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Abstract. Fluxes of the three main greenhouse gases (GHGwater levels in organic soils. Our study also demonstrates
C0O,, CH4 and N O from peat and other soils with high or- that a large fraction of the observed Wlariance cannot be
ganic carbon contents are strongly controlled by water ta-explained by nationally available predictor variables and that
ble depth. Information about the spatial distribution of water predictors with stronger WLindication, relying, for exam-
level is thus a crucial input parameter when upscaling GHGple, on detailed water management maps and remote sensing
emissions to large scales. Here, we investigate the potentigiroducts, are needed to substantially improve model predic-
of statistical modeling for the regionalization of water lev- tive performance.

els in organic soils when data covers only a small fraction
of the peatlands of the final map. Our study area is Germany.
Phreatic water level data from 53 peatlands in Germany werg
compiled in a new data set comprising 1094 dip wells and

7155 years of data. For each dip well, numerous possiblgsreenhouse gas (GHG) emissions from organic soils can be
predictor variables were determined using nationally avail-pigh compared to mineral soils. In Germany, the fraction of
able data sources, which included information about 'andorganic soils classified as peatland covers only 5% of the
cover, ditch network, protected areas, topography, peatlantghng surface, but does account for 40 % of GHG emissions in
characteristics and climatic boundary conditions. We appliedo reporting categories “agriculture” and “land use, land use
boosted regression trees to identify dependencies betwee(ghange and forestry” of the UN Framework Convention on
predictor variables and dip-well-specific long-term annual cjlimate Change (UNFCCC) (UBA, 2012). Also, other or-
mean water level (WL) as well as a transformed form WL ganjc soils with a lower soil organic carbon content (SOC)
The latter was obtained by assuming a hypothetical GHGyt stjll meeting the definition of organic soils according to
transfer function and is linearly relateo! to _GHG emissions.“gCC (2006) are important sources of persistently high GHG
Our results demonstrate that model calibration onWlisu-  epissions (Leiber-Sauheitl et al., 2014). In our study, we also
perior. Itincreases the explained variance of the water level in,gnsider these soils. For simplification, we will refer in the
the sensitive range for GHG emissions and avoids model biags|iowing to the total of peatlands and “other organic soils”
in subsequent GHG upscaling. The final model explainedyg organic soils. Current estimates of GHG emissions from
45 % of WL, variance and was built on nine predictor vari- grganic soils are fairly uncertain and reporting of most coun-
ables that are based on information about land cover, peatjes relies on IPCC default emission factors (EF) for,CO
land characteristics, drainage network, topography and clixmissions which are stratified for land use and climatic re-
matic boundary conditions. Their individual effects on WL ion, e.g., 10tChatyear! for arable land in the warm
and the observed parameter interactions provide insight im‘?emperate zone.

natural and anthropogenic boundary conditions that control
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Artificial drainage turns the function of former natural soil-vegetation—atmosphere transfer model to account for
peatlands from a C sink into a C source. Experimental workthe differing hydrological processes in pristine fens, pristine
with organic soils during the last 2 decades showed that théogs and drained peatlands, and modeled water level fluctu-
aerated soil pore space above the water level is one of the kegtions in boreal peatlands for all Finland. But calibration and
variables explaining the amount of G@missions (Moore validation with data from only three mires does not allow for
and Dalva, 1993). Frequently, the water level relative to soilconclusions about the accuracy and general applicability of
surface (further simply referred to as “water level”, with neg- the model. Numerous large-scale hydrological wetland mod-
ative values below ground) is used as proxy for air-filled els are often developed with a focus on delineating wetland
porosity, given the simplicity and availability of water level extent (Melton et al., 2013). TOPMODEL-based schemes
measurements. Additionally, low water levels and oxygen(Ju et al., 2006) and more advanced large-scale hydrologic
availability are also key drivers of nitrous oxide{®) pro- frameworks (Fan and Miguez-Macho, 2011) are suited to
duction in organic soils (Regina et al., 1996), which increasesnodel WL but do not account for anthropogenic drainage
the relevance of organic soils for climate change mitigationand thus are only applicable to pristine (or nearly pristine)
policy. During anaerobic conditions when water levels are atpeatland systems.
or above the land surface, substantial methanesj@rhis- When detailed physical model input that is needed for a
sions can occur (Levy et al., 2012). physically based approach is lacking, statistical or machine-

It is postulated that the GHG budget — the sum of thelearning tools represent a promising alternative (Finke et al.,
COy-equivalents of the three main greenhouse gases,(CO 2004). Potential predictor variables that are available at the
N20O, CHy) — is at a minimum for annual mean water lev- final map scale are determined for each location with water
els (annual mean further defined by the variable name WL)evel data and the algorithm identifies dependencies between
at about—0.05 to—0.1 m (Drosler et al., 2011). Following potential predictors and target variables, such as WL or other
atmospheric sign convention, a positive sign stands for nestatistical values that describe water level dynamics. For ar-
emissions, while a negative sign indicates a net uptake o€&as rich in water level data, e.g., the Netherlands, residuals
GHGs. Other parameters, such as physical and chemical sodf the statistical model can afterwards be analyzed for spatial
properties and vegetation, also influence the amount of theorrelation. If this is present, it can be used to correct for spa-
emissions and thus weaken the relation between total GHGially correlated model bias by kriging. This scheme has been
budget and WL. applied to agricultural areas by Finke et al. (2004) and to na-

