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Abstract. Deuterium excess (d-excess) of air moisture is tra-
ditionally considered a conservative tracer of oceanic evap-
oration conditions. Recent studies challenge this view and
emphasize the importance of vegetation activity in control-
ling the dynamics of air moisture d-excess. However, di-
rect field observations supporting the role of vegetation in
d-excess variations are not well documented. In this study,
we quantified the d-excess of air moisture, shallow soil wa-
ter (5 and 10 cm) and plant water (leaf, root and xylem) of
multiple dominant species at hourly intervals during three
extensive field campaigns at two climatically different loca-
tions within the Heihe River basin, northwestern China. The
ecosystems at the two locations range from forest to desert.
The results showed that with the increase in temperature (T )
and the decrease in relative humidity (RH), theδD–δ18O re-
gression lines of leaf water, xylem water and shallow soil wa-
ter deviated gradually from their corresponding local mete-
oric water line. There were significant differences in d-excess
values between different water pools at all the study sites.
The most positive d-excess values were found in air moisture
(9.3 ‰) and the most negative d-excess values were found
in leaf water (−85.6 ‰). The d-excess values of air mois-
ture (dmoisture) and leaf water (dleaf) during the sunny days,
and shallow soil water (dsoil) during the first sunny day af-
ter a rain event, showed strong diurnal patterns. There were
significantly positive relationships betweendleaf and RH and
negative relationships betweendmoistureand RH. The corre-
lations of dleaf and dmoisture with T were opposite to their

relationships with RH. In addition, we found opposite diur-
nal variations fordleaf anddmoisture during the sunny days,
and fordsoil anddmoistureduring the first sunny day after the
rain event. The steady-state Craig–Gordon model captured
the diurnal variations indleaf, with small discrepancies in the
magnitude. Overall, this study provides a comprehensive and
high-resolution data set of d-excess of air moisture, leaf, root,
xylem and soil water. Our results provide direct evidence that
dmoistureof the surface air at continental locations can be sig-
nificantly altered by local processes, especially plant transpi-
ration during sunny days. The influence of shallow soil wa-
ter ondmoistureis generally much smaller compared with that
of plant transpiration, but the influence could be large on a
sunny day right after rainfall events.

1 Introduction

Measurements of water isotopic compositions (e.g.,δD,
δ18O) provide insights into the study of hydrologic cy-
cles, ecological processes, and palaeoclimates across multi-
ple temporal and spatial scales (e.g., Brunel et al., 1992; Gat,
1996; Dawson et al., 2002; Newman et al., 2010; Wang et
al., 2010, 2013, 2014; Zhang et al., 2011; Good et al., 2012).
Plant uptake does not fractionate source water (White et al.,
1985),δD or δ18O, and therefore can be used to track a plant
water source (Ehleringer and Dawson, 1992), to investigate
relative rooting depth (Jackson et al., 1999), and to identify
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hydraulic redistribution (Dawson, 1993). Water isotopes can
also be used to trace catchment water movements (Brooks et
al., 2010), the geographic origin of water vapor (Clark and
Fritz, 1997), basin-level water recycling (Salati et al., 1979),
and to reconstruct past environmental parameters such as am-
bient temperature (T ) and relative humidity (RH) (e.g., Hel-
liker and Richter, 2008). The isotopic compositions of water
from different areas are affected by specific meteorological
processes, which provide a characteristic fingerprint of their
origin (Clark and Fritz, 1997). Much work has focused on
isotopic compositions of surface water (Zhao et al., 2011b),
groundwater (Zhao et al., 2012) and precipitation (Dalai et
al., 2002; Karim and Veizer, 2002; Zhao et al., 2011b; Soder-
berg et al., 2013). However, fewer investigations were con-
ducted to measure simultaneouslyδD andδ18O of leaf water,
xylem water, shallow soil water and air moisture, especially
on the diurnal variations in these pools at ecosystem scale.

Deuterium excess (d-excess) is defined as d-excess= δD–
8.0×δ18O (Dansgaard, 1964). Points that fall on the global
meteoric water line (GMWL) have a constant d-excess of
10.0 ‰. This is because rainout isotopic fractionation is con-
sidered an equilibrium process, which affects the position
of the data points on the GMWL, but which does not af-
fect the intercept – d-excess. Since the effect of equilib-
rium Rayleigh condensation processes roughly follows the
GMWL slope of 8, variations in d-excess can provide infor-
mation about the environmental conditions (e.g., RH andT )
during non-equilibrium processes in oceanic moisture source
regions. In other words, d-excess is considered a conserva-
tive tracer of oceanic evaporation conditions, assuming there
are no contributions from surface evapotranspiration as the
air mass travels over land (Welp et al., 2012). Therefore, d-
excess is used to identify the location of a moisture source
when there are no contributions from surface evapotranspi-
ration (Uemura et al., 2008). Transpiration does not change
source water d-excess, since transpiration does not fraction-
ate source water. Evaporation, however, usually results in a
higher d-excess value (Gat et al., 1994). d-excess has been
used to estimate evaporation in previous studies. For exam-
ple, d-excess was used to quantify sub-cloud evaporation in
Alpine regions (Froehlich et al., 2008) and to estimate the
contribution of evaporation from the Great Lakes to the con-
tinental atmosphere (Gat et al., 1994).

By using a meta-analysis approach to synthesize d-excess
measurements from multiple sites, Welp et al. (2012) showed
that the d-excess value of surface atmospheric vapor can
be significantly altered by local processes and that it is not
a conserved tracer of humidity from the marine moisture
source region, as previously assumed. In addition, modeling
simulations also showed that plant transpiration plays an im-
portant role in diurnal d-excess variations (Welp et al., 2012),
which contradicts the conventional understanding. Based on
isotopic observations from a US Pacific Northwest temper-
ate forest and a modeling exercise, Lai and Ehleringer (2011)
concluded that atmospheric entrainment appears to drive the

isotopic variation in water vapor in the early morning when
the convective boundary layer develops rapidly, while evapo-
transpiration becomes more important in mid-afternoon as a
primary moisture source of water vapor in the studied forest.
These authors therefore also cast some doubts on whether
continental water vapor d-excess can be used as a conserved
tracer of environmental conditions during evaporation at the
moisture source. Despite this new understanding of biologi-
cal and environmental controls on d-excess variations, field
observations of the role of the direct vegetation effect on di-
urnal d-excess variations are not readily seen in the litera-
ture. In addition, Merlivat and Jouzel (1979), one of the few
who theoretically calculated the quantitative relationship be-
tween the d-excess of evaporating vapor withT and RH, pre-
dicted that d-excess is affected by bothT and RH, and the d-
excess of evaporating vapor increases withT (0.35 ‰◦C−1),
but decreases with RH (−0.43 ‰ %−1) (Merlivat and Jouzel,
1979). Field testing of such a theoretical relationship is lack-
ing. The quantitative relationship will enhance our prediction
of climatic and environmental change impact (e.g., changes
in T , RH, rainfall and location) on water cycles. Further-
more, it is unclear whether a consistent d-excess–RH rela-
tionship, similar to the d-excess–RH relationship of ocean
evaporation, exists in evapotranspiration. Evapotranspiration
from the earth’s surface is a key process in the hydrologi-
cal cycle connecting the earth’s surface and the atmosphere.
Therefore, it is essential to study the evapotranspiration pro-
cess and its link to the atmospheric circulation in order to
understand the feedbacks between the earth’s surface and the
atmosphere better (Aemisegger et al., 2013).

In this study, we quantified the d-excess dynamics of air
moisture, shallow soil water (5 and 10 cm), and leaf and
xylem water of multiple dominant species at hourly inter-
vals during three extensive field campaigns at two climati-
cally different locations in the Heihe River basin, China. We
aim to provide a field-based fine-resolution d-excess record
and to explore the underlying mechanisms. The questions
we addressed in this study are the following: (1) what are
the diurnal patterns of d-excess in air moisture, leaves, roots,
xylem and shallow soil water under different climatic and
meteorological conditions? (2) What are the mechanisms of
the observed patterns and their controlling factors? (3) How
well do the widely used steady-state models capture the leaf
d-excess dynamics?

2 Materials and methods

2.1 Sampling sites

The field sampling took place at two locations (Dayekou
and Ejin) with distinct climatic conditions within the Heihe
River basin (HRB), northwestern China (Fig. 1). The tem-
perature is lowest in January, and is highest in July in both
Dayekou (Zhao et al., 2011a) and Ejin. Dayekou is located
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Figure 1. Locations of the sampling sites in the Heihe River basin.
Note: the information about sampling locations, altitude, period of
sampling and climatic conditions is listed in Table 1.

in the upper reaches (Fig. 1). The mean annual temperature
of Dayekou is about 0.7◦C, with a mean January tempera-
ture of −12.9◦C and a mean July temperature of 12.2◦C.
The mean annual precipitation is 369.2 mm, with over 71 %
of the rainfall occurring between June and September, and
the rainfall in July is the highest. Ejin is located in the lower
reaches (Fig. 1). The mean annual temperature of Ejin is
8.8◦C, with a mean January temperature of−11.3◦C and a
mean July temperature of 26.8◦C. The mean annual precip-
itation from 1960 to 2007 was 35.0 mm year−1, with 75 %
of the rainfall occurring between June and September. With
a strong potential evapotranspiration of 3700 mm (Gong et
al., 2002), Ejin is considered one of the driest regions in
China. At Dayekou, three sites were selected, with two sites
(S1-Sep/S1-Jun and S2-Jun) in the Pailugou valley and the
other (S3-Aug) in the Guantan valley. The site names were
assigned based on a combination of location and sampling
time. S1 (100◦18′ E, 38◦33′ N, 2900 m) was dominated by
tree species: Qinghai spruce (Q.S.), shrub speciesPoten-
tilla fruticosa (P.F.), and grass speciesPolygonum viviparum
(P.V.). S2 (100◦17′ E, 38◦33′ N, 2700 m) was dominated by
tree species Q.S. and grass speciesStipa capillata(S.C.). S3
(100◦15′ E, 38◦32′ N, 2800 m) was dominated by tree species
Q.S. Two sites were selected at Ejin: one is in the riparian
forest (S4-Aug: 101◦14′ E, 42◦01′ N, 930 m) with the dom-
inant tree speciesPopulus euphratica(P.E.) and the shrub
speciesSophora alopecuroides(S.A.); the other is in the
Gobi (S5-Aug: 101◦07′ E, 42◦16′ N, 906 m), with the main
shrub speciesReaumuria soongorica(R.S.) (Table 1).

