

∂φ
=

φ

K

∂K
∂rmax

∂φ
∂rmax

=

∑
i

r2
i∑

i

r4
i

4r3
max

2rmax
= 2

∑
i

r2
i r2

max∑
i

r4
i

≥ 2, (17)

which means that the slope in a double-logarithmicK–φ plot
is 2 or larger. It approaches the value of 2 obtained for widen-
ing all conduits by the same factor if either all conduits are
equally sized or if the largest conduit is much larger than the
rest. So the relationship between conductivity and porosity is
not an overall power law, but behaves like a power law with
n = 2 over a range of values, while it may increase faster in
other regimes. Therefore, an overall power-law relationship,

K(φ) = aφn, (18)

with n ≥ 2 seems to be the best tradeoff between a good
approximation and keeping the following considerations as
simple as possible. However, most of the results obtained
in the following only requiren > 1, which just means that
the conductivity increases more rapidly than the porosity. For
simplicity, we neglect the strong increase in conductivity due
to the coalescence of conduits forφ → 1 reflected in the de-
nominator of Eq. (14).

Inserting the expression for the energy dissipation (Eq.7),
the K–φ relationship (Eq.18), and Eq. (13) into Eq. (12)
yields

ρganφ(x)n−1
|∇h(x)|2 = λ. (19)

The Lagrange multiplicator can be eliminated using the total
pore space volumeV (Eq.11), leading to

λ = ρgan

(
V∫

|∇h(x)|−
2

n−1 d3x

)n−1

, (20)

and finally to

φ(x) = V
|∇h(x)|−

2
n−1∫

|∇h(ξ)|−
2

n−1 d3ξ
. (21)

So the optimal distribution of the porosity ifh(x) is given

is proportional to|∇h(x)|−
2

n−1 , while the rest of Eq. (21) is
just a normalization to maintain the given total pore space
volumeV .

Minimizing the energy dissipation ifq(x) is given is sim-
ilar. Computing the functional derivative of Eq. (8) leads to
the condition

−
ρgnq(x)2

aφ(x)n+1
= λ. (22)
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The Lagrange multiplicator can again be eliminated using the
total pore space volume according to

λ = −
ρgn

a

(∫
q(x)

2
n+1 d3x

V

)n+1

, (23)

finally leading to

φ(x) = V
q(x)

2
n+1∫

q(ξ)
2

n+1 d3ξ
. (24)

This dependency is not only similar to that obtained for the
case thath(x) is given (Eq.21), but even basically the same.
This becomes obvious if we transform Eq. (21) to conductiv-
ities, leading to

K(x) = aV n |∇h(x)|−
2n

n−1(∫
|∇h(ξ)|−

2
n−1 d3ξ

)n , (25)

∝ |∇h(x)|−
2n

n−1 . (26)

Applying the same to Eq. (24) leads to

K(x) = aV n q(x)
2n

n+1(∫
q(ξ)

2
n+1 d3ξ

)n , (27)

∝ q(x)
2n

n+1 . (28)

Replacingq(x) with K(x)|∇h(x)| in Eq. (28), it is recog-
nized that Eqs. (26) and (28) are equivalent.

Thus, the optimal distribution of porosities and conductiv-
ities with respect to minimum energy dissipation is the same
for h(x) given and forq(x) given and can be summarized in
the following relations:

φ(x) ∝ |∇h(x)|−
2

n−1 ∝ q(x)
2

n+1 , (29)

K(x) ∝ |∇h(x)|−
2n

n−1 ∝ q(x)
2n

n+1 . (30)

In principle, we can now insert this result into the mass
balance of Darcy’s law (Eq.10) and obtain the highly non-
linear differential equation

div
(
|∇h(x)|−

2n
n−1 ∇h(x)

)
= 0. (31)

However, we should keep in mind that this is a Darcy equa-
tion where the conductivity increases even more than linearly
with the flow rate. This results in a strong tendency to focus
flow, so that this equation will not have a unique, regular so-
lution in general. For this reason we refrain from considering
this equation in detail here.