If available, information about the spatial distribution of ture conservation areas by Hoogland et al. (2010). Spatial
WL can identify GHG hot spot regions and improve the ac- interpolation approaches can include ancillary data such as
curacy of the total GHG budgets at large scales. The applicamapped geophysical parameters (Buchanan and Triantafilis,
tion of transfer functions that relate GHG emissions to WL 2009). Statistical approaches strongly rely on both the quan-
and potential other influencing site characteristics can refingity and quality of the data on the target variable itself, i.e.,
the estimates derived from simple application of IPCC de-the water level data. An important quality criterion for wa-
fault EFs. However, in many countries and regions, as forter level data from organic soils is the measurement depth.
example Germany and Europe, a map of WL in organic soilslt is crucial that there is little or no hydraulic resistance by
does not exist. The spatial availability of measured WL isa low conductive layer between the perforated part of the
much higher than that of measured GHG fluxes, which sug-monitoring well and the fluctuating water level. If hydraulic
gests the use of WL as scaling parameter for upscaling GHGesistance is too high, the monitoring well acts as a piezome-
emissions. ter and water levels may substantially differ from the actual

Several methods were applied in the past to produce WLlphreatic level as shown for peatlands by van der Gaast et
maps. Their suitability is strongly related to data availabil- al. (2009). If such piezometer data is part of a data set and
ity, which very often decreases in quality and spatial densityinterpreted as phreatic water level data during model calibra-
with increasing scale of the study area. Spatially distributedtion, this can lead to an under- or overestimation of predicted
process-based modeling (Thompson et al., 2009) and semwater levels in organic soils. An underestimation of water
physical statistical approaches (Bierkens and Stroet, 2007level predictions (too dry) is discussed for Dutch modeling
are able to reproduce well the water level dynamics in wet-studies in van der Gaast et al. (2009).
lands environments including peatlands. However, they heav- At present in Germany, a map of water levels in organic
ily rely on spatial information about the system’s physical soils that could be used for GHG upscaling is lacking. This
properties and boundary conditions (peat hydraulic properfact and current efforts on improving GHG emission esti-
ties, hydraulic conductivity of peat base, drainage system)mates for German organic soils were the main drivers for
data that is often only available with sufficient detail at a re- our study. Thus, the major goal of this study was the devel-
gional scale (Limpens et al., 2008). Despite this difficulty opment of a model concept that produces a water level map
there are studies in which process-based models were aft the scale of all organic soils in Germany that is specifically
plied to model peatland water levels at a large scale (haoptimized for water level ranges to which GHG emissions re-
tional or continental). Gong et al. (2012) adopted a commonact sensitively. We emphasize that the objective of our study
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was to regionalize annual mean water levels and not the GHG
emissions themselves. The latter are influenced by more site
characteristics, in particular soil properties. Furthermore, we
suppose that annual mean water level is probably not the only
or optimal statistical measure to describe the water level ef-
fect on annual GHG emissions. However, we are not aware
of well-established information about transfer functions that

relate more complex statistical measures of water level dy-
namics to GHG emissions. Therefore, we here focused on the
simple and frequently applied “annual mean water level”.

As a first step, we compiled a new data set of phreatic wa- S : b : j
ter level time series of organic soils with contributions from i,‘ ’ ' ’ G L
numerous data sources. Based on this data, we developed ' B »
modeling approach for the annual mean water level that fol- «~ 5/
lows the basic idea of the statistical regionalization presented {f&: N ) ,/\/XNJM
in Finke et al. (2004). However, the data coverage in our & o)
study substantially differed from their study. Our data cov- B Bog peat
ers only a small fraction of the peatlands of the final map and ., ' B fen peat
spatial interpolation of residuals was not possible. We thus ¢ P )
extended their approach by: N 4 B other org. soils

T ® Dip wells

— including additional possible predictor variables, A e =

/ @, ’ >
— using boosted regression trees as a modeling tool to /f’ ’ : Vo ’

identify the influence of both numerical and categorical
variables simultaneously,

— applying a new weighting scheme that balances out het-

erogeneous water level data sets with highly variableFigure 1. Locations of the 1094 dip wells of the data set. Base map
spatial data density, (geological map 1:200000, BGR) shows the distribution of bog

and fen peat, and other organic soils.
— transforming the annual mean water level, WL, into a
transformed annual mean water level, MMhat shows a
linear relationship with the GHG budget and optimizes measure the phreatic water level of the peat layer are cur-
model calibration for the WL range relevant for GHG rently not collected in central data management systems in
emissions and Germany or any of its federal states. With a comprehensive
guestionnaire started in 2011, we collected water level time
— restricting the water level regionalization to phreatic series of organic soils from local agencies, non-governmental
water levels of organic soils. organizations, universities, consultants and other sources,

: . . ... and combined this data with water level data from our
We present a detailed analysis of the influence of the individ-"_ " ) Co .
projects. Time series included manual and automatic mea-

ual predictor variables on water levels of organic soils as well ; .
L . T surements. Years with less than six measurements or data
as their interactions. Furthermore, the manuscript includes