2.2 Plant and soil sample collections

Three extensive field samplings were conducted in Au-
gust 2009 and in June and September 2011 in the upper and
lower reaches of the HRB (Table 1). In the upper reaches,
at S1-Jun, samples were taken from 06:00 LT (unless other-
wise stated, all times hereafter are in local time), 23 June
to 18:00, 25 June 2011 at 1-hour intervals for leaves and
stems of Q.S., 5 and 10 cm soil as well as atmospheric va-
por near the ground (about 20 cm above the ground) and at
the canopy. Leaves and stems of P.F. as well as leaves and
roots of P.V. were taken from the same period at 2-hour in-
tervals. All these samples were referred to as S1-Jun. At S1-
Sep, samples were taken from 08:00, 6 September to 17:00,
8 September 2011 at 1-hour intervals for leaves and stems of
Q.S., 5 and 10 cm soil and atmospheric vapor near the ground
and at the canopy. Leaves and stems of P.F. as well as leaves
and roots of P.V. were taken from the same period at 2-hour
intervals. At S2-Jun, leaves and stems of Q.S., 5 and 10 cm
soil and atmospheric vapor near the ground and at the canopy
were sampled from 06:00, 27 June to 18:00, 28 June 2011 at
1-hour intervals, while leaves and roots of S.C. were taken
from 06:00, 27 June to 18:00, 28 June 2011 at 2-hour inter-
vals. At S3-Aug, it rained twice during the sampling period
(from 17:00, 31 July to 04:00, 1 August and from 10:40 to
20:00, 2 August 2009). Leaves and stems of Q.S. as well as
5 and 10 cm soil samples were taken from 06:00, 1 August
to 18:00, 2 August and from 06:00 to 18:00, 3 August 2009
at 2-hour intervals. The atmospheric vapor at the canopy was
collected from 06:00, 2 August to 18:00, 3 August 2009 at
2-hour intervals (Table 1).

In the lower reaches of the HRB, at S4-Aug, a leaf and
stem of P.E. and a leaf of S.A., 10 cm soil and atmospheric
vapor at the canopy were taken from 06:00, 6 August to
22:00, 9 August 2009 at 2-hour intervals. At S5-Aug, a leaf
and stem of R.S., 10 cm soil and atmospheric vapor at the
canopy were taken from 18:00, 10 August to 18:00, 12 Au-
gust 2009 at 2-hour intervals. When samples were taken dur-
ing rainy days and mornings, napkins were used to wipe off
water from the leaf and stem surfaces (Table 1).

For the soil, leaf and stem samples, samples from two
8 mL bottles were used to extract water and measureδD and
δ18O. All samples were frozen in the Linze and Ejin field sta-
tions right after sampling and then transferred back to the lab-
oratory for water extraction. Water samples were extracted
from leaves, stems, roots and soil by a cryogenic vacuum
distillation line (Zhao et al., 2011b). The extracted water was
frozen in a collection tube.

2.3 Air moisture collection

We used a method similar to Wang and Yakir (2000) for
short-term sampling of ambient air moisture at different lo-
cations, such as Qinghai spruce forest (S1-Sep, S1-Jun, S2-
Jun and S3-Aug) in the upper reaches, and riparian forest
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Table 1.The vegetation types, sampling dates and time, and sampling types at the sampling sites in the Heihe River basin.

Study
region

Ecosystem
type

Altitude (m) Location ID Sampling time and
interval

Meteorological conditions Sampling types

The upper
reaches

Forest 2900 m S1-Sep:
Pailugou

6–8 September 2011
1 h interval

The cloudy day: 6 September 2011
The sunny day: 7 and 8 September
2011

Qinghai spruce – leaf and stem
5 cm soil water
10 cm soil water
Atmospheric vapor near the ground
Atmospheric vapor at the canopy

6–8 September 2011
2 h interval

Potentilla fruticosa– leaf and stem
Polygonum viviparum– leaf and root

Forest 2900 m S1-Jun:
Pailugou

23–25 June 2011
1 h interval

The sunny day: 23 June 2011
The drizzly day: from 09:00 to
20:00 on 24 June 2011
The cloudy day: 25 June 2011

Qinghai spruce – leaf and stem
5 cm soil water
10 cm soil water
Atmospheric vapor near the ground
Atmospheric vapor at the canopy

23–25 June 2011
2 h interval

Potentilla fruticosa– leaf and stem
Polygonum viviparum– leaf and root

Forest 2700 m S2-Jun:
Pailugou

27–28 June 011
1 h interval
27–28 June 2011
2 h interval

The sunny day: 27 June 2011
The cloudy day: 28 June 2011

Qinghai spruce – leaf and stem
5 cm soil water
10 cm soil water
Atmospheric vapor near the ground
Atmospheric vapor at the canopy
Stipa capillata– leaf and root

Forest 2800 m S3-Aug:
Guantan

31 July, 1–2 August
2009
2 h interval

Rain time: From 17:00, 31 July to
04:00, 1 August
From 10:40 to 22:00, 2 August 2009
The sunny day: 1 August

Qinghai spruce – leaf and stem
5 cm soil water
10 cm soil water
Atmospheric vapor at the canopy

The lower
reaches

Riparian
forest

930 m S4-Aug:
Qidaoqiao

6–9 August 2009
2 h interval

The sunny day Populus euphratica– leaf and stem
Sophora alopecuroides– leaf
10 cm soil water
Atmospheric vapor at the canopy

Gobi 906 m S5-Aug:
Gobi

10–12 August 2009
2 h interval

The sunny day Reaumuria soongorica– leaf and stem
10 cm soil water
Atmospheric vapor at the canopy

(S4-Aug) and the Gobi (S5-Aug) in the lower reaches. At
S1-Sep, S1-Jun and S2-Jun, the samples of air moisture were
collected within a canopy and near the ground (about 20 cm
above the ground). At S3-Aug, S4-Aug and S5-Aug, the sam-
ples of air moisture were collected within a canopy (Fig. 1
and Table 1). Air was sucked by a small diaphragm pump
through low-adsorption plastic tubes and a small cryogenic
trap at−80◦C at a rate of about 250 mL min−1 for about
50 min. Pump and traps were located on the ground down-
wind of the sampling site, and all the tubing was flushed with
sample air before the actual trapping. After sampling, liquid
water was transferred from traps to 2 mL glass bottles and
transported to the laboratory forδ18O andδD analysis.

2.4 Isotope analysis

Theδ18O andδD values of the water samples were measured
using a Euro EA3000 element analyzer coupled to an Iso-
prime isotope ratio mass spectrometer (Isoprime Ltd, UK) at
the Heihe Key Laboratory of Ecohydrology and River Basin
Science, Cold and Arid Regions Environmental and Engi-
neering Research Institute. To avoid the memory effect asso-
ciated with continuous-flow methods, measurements of each

sample were repeated five times, and the first values were
discarded. The accuracy was better than±1.0 ‰ for δD and
±0.2 ‰ for δ18O. Theδ18O andδD were calibrated using
two international standard materials (V-SMOWandGISPor
SLAP) and one working standard. Theδ18O andδD values
are expressed in ‰ on aV-SMOW–SLAPscale.

