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Abstract. Spatially distributed models are popular tools in
hydrology claimed to be useful to support management de-
cisions. Despite the high spatial resolution of the computed
variables, calibration and validation is often carried out only
on discharge time series at specific locations due to the lack
of spatially distributed reference data. Because of this restric-
tion, the predictive power of these models, with regard to pre-
dicted spatial patterns, can usually not be judged.

An example of spatial predictions in hydrology is the pre-
diction of saturated areas in agricultural catchments. These
areas can be important source areas for inputs of agrochemi-
cals to the stream. We set up a spatially distributed model to
predict saturated areas in a 1.2 km2 catchment in Switzerland
with moderate topography and artificial drainage. We trans-
lated soil morphological data available from soil maps into
an estimate of the duration of soil saturation in the soil hori-
zons. This resulted in a data set with high spatial coverage
on which the model predictions were validated. In general,
these saturation estimates corresponded well to the measured
groundwater levels.

We worked with a model that would be applicable for man-
agement decisions because of its fast calculation speed and
rather low data requirements. We simultaneously calibrated
the model to observed groundwater levels and discharge. The
model was able to reproduce the general hydrological be-
havior of the catchment in terms of discharge and absolute
groundwater levels. However, the the groundwater level pre-
dictions were not accurate enough to be used for the pre-
diction of saturated areas. Groundwater level dynamics were
not adequately reproduced and the predicted spatial satura-
tion patterns did not correspond to those estimated from the

soil map. Our results indicate that an accurate prediction of
the groundwater level dynamics of the shallow groundwater
in our catchment that is subject to artificial drainage would
require a model that better represents processes at the bound-
ary between the unsaturated and the saturated zone. However,
data needed for such a more detailed model are not gener-
ally available. This severely hampers the practical use of such
models despite their usefulness for scientific purposes.

1 Introduction

Spatially distributed models are popular tools in hydrology.
They are claimed to be useful for supporting decisions in wa-
ter resources management (e.g.Lyon et al., 2006; Heathwaite
et al., 2005; Frey et al., 2009; Agnew et al., 2006). Despite
the high spatial resolution of the computed variables, cali-
bration and validation is often carried out only on discharge
time series at specific locations due to the lack of spatially
distributed reference data (Srinivasan and McDowell, 2009).
Furthermore, distributed models typically have a large com-
putational demand because calculations are performed on
several tens of thousands or hundreds of thousands of cells.
This huge resource requirement prevents meaningful uncer-
tainty analysis that would require ten thousands of model
runs. The predictive power of these models, with regard to
predicted spatial patterns, can usually not be judged because
of these restrictions.

An application of spatial predictions in hydrology is the
forecast of critical source areas (CSAs) for diffuse pol-
lution in agricultural areas (Pionke et al., 1996). Several
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studies have shown that the contributions of different fields
within a catchment to diffuse pollution can differ signif-
icantly (Gomides Freitas et al., 2008; Leu et al., 2004b;
Louchart et al., 2001). This implies that a relatively small
proportion of a catchment can cause the major part of sur-
face water pollution. An area has to be hydrologically ac-
tive to be a CSA. Under typical Swiss climatic and topo-
graphic conditions and for most pollutants except for nitrate,
this means areas where surface runoff and/or macropore flow
occur (Pionke et al., 1996).

If CSAs can be reliably predicted, this offers efficient mit-
igation options, because actions on a small proportion of the
area can strongly reduce the substance input to the stream.
Basically there are two strategies to identify CSAs. They can
be identified in the field or recognized from predictions by
a model that captures the dominant features of the underly-
ing mechanisms. The identification in the field is rather time
consuming; it requires extensive field visits by experts and
interviews with the local farmers. A model prediction can
have advantages over the field identification with respect to
the consistency of the CSA identification in a larger area and
time demand.

Several studies have been carried out to predict CSAs for
different substances (nutrients, pesticides and sediment) on
field and catchment scale (e.g.Srinivasan and McDowell,
2009; Lyon et al., 2006; Heathwaite et al., 2005; Agnew
et al., 2006; Easton et al., 2008) with a variety of differ-
ent modeling approaches (seeBorah and Bera, 2003, for re-
view on model concepts for diffuse pollution). Process-based
models were found to be more suitable for CSA prediction by
Srinivasan and McDowell(2009).

If the source areas of pollutants are known based on spa-
tial crop information, the prediction of CSAs reduces to
a purely hydrological problem where hydrologically active
areas (Ambroise, 2004) and their connectivity to the stream
have to be identified. In this paper we focus on the prediction
of areas that can become saturated and produce saturation-
excess overland flow because of high groundwater levels.
Previous studies have demonstrated the relevance of this pro-
cess for herbicide transport under conditions prevailing in
the Swiss Plateau (Leu et al., 2004a). In contrast to areas
where infiltration-excess overland flow occurs, the locations
of saturation-excess overland flow areas on agricultural fields
are temporally more stable across rainfall events of simi-
lar magnitude. This is because saturation excess areas on
agricultural fields do not strongly depend on land manage-
ment and soil coverage. They are influenced more by topo-
graphic position and hydrological subsoil properties (Lyon
et al., 2006; Gerits et al., 1990; Doppler et al., 2012).

A main problem with the prediction of CSAs is the lack of
spatial data on hydrological state variables. Predicting hydro-
logical conditions that generate CSAs would require a physi-
cally based, fully distributed, integrated surface–subsurface
model of catchment hydrology. Such models – like SHE
(Abbott et al., 1986) and its derivatives or HydroGeoSphere

(Brunner and Simmons, 2012) – could theoretically be ap-
plied without calibration given full catchment information.
However, since it is not possible to get full spatial informa-
tion on catchment structure and status and because there are
still considerable knowledge gaps (Refsgaard et al., 2010),
spatially distributed models are often calibrated on aggre-
gate data (like discharge measurements at specific locations)
(Frey et al., 2011). However, the model parameters and even
the model structure are only poorly identifiable when no spa-
tial data are used for calibration (Grayson et al., 1992a, b).
For several versions of the semi-distributed TOPMODEL it
was shown that especially the transmissivity parameter can
be better identified if spatial data on groundwater levels or
saturated areas were included for calibration (Franks et al.,
1998; Lamb et al., 1998; Freer et al., 2004; Blazkova et al.,
2002; Gallart et al., 2007).

Soil maps are spatial databases that exist for many loca-
tions. Besides soil texture information, qualitative informa-
tion on soil types can be used too in the context of hydro-
logical models.Hrachowitz et al.(2013) state that hydro-
logically meaningful soil classification schemes are valuable
for hydrological modeling (see e.g.Lazzarotto et al., 2006;
Hahn et al., 2013). Boorman et al.(1995) developed the sys-
tem of Hydrology Of Soil Types (HOST) where soils in the
UK are classified according to a conceptual understanding
of the water movement in these soils. It was shown that the
HOST soil classes are related to the base flow index (the pro-
portion of base flow on total stream flow) and can be used
to support model parameterization (Dunn and Lilly, 2001).
This system was successfully implemented in a hydrologi-
cal model (Maréchal and Holman, 2005). The HOST system
has also proven to be useful for a hydrological soil classifi-
cation at European scale (Schneider et al., 2007). In addition
to the development of conceptual hydrological understand-
ing, as it was done in HOST, soil morphology information
was also used to critically evaluate spatial model predictions.
For exampleGüntner et al.(2004) used soil morphologi-
cal and geobotanical criteria to delineate saturated areas in
a mesoscale catchment to evaluate the predictions by differ-
ent terrain indices.

Despite these efforts to make use of available spatial in-
formation, the general lack of available spatial data sets to
calibrate and/or validate models that predict CSAs still per-
sists (Srinivasan and McDowell, 2009; Easton et al., 2008;
Frey et al., 2011). For the prediction of CSAs this is critical
since the goal is to predict locations where certain hydrolog-
ical processes occur. Meaningful model calibration and val-
idation is a prerequisite if management decisions are to be
based on the predicted CSAs .