L ; . aps of more than 3 months were excluded. Water level time
the estimation of model uncertainty and possible paths of® " . . .
: . . . series of each dip well were visually checked on plausible dy-
future model improvement. Finally, the calibrated model is

used to derive a map of Wifor all organic soils in Germany, namics by comparing with (_jata from ne|ghbor_|ng dip wells
. T and weather data time series. Based on auxiliary data and
and the regionalization results are presented.

local knowledge, we further identified dip wells that reached
down to the underlying aquifer. If dip wells failed these qual-
ity checks, they were removed from the data set.
The final data set comprised 7155 years of data from
2.1 Data set of phreatic water levels in organic soils 53 German peatlands and 1094 dip wells. On average time
series ranged over 7 years. All time series were collected at
Available data of phreatic water levels in organic soils aresome period between the years 1988 to 2012. Data are well
scarce. In contrast to data of rather deeply drilled observadistributed over most of the German peatland regions and
tion wells of official groundwater monitoring networks, short cover the three major types of organic soils (Fig. 1). Com-
peatland observation wells of only 1 or 2 meters length thatpared with the distribution of the types of organic soils in

2 Data set and methods
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Germany, the fraction of dip wells on bogs is overrepresentedFig. 1). Additional spatial data is needed as basis for region-
in the data set by the factor of 2.5, while dip wells on fens alization. Ancillary information that covers fully or at least
and other organic soils are slightly underrepresented. Datanost of the extent of the final map are necessary. They can be
also cover the common land-use types (for data sources saesed as predictor variables. A comprehensive set of variables
Table 1). However, dip wells on organic soils that are neither(numerical and categorical) with potential indication for the
used for agriculture, forestry or peat mining, further referredhydrological condition of an organic soil were determined
to as “unused peatlands”, are overrepresented in the data sktr each dip well (Fig. 2 and Table 1).

by a factor of 6 as data was collected more frequently and The predictor variables, which can partly be found also in
in higher spatial data density in the frame of conservationFinke et al. (2004), can be divided into seven groups:
projects. The fraction of unused peatlands of the German or-

ganic soils is 6% and the fraction in the data set is 36 %.2.2.1 Land cover

In contrast, dip wells on arable land are underrepresented in ] ) )

the data set by a factor of 6. The fraction of arable land onS Cértain land use and vegetation require and reflect cer-
German organic soils is 24 %, and the fraction in the data sef&in WL, such information can be used as an indicator for
is 4 %. The other two key land-use types of organic soils inthe average dralnage It_evel around the dip well. La_m.d—use and
Germany, grassland and forest, are well represented in thyegetation information is based on the German Digital Land-

data set. The misbalance of the land-use types in the data s&¢@P€ Model (ATKIS Basis-DLM), which is updated contin-
is accounted for in the weighting of data (see Sect. 2.3.2). Uously by aerial photos as well as sporadic ground mapping

If land use changed within the measurement period of snd has a temporal accuracy of 3 months to 5 years. Itis pro-

dip well, the time series was split at the moment when theVided as fine-scaled polygons and represents the best uniform

land-use record indicates the transition. For each segment t@"d cover information available in Germany. It contains in-
annual mean water level, WL (here with negative values deformation on primary land-use type, few optional vegetation
fined as water levels below ground), was calculated as th&ttributes and whether “wet soil” has been observed during

multi-year average value over the whole measurement perio'2PPing. As we noticed that the use of a large number of
of the specific land use. categorical variables lowers the performance of boosted re-

The primary application of the WL map produced in this gressiqn trees, we .f'urther ag'gregatedmthe threeT i'nformation
study is for the upscaling of long-term GHG emissions astypes (i) land use, (i) vegetation and (iii) wet soil into a set

emission reporting may only reflect anthropogenic effects,0f Niné combined land cover classes (Table 1). These land
but not interannual climatic effects. As GHG transfer func- COVer classes were a trade-off between fine differentiation

tions are developed on annual data, their application require@n“d the number f’f replicates in each class. For grasslands,
both the long-term annual mean water level, as well as it "Wet grassland” class was separated when grassland was
interannual variability. Due to the non-linear dependence ofoverlaid with wet soil and/or tree or shrubs vegetation, which

GHG emissions on WL, single years with extreme water lev-M2Y indicate a less intensive management. Forests overlaid

els can strongly influence long-term average GHG fluxes With wet soil were separated as “wet forest”. Further, unused