2.5 Meteorological measurements

During each study period, RH,T and photosynthetically
available radiation (PAR) were measured due to their signifi-
cant effects on soil evaporation and transpiration. At S3-Aug,
T , RH and PAR were measured every 30 min with a weather
station permanently installed at the station (HMP45C for
measuringT and RH, LI190SB for measuring PAR) at 2,
10 and 24 m in height. At S1-Sep, S1-Jun, S2-Jun, S4-Aug
and S5-Aug, RH,T and PAR were measured every 10 min
with a portable weather station (Davis Vantage Pro2 portable
weather station) at 2 m. Only 2 m height weather data such
asT , RH and PAR were used in this study.
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2.6 Modeling leaf waterδ18O, δD and d-excess

Leaf water isotope enrichment is conventionally described by
the steady-state Craig–Gordon equation (Craig and Gordon,
1965), and non-steady-state forms have also been proposed
to account for the less enriched leaf water condition pre-
dicted by the steady-state model (e.g., Cuntz et al., 2007;
Farquhar et al., 2007). To test whether we could use the
current understanding of leaf water enrichment to reproduce
the observed d-excess variations in leaf water, we used the
steady-state Craig–Gordon model to estimate leaf waterδ18O
andδD values, and then calculated d-excess values using d-
excess= δD–8.0× δ18O (Dansgaard, 1964). Only leaf water
δ18O, δD and d-excess values of P.E. at S5-Aug were mod-
eled for this study, because it was sunny and had the most
complete data set through that entire study period. The leaf
water enrichment (δl,s) is calculated as

δl,s ≈ δx + εeq+ εk + h(δv − εk − δx), (1)

whereδx represents theδ18O or δD values of liquid water
at the evaporating front. We estimatedδx using the isotopic
composition of xylem water.δv comprises theδ18O or δD
values of the background atmospheric water vapor,α* (> 1)
is the temperature-dependent equilibrium fractionation fac-
tor between liquid and vapor,εeq equals 1000(1− 1/α*), αk
is the kinetic fractionation associated with diffusion of water
through the soil, andεk equals 1000(αk−1), 1.0189 (∼ 19 ‰)
for oxygen and 1.017 (∼ 17 ‰) for hydrogen in a turbulent
boundary layer (Wang and Yakir, 2000).h is relative humid-
ity normalized to the leaf temperature.

3 Results

3.1 Meteorological conditions at each site during the
sampling periods

This study was conducted at the sites with dramatically dif-
ferent climatic conditions. The results showed that T, RH and
PAR varied significantly with the meteorological conditions
and locations (Fig. 2). Low RH, highT and PAR were found
during the sunny days, whereas high RH, lowT and PAR
were found during the cloudy days at each site (Fig. 2). The
RH decreased andT increased from the upper reaches to the
lower reaches, except at S2-Jun, with the lowest mean RH
(42.2 %) (Table 2 and Fig. 2).

3.2 Variations in δ18O and δD in different water pools

Figure 3 shows the measured isotopic compositions of all
the water samples in theδD–δ18O plots. In general, theδD
and δ18O of xylem and soil water showed relatively small
ranges compared to those of leaf water and air moisture (Ta-
ble 3 and Fig. 3). TheδD and δ18O in leaf water varied
from −37.6 to 44.0 ‰ and from−6.2 to 32.4 ‰, respec-
tively, for all species. TheδD and δ18O of air moisture at

the canopy ranged from−188.9 to−25.7 ‰ and from−24.9
to −6.0 ‰, respectively, at all the study sites. TheδD and
δ18O of air moisture near the ground ranged from−133.0
to −40.6 ‰ and from−19.7 to−7.9 ‰, respectively, in the
upper reaches. TheδD andδ18O in xylem water (including
stem and root) varied from−72.7 to−21.4 ‰ and from−9.0
to 2.9 ‰, respectively. TheδD andδ18O in soil water varied
from −67.4 to−6.3 ‰ and from−9.9 to 5.1 ‰, respectively
(Table 3).

The air moisture had the lowest averageδD andδ18O at
all study sites that increased with rising altitude (Table 3).
The δD–δ18O regression lines were followed closely by the
local meteoric water lines (LMWL) (Fig. 3). The averageδD
andδ18O of air moisture were−101.7 and−14.1 ‰ near the
ground, and were−99.1 and−13.3 ‰ at the canopy, respec-
tively, in the upper reaches. In the lower reaches, the average
δD andδ18O of air moisture were−116.7 and−16.2 ‰ at
S4-Aug and−136.3 and−17.7 ‰ at S5-Aug, respectively.

Leaf water had the highest averageδD andδ18O values,
leafδD–δ18O regression lines deviated highly from their cor-
responding LMWL, and leaf water showed the greatest vari-
ation in the observedδ18O values. In addition, leaf waterδD
andδ18O values increased with the decrease in altitude and
the increase inT (Tables 2 and 3). In the upper reaches, the
averageδD values in the leaf water of Q.S., P.F., P.V. and
S.C. were 1.9,−5.6,−2.2 and 10.4 ‰, respectively, and the
averageδ18O values were 8.3, 3.0, 1.5 and 8.2 ‰, respec-
tively. In the lower reaches, the averageδD values in the leaf
water of P.E., S.A. and R.S. were 6.2, 10.4 and 7.5 ‰, re-
spectively, and the averageδ18O values were 14.6, 15.6 and
27.2 ‰, respectively.

The averageδD andδ18O values were−34.9 and−4.2 ‰
in 5 cm of soil water and−43.2 and−5.2 ‰ in 10 cm of soil
in the upper reaches, and−34.2 and 1.4 ‰ in 10 cm of water
in the lower reaches, respectively. With the increase inT and
the decrease in altitude, theδD–δ18O regression lines gradu-
ally deviated from their corresponding LMWL, and the vari-
ations inδ18O values in xylem and soil water also increased
gradually (Tables 2 and 3). There were significant differences
in δD and δ18O between xylem water of S.C. and 5 cm of
soil water in the upper reaches. Differences were also seen in
P.E. and R.S. in the lower reaches (Fig. 3 and Table 3).

3.3 Variations in d-excess in each water pool

3.3.1 The diurnal variations in d-excess in leaf and
xylem water during the sunny days

Several sunny days were selected based on the meteorolog-
ical record (Fig. 2). The selected periods included the fol-
lowing: from 06:00 to 18:00, 7 and 8 September at S1-Sep,
from 06:00 to 16:00, 23 June at S1-Jun, from 06:00 to 16:00,
27 June at S2-Jun, from 06:00, 1 August to 16:00, 2 Au-
gust and from 06:00 to 18:00, 3 August 2009 at S3-Aug.
At S4-Aug and S5-Aug, all data were selected. The diurnal
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Figure 2. Comparison of hourly average relative humidity (RH), air temperature (T ) and photosynthetically active radiation (PAR) during
the experimental period. The dark cycles and the white cycles indicate the RH andT at each site. The grey shadow and the blue shadow (the
one in panel d) indicate cloudy days and rainy days. Panels(a), (b), (c) and(d) refer to the Qinghai spruce forest of S1-Sep, S1-Jun, S2-Jun
and S3-Aug. Panels(e)and(f) refer to S4-Aug and S5-Aug.

variations in leaf water d-excess (dleaf) and xylem water d-
excess (dxylem) values during the sunny day were shown in
Fig. 4. During the sunny days, we found clear and robust
diurnal variations indleaf at all the study sites. The maxi-
mum values ofdleaf occurred from 06:00 to 10:00, gradually
decreasing to a minimum value in the mid-afternoon (from
14:00 to 20:00), and increasing again to a maximum value
from 04:00 to 08:00 on the next day (Fig. 4). In the upper
reaches, the averageddleaf values of Q.S. were−64.7 ‰,
and varied from 13.4 ‰ (S3-Aug) to−133.8 ‰ (S2-Jun).
Thedleaf values of P.F. (−29.8 ‰) and P.V. (−14.3 ‰) were
higher than that of S.C. (−55.4 ‰). In the lower reaches, the
meandleaf value of P.E. (−110.2 ‰) and S.A. (−114.4 ‰) at
S5-Aug were higher than that of R.S. (−210.4 ‰) at S4-Aug
(Table 4).

The peak-to-trough amplitudes ofdleaf varied greatly.
They were 147.2 ‰ in trees (Q.S.), 122.6 ‰ in shrubs (P.F.),
and ranged from 143.1 ‰ to 52.6 ‰ in grasses (P.V. and S.C.)
in the upper reaches. In the lower reaches, the peak-to-trough
amplitudes ofdleaf were 124.4 ‰ in P.E. (tree), 96.9 ‰ in
S.A. (shrub), and 80.6 ‰ in R.S. (shrub) (Table 4).

Compared todleaf, the diurnal variations in thedxylem of all
species were more stable, and showed no clear diurnal vari-
ations (Fig. 4). In the upper reaches, the mean dxylem values
of Q.S., P.F., P.V. and S.C. were 6.2, 0.8, 7.6 and−18.8 ‰,
respectively. The averaged differences betweendxylem and
dleaf were 70.9, 30.6, 21.9 and 36.6 ‰ in Q.S., P.F., P.V. and
S.C. in the upper reaches. In the lower reaches, the mean
dxylem values of P.E. and R.S. were−8.2 ‰ (S4-Aug) and
−44.8 ‰ (S5-Aug), and the differences betweendxylem and
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Table 2. Meteorological data at each site during the observation periods. Note: S1-Sep, S1-Jun, S2-Jun and S3-Aug indicate the 2900 m
Qinghai spruce forest site in September 2011, the 2900 m site in June 2011, the 2700 m site in June 2011 and the 2800 m site in August 2009
in the upper reaches. S4-Aug and S5-Aug indicate the riparian forest at 930 m and the Gobi site at 906 m in August 2009 in the lower reaches.