We present an approach where we used two sources of spa-
tial information. First, we used piezometric measurements at
different locations in the study catchment for the joint cali-
bration to observed discharge resulting in a multi-variable,
multi-site objective function (Madsen, 2003). While such
multi-objective calibration offers benefits for achieving a
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better representation of the internal state variables – e.g.,
spatial patterns of water saturation or saturated areas – it
makes the calibration process more complex (Efstratiadis
and Koutsoyiannis, 2010). Because of structural model er-
rors, trade-offs among the different elements of the objec-
tive function emerge requiring subjective decisions about
how to weigh different variables for example (Reichert and
Schuwirth, 2012; Gupta et al., 1998). Here, we use a simple
aggregation function (Efstratiadis and Koutsoyiannis, 2010)
for combining the different state variables into a single ob-
jective function. These aspects will be further dealt with in
the discussion.

Subsequently, we profited from soil morphology informa-
tion from a traditional soil map to derive estimates of the av-
erage duration of soil saturation at a given depth. The result-
ing data set can then be used as model validation data. The
rationale behind this approach is the fact that groundwater
influences morphological features that are related to chang-
ing oxygen availability due to permanent water logging or
fluctuating groundwater levels. These hydromorphic features
are usually related to redox reactions and transport of iron
and manganese (see e.g.Terribile et al., 2011). Accordingly,
soil morphology as described in soil maps contains informa-
tion on the soil water regime. Several studies have shown
a relationship between soil morphology (especially soil ma-
trix color and the presence and type of iron mottles) and the
frequency of soil saturation (Simonson and Boersma, 1972;
Jacobs et al., 2002; Morgan and Stolt, 2006; Franzmeier
et al., 1983). To our knowledge, these morphological features
have only been interpreted as binary information (saturated
area or not saturated area) (Güntner et al., 2004) but not as
quantitative estimates (frequency of soil saturation) for mod-
eling purposes. To do so, one has to be aware of possible pit-
falls related to a quantitative interpretation of soil morphol-
ogy. These features depend on various factors like the com-
position of the parent material (Evans and Franzmeier, 1986;
Franzmeier et al., 1983), soil texture (Jacobs et al., 2002;
Morgan and Stolt, 2006) and soil chemistry (Terribile et al.,
2011; Vepraskas and Wilding, 1983). Also, artificial drainage
can influence soil morphology within decades (Montagne
et al., 2009; Hayes and Vepraskas, 2000). We have tried to
account for these uncertainties by the extensive field expe-
rience for soil mapping in this part of Switzerland by some
of us (P. Weisskopf and U. Zihlmann). The resulting map of
soil saturation durations itself could serve as proxy map for
the identification of areas where saturation excess runoff oc-
curs. However, in combination with a model, it could be used
for a more detailed prediction with respect to the time of the
year in which the saturation occurs or the amount of runoff
produced on a certain area. Even if the resulting map of soil
saturation frequencies remains uncertain to some degree, this
additional information can reduce the uncertainty of model
predictions (Franks et al., 1998).

If predicted CSAs should serve as basis for site specific
pollution mitigation measures, they have to fulfill several

criteria. They have to be reliable and the uncertainties have
to be assessable. They should only be based on information
that is generally available and the prediction algorithm has
to be applicable to larger areas. At the same time the spatial
resolution of prediction should be in the order of 10 m×10 m
(or higher). Relevant transport processes for most pollutants
except nitrate happen on the timescale of single events un-
der the conditions prevailing in the study catchment. A tem-
poral resolution in the order of hours is therefore required
for a dynamic prediction model. These requirements cause
a high computational demand. Furthermore, the desired ac-
curacy for the prediction of the groundwater level is high. It
needs to distinguish between areas that are often saturated to
the surface and therefore produce surface runoff, and areas
where the maximum groundwater level remains little below
the surface.

In this paper we describe a case study where we applied
a spatially distributed hydrological model for delineating
CSAs that are caused by the generation of saturation-excess
overland flow due to high groundwater levels. Similar toFrey
et al.(2009) we chose to work with a process oriented model,
which has the advantage that it is better transferable to other
regions than models that rely on empirical relationships. The
model was optimized for computational speed and mainly
relies on generally available data so that it could be used for
practical applications. As study site we selected a 1.2 km2

catchment in the Swiss Plateau, with a high variability of
soil types and soil moisture regimes ranging from very wet to
rather dry soils. One question we try to answer in this paper is
if the spatial variability of depth to groundwater in this catch-
ment can be explained only by topography and the presence
of tile drains or if other factors like hydraulic soil properties
are important driving factors in determining the groundwa-
ter levels. The frequency of soil saturation resulting from the
quantitative interpretation of the soil map was not used for
the model setup but only to critically evaluate the model pre-
dictions.

This case study therefore has the following main objec-
tives:

1. We develop an approach to utilize more spatial infor-
mation on soil water regimes. Soil morphological infor-
mation was translated into spatially distributed data on
water saturation as a function of soil depth in the study
catchment. The result of this translation is a spatially
distributed data set on the soil water regime which is
based on generally available information.

2. We calibrate a parsimonious, distributed hydrological
model for predicting CSAs to observed spatially dis-
tributed water table levels and discharge.

3. To validate the model performance, water level predic-
tions are compared to the expected values derived from
the soil map.
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Figure 1. The experimental catchment with land use, soil types and the hydrological measurement locations. The small map in the top right
corner depicts the location of the study site within Switzerland. Sources:swisstopo(2008); FAL (1997).

2 Materials and methods

2.1 Site description

The study catchment (1.2 km2) is located in the northeast
of Switzerland (see Fig.1). Topography is moderate with
altitudes ranging from 423 to 477 m a.s.l. and an average
slope of 4.3◦ (min= 0◦, max= 42◦, based on 2 m×2 m dig-
ital elevation model (DEM), absolute accuracy:σ = 0.5 m,
resolution= 1 cm, swisstopo, 2003). The 20-year mean an-
nual precipitation at the closest permanent measurement sta-
tion (Schaffhausen, 11 km north of the catchment) is 883 mm
(MeteoSchweiz, 2009). The soils have developed on moraine
material with a thickness of around 10 meters; underneath the
moraine, we find fresh water molasse (Süsswassermolasse)
(swisstopo, 2007; Einsele, 2000). Soils in the center of the
catchment are poorly drained gleysols. In the higher parts of
the catchment well drained cambisols and eroded regosols
are found (FAL, 1997, see Fig.1). Soil thickness (surface to
C horizon) varies between 30 cm at the eroded locations and
more than 2 m in the depressions and near the stream. The
catchment is heavily modified by human activities; it encom-
passes a road network with a total length of 11.5 km (approx-
imately 3 km are paved and drained, the rest is unpaved and
not drained). The dominant land use is crop production (75 %

of the area), around 13 % of the catchment is covered by for-
est, and a small settlement area is located in the southeast
of the catchment. Three farms lie at least partly within the
catchment (Fig.1). 47 % of the agricultural land is drained
by tile drains with a total length of over 21 km (Gemeinde
Ossingen, 1995), the open stream has a length of 550 m. The
main part of the drainage system was built in the 1930s. The
stream system consists of two branches, an open ditch that
was partly built as recipient for the drainage water, and the
main branch of the stream that runs in a culvert (Fig.1). The
stream also receives the runoff from two main roads and from
two farm yards (Gemeinde Ossingen, 2008). The paved area
that drains into the catchment is approximately 1.5 ha (1.2 %
of the area).

2.2 Field measurements

From 25 August 2008 to 14 October 2009, we monitored sev-
eral hydrological variables in the catchment. We measured
discharge at the outlet of the catchment (Fig.1). Water level
and flow velocity were measured using a Doppler probe and
a pressure transducer (ISCO 750 area velocity flow module,
Teledyne Inc., Los Angeles). Discharge was calculated using
the exact cross section of the site. Discharge data were stored
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at 5-minute intervals by the data logger of an auto sampler
(ISCO 6700, ISCO 6712, Teledyne Inc., Los Angeles, USA).