Beyond this, the resulting optimal distribution ofK(x) can
be used to represent the total energy dissipation as a function

of eitherh(x) or q(x) alone. Plugging Eq. (25) into Eq. (7)
yields

P =
ρgaV n(∫

|∇h(x)|−
2

n−1 d3x
)n−1

. (32)

Thus, minimizing the total energy dissipation is equivalent to
maximizing the functional

F(h) =

∫
|∇h(x)|−

2
n−1 d3x. (33)

It is easily recognized that Eq. (31) is the Euler–Lagrange
equation of this functional. As a consequence, maximizing
F(h) approximately among a set of functions obeying some
regularity should also provide an approximate solution of the
nonlinear Darcy flow problem posed in Eq. (31).

An equivalent functional with regard toq(x) is obtained
by inserting Eq. (27) into Eq. (8), resulting in

P =
ρg

aV n

(∫
q(x)

2
n+1 d3x

)n+1

. (34)

Therefore, minimizingP is equivalent to minimizing the
functional

G(q) =

∫
q(x)

2
n+1 d3x. (35)

This functional will be used in the application presented in
Sect.4.2.

4 Applications

4.1 Radial flow towards a spring

As a simple application we consider radial symmetric flow
towards a spring in two dimensions. Due to the two-
dimensional structure,K must be interpreted as a transmis-
sivity, i.e., the product of conductivity and thickness, here.
An appropriate spatial distribution of the transmissivity has
to be assumed when modeling the water fluxes in karstified
aquifers without having detailed information on the subsur-
face structure in the vicinity of springs. If the transmissivity
was constant, the hydraulic gradients would strongly increase
close to springs. While steep hydraulic gradients occur in the
vicinity of artificial pumping wells, the hydraulic gradients
around karst springs are in general moderate. Therefore, the
effective transmissivity (without explicitly considering frac-
tures or karst pipes in the model) must increase towards the
spring. The simplest assumption is an increase proportional
to 1

r
(wherer is the distance from the point-like spring) that

just compensates the decrease of the flow cross section to-
wards the spring. This scenario was investigated byBirk and
Hergarten(2012).
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Let us now determine the optimal distribution of the trans-
missivity for the radially symmetric case. For a domain of
radiusR with uniform recharge, the volumetric flow rate is

q(r) ∝
R2

− r2

r
, (36)

where the dominator increases towards the spring due to in-
creasing catchment size, and the denominator decreases due
to decreasing cross-section area. From Eqs. (29) and (30) we
immediately obtain

φ(r) ∝

(
R2

− r2

r

) 2
n+1

(37)

∝ r−
2

n+1 for r � R, (38)

so that

K(r) ∝ r−
2n

n+1 for r � R. (39)

This leads to

∂

∂r
h(r) =

q(r)

K(r)
∝

r−1

r−
2n

n+1

= r
n−1
n+1 , (40)

and thus

h(r) ∝ r
2n

n+1 (41)

close to the spring (r � R) if h(0) = 0. For all valuesn > 1,
the predicted increase inK(r) even overcompensates the de-
crease in cross-section area towards the spring, so that the
hydraulic gradient even tends to zero when approaching the
spring. As discussed in Sect.3, n should at least be 2 in natu-
ral aquifers, so that the optimalK(r) should increase at least

like r−
4
3 towards the spring, andh(r) should decrease at least

like r
4
3 .