S1-Sep S1-Jun S2-Jun

RH (%) T (◦C) PAR
(µmol m−2 s−1)

RH (%) T (◦C) PAR
(µmol m−2 s−1)

RH (%) T (◦C) PAR
(µmol m−2 s−1)

Mean 74.3 6.3 491.7 58.9 11.5 576.0 42.2 15.2 687.1
Minimum 39.8 0.0 0.0 25.0 4.0 0.0 19.4 7.2 0.0
Maximum 91.1 12.4 1886.0 96.5 20.0 2097.0 67.9 22.5 2021.0
SD 15.5 3.9 637.6 21.9 5.0 625.9 14.3 4.5 713.1

S3-Aug S4-Aug S5-Aug

RH (%) T (◦C) PAR
(µmol m−2 s−1)

RH (%) T (◦C) RH (%) T (◦C)

Mean 74.8 12.0 541.1 46.5 23.1 19.0 28.7
Minimum 38.0 5.2 0.0 17.0 9.1 11.3 17.2
Maximum 95.1 18.8 2036.0 87.5 33.7 34.3 38.0
SD 19.4 4.0 676.5 21.6 6.5 7.0 7.1

Table 3.Spatial and temporal variations in theδ18O andδD of different water pools in the Heihe River basin. The numbers in parentheses in-
dicate the number of samples. In the upper reaches, Q.S., P.F., P.V. and S.C. refer to Qinghai spruce,Potentilla fruticosa, Polygonum viviparum
andStipa capillatain the forest ecosystem. In the lower reaches, P.E. and S.A. refer toPopulus euphraticaandSophora alopecuroidesin the
riparian forest ecosystem. R.S. refers toReaumuria soongoricaat the Gobi site.

Study sites S1-Sep, S1-Jun, S2-Jun and S3-Aug S4-Aug S5-Aug

Plant species Q.S. (n=166) P.F. (n=51) P.V. (n=51) S.C. (n=23) P.E. (n=36) S.A. (n=36) R.S. (n=23)

Leaf water δ18Oleaf δDleaf δ18Oleaf δDleaf δ18Oleaf δDleaf δ18Oleaf δDleaf δ18Oleaf δDleaf δ18Oleaf δDleaf δ18Oleaf δDleaf

Mean 8.3 1.9 3.0 −5.6 1.5 −2.2 8.2 10.4 14.6 6.2 15.6 10.4 27.2 7.5
Minimum −4.8 −29.4 −5.0 −37.6 −6.2 −35.0 1.7 −6.1 3.4 −9.7 5.8 −3.8 22.2 −5.0
Maximum 18.5 22.8 17.7 31.6 20.1 44.0 11.4 22.8 21.3 23.4 20.3 19.1 32.4 23.4
SD 6.8 13.3 6.4 17.1 7.0 20.1 2.5 7.9 5.0 8.2 3.9 5.8 2.5 6.6

Xylem water δ18Oxylem δDxylem δ18Oxylem δDxylem δ18Oxylem δDxylem δ18Oxylem δDxylem δ18Oxylem δDxylem δ18Oleaf δDleaf δ18Oxylem δDxylem

Mean −6.7 −47.2 −5.0 −39.1 −6.5 −44.6 −1.7 −32.7 −5.2 −48.9 - - −2.4 −64.2
Minimum −9.0 −65.7 −7.5 −60.1 −8.5 −61.5 −5.4 −46.6 −5.6 −51.7 - - −4.9 −72.7
Maximum −2.1 −21.6 −2.9 −23.6 −4.8 −32.7 1.0 −21.4 −4.2 −43.9 - - 2.9 −50.0
SD 1.6 10.1 1.1 8.8 1.0 7.4 1.6 7.3 0.3 1.7 - - 1.9 6.1
δxylem–δleaf −15.0 −49.1 −8.0 −33.5 −8.0 −42.4 −9.9 −43.1 −19.8 −55.1 - - −29.6 −71.7

Soil water 5 cm depth (n = 166) 10 cm depth (n = 166) 10 cm depth (n = 36) 10 cm depth (n = 4)

δ18Osoil δDsoil δ18Osoil δDsoil δ18Osoil δDsoil δ18Osoil δDsoil

Mean −4.2 −34.9 −5.2 −43.2 0.0 −31.2 2.7 −37.1
Minimum −8.9 −62.0 −9.9 −67.4 −2.0 −36.7 1.1 −46.8
Maximum 2.5 −6.3 −0.7 −12.0 2.4 −21.0 5.1 −27.5
SD 2.5 10.7 2.1 10.1 1.1 3.3 1.9 8.3

Air moisture At the canopy (n = 172) Near the ground (n = 172) At the canopy (n = 36) At the canopy (n = 23)

δ18Omoisture δDmoisture δ18Omoisture δDmoisture δ18Omoisture δDmoisture δ18Omoisture δDmoisture

Mean −13.3 −99.1 −14.1 −101.7 −16.2 −116.7 −17.7 −136.3
Minimum −18.5 −135.4 −19.7 −133.0 −23.1 −167.2 −24.9 −188.9
Maximum −6.0 −25.7 −7.9 −40.6 −11.6 −78.0 −11.7 −96.3
SD 1.8 17.3 2.2 16.6 3.0 22.5 3.3 23.2

dleaf were 102.2 and 165.6 ‰ for S4-Aug and S5-Aug in the
lower reaches, respectively (Table 4).

3.3.2 Variations in d-excess in soil water and air
moisture during the sunny days

The averaged soil water d-excess values of 5 and 10 cm (dsoil)

were −0.9 and−1.2 ‰, varying from−37.3 ‰ (S2-Jun)
to 14.3 ‰ (S1-Sep), and from−25.7 ‰ (S2-Jun) to 16.6 ‰
(S1-Sep) in the upper reaches, respectively. At S4-Aug and

S5-Aug, the averageddsoil values of 10 cm were−31.0 and
−59.1 ‰, ranging from−45.5 to−19.8 ‰ and from−75.3
to −48.7 ‰, respectively. Thedsoil values decreased with the
increase inT and the decrease in RH (Tables 2 and 4). Ex-
cept at S3-Aug, there were no temporal trends indsoil at 5
and 10 cm (Fig. 5). Thedsoil values of 5 and 10 cm were low-
est near 12:00. The highest observeddsoil was from 02:00
to 06:00 for site S3-Aug during the first sunny day after the
rainy day (Fig. 5d).
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Figure 3. Plot of δD andδ18O of different water pools at each site. The LMWL (cited from He, 2011) is plotted for each site (the dark line
is the GMWL (the global meteoric water line); the blue dotted line and the dashed lines are the LMWL of the upper and the lower reaches,
respectively). Note: panels(a), (b), (c), (d), (e) and(f) refer to the same location as in Fig. 2, and the abbreviations of plant Latin names are
the same as in Table 3.

Figure 6 shows the diurnal variations in air moisture d-
excess (dmoisture) from each study site on the sunny days.
Although the patterns were similar at all sites, the peak-
to-trough amplitudes ofdmoisture varied greatly. They were
39.9 ‰ near the ground and 36.7 ‰ at the canopy in the
upper reaches. In the lower reaches, the peak-to-trough am-
plitudes ofdmoisture at the canopy were 17.3 ‰ at S4-Aug
and 30.6 ‰ at S5-Aug, respectively (Table 4 and Fig. 6). Ex-
cept for S2-Jun (Fig. 6c), thedmoisturevalues varied diurnally,
showing a clear and robust pattern of maximumdmoisturedur-
ing the mid-day (from about 10:00 to 16:00) (Fig. 6).

3.3.3 Variations in d-excess in leaf water, xylem
water, soil water and air moisture water
during the cloudy days

In our study, the cloudy days occurred only in the upper
reaches (Table 1). Thedleaf values during the cloudy days
were significantly higher than those of the sunny days, and
thedleaf values were significantly lower than thedxylem val-
ues (Table 5). During the cloudy days with low PAR in the
upper reaches of the HRB, there were no clear diurnal vari-
ations fordmoisture, dleaf anddsoil at 5 and 10 cm in depth,
except fordmoistureanddleaf at S1-Jun (Figs. 7 and 8). In ad-
dition, at S3-Aug, thedleaf increased gradually from 06:00 to
16:00 and showed the opposite diurnal variations compared
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Figure 4. Variations in leaf and xylem water d-excess on the sunny days of the upper reaches and lower reaches of the Heihe River basin.
Note: panels(a), (b), (c), (d), (e) and(f) refer to the same location as in Fig. 2, and the abbreviations of plant Latin names were the same as
in Table 3. The following sunny days were selected: S1-Sep: from 06:00 to 18:00, 7 and 8 September; S1-Jun: from 06:00 to 16:00, 23 June;
S2-Jun: from 06:00 to 16:00, 27 June; S3-Aug: from 06:00, 1 August to 16:00, 2 August and from 06:00 to 18:00, 3 August 2009. All data
at S4-Aug and S5-Aug were selected.
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Figure 5. Spatial and temporal variations in soil water d-excess in the Heihe River basin. Note: panels(a), (b), (c), and(d) refer to the same
locations as in Fig. 2, and panel(e) refers to S4-Aug and S5-Aug in the lower reaches.
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Figure 6.The d-excess of air moisture during the sunny days. Note: panels(a), (b), (c), (d), (e)and(f) refer to the same locations as in Fig. 2.
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Table 4. Spatial and temporal variations in the d-excess ( ‰) of each water pool in the Heihe River basin. The numbers in parentheses
indicate the number of samples. The location ID and the abbreviations of plant Latin names are the same as in Tables 2 and 3.