At weather station A (Fig.1), precipitation was mea-
sured at 15 min resolution with a tipping bucket rain gauge
(R102, Campbell Scientific, Inc., Loughborough, UK). This
rain gauge was out of order for 22 days (4 June 2009–
25 June 2009). During this time, rain data from weather sta-
tion B (Fig. 1) were used (a mobile HP 100 Station run by
Agroscope ART Reckenholz, CH with a tipping bucket rain
gauge: HP 100, Lufft GmbH, Fellbach, DE). At weather sta-
tion A we also recorded air temperature and relative humidity
(Hygromer MP 100A, rotronic AG, Bassersdorf, CH), wind
speed (A100R switching anemometer, Campbell Scientific,
Inc., Loughborough UK), net radiation (Q-7 net radiometer,
Campbell Scientific, Inc., Loughborough UK) and air pres-
sure (Keller DCX-22, KELLER AG für Druckmesstechnik,
Winterthur, CH) in 15 min intervals. Daily reference evapo-
transpiration was calculated from the meteorological data af-
ter the Penman–Monteith equation (Allen et al., 1998). This
results in the evapotranspiration of a reference grass surface
without water limitation.

We installed 11 piezometers (Fig.1) to monitor groundwa-
ter levels in 15 min intervals (STS DL/N, STS Sensor Tech-
nik Sirnach AG, Sirnach, CH and Keller DCX-22, KELLER
AG für Druckmesstechnik, Winterthur, CH). The installation
depth varied between 1.5 and 2.7 m below the surface. At
four of the piezometer locations, we additionally dug a 1.2 m
deep soil pit (Fig.1) to directly investigate hydromorphic fea-
tures.

2.3 GIS analysis

The catchment boundary was calculated in ArcGIS (ESRI,
ArcGIS Desktop, 9.3.1) based on the 2 m×2 m DEM (swis-
stopo, 2003) and manually adapted according to field ob-
servations, the detailed tile drain map (Gemeinde Ossingen,
1995) and the rain sewer map (Gemeinde Ossingen, 2008).
The topographical catchment does not coincide completely
with the subsurface catchment. In some areas that belong to
the topographical catchment, the tile drains divert the wa-
ter outside of the catchment. These areas were excluded. In
contrast, the settlement area in the southeast was kept in the
catchment, even though the water from sealed areas in the
settlement leaves the catchment.

The original 2 m× 2 m DEM (swisstopo, 2003) was used
for the analysis of surface connectivity. Firstly, very small
or shallow depressions were removed, as these can either be
artifacts in the DEM or are too shallow to trap significant
amounts of overland flow. Depressions consisting of one or
two cells and those with a maximum depth of less than 5 cm
were filled. All other depressions were kept. Secondly, the
cells in the open stream were incised to the depth of the
average water level. Depression analysis and filling as well
as stream incision were performed in TAS (Terrain Analy-
sis System, geographical information system version 2.0.9,

John Lindsey 2005). Based on this corrected DEM, flow di-
rections and flow accumulation were calculated in ArcGIS.
The lowest stream channel cell was used as pour point for
the catchment calculation to determine the area connected
directly to the stream on the surface.

The corrected DEM was also used as surface topography
in the model. The topographic wetness index (Beven and
Kirkby, 1979) (Eq.1) was calculated with the multiple-flow-
direction algorithmDinf (Tarboton, 1997) implemented in
TAS, based on the corrected DEM.

λ = ln

(
A

tan(β)

)
(1)

λ is the topographic wetness index,A the upslope area andβ
is the local slope.

2.4 Soil map translation

We worked with the 1: 5000 soil map of Canton Zurich
(FAL, 1997). The soil map classifies agricultural soils af-
ter the Swiss soil classification system (FAL, 1997); forest
soils are not classified. The soils are characterized accord-
ing to their physical, chemical and morphological properties.
For the estimation of the duration of soil saturation, the soil
units (Fig.1) were grouped into seven water regime classes,
according to their expected water regime. For each of these
classes we estimated how long it is saturated in six differ-
ent depths (5, 30, 50, 75, 105, 135 cm). We used the fol-
lowing morphological redox features to estimate the duration
of soil saturation within a soil horizon: (i) the presence and
abundance of manganese concretions in the horizon, (ii) the
presence and abundance of iron mottles, (iii) the presence
of iron mottles together with pale soil matrix, and (iv) fully
reduced horizons. These features of the horizons were inter-
preted within the context of the respective soil profile and the
expected water regime of the soil water regime class. Since
variations are expected within the classes and because the es-
timation itself is uncertain, we additionally estimated a range
of soil saturation in which we expect two thirds of the soils
that are classified in the respective class.

2.5 Model description

2.5.1 Model concept

The model we worked with has a conceptual representa-
tion of the unsaturated zone and a spatially distributed, more
process-based representation of the saturated zone. Under
wet temperate climate lateral flow in the saturated zone is an
important process to determine the shape of the groundwater
table in shallow groundwaters and therefore the prediction of
saturated areas. For the saturated zone we chose an approach
similar to HillVI (Weiler and McDonnell, 2004) where the
groundwater level gradients are calculated in each time step
and do not rely on surface topography. This should result in
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more realistic predictions of the location of saturated areas
(Grabs et al., 2009). We additionally implemented the lat-
eral and preferential flow to tile drains. These are important
processes because large parts of the crop production areas in
Switzerland are artificially drained.

The model simulates water fluxes in a catchment. It is
based on the following water balance equation:

dS

dt
= P − ET− Q, (2)

with S [L] being the total water storage in the catchment,
P [L T−1] is precipitation, ET [L T−1] is evapotranspiration
andQ [L T−1] is stream discharge. We do not consider sub-
surface in- or outflow. The calculations were optimized for
computational speed.

The model consists of three separate, linked modules
(Fig. 2):

1. The paved area module is a lumped and conceptual
model that calculates runoff and evaporation from paved
areas.

2. The unsaturated zone module calculates recharge from
the unsaturated zone to the saturated zone, preferential
flow that bypasses the unsaturated zone and directly en-
ters the saturated zone, and evapotranspiration from the
unsaturated zone. It is possible to have several unsatu-
rated zone modules (e.g., one for each soil type), each of
which recharges into different sections of the saturated
zone module.

3. The saturated zone module is spatially distributed (grid
cells) and more process-based. It simulates lateral
groundwater flow, drain flow, evapotranspiration from
the saturated zone, and saturation-excess overland flow.
The concept of the saturated zone module was inspired
by HillVi ( Weiler and McDonnell, 2004).

The modeled stream discharge consists of the following
components:

Q = Qpaved+ Qsurf+ Dlat + Dpref, (3)

whereQpaved [L T−1] is runoff from the paved area,Qsurf
[L T−1] is saturation excess surface runoff (this term also
comprises lateral groundwater flow to the stream, see below),
Dlat [L T−1] is lateral drain flow, andDpref [L T−1] is pref-
erential drain flow.

The modeled evapotranspiration is calculated as follows:

ET = Epaved+ ETuns+ ETsat, (4)

whereEpaved [L T−1] is the evaporation from paved areas,
ETuns [L T−1] is the evapotranspiration from the unsaturated
zone, and ETsat [L T−1] is the evapotranspiration from the
saturated layer. In the following the three modules are de-
scribed in detail.

Paved Module Unsaturated Module
Soiltype 1

Unsaturated Module
Soiltype 2

P

Discharge

Epaved ETuns

Rpaved

Saturation excess runoff

Drainflow, lateral and preferential

R

Saturated Module

ETunsP P
ETsat

Figure 2. Schematic picture of the model concept.

Paved area module

The change in the paved storage is modeled as follows:

dSpaved

dt
= P − Epaved− Qpaved, (5)

with Spaved[L] being the paved storage.
Runoff from paved areas linearly depends on the paved

storage.