4.2 Dendritic flow patterns

We now come to the direct analog of the optimal channel
network approach reviewed in Sect.2. As stated at the end
of Sect.3, minimizing the energy dissipation causes a ten-
dency to focus flow, so that it makes sense to assume that
each site in a discrete system only drains towards one of its
neighbors. This topology is obvious for large-scale surface
river networks except for situations where sediment deposi-
tion is important, e.g., braided rivers and river deltas where
flow paths may indeed split up in downstream direction. The
following argument shows that splitting up the flow of a site
is energetically unfavorable for subsurface flow, too. Let us
assume an arbitrary network of flow paths connecting dis-
crete sites with any of their neighbors. For such a discrete
network, the functional to be minimized (Eq.35) turns into
that for river networks (Eq.4):

G(q) =

∑
i

liq
γ

i , (42)

with

γ =
2

n + 1
. (43)

Let us assume that the dischargesqi describe the config-
uration with the minimum energy dissipation. If this con-
figuration contains any site that drains towards more than
one neighbor, there must be a set of configurations with dis-
chargesqi + ε δ qi that is allowed within a range ofε around
zero. The condition that the functionalG(q + ε δ q) has a
minimum atε = 0 requires

∂2

∂ε2
G(q + εδq)

∣∣∣∣
ε=0

>= 0, (44)

but computing the second derivative immediately yields

∂2

∂ε2
G(q + εδq)

∣∣∣∣
ε=0

= γ (γ − 1)
∑

i

li (δqi)
2q

γ−2
i < 0 (45)

for 0< γ < 1. So the original configuration with discharge
towards more than one neighbor cannot be a minimum
of the energy dissipation. As a consequence, nondendritic
maze cave structures are not optimal in the sense of energy
dissipation.

We therefore consider only dendritic networks where each
site has a unique flow direction towards one of its neigh-
bors, in analogy to the theory of OCNs. Similarly to this ap-
proach, we focus on two-dimensional flow patterns in plan
view. We subdivide the domain into square cells where each
cell is exposed to the same recharge and assume that each cell
drains to one of its eight nearest and second-nearest neigh-
bors. Darcy’s law is only applied in one dimension along the
dendritic network, while arbitrary flow directions not neces-
sarily related to a hydraulic gradient are allowed.

In analogy to the numerical determination of OCNs, the
technique of simulated annealing based on the Metropolis al-
gorithm (Metropolis et al., 1953) can be used for approaching
the minimum energy dissipation iteratively. It starts from an
arbitrary initial configuration that only has to be consistent in
the sense that a flow path from each site to the boundary ex-
ists. In each iteration step, the flow direction of a randomly
selected site is changed to another (consistent) random di-
rection. If the resulting change in energy dissipation is neg-
ative, the change is accepted anyway. However, rejecting all
changes where the energy dissipation increases temporarily
results in getting stuck at local minima. Therefore, changes
which seem to be bad at first sight must be allowed with some
probability. During the iteration, the acceptance of changes
increasing the energy dissipation is slowly reduced, which
can be interpreted as a slow thermodynamic cooling of the
system.
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Figure 1. Dendritic flow patterns obtained by numerical optimiza-
tion for different values ofn on lattices of 4096× 4096 sites. Only
flow paths with a discharge of at least 10−5 of the total recharge
are plotted. The line width is proportional to the third root of the
discharge, which is proportional to the diameter of the conduits for
n = 2.

Figure1shows four realizations on lattices of 4096× 4096
sites where outflow is allowed across the entire boundary. As
expected, dendritic network structures occur for all values
of n considered here. The tendency towards highly branched
networks increases withn. Vice versa, a significant tendency
towards the shortest way to the boundary is visible forn =

4
3.

However, this value is outside the rangen ≥ 2 obtained for
reasonable relations between porosity and permeability, but
will become relevant for the discussion on turbulent flow in
Sect.5. As mentioned above,n should not be much greater
than 2, while the typical valueγ = 0.5 (Eq.4) for surface
river networks corresponds ton = 3 according to Eq. (43).
Therefore, our model predicts that the tendency to search the
shortest way to the boundary should be slightly stronger for
two-dimensional subsurface flow patterns than for rivers at
the surface. However, it was already pointed out byRinaldo
et al. (1998) that such small variations inγ do not result
in significant differences in the statistical properties of the
networks.