Study sites S1-Sep, S1-Jun, S2-Jun and S3-Aug S4-Aug S5-Aug

Plant species Q.S. (n = 166) P.F. (n = 51) P.V. (n = 51) S.C. (n = 23) P.E. (n = 36) S.A. (n = 36) R.S. (n = 23)

Leaf water Leaf water Leaf water

Mean −64.7 −29.8 −14.3 −55.4 −110.2 −114.4 −210.4
Minimum −133.8 −112.9 −117.0 −72.3 −161.2 −145.4 −245.6
Maximum 13.4 9.7 26.1 −19.7 −36.8 −48.5 −165.0
SD 43.0 35.6 37.0 15.0 34.7 26.0 17.4
The peak-to-trough amplitudes 147.2 122.6 143.1 52.6 124.4 96.9 80.6

Xylem water Xylem water Xylem water

Mean 6.2 0.8 7.6 −18.8 −8.2 - −44.8
Minimum −7.2 −7.5 0.3 −34.9 −14.1 – −73.0
Maximum 15.4 7.5 22.4 −3.1 −3.9 – −24.2
SD 5.0 3.8 5.2 7.2 2.1 – 12.7
The peak-to-trough amplitudes 22.6 15.0 22.1 31.8 10.2 – 48.8
Meandxylem–dleaf 70.9 30.6 21.9 36.6 102.0 – 165.6

Soil water 5 cm soil water (n = 166) 10 cm soil water (n = 166) 10 cm soil water (n = 36) 10 cm soil water (n = 4)

Mean −0.9 −1.2 −31.0 −59.1
Minimum −37.3 −25.7 −45.5 −75.3
Maximum 14.3 16.6 −19.8 −48.7
SD 12.5 10.0 6.2 11.5
The peak-to-trough amplitudes 51.6 42.3 25.7 26.6

Air moisture At the canopy (n = 172) Near the ground (n = 172) At the canopy (n = 36) At the canopy (n = 23)

Mean 7.7 11.2 12.8 5.6
Minimum −9.9 −7.0 2.6 −11.4
Maximum 26.8 32.9 19.9 19.2
SD 8.5 9.4 4.8 9.1
The peak-to-trough amplitudes 36.7 39.9 17.3 30.6
Meandmoisture–dsoil 8.6 12.4 43.8 64.7

Table 5. Differences between dxylem ( ‰) anddleaf ( ‰) on the sunny and the cloudy days. The location ID and the abbreviations of plant
Latin names are the same as in Tables 2 and 3.

Study Plant Difference Difference
sites species The sunny day The cloudy day indleaf in dxylem

dleaf dxylem dxylem–dleaf dleaf dxylem dxylem–dleaf dcloudy–dsunny dcloudy–dsunny

S1-Sep Q.S. −51.9 11.8 63.7 −6.8 12.0 18.8 45.1 0.1
P.F. −60.6 2.7 63.3 −4.9 2.7 7.6 55.7 0.0
P.V. −42.0 10.6 52.7 11.1 8.3 −2.8 53.2 −2.3

S1-Jun Q.S. −72.0 5.0 77.1 −47.4 5.2 52.6 24.7 0.2
P.F. −37.8 −0.6 37.2 −15.5 −1.1 14.4 22.3 −0.5
P.V. −20.4 5.5 25.9 −4.6 6.4 11.0 15.9 1.0

S2-Jun Q.S. −114.0 2.9 116.9 −116.9 −0.2 116.7 −2.9 −3.1
S.C. −52.9 −15.9 37.0 −59.5 −23.7 35.8 −6.6 −7.8

S3-Aug Q.S. −64.9 1.4 66.3 −52.8 4.0 56.8 12.0 2.5

Mean −57.4 2.6 60.0 −33.0 1.5 34.5 24.4 −1.1

to those of the sunny days. The likely reason is the leaf ab-
sorption of precipitation with high d-excess (e.g., 11.8 ‰ as
in Zhao et al., 2011b) during the rainy conditions (precipita-
tion occurred from 10:40 to 22:00 on 2 August).

During the sunny days, a large difference betweendxylem
anddleaf was found, and thedxylem–dleaf values varied from

25.9 to 116.9 ‰, with a mean value of 60.0 ‰. Except at
S2-Jun, the mean difference betweendxylem anddleaf during
the cloudy days was 22.6 ‰, and this value was lower than
that of the sunny days. A large difference indleaf between the
sunny and cloudy days was found, with a mean of 32.7 ‰
(excluding S2-Jun), and the difference varied from 12.0 to
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55.7 ‰ (excluding S2-Jun). There was no obvious difference
in dxylem between the sunny and cloudy days, except at S2-
Jun (Table 5).

3.4 Controlling factors of the d-excess in different water
pools

3.4.1 Relationships between the d-excess of various
pools and RH

Significantly positive correlations were found betweendleaf
and RH at all the study sites during the entire study periods
(from June to September) (Table 6). Significantly positive
correlations were also found betweendleaf and RH at all the
study sites during the sunny days (Table 7). As RH increased
by 1 %, the increasing magnitude ofdleaf ranged from 0.49
to 2.53 ‰ in the upper reaches. In the lower reaches, as RH
increased by 1 %, the increasing magnitude ofdleaf ranged
from 1.21 to 1.77 ‰ (Table 6).

Except for near the ground at S1-Sep, significantly neg-
ative correlations were found betweendmoisture and RH at
all the study sites when including both the sunny and cloudy
days (Table 6). A significantly negative correlation was found
betweendmoisture and RH at S1-Sep when only the sunny
days were considered (Table 7). Thedmoisture/RH values
were−0.15 ‰ %−1 at S1-Jun and−0.27 ‰ %−1 at S2-Jun
for near-ground air moisture. For the canopy air moisture,
the dmoisture/RH values were−0.24,−0.32,−0.25,−0.15,
−0.13 and−0.68 ‰ %−1 at S1-Sep, S1-Jun, S2-Jun, S3-
Aug, S4-Aug and S5-Aug, respectively. During the sunny
days, thedmoisture/RH values were−0.36 and−0.31 ‰ %−1,
respectively, for near the ground and at the canopy in the up-
per reaches, which were larger than the results based on data
including both the sunny and cloudy days (Table 7). In terms
of dsoil, the correlations between thedsoil of 10 cm at S1-Sep,
S3-Aug and RH, and between thedsoil of 5 cm at S1-Jun and
RH, were significant (Table 6).

3.4.2 Relationships between the d-excess of various
pools andT

Significantly negative relationships were found betweendleaf
and T in both the upper reaches and the lower reaches,
except in Q.S. at S1-Jun (Table 8). The decreasing mag-
nitudes of dleaf with T in Q.S. were−3.27, −1.59 and
−6.25 ‰◦C−1 at S1-Sep, S2-Jun and S3-Aug, respectively.
The magnitudes were−6.45 and−5.10 ‰◦C−1 for P.F., and
−6.74 and−5.07 ‰◦C−1 for P.V. for S1-Sep and S1-Jun,
respectively. The magnitude was−2.21 ‰◦C−1 in S.C. at
S2-Jun. During the sunny days, there were significantly neg-
ative relationships betweendleaf and T in both the upper
and lower reaches (Tables 7 and 8). In the lower reaches,
the decreasing magnitudes ofdleaf in P.E. and S.A. were
−4.40 and−2.15 ‰◦C−1, respectively, at S4-Aug. It was
−1.82 ‰◦C−1 for R.S. at S5-Aug (Table 8).

There were significantly positive relationships between
dmoisture and T at all sites except S2-Jun (Table 8).
The dmoisture/ T values near the ground were 0.54 and
0.76 ‰◦C−1 at S1-Sep and S1-Jun, respectively. The
dmoisture/T values at the canopy were 0.81, 0.91, 0.64, 0.54
and 0.83 ‰◦C−1 at S1-Sep, S1-Jun, S3-Aug, S4-Aug and
S5-Aug, respectively (Table 8). During the sunny days, the
dmoisture/T values were 1.18 and 1.11 ‰◦C−1, respectively,
for near the ground and at the canopy, which were larger than
the results based on data including both the sunny and cloudy
days (Table 7).

At S2-Jun, there were positive relationships betweendsoil
(both 5 and 10 cm in depth) andT , and thedsoil/T val-
ues were 0.88 ‰◦C−1 (p = 0.021) and 0.34 ‰◦C−1 (p =

0.045) for 5 and 10 cm in depth, respectively. However, at
S3-Aug, there were negative relationships betweendsoil (both
5 and 10 cm in depth) andT , and thedsoil/T values were
−0.45 ‰◦C−1 (p = 0.009) and−0.54 ‰◦C−1 (p = 0.002)
for 5 and 10 cm in depth, respectively. A significantly nega-
tive relationship was also found between thedsoil of 5 cm in
depth andT at S1-Sep (dsoil/T = −0.16 ‰◦C−1, p = 0.002)
(Table 8).

3.4.3 Relationships between the d-excess of various
pools

During the sunny days, we found an opposite pattern between
the diurnal variations indleaf anddmoisture (Fig. 9). A simi-
lar pattern was found betweendsoil anddmoisture during the
first sunny day after the rain. Thedleaf (dsoil) became more
negative, whiledmoisturebecame more positive during the af-
ternoon, and opposite patterns were found during the night
(Figs. 9 and 10). There were significantly negative relation-
ships betweendleaf anddmoistureat three study sites (Table 7).
In the upper reaches,dleaf of wood species (Q.S.) were cor-
related significantly withdmoistureboth near the ground and
at the canopy, and the slopes were−1.47 and−1.40, respec-
tively. Significantly negative relationships were also found
betweendleaf of shrub/grass anddmoisture near the ground,
and the slopes were−0.14 and−0.12, respectively. In the
lower reaches, the slopes ofdleaf anddmoistureat the canopy
were−0.06 in woody species (P.E.), and−0.10 and−0.28 in
shrub (S.A.), at S4-Aug and S5-Aug, respectively (Table 7).