Qpaved= (6){
0 if Spaved≤ Spaved_min

(Spaved− Spaved_min)kpaved if Spaved> Spaved_min

Spaved_min[L] is the minimum storage that has to be filled to
produce runoff andkpaved[T−1] is the outflow rate.

If there is water in the paved storage, it can evaporate with
the following rate

Epaved= ETref · mpaved, (7)

where ETref [L T−1] is the reference evapotranspiration cal-
culated from meteorological data (see Sect.2.2), andmpaved
[–] is a multiplier.

Unsaturated zone module

The water balance of the unsaturated zone is represented as
follows:

dSuns

dt
= P − ETuns− R, (8)

whereSuns [L] is the unsaturated storage, andR [L T−1] is
recharge to the saturated zone.R consists of a slow recharge
component (Rslow) and preferential flow (Rpref).

R = Rslow+ Rpref (9)

Rslow linearly depends on the storage amount above field
capacity. If the unsaturated storage is below field capacity,
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Rslow is assumed to be zero.

Rslow =

{
0 if Suns< Sfc

(Suns− Sfc)kuns if Suns≥ Sfc
(10)

Sfc [L] is the unsaturated store at field capacity andkuns[T−1]
is the outflow rate.

A part of the precipitation bypasses the unsaturated zone
as preferential flow and directly enters the saturated zone.
This only occurs if the unsaturated zone is above field capac-
ity, and it exponentially depends on the water content in the
unsaturated zone.

Rpref =

{
0 if Suns< Sfc

kpref

(
Suns−Sfc

Suns_max−Sfc

)epref
· P if Suns≥ Sfc

(11)

kpref [–] andepref [–] are empirical parameters.
Above field capacity the evapotranspiration from the un-

saturated module is at maximum, below field capacity it is
reduced. The reference evapotranspiration calculated from
meteorological data (ETref) refers to a reference grass sur-
face. A time dependent multiplier (muns) was introduced to
account for crops with different water requirements and the
time dependence of the leaf area index (LAI) due to crop de-
velopment.

ETuns= (12)
ETref · muns if Suns≥ Sfc

ETref · muns

(
Suns
Sfc

Suns
Sfc

+ket

)
(1+ ket) if Suns< Sfc

with ket [–] and muns [–] being parameters. The change of
the LAI is coupled to air temperature and incorporated in the
time dependent parametermuns.

dmuns

dt
= (13)

muns· µ0(Tair − T0)
(
1−

muns
muns, max

)
if Tair ≥ T0

muns· kdecay(Tair − T0) if Tair < T0

0 if muns≤ muns, min

,

whereµ0 [T−1 Te−1] andkdecay [T−1 Te−1] are parameters,
Tair [Te] is air temperature,T0 [Te] is the minimum temper-
ature above which LAI starts increasing,muns, min [–] and
muns, max[–] are the minimum and maximum values formuns.

Saturated zone module

The saturated module is spatially distributed. The water bal-
ance within a grid-cell is calculated as follows:

dSsat

dt
= R−ETsat+SFlat− i ·Dlat− i ·Dpref−j ·Qsurf, (14)

whereSsat [L] is the storage in the cell and SFlat [L T−1] is
the lateral groundwater flow between cells.

i =

{
1 for drained cells

0 for undrained cells
(15)

j =


1 for cells with surface connectivity to the

stream, see Sect. 2.3

0 for cells without surface connectivity

to the stream

(16)

The change of the groundwater level in the cell is therefore
calculated as follows

dh

dt
=

dSsat
dt

peff
, (17)

whereh [L] is the groundwater level andpeff [–] is the effec-
tive porosity.

If the unsaturated zone is below field capacity and evap-
otranspiration from the unsaturated zone is therefore re-
duced, evapotranspiration can occur directly from the satu-
rated zone.

ETsat=

{
0 if Suns≥ Sfc

msat(ETref · muns− ETuns) if Suns< Sfc
(18)

At maximum, ETsat accounts for the evapotranspiration
deficit in the unsaturated zone, the multipliermsat [–] is be-
tween 0 and 1.

The lateral groundwater flow between cells is calculated
based on the Dupuit–Forchheimer assumption. We further-
more assume isotropy inKsat:

qlat = Ksat· ∇h, (19)

whereqlat [L T−1] is the flux density,Ksat [L T−1] is the sat-
urated hydraulic conductivity, andh [L] is the groundwater
head. The water flow between two neighboring cells can then
be calculated as follows:

Qlat = Ksat· Msat· Lcell
1h

Lcell
, (20)

whereQlat [L3 T−1] is the water flow between two cells,Msat
[L] is the thickness of the saturated layer, andLcell [L] is the
cell length. If we sum up the water flows to and from all
neighboring cells and divide the sum by the cell area, we
receive SFlat.

In drained cells, the lateral groundwater flow into the
drain is calculated based on the Hooghoudt equation as de-
scribed byBeers(1976). We used an equation modified from
Wittmer(2010) because the distance to single tiles is not con-
sidered explicitly. The flow depends on the water level above
the drains.

Dlat = 4rdr · Ksat

(
mdr · Hdr

Spdr

)2

(21)
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Dlat [L T−1] is the drain flow,rdr [–] is a parameter that de-
termines the entrance resistance to the tile drains,mdr [–] is
a multiplier to obtain the water level in the middle between
two drains from the modeled water level in the cell,Hdr [L]
is the water table height above the drain, and Spdr [L] is the
drain spacing.

If the groundwater level reaches the surface in a cell, three
cases are distinguished:

1. The cell is directly connected to the stream on the sur-
face (see Sect.2.3). In this case all water above the sur-
face is directly added to discharge (Qsurf).

2. The cell is not connected but it is drained. In this case,
all water above the surface is added to drain flow as pref-
erential flow (Dpref).

3. The cell is neither connected to the stream nor drained.
The water remains in the cell.

The coupling between the saturated zone module and the un-
saturated zone module is unidirectional from the unsaturated
zone to the saturated zone. The fact that a cell is saturated to
the surface does not influence the unsaturated zone module
above it. It is possible that the unsaturated zone above a satu-
rated cell is not completely full. This concept was chosen to
achieve a high computational efficiency.

The stream channel cells are incised to a mean water level
in the stream. The surface topography in the stream cells is
therefore represented by the mean water level and all the wa-
ter above this level in the cell is directly converted to dis-
charge. Lateral groundwater flow to stream cells is therefore
also converted toQsurf.

2.5.2 Model setup

We ran the model with homogeneous hydraulic properties
in the saturated zone; only topography and the presence of
tile drains were spatially distributed. The unsaturated zone
was divided into several classes according to land use (for-
est, settlement, agriculture) and, within agricultural land use,
according to the seven soil categories (see Sect.2.4). We
therefore ended up with nine unsaturated zone classes (for-
est, settlement and the seven soil categories). The reason for
this setup was the assumption that the groundwater level in
the catchment is mainly influenced by topography and artifi-
cial drainage and not by hydraulic soil properties (soil texture
is rather homogeneous within the catchment,FAL, 1997).
However, to account for the spatial distribution of the unsatu-
rated zone thickness (which also influences the other param-
eters of the unsaturated zone module), we divided the unsat-
urated zone into classes according to their soil water regime.
The classification of soil water regimes was only used for the
spatial division of the unsaturated zone (but not its parame-
terization).

The saturated zone was represented by a 16 m×16 m grid;
the cells were 10 m thick. We assume that the soil and the

moraine are the conducting layers while the Fresh water mo-
lasse is assumed to be impermeable (see Sect.2.1). The cal-
culations were run with hourly input time series; the model
output was also in hourly steps.