This study is focused on the regionalization of the long-termP€atlands overlaid with wet soil and showing no coverage
annual mean water levels. For this objective, model buildingW'th tree attributes were characterized by higher water levels

should be based on long-term water level time series to av@d were thus separated as “wet unused peatland”. The very

erage out the effect of weather variation within a complete/®W dip wells classified as open water= 2) and peat cut-
climatic period (commonly 30 years). The existing nation-

ting (» =5) were merged to the reed and arable land cover
ally available data on water level time series of organic soils,C12SS: respectively. Land-use type and land cover class were
however, does not comprise a single time series with com-

extracted at the dip well (point extraction) and as fractions in
plete data coverage over the last 30 years. Due to the lackrious buffers around the dip well (Table 1). As using too
of sufficient long-term water level time series, we included Many weak predictor variables lowers model performance
all time series in the model building process. Average cli- and increases overfitting, the numerous land cover fractions

matic boundary conditions (precipitation, reference evapo-Were further aggregated into two classes: the fraction of dry

transpiration, water balance) of the specific measurement pd&rable and grassland) and wet (reed, wet grassland, wet for-
riod of each dip well are part of the predictor variables (see€St and wet unused peatland) land cover on organic soils. For
Sect. 2.2), and thus are supposed to partly account for thihe calculation of the fraction of dry land cover, we tested

effect of specific weather conditions on WL in case of short various factors for the reduction of the contribution of grass-
measurement periods. land compared to arable land as the grassland class also in-

cludes wetter grasslands that could not be detected with the
available land cover catalogue. A factor of 0.5 was an optimal
value, which was then set fixed.

2.2 Predictor variables

Spatial coverage of phreatic water level data of organic soils
is too low to obtain WL maps by simple spatial interpolation
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2.2.2 Drainage network reference evapotranspiration) were determined for the indi-
vidual measurement period of each dip well and as long-term

Locations of ditches that are included as lines in the Digitalaverages (30 years).

Landscape Model were used to obtain information about the

drainage network. The total ditch length was calculated for2.2.5 Relative altitude

various buffer sizes. Further, the distance to the next ditch

was calculated for each dip well. A short distance to the nextRelative altitude was calculated by subtracting the median

ditch may indicate either lower or higher water levels, de- altitude of various buffer sizes from the absolute altitude at

pending on whether the ditches are used for drainage or a€ach dip well in the digital elevation model (DEM). Rela-

ready blocked and used for rewetting measures. Sim"aﬂy,tive altitude is expected to have two different indications de-

the indication of the total length of ditches is not unique. Pending on the applied buffer size: (i) in many peatlands, the

Therefore, we defined two different sets of ditch variables.former smooth peatland relief at the scale of approximately

A first set, for which we calculated values for all land cover > 5 M has been disturbed due to peat cutting and differences

classes and a second one, for which we only calculated vall? drainage and mineralization rate. As a consequence, the

ues for land cover classes for which ditches are undoubtediyather smooth phreatic surface often does not follow the un-

used for drainage, i.e., arable and grassland. even and patchy terrain. Relative altitude with respect to
smaller buffer sizes< 250 m) may therefore explain part of
223 Peatland characteristics the WL variation, e.g., a dip well that is located at a surface

much higher than the surroundings may indicate deeper wa-

The geological map of Germany (scale 1:200000) defined€" levels; (i) for large buffer sizes<(250 m) relative altitude

the area for which WL predictions were modeled. It is also indicates whether the peatland lies in a larger morphological
the basis for topological peatland predictor variables, i.e., thelepression or elevation, and thus may indicate whether large-
fraction of organic soils in different buffer sizes as well as scale lateral inflow of water can be expected or not. Similar
the dip well distance to the edge of the peatland. Informationindication is provided by the topographic index (see below).
about the peatland type and the substrate at the peat base e accuracy of relative altitude values depends on the reso-
presented in more detail in a newly compiled raster map ofiution and accuracy of the DEM. The nation-wide available
organic soils (RoRkopf et al., 2014) and was thus extracted®EM is based on data sets of varying quality, which may
from this map. Peatland types were aggregated into fivdower the influence of this variable.

classes: lowland bog (North German Plains and Alpine Fore-

lands), upland bog (Central Uplands and Alps), fen neighbor-2-2-6 ~ Topographic wetness index

ing surface water, fen without neighboring surface water, andThe topographic wetness index is a common wetness indi-
a class of “other organic soils” that do not fulfill the C content . . !
cator used in hydrology (Beven and Kirby, 1979). It is a

and thickness criteria to be classified as peatland. Substrates " . .
. : ._combined measure of catchment area and slope at a given
at the peat base included loose unconsolidated rock (alluvial " I . .
i . oint and indicates the extent of flow accumulation. High val-
sand and gravel deposits), consolidated rock (bedrock) an S s
: L es indicate wetter conditions. If calculated at larger scales,
peat clay layer. The first type may indicate the occurrence o

" . igher values may hint at the occurrence of positive seepage,
seepage (positive or negative), whereas the latter two types . :
2 . . " _i.e., upward flow of water from the aquifer. Topographic wet-
may indicate rather a hydraulic decoupling from the aquifer ; . ; i
hydraulic head ness index was calculated for various DEM resolutions using

the GRASS 7 module r.watershed.