3.5 Modeling results of leaf waterδ18O,δD and
d-excess

The steady-state Craig–Gordon model captured the diurnal
variations inδ18O, δD and d-excess, but a discrepancy ex-
isted between modeled and observed values (Fig. 11). Dur-
ing the day, the observed values ofδ18O andδD were lower,
while d-excess values were higher than those predicted by
the steady-state Craig–Gordon model. At night, the observed
values ofδ18O andδD were higher, while d-excess values
were slightly lower than those predicted by the model. On
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Figure 7. Variations in leaf and xylem water d-excess of the upper reaches of the Heihe River basin during the cloudy days. Note: panels(a),
(b), (c) and(d) refer to the same location as in Fig. 2, and the abbreviations of plant Latin names were the same as in Table 3.

average, the modeled leaf waterδ18O andδD values were
1.8 and 6.7 ‰ higher, while d-excess values were 7.5 ‰
lower than those of observed values. The steady-state predic-
tions explained 79.5 % of variations in modeledδ18O, and
63.4 and 64.2 % of variations in modeledδD and d-excess
(Fig. 11).

4 Discussion

4.1 Variations in δD and δ18O in different water pools

Our results show that there are significant differences in the
δD andδ18O of leaf water, xylem water, soil water and air
moisture, and differentδD–δ18O patterns due to hydrogen
and oxygen isotopic discrimination related to soil evapora-
tion, plant transpiration and plant physiology. For example,
compared to those of xylem water and shallow soil water,
leaf water has the highest averageδD andδ18O values and
the largest ranges at all the study sites. In addition, theδD–
δ18O regression lines of leaf water highly deviate from their

corresponding LMWL (Table 2 and Fig. 3), suggesting a
strong transpiration enrichment effect. With the decrease in
RH and the increase inT , leaf waterδD andδ18O values in-
creased, and theδD–δ18O regression lines gradually deviate
from their corresponding LMWL due to stronger transpira-
tion, suggesting that climatic conditions have a significant
effect on variations in leaf waterδD andδ18O and their cor-
relations by affecting transpiration (Tables 2 and 3).

In the upper reaches, at high-altitude sites such as S1-Sep
and S1-Jun, the patterns ofδD–δ18O regression lines in shal-
low soil water and xylem water are similar (Fig. 3a and b),
suggesting that the water sources of plants are from shallow
soil water, and soil waters are subject to only mild evapora-
tion. These results are consistent with the fact of the hori-
zontal distributions of Q.S. roots and the shallow rooting of
herbaceous plants such as P.V. However, at relatively lower
altitudes such as at S2-Jun and S3-Aug, the xylem waterδD
andδ18O of Q.S. are lower than those of soil water, except for
the herbaceous plant (S.C.) (Table 3), and theδD–δ18O re-
gression lines of soil water deviate from the LMWL (Fig. 3).
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Figure 8. Variations in d-excess of shallow soil water and air moisture during the cloudy days of the upper reaches of the Heihe River basin.
Note: panels(a), (b), (c) and(d) refer to the same locations as in Fig. 2.

These results may be related to stronger soil evaporation in
shallow soil layers. In the lower reaches, theδD and δ18O
of 10 cm soil water are significantly higher than those of
P.E. and R.S. xylem water, and theδD–δ18O regression lines
obviously deviate from the LMWL of the lower reaches, sug-
gesting that strong soil water evaporation occurs in shallow
soil in the lower reaches.

As expected, the isotopic results show that the soil water at
5 and 10 cm is affected by evaporation, which is indicated by
a slope of less than 8.0 (Dansgaard, 1964). In our study, the
slopes of 5 and 10 cm of the soil water evaporation line vary
from 2.6 to 7.4 (Table 9). Relative high slopes were found
at S1-Sep (7.1) and S3-Aug (7.4), likely due to low temper-
atures during September at S1-Sep and the rain event at S3-
Aug. The slopes of other sites are lower than 5.0, especially
in the lower reaches, and the values in the slopes are very
small at S4-Aug (2.6) and S5-Aug (2.8) (Table 9), reveal-
ing strong shallow water evaporation. These slope values are
comparable with other studies in vadose zones with evapora-
tion slopes between 2 and 5 (Allison, 1982; Clark and Fritz,

1997; Kendall and McDonnell, 1999; Wenninger et al., 2010;
Sutanto et al., 2012). The patterns of theδD–δ18O regression
lines from shallow soil water gradually deviate from their
corresponding LMWL with the decrease in altitude, suggest-
ing stronger water loss through direct evaporation, especially
in extremely arid regions such as the riparian forest site and
the Gobi site in the lower reaches of the HRB.

The air moisture has the most depletedδD andδ18O com-
pared to leaf water, xylem water and shallow soil water
(Table 3). The air moistureδD andδ18O data cluster around
the corresponding LMWL (Fig. 3). These results are consis-
tent with the isotopic fractionation theory (Gat, 1996), and
they are also consistent with a previous study in urban set-
tings, agricultural settings, forest and grassland in China,
Canada and the USA (Welp et al., 2012).
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Table 6. Linear least square fits between the d-excess of various water bodies and the relative humidity (RH) (%) at each site. Here,r is
the correlation coefficient, andp is the significance level.p < 0.001 indicates statistical significance at the 99.9 % significance level, and
p < 0.05 indicates statistical significance at the 95 % significance level. The location ID and the abbreviations of plant Latin names are the
same as in Tables 2 and 3.

d-excess (‰) vs. RH (%)

Slope Intercept r p Slope Intercept r p

S1-Sep S1-Jun

dleaf of Q.S. 1.52 −146.68 0.701 < 0.001 dleaf of Q.S. 0.82 −113.36 0.589 < 0.001
dleaf of P.F. 2.38 −212.45 0.846 < 0.001 dleaf of P.F. 1.07 −90.47 0.825 < 0.001
dleaf of P.V. 2.53 −208.14 0.879 < 0.001 dleaf of P.V. 0.99 −72.05 0.723 < 0.001
dsoil of 5 cm 0.03 6.61 0.198 0.122 dsoil of 5 cm −0.10 9.42 −0.483 0.001
dsoil of 10 cm 0.08 1.84 0.253 0.048 dsoil of 10 cm < 0.01 1.10 −0.046 0.775
dmoisturenear the ground −0.11 9.62 −0.168 0.191 dmoisturenear the ground −0.15 18.50 −0.477 0.001
dmoistureat the canopy −0.24 20.56 −0.457 < 0.001 dmoistureat the canopy −0.32 33.83 −0.753 < 0.001

S2-Jun S3-Aug

dleaf of Q.S. 0.49 −135.82 0.686 < 0.001 dleaf of Q.S. 1.48 −169.36 0.716 < 0.001
dleaf of S.C. 0.56 −79.08 0.523 0.022
dsoil of 5 cm −0.21 −10.54 −0.279 0.094 dsoil of 5 cm 0.05 −9.86 0.289 0.161
dsoil of 10 cm −0.02 −14.72 0.013 0.941 dsoil of 10 cm 0.08 −12.35 0.403 0.046
dmoisturenear the ground −0.27 26.82 −0.682 < 0.001
dmoistureat the canopy −0.25 27.58 −0.689 < 0.001 dmoistureat the canopy −0.15 28.37 −0.526 0.007

S4-Aug S5-Aug

dleaf of P.E. 1.41 −171.76 0.844 < 0.001 dleaf of R.S. 1.77 −243.96 0.716 < 0.001
dleaf of S.A. 1.21 −166.99 0.947 < 0.001
dsoil of 10 cm 0.02 −32.08 −0.012 0.939
dmoistureat the canopy −0.13 17.42 −0.602 0.003 dmoistureat the canopy −0.68 18.47 −0.526 < 0.001

Table 7. Correlations between the d-excess of various water bodies and RH (%) andT (◦C), and betweendmoistureanddleaf during the
sunny days at each site. Here,r is the correlation coefficient, andp is the significance level.p < 0.001 indicates statistical significance at the
99.9 % significance level, andp < 0.05 indicates statistical significance at the 95 % significance level. The location ID and the abbreviations
of plant Latin names are the same as in Tables 2 and 3. The periods of the sunny days are the same as in Fig. 5.