2.5.3 Implementation

The model equations were implemented in a C++ program
to achieve fast model simulations. The ordinary differential
equations of the conceptual unsaturated zone modules and
the paved area module were numerically integrated with the
LSODA solver package (Livermore Solver for Ordinary Dif-
ferential Equations,Hindmarsh, 1983; Petzold, 1983). The
partial differential equations of the saturated zone module
were integrated with an explicit Euler solution scheme with
a computational time step (20 min) that guaranteed numer-
ical stability during the simulation period. The integration
of the saturated zone module was sped up by paralleliz-
ing the explicit solution scheme with OpenMP threads (for
the specification seehttp://openmp.org). Despite all these ef-
forts the simulation of the 2-D groundwater surface remained
rather time consuming requiring 28 s of computation time for
1 yr of forward simulation on an Intel Core i7–3960X CPU
(3.3 GHz).

Model implementation and model setup (e.g., spatial and
temporal resolution) were chosen in a way that guaranteed
simulations fast enough to allow a possible use for practical
applications.

2.5.4 Calibration

The model was simultaneously calibrated to the discharge
time series and the groundwater level time series in the
eleven piezometers. A maximum likelihood approach was
used. Discharge was Box–Cox transformed before calibra-
tion with λ = 1/3 (Box and Cox, 1964, 1982). The transfor-
mation equation was as follows:

g(x) =
xλ

− 1

λ
(22)

This was done to reduce heteroscedasticity of discharge er-
rors. We assumed independent and normally distributed er-
rors for the transformed discharge and the (untransformed)
groundwater levels; the individual standard deviations for
these were also calibrated. The likelihood function therefore
looked as follows:

L(θ ,σ ) ∝

11∏
i=1

m∏
j=1

1

σi

√
2π

exp

−
1

2

(
O

j
i − M

j
i (θ)

σi

)2


(23)

×

m∏
j=1

1

σd
√

2π
exp

−
1

2

(
g(O

j

d) − g(M
j

d (θ))

σd

)2
,

whereL is the likelihood,θ is the vector of model param-
eters,σ is the vector of the standard deviations,i are the
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11 piezometer locations,j are the time points,σi is the stan-
dard deviation at piezometeri, O

j
i is the observed ground-

water level at piezometeri and timej , M
j
i (θ) is the mod-

eled groundwater level at piezometeri and timej , σd is the
standard deviation of the transformed discharge,g(x) is the
Box–Cox transformation (Eq.22), andO

j

d is the observed

discharge at timej andM
j

d (θ) is the modeled discharge at
time j .

When calibrating a grid cell model to piezometer mea-
surements, one has to be aware of the difference in spatial
support. The model cell represents an area of 16 m× 16 m
while the piezometers are point measurements. The spatial
variability of groundwater levels within each model cell can
therefore be considerable (see e.g.,Freer et al., 2004) and
this variability cannot be resolved by the model. This is es-
pecially true for drained areas, where the tile drains increase
the spatial variability of groundwater levels.

In the context of multi-objective calibration our approach
corresponds to a simple aggregation function (Efstratiadis
and Koutsoyiannis, 2010) for combining the different state
variables into a single objective function where the trade-
offs between the different objectives are not made explicit.
The weighting of the different state variables in the objec-
tive function was done by using individual error variances
for each state variable (Reichert and Schuwirth, 2012). These
error variances were also calibrated as parameters within the
optimization. Hence, the optimization algorithm was allowed
to choose the weighting that has the maximum likelihood.
Implications of this approach will be discussed in the discus-
sion section.

During calibration the likelihood function was opti-
mized with a coupled global–local algorithm. Optimization
started with the Particle Swarm algorithm (Kennedy and
Eberhart, 1995) and after reaching the stop criterion Nelder–
Mead Simplex optimization (Nelder and Mead, 1965) was
launched from the best parameter combination.

We chose a period in spring and summer 2009 as cali-
bration period. It starts very wet in the beginning of spring,
includes a long dry period, several rain events with varying
magnitudes and intensities and it also contains the largest dis-
charge event in the measurement period. We do not have con-
tinuous measurement time series from all the piezometers.
For each piezometer we chose the calibration period so, that
all the calibration time series (discharge and the 11 piezome-
ters) contained the same number of observations. With this,
the weighting of the different state variables within the ob-
jective function only depends on their error variance and not
implicitly on the number of observations used for calibration.
For piezometers 10 and 11 no data were available in the later
period, so their calibration period is partially within the warm
up phase of the model. Even though this might be problem-
atic because we calibrate the model in a state where it is not
yet completely adapted to the parameter set, we kept these
two piezometers in the calibration. The main reason for this

was that they are the two piezometers with the lowest ground-
water levels and are therefore important for a complete spa-
tial picture of the groundwater surface in the catchment. This
more complete spatial picture was of greater importance to
us than the potentially problematic calibration in the model
warm up period.

Most of the model parameters were calibrated to achieve
the best possible model output with the given model struc-
ture. (The Tables S1 to S4 in the Supplement indicate which
of the parameters were calibrated and which were kept fixed
during calibration. The tables also indicate the minimum and
maximum values that were allowed in the calibration.) The
initial state of the unsaturated zone was calibrated as well.
The initial condition for the groundwater level is difficult to
calibrate because the shape of the surface depends on the
model parameters. The model run was started 5 months be-
fore the calibration period to adapt the groundwater surface
to the model parameters. Additionally, we added a param-
eter that allows a homogeneous shifting up or down of the
groundwater initial state and chose an adaptive procedure.
After a first calibration, we used a groundwater level map
from the optimum parameter set as initial condition for a sec-
ond calibration. In a first step we calibrated a model version
with a homogeneous unsaturated zone. From the resulting
optimum parameter set, we launched the calibration of the
model version with the spatially distributed unsaturated zone.
With this setup, one full optimization (global and local) took
about 1 week, depending on the speed of convergence.

3 Results

3.1 Saturation estimates

Figure3a shows the map of the seven water regime classes
from the reclassification of the soil map. Class 1 is the driest,
class 7 the wettest water regime class. In Fig.4 the estimated
saturation durations in the water regime classes are shown.
To evaluate the map-based estimates of the water regime we
can compare the estimates with the measured groundwater
levels from the piezometers (Fig.4). In general, the estimated
durations of soil saturation are in good agreement with the
piezometers. There are some deviations at specific locations
like the very wet piezometer in the driest soil class (piezome-
ter 1 in Fig.1 indicated by an arrow in Fig.4). For a fur-
ther evaluation of the spatial distribution of the water regime
classes, we compared the water regime class map (Fig.3a)
with the topographic wetness index (Fig.3b). The compar-
ison reveals a generally good match between the two maps
(high topoindex means wet soil). Even small scale features in
the topoindex map are reflected in the soil map (e.g., in the
NE of the catchment). For a quantitative comparison of the
two maps, we classified the wettest two water regime classes
(classes 6 and 7) as potential CSAs. This resulted in 20 % of
the area classified as CSA. For the topoindex map we also
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Figure 3. (a) The reclassified soil map with the seven soil water
regime classes (class 1 is the driest, class 7 the wettest),(b) map of
the topographic wetness index,(c) map of the drained areas in the
catchment. Sources:Gemeinde Ossingen(1995); swisstopo(2008).

classified the wettest 20 % as CSA. The areal overlap of the
CSAs from the two methods is 52 %. Despite this reasonable
agreement between the two maps there are some areas with
rather high topoindices where the soils are classified in dry
soil classes (e.g., in the west of the catchment).