2.2.4 Climatic boundary conditions 227 Protection status

Climatic boundary conditions directly influence water level. The protection status of a peatland area may reflect hydrolog-
On the one hand, the typical long-term climatic boundaryica| conditions. Therefore we checked for seven protection

conditions may indicate the general vulnerability of peat- siatus at each dip well (see Table 1 for details).
lands in a specific region. On the other hand, given the dif-

ferent lengths of measurement periods of the time serie®.3 Model building scheme

in this study, climatic boundary condition predictor vari-

ables may account for the effect of a climatically wetter or Model building was performed using boosted regression
drier measurement period, compared to the long-term avirees (BRT), implemented in the two R packages “gbm”
erages, on the water level. Climatic boundary conditions(Ridgeway, 2013) and “dismo” (Hijmans, 2013). BRT is a
were extracted from a % 1km raster from the German machine-learning algorithm, in which the final model is de-
Weather Service. Annual, summer and winter precipitation,rived from the data. Functions that relate target to predictor
FAO56 Penman—Monteith reference evapotranspiration andariables are not predetermined but freely developed. BRT
climatic water balance (difference between precipitation ands based on the decision (or regression) tree concept. In the
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decision tree concept, the parameter space is searched s,
quentially for the best split that results in the lowest model ¢

I

77

Boundary

Cond

4
A
Z

Drainage
result from the various splits, and correspond to certain pa- ﬁé Network

Optional - Protection Status

rameter ranges, represent the model. The common procedur < & ‘ :
. L. . . 25 Attributes hruby/ | Topographic Index
is the growth of a large tree which is subsequently simpli- & ¢ CV sdu « Relative Height
fied by dropping weak links that are identified with cross- 52 o e 1094 Gp walls |
validation. Growing only a single tree has several disadvan- & 2 #;‘Sg vse — 53 peatlands

. o > A 5
tages such as uneven functions that are very sensitive to tht 33 Cutting
specific sample of the data. Therefore, ensemble technique: 2 g Mire K aple/ Grass-~J” Dip well
have been combined with the decision tree concept. These — = Forest land

were, first, the development pf multiplg models by bootstrap- (P:eatland . . Fracton of oeatand
ping .Of the samples (baggllng technique) aqd the random (F:‘:[;igg;“;’f’ ot P
creation of subsets of predictors at each split (random for- submitted) + Distance to edge
est technique). Later, with the “boosting” technique of BRT, T ¢ Fractonof Bnd
a sequential procedure was developed in which data is re-
weighted after each tree to increase emphasis on data that kggure 2. lllustration of the predictor variables determined for each
poorly modeled by the existing collection of trees (Elith et dip well based on available national maps (see Table 1).
al., 2008).

BRT modeling is increasingly applied in spatial model- . ) o i
ing of species or numerical environmental variables (Elith Another option to avoid overfitting is to impose mono-
et al., 2008, Martin et al., 2011), thereby often showing sy-tonic slopes on the effects of individual parameters, which

perior performance compared to other machine-learning alS@n éven lead to improved prediction performance (De’ath,
gorithms. The increasing application of BRT is related to 2007)- For all our numerical variables, we expected mono-

several of its favorable characteristics: the strength of thisiOnic slopes rather than optimum functions. To avoid pre-
method lies in the ability to fit complex functional dependen- defining e}ny expected dlrecthn, all numerlcgl yarlables were
cies including non-linear relationships and interactions be-2dded twice to the set of predictors, constraining the slope to
tween predictor variables. Based on its flexibility, BRT is in- & monotonic increase and decrease. We let the model decide
variant to monotonic transformations of predictors. Further-Whether monotonic increase or decrease has higher predic-

more, BRT allows for missing values in the predictor vari- V€ POWer. , . .

ables, thus predictor variable information does not necessar-, M0dels were calibrated using a Gaussian response type,
ily need to fully cover the total map extent. The gbm package?Med at minimizing deviance (squared error) (Ridgeway,
handles missing values in predictor variables by introducing2013)- In all calibration runs, we applied the gbm.step func-
surrogate splits. The mean target value belonging to the misdio" Of the dismo package, which assesses the optimal num-

ing predictor values is attributed to these surrogate splits durPer Of boosting trees using cross validation. We tested various

ing model building. We observed that the contribution of a learning rates (0.001-0.01), bag fractions (0.1-0.8) and lev-
predictor variable to the final model decreases with an in-€!S Of tree complexity (3 to 7), i.e., the number of nodes in a
creasing number of missing values. This is intuitive as targef'®€- BY trial and error we determined the most effective algo-
observations of missing predictor values are mostly supposefthm parameters for our data set being 0.005 for the learning
to scatter strongly. BRT is further fairly insensitive to out- 'at€, 0.6 for the bag fraction and 5 for the tree complexity.
liers and allows estimating the relative contribution of each The final BRT model building is commonly performed as
predictor variable to the model. Due to these characteristic® tWo-step prc_)cedure (Elith et al., 2008) which we basically
we expected BRT to be very well suited to the very hetero-2/S0 followed in our study:

geneous data set of this study.