Study area The d-excess values vs. RH (%) The d-excess values vs.T (◦C)

Slope Intercept r p Slope Intercept r p

dmoisturenear the ground −0.36 27.643 −0.712 (84) < 0.001 1.18 −4.574 0.771 < 0.001
dmoistureat the canopy −0.31 28.269 −0.617 (101) < 0.001 1.11 0.695 0.716 < 0.001

dleaf of wood 1.26 −131.626 0.600 (102) < 0.001 −3.84 −19.327 0.630 < 0.001
S1-Sep dleaf of shrub 1.26 −121.121 0.629 (25) < 0.001 −3.66 −15.489 0.547 < 0.001
S1-Jun dleaf of herb 1.21 −99.962 0.635 (37) < 0.001 −3.17 −1.134 0.563 < 0.001

S2-Jun dleaf of wood vs.dmoisturenear the ground −1.47 − 63.237 −0.360 (84) < 0.001 – – – –
S3-Aug dleaf of wood vs.dmoistureat the canopy −1.40 −52.568 −0.340 (101) < 0.001 – – – –

dleaf of shrub vs.dmoisturenear the ground −0.14 3.69 −0.599 (24) 0.039 – – – –
dleaf of grass vs.dmoisturenear the ground −0.12 12.72 −0.648 (12) 0.023 – – – –

S4-Aug dleaf of wood vs.dmoistureat the canopy −0.06 7.163 −0.543 (32) < 0.001 – – – –
dleaf of shrub vs.dmoistureat the canopy −0.10 1.827 −0.534 (32) < 0.001 – – – –

S5-Aug dleaf of shrub vs.dmoistureat the canopy −0.28 −57.737 0.540 (25) < 0.001 – – – –
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Table 8. Linear least square fits between the d-excess of various water bodies and the temperature (T ) (◦C) at each site. Here,r is the
correlation coefficient, andp is the significance level.p < 0.001 indicates statistical significance at the 99.9 % significance level, andp < 0.05
indicates statistical significance at the 95 % significance level. The location ID and the abbreviations of plant Latin names are the same as in
Tables 2 and 3.

d-excess (‰) vs.T (◦C)

Slope Intercept r p Slope Intercept r p

S1-Sep S1-Jun

Q.S. leaf water −3.27 −13.20 −0.419 < 0.001 Q.S. leaf water −1.60 −46.89 −0.202 0.220
P.F. leaf water −6.45 5.88 −0.612 < 0.001 P.F. leaf water −5.10 31.80 −0.919 < 0.001
P.V. leaf water −6.74 22.91 −0.575 < 0.001 P.V. leaf water −5.07 45.80 −0.942 < 0.001
5 cm soil water −0.16 10.17 −0.387 0.002 5 cm soil water 0.12 2.36 0.075 0.635
10 cm soil water 0.06 7.62 0.143 0.268 10 cm soil water−0.09 2.15 −0.087 0.585
Air moisture near the ground 0.54 −1.78 0.349 0.005 Air moisture near the ground 0.76 0.86 0.610 < 0.001
Air moisture at the canopy 0.81 −2.63 0.481 < 0.001 Air moisture at the canopy 0.91 4.12 0.494 0.003

S2-Jun S3-Aug

Q.S. leaf water (37) −1.59 −90.88 −0.664 < 0.001 Q.S. leaf water −6.25 14.67 −0.684 0.001
S.C. leaf water (19) −2.21 −22.15 −0.646 0.003
5 cm soil water 0.88 −32.89 0.379 0.021 5 cm soil water −0.45 −1.15 −0.514 0.009
10 cm soil water 0.34 −20.73 0.332 0.045 10 cm soil water −0.54 −0.16 −0.589 0.002
Air moisture near the ground 0.42 9.23 0.285 0.087
Air moisture at the canopy 0.31 12.28 0.173 0.305 Air moisture at the canopy0.64 9.39 0.491 0.005

S4-Aug S5-Aug

P.E. leaf water −4.40 2.274 −0.642 < R.S. leaf water −1.82 −158.14 −0.742 < 0.001
S.A. leaf water −2.15 −64.28 −0.560 < 0.001
10 cm soil water 0.08 −32.97 0.050 0.755
Air moisture at the canopy 0.54 0.95 0.773 < 0.001 Air moisture at the canopy 0.83 −18.23 0.684 0.001

Table 9. Equations of soil waterδD andδ18O at each site using the linear least squares fit method. Here,r is the correlation coefficient,
andp is the significance level.p < 0.001 indicates statistical significance at the 99.9 % significance level, andp < 0.05 indicates statistical
significance at the 95 % significance level.

Sites Equation r p Sites Equation r p

S1-Sep δD = 7.114× δ18O + 3.030 0.921 < 0.001 S3-Aug δD = 7.355× δ18O − 8.267 0.914 < 0.001
S1-Jun δD = 4.998× δ18O − 16.213 0.825 < 0.001 S4-Aug δD = 2.615× δ18O − 31.128 0.890 < 0.001
S2-Jun δD = 3.952× δ18O − 26.901 0.888 < 0.001 S5-Aug δD = 2.840× δ18O − 44.930 0.642 0.222

4.2 Variations in dleaf, dxylem, dsoil and dmoisture under
different conditions

4.2.1 Variations in d-excess in leaf water and xylem
water and their diurnal patterns

The significant differences in d-excess are found between
leaf water and xylem water in both the upper reaches and the
lower reaches. In order to evaluate the effect of plant tran-
spiration ondleaf, we calculate the difference betweendleaf
anddxylem, assuming thatdxylem represents the d-excess of
source water. The differences in averageddxylem and dleaf
vary from 21.9 to 165.6 ‰, and the differences are 70.9 ‰
in Q.S., 30.6 ‰ in P.F., 21.9 ‰ in P.V. and 36.6 ‰ in S.C. in
the upper reaches, and 102.0 ‰ in P.E. and 165.6 ‰ in R.S. in
the lower reaches (Table 4). These differences reach the max-
imum value in the afternoon (Fig. 4). Since no isotopic frac-

tionation occurs during water uptake and transport from roots
to twigs (Washburn and Smith, 1934), the large differences
betweendxylem and dleaf found in this study indicate that
plant transpiration results in lowerdleaf and releases water va-
por with higher d-excess values into the atmosphere. These
were consistent with those expected from the recycling of
surface evapotranspiration (Gat et al., 1994). Therefore, mix-
ing of transpiration moisture in the atmosphere will increase
dmoisture, except for the conditions with the influence of en-
trained atmospheric moisture with high d-excess. In addition,
during the sunny days, the clear and robust diurnal variations
in dleaf with a daily maximum in the early morning and a
negative peak in the mid-afternoon are found at all the study
sites (Fig. 4 and Table 4), while no diurnal variations indleaf
are found on the cloudy days (Fig. 7). These results indicate
that dleaf is affected by meteorological conditions through
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Figure 9. Comparison of leaf water and air moisture d-excess values during the sunny days. Note: panels(a), (b), (c), (d), (e)and(f) refer to
the same locations as in Fig. 2, and the abbreviations of plant Latin names are the same as in Table 3. AC and NG refer to air moisture at the
canopy level and near the ground, respectively.

their effect on plant transpiration. At the same time, no di-
urnal variations in thedxylem of all species are found on ei-
ther the sunny or cloudy days (Figs. 4 and 7), indicating that
dxylem is stable and that the effect of meteorological condi-
tions ondxylem is small. These results also suggested that the
d-excess of moisture through plant transpiration has an im-
portant role in changing thedmoisture of local air moisture
during the sunny days.

4.2.2 Variations in d-excess in shallow soil water

No clear diurnal trends indsoil are found, except at S3-Aug.
At S3-Aug, there are clear daily variations indsoil, which
reaches the lowest value at around 12:00 and slowly climbs
up to the previous level the next day (the first sunny day after

a rain event) (Fig. 5d). This pattern is similar todleaf, which is
likely due to the strong evaporation during the first sunny day
after a rain event (rain stopped at about 22:00, and we started
to take samples at 06:00 the next day) (Fig. 5d). At S3-Aug,
during the first day after a rain event, we also found a neg-
ative relationship betweendsoil of 5, 10 cm andT (Table 8),
and opposite patterns between the diurnal variations indsoil
anddmoisture(Fig. 10). These results indicate that the d-excess
of moisture through soil evaporation also has an important
role in changing thedmoistureof local air moisture during the
sunny day after the rain events. In addition, the effect of soil
evaporation ondmoisture is similar to the plant transpiration
effect, and this effect was mainly controlled by temperature,
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Figure 10.Comparison of soil water and air moisture d-excess val-
ues during the sunny days after the 4 h rain event on 2 August 2009
at S3-Aug.

as indicated by the negative relationship betweendsoil andT

(Table 8).

4.2.3 Variations in d-excess in air moisture near the
ground and at the canopy

In our study, the peak-to-trough magnitudes vary greatly, and
are 39.9 ‰ near the ground and 36.7 ‰ at the canopy in
the upper reaches, and 17.3 ‰ (S4-Aug) and 30.6 ‰ (S5-
Aug) at the canopy in the lower reaches (Table 4 and Fig. 6).
These observed values are higher than those of previous re-
ports that the peak-to-trough magnitudes vary from 3.5 to
17.1 ‰ (Welp et al., 2012). The higher range is likely caused
by the large diurnal RH range (an up to 80 % change) in these
environments. The lowestdmoisture values are found near
the ground (1.5 ‰) at high altitudes during September (S1-
Sep). The low values may be related to the atmospheric en-
trainment contribution, as atmospheric entrainment has been
found to be responsible for the low d-excess values observed
in the Pacific Northwest (Lai and Ehleringer, 2011).

In our study, during the sunny days, thedmoisture values
vary diurnally, showing a clear and robust pattern of the high-
est dmoisture values at midday, and the lowestdmoisture val-
ues at night at all the sites (Fig. 6). The same trends were
also found in urban settings (New Haven and Beijing), agri-
cultural settings (Rosemount and Luancheng), forest (Bor-
den Forest) and grassland (Duolun) (Welp et al., 2012), at
one Beijing site (Wen et al., 2010), and in the Pacific North-
west (Lai and Ehleringer, 2011). These results showed that
dmoisturediurnal variation is not a pattern unique to any par-
ticular location or vegetation type, and the diurnal pattern of
dmoisturemay suggest thatdmoisture is not a conserved tracer
of humidity conditions in the marine moisture source region
(Welp et al., 2012), and is strongly controlled by local evap-
oration and transpiration.