As little is known about the internal structure of real sub-
surface flow patterns, spring discharges provide the most eas-
ily accessible information. Figure2 shows that the distribu-
tion of the spring dischargesQ is a power law described by
the probability density:

f (Q) = Q−τ , (46)
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Figure 2. Probability density of the spring discharges of the flow
patterns shown in Fig.1 measured along the boundaries of the do-
main. Discharges are scaled by assuming a unit recharge at each
site, so that the discharge is the same as the number of sites in the re-
spective catchment. The estimated discrete values were obtained by
logarithmic binning with five bins per decade. The distributions for
homogeneous porosity and forn = 1 are identical and correspond to
straight flow lines towards the boundary.

with τ = 1.5. Transformed to a cumulative distribution,
i.e., the numberN(Q) of springs with a discharge greater
than or equal toQ, it says

N(Q) = Q−0.5. (47)

This result is insensitive ton at least in the rangen ≥
4
3 con-

sidered here, and thus for all reasonable relations between
porosity and permeability as discussed above.

4.3 Validation

In the following we attempt to validate our model by two data
sets of spring discharges from Austria. The first data set com-
prises the discharges of 1675 springs in the Niedere Tauern
Range, and the second one the discharges of 1001 springs
in the Semmering region. The methods of data acquisition
range from simple estimates to direct capture and tracer di-
lution techniques. The frequency of measurement also varies
from spring to spring. Despite the potential errors in the in-
dividual spring discharges, both data sets reveal clear power-
law distributions of the discharges above a minimum value
of about 0.1 L s−1 (Fig. 3). This result suggests that the sub-
surface flow patterns in the two regions are indeed strongly
organized.

Both power-law distributions are strikingly similar even
quantitatively. However, the scaling exponentτ appears to
be greater than the valueτ = 1.5 predicted by the model
(Eq.46). The estimateτ = 1.8 given in Fig.3 was determined
by visual correlation. Fitting a power-law distribution tak-
ing into account the statistical variation in the data reveals a
rather high uncertainty in the scaling exponent as determin-
ing the minimum discharge where the power law begins is
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Figure 3. Probability density of the spring discharges of the two
considered data sets from Austria. The estimated discrete values
were obtained by logarithmic binning with five bins per decade.

difficult. Starting a power-law fit at a minimum discharge of
0.1 L s−1 even yieldsτ < 1.5, but visually, the data still sug-
gestτ > 1.5 in these two regions.

However, the occurrence of an organized flow pattern does
not imply that it is indeed self-organized. And even if it is, it
does not prove that this self-organization follows the prin-
ciple suggested in this study. If the principle of minimizing
energy dissipation holds here, the deviations in the scaling
exponent may, e.g., arise from a three-dimensional flow or-
ganization or from the location of the springs in relation to
the topography. On the other hand, the power-law distribu-
tion might also be the result of a scale-invariant tectonic pre-
design and not be related to any self-organization in the flow
pattern. Therefore, more data sets are needed to validate or
refute our idea of subsurface flow organization.

4.4 Residence time distributions

Residence times and their statistical distributions are among
the most important properties in subsurface hydrology. On
the one hand, they reveal valuable information about storage
and flow pathways, and on the other hand they are essential
for predicting the propagation of pollutants and recovery.

The spatial distribution of porosity and conductivity has a
strong influence on the residence time distribution in a catch-
ment. The residence time distribution is obtained by integrat-
ing 1

v(x)
over the flow path from each point of the catchment

to the spring. Here,

v(x) =
q(x)

φ(x)
(48)

denotes the flow velocity. Using Eq. (24) we obtain

v(x) =
q(x)

n−1
n+1
∫

q(ξ)
2

n+1 d3ξ

V
, (49)

∝ q(x)
n−1
n+1 . (50)

Thus, the flow velocity increases with increasing flow rate
for all valuesn > 1. However, the increase is weaker than
the linear increase occurring in a homogeneous aquifer. The
exponent in Eq. (50) amounts to one-third forn = 2, which
means that one-third of an increase in flow rate is due to an
increase in velocity, while two-thirds arise from the increase
of conductivity.