BRT model calibration is prone to overfitting, and there
are various options to reduce this behavior. Due to the over-
fitting behavior, cross validation is generally part of the ii. In a second step, the number of parameters is re-
model building process. However, cross validation can be duced sequentially to avoid overfitting and to derive a
performed in several ways and, if performed carelessly, can ~ more parsimonious model. We tracked predictive per-
lead to overly optimistic model performance (De’ath, 2007). formance criteria during the simplification process. As
Here, cross validation was performed by leaving out whole various variables were calculated for different buffer
peatland areas instead of a random set of dip wells. This  sizes, our predictors included a large number of cor-
represents a stricter cross validation, and we noticed that it  related variables. Correlation coefficients between pre-
strongly reduced overfitting of the water level data, and thus dictor variables of>- 0.7 are known to severely distort
contributed to the development of a more robust model. model estimation and subsequent prediction (Dormann

i. In the first step, the whole set of predictor variables is
used to calibrate a BRT model.
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Figure 3. lllustration of the annual mean water level (WL) transformation. Hypothetical transfer function relating GHG budget to WL (m)
(a). GHG budget vs. the transformed water level (W(b). WLt vs. WL. The lines along the axes indicate the data quantiles of the
analyzed data sét).

et al.,, 2013). Thus, we performed this simplification 2011; Drdsler et al., 2011; Hahn-Schéfl et al., 2011; Leiber-
process by first dropping those parameters with a cor-Sauheitl et al., 2014; Moore and Roulet, 1993; Moore and
relation> 0.7 (either Pearson or Spearman type) to an-Dalva, 1993; van den Akker et al., 2012). General trends are a
other parameter with a higher contribution (Clapcott et strong increase of methane (gHmissions for annual mean
al., 2011). This ensured that two highly correlated pa-water levels of approximately —0.1 m and an increase of
rameters would not remain in the parameter set longetCO, emissions for water levels —0.1 m with a trend simi-
than the last parameter of another group of variables]ar to a saturation function that levels out approximately be-
which may contribute less compared to the two highly tween—0.4 and—0.8 m (Fig. 3a). While studies agree over
correlated parameters but provides extra informationthese general trends, the exact shape of the transfer function
that is not covered by the other parameters. After alland the maximum levels of emissions as well as their depen-
highly correlated parameters have been dropped, furdence on soil properties and other environmental parameters
ther parameters with low contribution were dropped are still controversial. Here, we assume a hypothetical trans-
progressively. fer function, relating the normalized GHG budget, ranging

. o ] from 0 to 1, to the water level (see also Fig. 3),
Predictor contributions are calculated as proportional con-

tributions to the total error reduction and can be considered, - Balanc&{ —8WLH0D 11 WL<=-0.1 } 1)
as a measure for the influence of the individual predictors. 1—e3WLH0D W >-0.1

Additionally, a BRT model allows the derivation of partial N )
dependence plots which indicate how the response is affecte§S the GHG budget can be positive for both low and high
by a certain predictor after accounting for the average effectdVL, We introduced the transformed water level, Wis

of all other predictors in the model (Elith et al., 2008). These (F19- 3),

plots do not show the full effect of each parameter on the SWLH0D _ 1 WL <= —01
model response due to interactions with other parameters tha/L+ = { 1 — 3WLH0D W = _01 }
are fixed to derive theses plots as well as due to parameter co- '
correlation. However, they can be used for interpreting modeBy calibrating the model to both WL and Wlwe test if the

&)

behavior (Elith et al., 2008). optimization of WL; provides the highest model accuracy for
. the water level range relevant for GHG emissions and if it
2.3.1 WL transformation of WL optimizes the map for application to GHG upscaling.

The map of water levels of this study was developed to im-2.3.2  Weighting scheme

prove the upscaling of greenhouse gas emissions from or-

ganic soils. Therefore, the final map should provide the high-When considering possible data weighting schemes, it is
est accuracy for the water level range for which the high-worth emphasizing, at this point, that the goal of this study is
est differences of greenhouse gas emissions occur. This cahe development of a statistical model that can explain both
be achieved by transforming WL into a transformed vari- the water level variability within a peatland as well as among
able WL, which shows a linear relationship with GHG emis- different peatlands. The data of target and predictor variables
sions. The sensitivity of greenhouse gas emissions to watefor building this model is highly heterogeneous. First, the tar-
level has been analyzed in several laboratory and field exget variable data set contains peatland areas that strongly dif-
perimental and monitoring studies (Berglund and Berglund,fer in their spatial extent and in the number of installed dip
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wells. Second, the predictor variable data set contains cate-
gorical and numerical data, and part of the predictor variables
predominantly vary from peatland to peatland (e.g., climatic

wetness index, drainage network). As the influence of the in-
dividual predictor variables on our target \Mk expected to

be rather diffuse due to abundant interactions with other site
characteristics, the robustness of derived dependencies will
strongly depend on the number of different peatlands in the
data set.

There are no universal data weighting rules for similarly
heterogeneous data situations and some degree of exp&ffy re 4. Sample semivariogram and fitted semivariogram model
judgment and subjectivity is inevitable involved when de- of the annual mean water level data, WL.
veloping an appropriate scheme (Francis, 2011). The need
for introducing a data weighting scheme is obvious, as with-
out data weighting during calibration, too much influence between 1/SEhomogeneous end member) and 1 (heteroge-
would be given to small and well-studied peatlands, whichneous end member), we decided on a group weight that is
will reduce predictive model performance for large, less-the inverse of the standard error, 1/SE, which is, for exam-
well-studied peatland areas. To avoid this in a simple manple, often used in econometric studies (Dickens, 1990). We
ner, weight could be reduced by the number of dip wells inemphasize that this is a subjective decision.
each peatland, which results in each peatland being equally The group weight, 1/SE, is the basis for the geostatistical
weighted. This scheme, however, does not sufficiently usepart of our weighting scheme. There are two reasons why we
the high information content provided by well-studied large cannot directly treat our peatlands as groups. First, there is
peatlands, which should have a higher impact on model caliwithin-peatland variability, which is related to changing site
bration than a small peatland with only few dip wells. characteristics. It is one objective of our study to describe