The location of tile drains also contains information on
the soil water regime. The tile drain map can therefore be
used as additional comparison to verify the soil map esti-
mates. Tile drains are only present at locations with excess
groundwater that has to be diverted. Drained areas are there-
fore good indicators of originally higher groundwater levels.
Because the drains are installed between 1 and 1.5 m below
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Figure 4.The estimated depth dependent saturation durations in the
seven water regime classes with the expected variation within each
class (blue) together with the measured saturation duration in the
piezometers (black).

the surface in the study catchment, groundwater levels are
still expected to be rather high in drained areas. We there-
fore used the drainage map (Fig.3c) as a further evalua-
tion of the map of soil water regime classes. The compari-
son reveals that drained areas are characterized by high topo-
graphic indices and that the drained soils are usually classi-
fied into a wet water regime class. However, the western part
of the catchment is intensely drained and has rather high to-
pographic wetness indices, but large areas are classified in
the driest water regime class. Also the wet piezometer in
water regime class 1 (Fig.4, indicated by an arrow) is lo-
cated in this area. The local assessment in the soil pit besides
piezometer 1 (Fig.1) supports the map-based estimate. Only
few small iron mottles were found below 1 m. The piezomet-
ric measurement therefore contradicts the local morphologi-
cal interpretation in the soil pit and the map-based estimate.
This is the only soil pit location where this is the case, in the
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Figure 5. The modeled and measured discharge time series.

other three soil pits (Fig.1) the piezometric measurement,
the local morphological interpretation in the soil pit and the
map-based estimate corresponded well.

3.2 Calibration results and model validation

After calibration (the optimum parameter set can be found
in Tables S1 to S4 in the Supplement), the model performed
satisfactory with respect to discharge and absolute ground-
water levels. Figure5 shows the predicted and measured dis-
charge time series. The bad fit in the beginning stems from
the difficulty to calibrate the initial groundwater level (see
Sect.2.5.4). After this initial phase, the discharge prediction
is good with a Nash–Sutcliffe coefficient (Nash and Sutcliffe,
1970) of 0.91 for the calibration period. Also the predicted
average groundwater levels at the piezometer locations are
in good agreement with the measurements (Table1). After
the initial phase, the root mean square error (RMSE) of the
groundwater level prediction ranged between 22 cm and 1 m
with a median of 41 cm (Table1). The model was there-
fore able to reproduce the general hydrological behavior of
the catchment. The modeled composition of the discharge,
with most of the discharge originating from the drainage sys-
tem, was also in satisfactory agreement with the measure-
ments: the model attributed 82 % of total discharge to dis-
charge from tile drains, while we estimate 62 % based on the
measurements.

However, if the time series of the groundwater levels are
plotted as depth below the soil surface (Fig.6) it becomes ob-
vious that there is a lack of groundwater level dynamics in the
model. The observed groundwater levels are much more dy-
namic than the modeled ones. Additionally, Fig.6 shows that
the depth to groundwater in the model prediction is rather ho-
mogeneous throughout the area. The modeled average depth
to groundwater does not vary much between the piezometer
locations. In contrast, the measured depth to groundwater is
more variable.

To further investigate the model performance with respect
to the spatial distribution of groundwater levels we used the
estimated saturation durations from the soil map (Fig.7).
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Figure 6. The modeled and measured groundwater levels at the
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is the piezometer location (Fig.1), the number in the colored box
shows the water regime class, D indicates a drained model cell.

This allowed a model evaluation at locations without mea-
surements and at locations where the model was not cali-
brated to. The number of evaluation cells in each soil type
was chosen according to the area covered by the correspond-
ing soil type. The evaluation cells were selected in the center
of the soil types to avoid influence from the boundaries. Fig-
ure7 shows that the model does not differentiate between the
water regime classes. In all the classes, there are dry and wet
model cells. The underestimation of variability is a general
behavior, dry locations (water regime class 1) are too wet,
and wet locations (water regime classes 6 and 7) are too dry
in the model. However, the model was able to predict the ar-
eas with the lowest groundwater levels. Model cells where
the modeled groundwater level is deeper than 3 meters be-
low the surface are only located in water regime class one
(Fig. 7). Hence, the model was not able to reproduce the spa-
tial variability in saturation durations, except for the locations
with the lowest groundwater levels, even though it was cali-
brated on measured groundwater levels distributed through-
out the catchment.

For a more complete picture of the modeled spatial distri-
bution of the depth to groundwater in the catchment Fig.8
shows a map of the model output from 27 July 2009. This is
a situation with high groundwater levels after the largest rain
event in the modeled period. Figure8 reveals a clear dom-
inance of the drainage system in the determination of the
modeled groundwater level (compare Fig.8 with Fig. 3c).
This is also visible in Fig.7. Most of the drained cells
show a very similar behavior with stable groundwater lev-
els around 1.5 m below the surface (the installation depth of
the tile drains). A comparison of Fig.8 with Fig. 3a reveals
that the spatial pattern of the model output does not resemble
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Table 1.Deviations between observed and simulated water table levels in the 11 piezometers.

Piezometer P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11
RMSE (mm) 792 310 218 281 832 857 1001 328 441 411 1003
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Figure 7.Comparison of the depth distribution of the saturation du-
ration in selected model cells with the estimate from soil morphol-
ogy. The model results are grouped into the respective water regime
class and into drained and not drained cells.

the pattern observed in soil morphology. The spatial over-
lap between wet areas as estimated from the soil map (water
regime classes 6 and 7) and the wettest 20 % of the cells in
the modeled output is only 12 %. Model and soil map would
therefore predict completely different locations as CSAs. The
model predicts high water tables in areas where it should be
dry. In the center of the catchment, where the area is drained
but still wet in reality, the model predicts too low water levels
(compare Fig.8 with Fig. 3c). It seems that the drainage sys-
tem in the model is too efficient in lowering the groundwater
table.

4 Discussion

4.1 Soil map translation

A meaningful validation of the saturation duration estimates
from the soil map is not straightforward due to several
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Figure 8. Map of the modeled depth to groundwater on
27 July 2009.

difficulties. First, the spatial coverage of the estimates corre-
sponds to the soil map unit while piezometers are point mea-
surements. Hence, deviations between soil map estimates
and piezometer data may simply reflect local heterogeneities.
Furthermore, the soil map divides the area into units with
sharp boundaries. Some of these boundaries are in reality
gradual changes. The vicinity of a piezometer to a soil unit
boundary (especially boundaries between very wet and very
dry soils) can therefore complicate a meaningful evaluation.
A second difficulty is that the estimates do not differ heav-
ily; the saturation estimates change gradually from one class
to the next. The piezometer measurements could therefore
fit well in more than one class. Third, there are temporal as-
pects of the validation. Soil morphology does not necessarily
reflect the current water regime, especially when the water
regime has recently changed because of artificial drainage.
According toHayes and Vepraskas(2000), soil drainage can
alter morphology within decades. Finally, it is possible that
the morphological signs of wetness do not evolve in a cer-
tain soil, even though the same water regime has persisted
a longer time. A possibility for this is soil saturation without
oxygen depletion (e.g., frequent but short periods of satura-
tion), which does not lead to morphological changes (Evans
and Franzmeier, 1986; Pickering and Veneman, 1984).

The main part of the drainage system in our study catch-
ment was installed in the 1930s, the soil map was produced
between 1988 and 1997. It can therefore be expected that soil
morphology reflects the current situation. However, the inter-
pretation of drained soils will, in general, remain difficult.
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The mismatch between the measured groundwater level
and soil morphology at piezometer 1 shows the limitations
of the approach. Soil morphology does not reflect the cur-
rent water regime everywhere. As stated above, it is possi-
ble that the morphological signs of wetness did not evolve
in this soil, even though the same water regime has persisted
a longer time. On the other hand, the current water regime as
measured in the piezometer could have developed only few
years ago for several reasons, possibly because of a poorly
maintained and clogged part of the drainage system, for ex-
ample.

Despite these difficulties and limitations, the comparison
of the estimates with the piezometric measurements shows
a generally good agreement (Fig.4). We are therefore con-
fident that soil morphology in this region reflects the cur-
rent water regime in most soils. The good agreement between
the topographic wetness index and the map of the soil water
regime classes indicates that the soil distribution with respect
to soil saturation and soil water regime is strongly driven
by topography in this catchment. In addition, this correspon-
dence shows that the estimation of soil saturation from soil
map information resulted in a reasonable spatial pattern of
soil saturation in this catchment.

The quantitative interpretation of soil morphology will al-
ways remain uncertain to some degree. However, if the un-
certainties can be quantified, such information can still be
very valuable for model calibration and evaluation (Franks
et al., 1998).