At this point it should be mentioned that the residence time
distribution obtained this way describes only the contribution
of the flow paths since it is assumed that the entire water in a
representative volume moves exactly at the velocity defined
by Eq. (48). Effects of dispersion and the properties of spe-
cific tracers (e.g., sorption) must be taken into account addi-
tionally when making a prediction.

The relationship between flow rate and flow velocity is the
perhaps most important difference of our model of subsur-
face flow towards rivers at the surface. Although the theory
reviewed in Sect.2 does not account for flow velocities ex-
plicitly, it is clear that the flow velocities of large rivers hav-
ing a small slope are lower than those of small, but steeper
rivers. Therefore, surface rivers show a negative correlation
between discharge and velocity in general.

Figure4 shows the residence time distributions of the ex-
amples considered in Sects.4.1and4.2, obtained by evaluat-
ing the path integrals over1

v(x)
according to Eq. (49) numer-

ically. Both geometries yield exponential residence time dis-
tributions for a homogeneous aquifer, but completely differ-
ent distributions otherwise. In the example of radial flow, the
distribution changes from being strongly negatively skewed
to positively skewed for increasingn. The respective distribu-
tions of the dendritic networks are always positively skewed
and become more symmetric for increasingn. For n = 2 or
not much larger, which was found to be the most reasonable
range, the distributions are moderately positively skewed in
both examples.

The residence time distribution for radial flow can be ex-
plained directly with Eq. (50) since the flow rate is entirely
determined by the recharge and thus independent ofn, the
same as for a homogeneous aquifer. For small values ofn,
the increase in velocity towards the spring is much weaker
than in the homogeneous case. As this affects the residence
times in the entire catchment, it results in high residence
times for large parts of the catchment. In return, the velocities
approach those of the homogeneous distribution forn → ∞,
resulting in a positively skewed residence time distribution.

For the dendritic pattern, the residence time distribution
does not only depend on the relationship between flow rate
and velocity (Eq.49), but also on the flow pattern. We there-
fore have two competing effects of the dendritic structure
compared to direct flow towards the boundary. First, the flow
length becomes longer for (almost) all sites but, in return,
flow in the preferential flow paths is faster. In our example we
found that the mean residence times in the dendritic networks
are about 10 % higher than for a homogeneous conductivity.
The longest mean residence time was found forn = 2, but
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(b) Dendritic flow patterns
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Figure 4.Residence time distributions for the two examples consid-
ered in Sects.4.1 (a) and4.2 (b). The nondimensional time axis is
scaled in such a way that the mean residence time is one for the ho-
mogeneous distribution of the conductivity, and the total pore space
volume is the same in all cases.

the dependence onn is rather weak. Notably, the residence
time distributions obtained forn ≥ 2 are similar to those aris-
ing from an advection–dispersion model, although the theory
behind our model is completely different from this.

5 Extension towards turbulent flow

The theory presented in this paper hinges on laminar flow
according to Darcy’s law, while flow becomes turbulent at
large flow rates in reality. This particularly applies to large
conduits in karstic systems. In the following we give a sketch
of an extension of our theory towards turbulent flow.

Let us first assume fully turbulent flow through parallel
conduits of radiiri , so that the flow in each of them is de-
scribed by the Darcy–Weisbach law:

|∇h(x)| ∝
v2
i

ri
, (51)

with the flow velocityvi . Then the volumetric flow rate is

q(x) ∝

∑
i

r2
i vi ∝

√
|∇h(x)|

∑
i

r2
i

√
ri, (52)

which can also be written as

|∇h(x)| ∝
q(x)2(∑
i

r
5
2
i

)2
. (53)

If we increase all radii by the same factorβ, the denominator

increases by a factorβ5, corresponding toφ
5
2 . In analogy to

the laminar case (Eq.17) we can alternatively assume that
the only largest conduit is widened and obtain