Here, we propose a new weighting scheme that takes intohis variability by statistical modeling. Thus, dip wells must
account both factors, peatland size and local density of digbe treated individually and data cannot be aggregated at the
wells, to derive dip well specific weighting factors. Itis based peatland level. Second, we expect the model to learn more
on principles of data uncertainty reduction, by repeated meawhen the same number of dip wells is installed in a larger
surements, and of geostatistics. First, we consider our datpeatland. In a small peatland, spatial autocorrelation between
situation as an analogue of meta-analysis with grouped datalip wells is higher, i.e., the information content is lower than
It is has been shown for homogeneous problems (all datdor large peatlands. As a consequence of the first point, we
from same population) that optimal group weights for meta-do not aggregate and keep all dip wells in the target variable
analysis is 1/SE (Hedges and Olkin, 1985) with SE being data set by attributing to each dip well the fractiomv1ef

boundary conditions, large-scale topographic wetness index, € ] ° °
peatland characteristics) whereas others also show within- 8 . ° °
peatland variability (e.g., land use, small-scale topographic 2 ° ° °
£
Q

0.02 0.04 0.06 0.08 0.10 0.12

T T T T T T
0 2000 4000 6000 8000 10000

distance (m)

the standard error of each group, its group weight, so that the relative weights of the groups
Oe remain constant. As a consequence of the second point, we
SE= J_ﬁ ) use principles of geostatistics in our weighting scheme. We

replace the group siz& (positive integer number) by the
whereoe is the error standard deviation of a measurement‘statistical” group sizen (positive continuous number be-
and N is the number of measurements in a group. For ho-ing > 1), which we derive from the spatial autocorrelation
mogeneous problems and unifoerg this results in weights  among the dip wells.
that are linearly dependent @h, which we here call the first Therefore, we analyze the spatial autocorrelation structure
end member of weighting. Heterogeneity (within-group vari- of the data set. A single spherical variogram model was fit-
ance) reduces the variation of the group weights which carted to the sample variogram of all data (Fig. 4 in Sect. 3.1).
be shown by random effect models (Cumming, 2012). AsVariogram models allow the differentiation of the total data
with second end member of weighting, when heterogenevariance (called “sill”) into a spatially uncorrelated variance
ity totally dominates within-group variance, optimal group (called “nugget”) and a spatially correlated variance (called
weights are uniform for all groups, i.e., weights are inde- “structural variance” and defined as sill-nugget) (Wacker-
pendent of N. We are not aware of a method that allows nagel, 2003). The variogram model allows for derivation for
the estimation of the degree of heterogeneity for the com-any distance between two locations the average squared dif-
plex target and predictor data situation in this study, includ-ference of values, here defined asBy definition, at dis-
ing data (spatial and temporal variability, measurement ertance 0, the average squared difference equals the nugget,
ror) and model errors (missing parameters). As a trade-offand at distances greater than that called the “range” of spatial
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autocorrelation, the average squared difference equals theefer to the root mean square error of the predicted data of
sill. Accordingly, the autocorrelated fractioif, of the av-  cross validation as RMSE Model performance was further
erage squared difference between two dip weld j is quantified by Nash—Sutcliffe efficiency (NSE),

wi (X0 — Xsi)°

NE

sill — Vi,j

13 = G nugget @ NsE=1-!

1
N

: ©)

2

WE

. N s . . . 1Ui(on —'xb)
We now define the “statistical” group sizeof each dip well

to be the sum of one plus the autocorrelated fractignsof o o
all dip wells that are within the range of spatial autocorrela- Wherexo is the mean of all observed WL or Wlitindicates

1

tion of i, how well observed vs. predicted values match the 1:1 line.
NSE is a good overall indicator of predictive performance

osill — because it combines scatter and bias (common offset and/or
ni=1+ ; sill — nugget (5) slope difference from 1:1 line) (Nash and Sutcliffe, 1970).

Values greater than 0 signify a model that is better than the
According to the discussion above, dip-well-specific Weightsreference model based on the data mean. We refer to the NSE

can then be calculated with of the training data as NSF, and of the predicted data of
cross validation as NSE
w; = 1 _ 1 (6) Systematic errors were quantified by calculating the model
niSE  oei/ni bias, here defined as,
wheren; is derived from Eq. (5). The equation shows that m
with increasing “statistical” group size, i.e., with increas-  BIAS = Y (wixo; — wixsi). 9)
ing spatial data density, the weight of an individual dip well i=1

is “down-weighted” to some degree, a behavior that corre-; 4 \jodel uncertainty and stability evaluation

sponds to our initial intention to lower the influence of small

peatlands compared to large ones. The error standard devigincertainty of the model predictions was assessed by boot-

tion o¢ is dependent on several factors, e.g., the length of th%trapping, cross-validation and residual analysis.