There are no clear diurnal patterns ofdmoistureduring the
cloudy days when plant activity is low, which supports the
role plants play in regulatingdmoisture; namely, there are
no clear diurnal variations fordmoisture, except at S1-Jun
(Fig. 8). Thedmoisturevalue at S1-Jun shows diurnal variation
(Fig. 8b), which corresponds to patterns ofdleaf after 08:00
(Figs. 7b and 8b).

4.3 The controlling factors of the d-excess of various
pools

4.3.1 Correlations betweendleaf and RH or T

Significantly positive correlations are found betweendleaf
and RH at all the study sites during our study periods (from
June to September) (Table 6). Significantly negative relation-
ships are also found betweendleaf andT , except in Q.S. at
S1-Jun. In addition, during the sunny days, stronger relation-
ships betweendleaf andT /RH are found at all study sites (Ta-
ble 7). These results suggest that meteorological conditions
such as RH andT have a strong effect on variations indleaf,
likely through the effect on transpiration.

4.3.2 Correlations betweendsoil and RH or T

There are significant correlations betweendsoil and RH orT
in several cases. For example, thedsoil of 10 cm is positively
correlated with RH (Table 6), and thedsoil of 5 and 10 cm
are negatively correlated withT (Table 8) at S3. Thedsoil
of 10 cm is also positively correlated with RH (Table 6), and
the dsoil of 5 cm is negatively correlated withT at S1-Sep
(Table 8). At S3-Aug, during the first day after rain event,
the negative relationship betweendsoil at 5 and 10 cm andT
(Table 8), the clear diurnal variations indsoil at 5 and 10 cm
(Fig. 5d) and the opposite patterns between the diurnal vari-
ations indsoil anddmoisture(Fig. 10), are found. These results
indicate that the d-excess of moisture through soil evapo-
ration also has an important role in changing thedmoisture
of local air moisture during the sunny days after the rain
events, and this role is controlled by meteorological condi-
tions. At the same time, thedsoil/RH are 0.08 ‰ %−1, and
thedsoil/T vary from−0.16 to−0.54 ‰◦C−1, respectively,
which are an order of magnitude lower than those of the
dleaf/RH (from 0.49 to 2.53 ‰ %−1) anddleaf/T (from −6.74
to −1.59 ‰◦C). This means that even on the sunny day, the
contribution of shallow soil water evaporation todmoisture is
much less than that of plant transpiration (Tables 6 and 7).

4.3.3 Variations indmoisture and its controlling factors

The main moisture sources of local air moisture come from
canopy transpiration, soil evaporation and atmospheric en-
trainment (Lai and Ehleringer, 2011). Ifdmoisture is a con-
servative tracer of conditions in the moisture source re-
gion, we would not expect it to vary with local relative
humidity unless there is a local source of moisture for
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Figure 11. Comparison of leaf waterδ18O, δD and d-excess values forPopulus euphraticabetween the simulated values (steady-state
Craig–Gordon model) and observed values at S5-Aug.

the atmosphere (Welp et al., 2012). In our study, except
near the ground at S1-Sep, significantly negative correla-
tions are found betweendmoisture and RH at all the study
sites. The meandmoisture/RH is −0.27 ‰ %−1, ranging from
−0.68 ‰ %−1 (S5-Aug) to −0.13 ‰ %−1 (S4-Aug) (Ta-
ble 6). Except at S5-Aug, the rates ofdmoisture/RH of all the
sites are lower than that of Merlivat and Jouzel’s theoreti-
cal prediction (−0.43 ‰ %−1) (Merlivat and Jouzel, 1979)
(Table 6). Aemisegger et al. (2013) reported the importance
of continental moisture recycling. It concluded that the con-
tribution of plant transpiration to the continental evapora-
tion flux can be deduced from thedmoisture–RH relation at
the seasonal timescale and for individual events (Aemiseg-
ger et al., 2013). The relationship betweendmoistureand RH
strongly depends on the isotopic composition of the soil
moisture and the contribution of transpiration, which can be

assumed in first order to be non-fractionating over timescales
of longer than 1 day (Harwood et al., 1999; Farquhar et al.,
2007). Welp et al. (2012) also reported that afternoon aver-
ages (12:00–18:00 LST) ofdmoistureare correlated with RH at
the New Haven (dmoisture/RH= −0.36 ‰ %−1) and Borden
Forest (dmoisture/RH= −0.22 ‰ %−1) sites during the sum-
mer months (June–August). In addition, except at S2-Jun,
there are significantly positive relationships betweendmoisture
andT at all the sites. The meandmoisture/T are 0.72 ‰◦C−1,
varying from 0.54 ‰◦C−1 (S4-Aug) to 0.91 ‰◦C−1 (S1-
Jun) (Table 8). This is higher than that of Merlivat and
Jouzel’s theoretical prediction (0.35 ‰◦C−1) (Merlivat and
Jouzel, 1979). These results suggest that local contributions
of moisture todmoistureare high, and that local meteorologi-
cal conditions such as RH andT have an important effect on
dmoisture. In addition, during the sunny days, the clear diurnal
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patterns ofdleaf (Fig. 4) anddmoisture(Fig. 6, except panel c),
the opposite patterns between the diurnal variations indleaf
anddmoisture(Fig. 9), and a significantly negative relationship
betweendmoistureanddleaf (p < 0.001) and highly significant
relationships betweendmoisture and RH/T (p < 0.001) (Ta-
bles 6, 7 and 8) are found, suggesting that there is a strong
linkage betweendmoisture and dleaf, and that the regulation
of plant transpiration on the variations in atmospheric vapor
isotopic composition is strong.

4.4 Comparison of modeled and observed leaf water
δ18O, δD and d-excess

The modeling results reasonably captured the diurnal vari-
ations inδ18O, δD and d-excess, with some discrepancies
(Fig. 11). The discrepancies were larger forδD than forδ18O.
The results indicate that a better parameterization ofδD or
non-steady-state modeling is likely needed to simulate the d-
excess dynamics in leaf water more accurately. The d-excess
values of other components (e.g., soil water, atmospheric va-
por) are rarely seen in the literature, and the current study
provides a valuable source for validating the modeling work
of the d-excess of various components.

5 Conclusions

Through extensive characterization ofδD, δ18O and d-excess
in different water pools (e.g., leaf water, xylem water, 5 and
10 cm soil water and air moisture) in the HRB, we aimed to
investigate the effects of local processes (e.g., plant transpi-
ration and evaporation) on the d-excess variations in different
water pools. We concluded the following:

1. There were significant variations inδD andδ18O in dif-
ferent water pools. The most negativeδD andδ18O val-
ues were found in air moisture. The averageδD and
δ18O values of air moisture were−101.8 and−14.1 ‰
in the upper reaches and−124.4 and−16.8 ‰ in the
lower reaches, respectively. The most positiveδD and
δ18O values were found in leaf water. The averageδD
andδ18O values of leaf water were 0.9 and 8.1 ‰ in the
upper reaches and 6.6 and 18.2 ‰ in the lower reaches,
respectively. TheδD–δ18O regression lines of leaf wa-
ter, xylem water and shallow soil water deviated gradu-
ally from their corresponding LMWL with the increase
in T and the decrease in RH.

2. Peak-to-trough amplitudes ofdleaf, dxylem, dsoil and
dmoisture varied from 52.6 to 147.2 ‰, 10.2 to 48.8 ‰,
25.7 to 51.6 ‰ and 17.3 to 39.9 ‰, respectively, which
were an order of magnitude higher than previous ob-
servations and predications (e.g., Merlivat and Jouzel,
1979; Welp et al., 2012). The meandmoisturevalues were
the most positive, which were 7.7 ‰ near the ground
and 11.2 ‰ at the canopy level in the upper reaches,

12.8 and 5.6 ‰ at the canopy level at the riparian forest
site and at the Gobi site in the lower reaches. Thedleaf
values were the most negative, which were−41.1 ‰ in
the upper reaches and−145.0 ‰ in the lower reaches.

3. Several lines of evidence suggest thatdmoisture is not a
conserved tracer of humidity conditions of the marine
moisture source region, and is controlled by local tran-
spiration and evaporation. The evidence includes the
clear diurnal patterns ofdmoisture and dleaf during the
sunny days, the strong correlations ofdleaf with mete-
orological conditions (T and RH), the significant corre-
lations ofdmoisture with dleaf, T and RH, and no diur-
nal patterns ofdmoistureanddleaf during the cloudy days
when plant activity was low. In addition, large differ-
ences between averagedxylem anddleaf were observed
in our study, indicating that the amount of d-excess lost
through transpiration into the atmosphere was high. Our
results indicate that plant transpiration strongly regu-
lates dmoisture, especially during the sunny days. The
effect is controlled by local meteorological conditions,
such asT , radiation and RH.

4. The influences of shallow soil water evaporation on
dmoisturevariations are generally small. However, the d-
excess values of moisture from soil evaporation have a
strong effect ondmoisture on the first sunny day after a
rain event. The size of this effect is related toT and
RH.

5. The steady-state Craig–Gordon model can reasonably
capture the diurnal variations inδ18O, δD and d-excess
with small discrepancies. Non-steady-state models are
likely needed to simulate the d-excess dynamics of
leaves and other components more accurately.

Our study shows that thedmoistureof the surface air at con-
tinental locations can be significantly altered by local pro-
cesses in both mountain areas (Qilian Mountains) and ex-
tremely dry environments (Ejin); therefore, such an effect is
likely a universal phenomenon across regions with varying
climates.
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