∂ log|∇h|

∂ logφ
=

φ

|∇h|

∂ |∇h|

∂φ
=

φ

|∇h|

∂|∇h|

∂rmax

∂φ
∂rmax

= −
5

2

∑
i

r2
i

√
rmax∑

i

r
5
2
i

≤ −
5

2
. (54)

We therefore assume

|∇h(x)| ∝
q(x)2

φ(x)m
, (55)

with m ≥
5
2. Inserting this approach into Eq. (6) yields

P ∝

∫
q(x)3

φ(x)m
d3x. (56)

Minimizing this expression under the constraint of a given
total pore space volume (Eq.11) requires

∂P

∂φ(x)
= −m

q(x)3

φ(x)m+1
= constant, (57)

and thus

φ(x) ∝ q(x)
3

m+1 . (58)

This increase of the optimal porosity with the volumetric

flow rate is even stronger than the increase likeq
2

n+1 with
n ≥ 2 found for laminar flow (Eq.24). Inserting the re-
spective version of Eq. (24) with 3

m+1 instead of 2
n+1 into

Eq. (56) leads to

P ∝

(∫
q(x)

3
m+1 d3x

)m+1

, (59)

so that the functional to be minimized is

G(q) =

∫
q(x)

3
m+1 d3x. (60)

This functional is qualitatively the same as the one obtained
for laminar flow. The exponent 3

m+1 is still smaller than one
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for all valuesm ≥
5
2, but closer to one than the exponent2

n+1

for laminar flow. The lowest value,m =
5
2, is equivalent to the

laminar case forn =
4
3 (which is unrealistic for laminar flow

as we foundn ≥ 2 there). Repeating the calculations leading
to Eq. (50) for turbulent flow reveals that the same result also
holds for the residence time distributions.

Due to this equivalence, the upper left network shown in
Fig.1 (n =

4
3, equivalent tom =

5
2) illustrates that fully turbu-

lent flow conditions result in less dendritic flow patterns than
laminar flow conditions. But, as shown in Fig.2, the size dis-
tribution of the spring discharges is not affected. However,
the residence time distribution (Fig.4b) becomes strongly
skewed in the turbulent regime. So some of the properties of
the flow network are basically the same for laminar and tur-
bulent flow, while some other properties change significantly.

However, the most significant effect of turbulence should
occur at the transition from laminar to turbulent flow. This
transition is in general accompanied by a strong increase in
energy dissipation. For an individual pipe, the transition oc-
curs when the Reynolds number exceeds a given threshold.
The Reynolds number itself is proportional to the radius of
the pipe and to the flow velocity. In our approach, the radii
increase with the porosity and thus with the discharge. Ac-
cording to Eq. (50), the flow velocity also increases with the
discharge, so that the Reynolds number increases with the
discharge, too. As a consequence, the transition to turbulent
flow shall occur at a given critical flow rate. This also implies
that the turbulent regime can only cover a part of the domain
in general. Therefore, the functional to be minimized will be-
come more complicated than the one given in Eq. (4):

G(q) =

∫
f (q(x))q(x)γ (q(x))d3x, (61)

or for discrete networks

G(q) =

∑
i

f (qi)q
γ (qi )
i , (62)

wheref (q) = 1 andγ (q) =
2

n+1 if q is below the turbulent

threshold, whilef (q) = constant> 1 andγ (q) =
3

m+1 else.
As this functional is even discontinuous, the minimization
becomes nontrivial, and it is not even clear whether the con-
jecture that each site has a unique flow direction holds in the
region close to the transition.

6 Limitations

Although our first results are promising, some limitations of
the new theory are already visible. While the theory in itself
should be consistent, these limitations concern the relevance
of the thermodynamic limit of minimum energy dissipation
for real subsurface flow patterns.