4.2 Model predictions

4.2.1 Calibration

We chose a model setup with a homogeneous saturated zone
because the geological map does not indicate any spatial dif-
ferentiation (swisstopo, 2007). Also soil texture in the study
catchment is rather homogeneous. In addition, the soil tex-
ture classes in the Swiss classification system (FAL, 1997)
are rather wide. Therefore, a spatial distribution based on
geological information or texture information obtained from
the soil map would not have resulted in much variability. The
only spatially variable attributes in the saturated zone mod-
ule were surface topography, surface connectivity and the ex-
istence of tile drainage. However, the unsaturated zone was
spatially differentiated based on the water regime classes be-
cause we expect different thicknesses of the unsaturated zone
in the water regime classes. This setup resulted in 83 pa-
rameters to be calibrated. Parameter optimization was there-
fore a rather complex problem with the simultaneous cali-
bration to discharge and groundwater levels at 11 locations.
We started the calibration at the optimum parameter set of
a model setup with a homogeneous unsaturated zone. Some
of the parameters did not differentiate into the nine unsatu-
rated zones but remained at the starting parameter value for
all or some of the soil types. The likelihood function was

therefore insensitive to a spatial distribution of these param-
eters (these parameters are indicated in Tables S1 to S4 in the
Supplement).

It could be argued that the poor model performance re-
garding water table levels is caused by a wrong subjective at-
tribution of weights to the water table data in the aggregating
likelihood function (Efstratiadis and Koutsoyiannis, 2010)
(Sect.2.5.4). Because we used such a single function we
did not explicitly quantify the trade-offs between discharge
and water table simulations. An imbalance in the weighting
could be caused (i) by an unbalanced number of data points
for the different variables or (ii) a disparity between the stan-
dard deviations attributed to the variables in the likelihood
function (Eq.23). The first possibility is excluded because
the actual number of piezometric data exceed the discharge
data by a factor of 11 (Sect.2.5.4). The second possibility
was avoided by the joint calibration of the standard devia-
tions. We chose wide priors for all the error variances, so we
did not force the model into a solution where only discharge
was reproduced well. Hence, if there was a parameter set that
performed well on some of the water table levels – causing
the standard deviation to be small – it had outperformed data
sets that performed only well on discharge.

Based on the arguments above we do not believe that the
rather poor model performance with respect to groundwater
level dynamics can be attributed to problems related to the
chosen calibration procedure. We rather think that the prob-
lems arise from the model structure.

The analysis of residuals of the maximum likelihood solu-
tion during the calibration period revealed that the statistical
assumptions behind our error models could be only partially
fulfilled. Residuals of discharge showed a strong relation-
ship with discharge itself in non-transformed space and no
relationship in the transformed space (Supplement, Fig. S1).
This suggests that the applied Box–Cox transformation was
indeed useful and acted towards more homoscedastic dis-
charge errors. The assumption of normality was mostly met
for discharge in transformed space except for the slightly
heavy tails in the residual distribution (outside the central
80 % probability domain) (Supplement, Fig. S2). No trans-
formation was applied for piezometer data, which was justi-
fied by the posterior lack of dependence between the magni-
tude of residuals and piezometer levels. The residuals of sites
showing a poor fit in terms of mean groundwater level were
certainly heavily biased, which violated the hypothesis that
the expected value of errors was 0 (Supplement, Fig. S3). The
distribution of residuals was quite far from normal for most
sites. In accordance with the models ability to match mean
piezometer levels much better than temporary peaks, resid-
ual distributions were all skewed to a varying degree (Sup-
plement, Fig. S2). The assumption on the independence of
residuals was neither fulfilled for discharge nor the piezome-
ter data, especially some of the water level residuals were
heavily autocorrelated (Supplement, Fig. S4). This suggests
that autoregressive error models would have been statistically
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better choices than the independence assumption. However,
in contrast to the width of predictive uncertainty interval and
parameter values, the maximum likelihood fit for discharge
series was often proven to be robust against neglecting the
autocorrelation in residuals (Honti et al., 2013; Del Giudice
et al., 2013). The large variability in the shape of the resid-
ual distributions and in the extent of autocorrelation suggests
that – in a next calibration exercise – individual distributions
and individual autoregressive errors should be assumed for
the piezometers.

4.2.2 Model performance

The model is able to reproduce the general hydrological be-
havior of the catchment (Fig.5 and Table1). The satisfactory
match between observed and modeled groundwater levels
with a model that assumes homogeneous soil properties in-
dicates that groundwater levels in this catchment are mainly
driven by topography and are not strongly influenced by the
variability of hydraulic soil properties. However, if we focus
on the top two meters below soil surface there are deficien-
cies in the groundwater level predictions.

The comparison with the estimates of soil saturation re-
veals a lack of differentiation between wet and dry areas
(Fig. 6) and wrong spatial patterns of soil saturation (Fig.8).
The main problems are (i) the missing dynamics in the
groundwater levels, (ii) the dominance of the drainage sys-
tem with respect to groundwater levels which leads to wrong
spatial patterns of soil saturation and (iii) the homogeneity
within the drained part of the catchment. These deficiencies
are problematic if one wants to use such a model to predict
critical source areas. Saturation-excess overland flow only
occurs in situations with high groundwater levels. A pre-
diction model therefore needs to be able to adequately re-
produce groundwater dynamics especially in situations with
high groundwater levels. Furthermore, large parts of the in-
tensively cultivated cropping areas in Switzerland are artifi-
cially drained; the model should therefore be able to predict
groundwater levels and their dynamics in drained areas. The
prediction of saturation excess areas requires a very high ac-
curacy in groundwater level prediction. A difference of 50 cm
or less in the depth to groundwater is already crucial, because
it decides whether an area often produces saturation-excess
overland flow. Even though the model captured the general
hydrological behavior of the catchment with respect to dis-
charge and absolute groundwater levels, it was far from be-
ing useful as a prediction tool for saturated areas. It did not
achieve the accuracy that is needed for practical applications.

Some of the deficiencies in water level dynamics were
possibly caused by the chosen model structure. The current
model only considers the effects of different antecedent soil
moisture contents within the unsaturated zone. This influ-
ences the recharge to the saturated zone. However, within the
saturated zone, antecedent soil moisture is neglected (con-
stant effective porosity) and therefore has no influence on the

increase of the water table during different events. Further-
more, effective porosity is the same during rising and falling
water tables in the model. In reality however, the amount of
water needed to increase the water level by a given level de-
pends on the degree of saturation before the event. Addition-
ally, the degree of saturation above a rising water table does
not need to be the same than the degree of saturation above
a falling water table. This can only be achieved by coupling
the soil moisture dynamics in the unsaturated zone and the
groundwater level dynamics in the saturated zone.

Because crops may differ strongly in their water require-
ments at any given moment, accounting for antecedent soil
moisture may require the inclusion of crop specific water ab-
straction from the unsaturated zone. This may be actually a
reason why the relative responses of the water table in differ-
ent piezometers differed between events.

A further problem is the representation of the drainage sys-
tem, which is a dominant feature in the hydrology of the
catchment. Because most of the area has no direct connec-
tion to stream, i.e., surface runoff cannot directly reach the
stream (Doppler et al., 2012), we know that most of the dis-
charge reaches the water course through tile drains. At the
same time, we know that the water table is often quite close
to the soil surface despite the efficient drainage of the water
through the soil. The current model version drains the soils
too efficiently. In order to get as much water as possible dur-
ing rain events through the soil while keeping the water table
at a higher water level it is obvious that the water flux has
to increase more strongly (in nonlinear fashion) with the wa-
ter table than described by Eq. (21). Conceptually, this could
be achieved by adding an additional preferential flow com-
ponent that depends (in a nonlinear manner) on the current
water level (seeFrey et al., 2011, for a similar solution).