Even if we assume that the evolution of porosity goes
in direction of minimizing energy dissipation, the question

remains whether a self-organizing porosity distribution start-
ing from a given state is really able to come close to the
ground state of minimum energy dissipation. In karst systems
where the evolution of porosity due to solution is understood
quite well at small scales, this evolution is always directed
towards higher porosity. Even if we assume that any increase
in porosity is spent in such a way that the energy dissipation
is reduced most efficiently, more or less parallel preferen-
tial flow paths may arise first even at rather small distances.
Removing one of them in order to obtain a more dendritic
and thus energetically better network may require a strong
further increase in porosity which may be impossible in real-
ity. Therefore, the spatial scale up to which the optimization
can proceed may be limited in reality and so far there has not
been a quantitative relationship between this scale and the to-
tal (increase in) porosity. At first sight this seems to be a strik-
ing difference towards the evolution of river networks at the
surface. Due to erosion and uplift permanently counteracting
each other, a river network may in principle have unlimited
time to self-organize. However, as shown byHergarten and
Neugebauer(2001), the ability of river networks to erase ex-
isting patterns is also limited, so that the problem is basically
the same as for subsurface flow. And as pointed out before,
the considered statistical properties of both subsurface and
surface flow networks are not very helpful in this context as
they are rather insensitive to the distance from the ground
state of minimum energy dissipation.

As a second major aspect, the examples presented in
Sect.4 are horizontal two-dimensional flow patterns and do
not include a vertical component. For three-dimensional flow
patterns, the recharge applied to the entire domain in two di-
mensions must be replaced by an influx at the upper bound-
ary. It is easily recognized that the optimal flow pattern then
starts with horizontal flow along the upper boundary keeping
the lower regions dry as this is the fastest way to focus flow. If
the level where water leaves the domain at the sides is lower,
the preferential flow paths will approach this lower level only
close to the side boundaries. In reality, there is a tendency to-
wards vertical flow from the beginning, which means that the
idea of minimum energy dissipation can only work in three
dimensions if the anisotropy due to gravity is incorporated in
an appropriate way. Such an extension should include a re-
duced energy dissipation for vertical flow, but its quantitative
representation is not yet clear.

7 Conclusions

We have presented a new theoretical concept to derive the
properties of subsurface flow patterns from a principle of
optimization. In its spirit, the idea is similar to the estab-
lished idea of minimizing energy dissipation for river net-
works at earth’s surface. Due to different physical and em-
pirical laws for surface and subsurface flow, our theory sig-
nificantly differs from that of surface river networks and is
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more complicated. Beyond the basic equations, we have to
introduce different constraints for the minimization. While
equilibrium between tectonic uplift and erosion is assumed
for river networks, we assume a given total pore space vol-
ume and a relationship between porosity and permeability.

Despite the differences in the theories, both concepts fi-
nally arrive at basically the same functional to be minimized.
As a consequence, the predicted preferential flow patterns in
two dimensions are quite similar to surface river networks.
The predicted size distribution of the spring discharges fol-
lows a power law with a (noncumulative) scaling exponent
τ = 1.5. This result reproduces the spring size distributions
of two regions in Austria quite well, although the scaling ex-
ponent seems to be slightly higher there, namelyτ ≈ 1.8. The
other application shown in this paper, radial flow towards a
spring, suggests how the transmissivities in the region around
a spring might be chosen in a model where preferential flow
patterns are not taken into account explicitly.

The residence time distributions seem to be the most strik-
ing difference between our model for subsurface flow and
rivers at the surface. In contrast to rivers, our theory predicts
an increase of flow velocity with flow rate, which is, how-
ever, not as strong as in an homogeneous aquifer. As a con-
sequence of the weaker increase, mean residence times are in
general higher for optimized flow patterns than for homoge-
neous aquifers.

Finally, it should not be forgotten that, similarly to all other
principles of optimization in hydrology, the question remains
whether real systems indeed organize towards their thermo-
dynamic limit and, if so, how close can they come to the op-
timized state. The validation based on spring discharge dis-
tributions is promising, but does not prove that flow patterns
indeed self-organize according to minimum energy dissipa-
tion. Therefore, further studies are needed in order to inves-
tigate the applicability of our hypothesis. These studies will
also have to include three-dimensional flow patterns and the
influence of external predesign.
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