Especially in drained areas it is important to be aware of
the difference in spatial support between piezometer readings
and model predictions. Piezometers are point measurements
while the model predictions are made on a 16 m×16 m grid.
The tile drain spacing is around 15 m. So the model does
not resolve the difference between locations directly above
tile drains and locations in the middle between tile drains. In
reality however, this difference is important with regard to
groundwater levels. If a piezometer is directly above a tile
drain, the model would overestimate its groundwater level.
But it would underestimate groundwater levels in between
tile drains.

In the model, tile drains are represented as areas (all cells
in an area with tile drains are treated as drained cells) while
in reality the tile drains are linear features. The areal repre-
sentation in the model prevents the buildup of high ground-
water levels between drainage tubes and the correspond-
ing high gradients between drainage tube and the undrained
space between drainage tubes. If the tile drains should be
implemented as linear features in a model, this would re-
quire a much higher spatial resolution. The rather low spatial
resolution of our model setup (16 m) generally prevents the
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reproduction of very steep gradients on short distances which
also influences the groundwater level dynamics.

Based on the available information on geology (swisstopo,
2007) and soil texture (FAL, 1997) there was no indication to
spatially distribute the parameters of the saturated zone (see
Sect.4.2.1). If there was a parameter set within our model
structure that would perform well on some of the piezome-
ters (because the saturated zone parameters fit well for this
soil type), this parameter set would have outperformed other
solutions. But the maximum likelihood parameter set does
not well reproduce groundwater level dynamics (especially
in the peaks) of any piezometer. We do therefore believe that
this rather poor model performance has to be attributed to the
model structure and not to the calibration procedure or lack
of spatial heterogeneity in the model.

A closer look at the piezometer data in Fig.6 reveals that
the level fluctuations of the shallow groundwater are rather
complex even in the rather simple and homogeneous study
catchment. Every piezometer reacts individually to the dif-
ferent rain events. Moreover, the dynamics of piezometers
within the same water regime class differ substantially. Even
if we consider whether a piezometer location is drained or
not, it is impossible to explain the differences and similarities
of the groundwater dynamics. It would have been possible
that the model can explain the spatial variability of ground-
water level dynamics if these dynamics are determined by
a combination of topographic position, the soil water regime
class and the drained areas. However, the discrepancy be-
tween modeled and measured groundwater levels indicates
that other processes influence the groundwater levels to a de-
gree that cannot be neglected. From a scientific point of view
it would be interesting to dig deeper into these processes, try-
ing to understand the influencing factors of the groundwater
level dynamics. To do so, we suggest using a model with a
more detailed representation of the processes at the bound-
ary between the saturated and the unsaturated zone and a
more realistic description of the drainage system. The for-
mer could possibly be achieved within a conceptual model
as it was done bySeibert et al.(2003). The latter however,
would require a spatially explicit drainage system represen-
tation with high spatial resolution. Such a model would need
detailed information on the drainage system and its mainte-
nance status, which is often not available.

In the light of the above discussion about a model that in-
cludes additional processes, it seems surprising that the spa-
tial pattern of wet areas as predicted by the topographic wet-
ness index is in better agreement with the soil map than the
predictions of the more complex model (Figs.3 and 8). A
comparison to TOPMODEL predictions could therefore be
interesting. According to TOPMODEL, the spatial ground-
water level distribution is simply dependent on the distribu-
tion of the wetness index and the average moisture level in
the catchment. At each location there is a constant offset to
the mean depth of the water table in the catchment that de-
pends on the deviation between the local wetness index and
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Figure 9. Average groundwater depth in the piezometers as a func-
tion of the local wetness index. Numbers refer to the piezometer
number, colors to the corresponding soil water regime class.

its average value (Blazkova et al., 2002). Accordingly, one
would expect the depth of the water table to be correlated
with the local wetness index. Figure9 depicts the average
water level as a function of the wetness index. It is obvi-
ous that for low index values there is a large scatter of the
data and for high index values the water table hardly depends
on the index. We used a topographic wetness index that ne-
glects local transmissivity. However, using a wetness index
including transmissivity estimated from soil map informa-
tion (as introduced byBeven, 1986) would not significantly
change the spatial pattern because of the homogeneous soil
texture and geology in the catchment (see above). Hence, a
simple wetness index based approach does not outperform
our model approach.

This conclusion is supported by the comparison of the dy-
namics of the different piezometers. According to the TOP-
MODEL approach, the water table dynamics at different to-
pographical positions should simply be shifted in height of
the water table (if one assumes a constant drainable poros-
ity with depth). Figure6 however, reveals that the dynamic
varies substantially between the piezometers. Our approach
mostly failed to reproduce these differences; conceptually
TOPMODEL will do so as well.

So far we discussed identification of CSAs caused by
saturation-excess overland flow. However, it was shown that
areas that produce infiltration-excess overland flow can be
CSA on arable land (Doppler et al., 2012). These areas de-
pend strongly on the actual land management and they can
change with crop rotation or when the management prac-
tices are changing. Therefore, their identification requires
knowledge on the current local site conditions. As an exam-
ple,Srinivasan and McDowell(2009) found that small tram-
pled areas beside fences were relevant in the occurrence of
infiltration-excess overland flow and the transport of phos-
phorus to the stream. Such features cannot be captured by
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models based on generally available information and – from
a practical perspective – once they are identified in the field
there is no need to implement them into a prediction model.

The focus of this study was to use a model that would be
applicable for practical purposes. Besides model-based pre-
dictions, critical source areas can also be directly identified
in the field by experts. This requires interviews with the local
farmers and detailed site inspections. If a prediction model
for CSAs should serve as basis for pollution mitigation mea-
sures, it must have advantages as compared to field visits by
experts. An advantage of model predictions would be that
predictions can be based on existing knowledge, so that field
visits would not be necessary. However, the need for very de-
tailed knowledge (e.g., on the drainage system and on the ac-
tual land management) cancels this advantage. Additionally,
the demanding setup of a very detailed model, its calibration,
and tests in every small catchment (not to mention uncer-
tainty analysis), would not lead to a time gain compared to
field visits by experts to directly identify CSAs in the field.

5 Conclusions and outlook

Our case study has shown that the estimation of saturation
durations from morphological soil map information is possi-
ble and these estimates have proven to be useful for model
validation even though the resulting map of duration of soil
saturation remains uncertain to some degree because the esti-
mates do not always represent the current water regime. The
additional data source provides quantitative spatial informa-
tion on the soil water regime that can be used as validation
data for the predicted spatial patterns. In a further step such
estimates could also be used to calibrate spatially distributed
hydrological models, so that no groundwater level measure-
ments are needed for model calibration.

The model was able to reproduce the general hydrological
behavior of the catchment. However, the desired accuracy
of the groundwater level predictions – which is needed for
the identification of CSAs – could not be achieved. The pro-
cesses that determine the groundwater level dynamics in this
catchment seem to be more complex than the used model.
It seems that a high spatial resolution and detailed process
representations are needed for a groundwater level predic-
tion that is accurate enough for the identification of CSAs
in practical situations. Drained areas are especially challeng-
ing for the following reasons: limited data availability on tile
drain locations and maintenance status, difficult integration
in catchment models (concept and spatial resolution), and fi-
nally the estimation of soil saturation duration is much more
difficult in drained areas.

Our results indicate that dynamic, spatially distributed hy-
drological models to predict CSAs are still far from being
useful for management decisions. If a model should be accu-
rate enough and should also include infiltration excess areas,
it would require information that is not generally available.

Furthermore, the setup and test of such a complex model
would need more resources than direct observations of CSAs
in the field by experts and the local farmers. If site specific
management of CSAs should be achieved, we recommend
identifying these areas in the field and not solely by model
predictions. However, predictions by simple models like the
topographic wetness index can be helpful for the identifica-
tion of CSAs in the field. It would also be interesting to test
the predictive capabilities of different modeling concepts un-
der real world conditions.

The Supplement related to this article is available online
at doi:10.5194/hess-18-3481-2014-supplement.
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