time series, the temporal measurement density and the mi- For the bootstrapping analysis, we followed the procedure

crotopography around the dip well. For simplicity, we here of Leathwick et al. (2006). We estimated the confidence in-

assumede to be uniform for all dip wells, which simplifies  tervals around the predictions and the fitted functions by tak-

Eg. (6) tow; = ﬁ,— ing 1000 bootstrap samples of the 53 peatlands. The number
Only dip wells with the same land-use type were summedof peatlands in each sample was equivalent to the data set, but

up with Eg. (5), which avoids the down-weighting by dip peatlands were selected randomly with replacement. Using

wells that have different land-use types. The latter are mostlythe predictor variables of the final model, a BRT model was

characterized by fairly different Wland thus by rather low fitted to each sample. Cross validation was again performed

spatial autocorrelation to dip well on peatlands, thus a peatland in the calibration data set was
After spatial correlation has been accounted for, the surmot part of the cross-validation data set to avoid overly opti-

of the weights of all dip wells of each land-use type were ad-mistic results. Variances of the predictions and of the fitted

justed that they correspond to the fractions of this land-usdunctions of the 1000 models were evaluated.

type in Germany. This adjustment accounts for the overrep- If data sets are relatively small (e.g.,< 1000, De’ath,

resentation in the data set of dip wells in unused peatland2007) then the small size of the training and test data sets

and underrepresentation of dip wells in arable land. lowers model accuracy. Given the fairly small number of
o peatlands in the data set and the partly high spatial corre-
2.3.3 Model performance criteria lation of dip wells within these peatlands, we decided not to

] o .. split the data set into a training and test data set. Estimates
Model fit angl predictive p.erformance after cross-validation ot model accuracy can then be based on cross-validation,
were quantified by the weighted root mean square error,  hareby making effective use of all the data (De’ath, 2007).
The prediction uncertainty of the final model is estimated
1 - o 2 7 by the root mean square error of prediction (RMgaEBee
S wi (w’ (v = xs) ) (7) above) for each land cover class. After testing for near-
normal distribution of the residuals, RM§Ecan be used to
wherem is the number of dip wellsyo; is observed WL  derive the 68 and 95 % confidence intervals of the predictions

or WL of dip well i, xs; is simulated WL or Wk of dip ~ With RMSEy and 2x RMSEy, respectively.
well i andw; is the data weight of dip well (see below). We

RMSE =
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Finally, additional residual analysis was performedto eval-3.2 Typical water levels for land-use types in German
uate whether the predictions are biased for different land organic soils
cover classes or geographical regions.
The land cover classes are characterized by plausible mean
2.5 Regionalization and median water levels, which show consistent differences
) ) o ] ) between each other (Table 2 and Fig. 5a). The mean values
In the final regionalization step, the predictor variables con-u¢ oraple land and grassland agree with what can be expected
tributing to the final model were determined at @235m ¢4 their agronomic requirements, with slightly lower water
raster for aII. organic soil in German_y. Predictor variables g5 for arable land. The high variability observed for both
were determined with the same map input that was used fog|55ses may be related to the variability of the efficiency of
model bL_uIdlng. Land cover information including informa- ;. stalled drainage systems, as for example the presence and
tion on ditches was based on the data from year 2012 and thgyngition of tile drains and the depth of ditches. Grasslands
climatic data was based on the average of the last 30 yeargan he managed with very variable intensity, which is partly
The fine spatial resolution of 2625m was not chosen 10 efiected in different water levels. Figure 5a further shows
fool the reader with a highly spatially accurate model. Rathery, 4t deciduous forests seem to dominate slightly drier organic
this fairly fine scale was necessary to map the relativelys,iis compared to coniferous forests, which dominate under
small-scale effects of the topography, land use and peatlangetier conditions. A high variability of water levels is ob-
geometry variables. The final model was then used to makggred for the land cover class unused peatland. On the one
a prediction for each of these raster cells. hand, post peat-cutting topography increases the variability
of WL over short distances. It probably contributes to the
high variance observed for this class. On the other hand, this
class comprises both rather dry unused peatlands and wetter
3.1 Spatial correlation structure of the data set peatlands in which re-wetting measures already took place,
which however do not show yet a wet soil attribute in the
The variogram model fitted to the sample variogram providedATKIS Digital Landscape Model. This may also cause part of
a nugget (0.012% 0.11m), a sill (0.09r% 0.3m) and a the variance observed in the grassland and forest land cover
range of spatial correlation (2700 m) for our data set of WL class. All wet land cover classes (reed, wet grassland, wet
(Fig. 4). The nugget represents the very small-scale soil hyforest and wet unused peatland) that were separated by wet-
draulic variability and micro-topography effects on WL (van ness indication clearly show higher water levels, showing the
der Ploeg et al., 2012) and measurement error, e.g., by difwetness attribute of the Digital Landscape Model is a useful
ferences in the determination of the ground surface and imattribute.
the timing of the manual measurements. Furthermore, micro- Figure 5b shows the transformed water level for all classes.
topography (e.g., hummocks) and oscillating peat surfaces oft can be observed that the variances of the wetter land
wet peatlands pose a challenge for an accurate determinatiacover increase relative to the variances of the dry land cover
of both ground surface and water level. The water level timeclasses. This is due to the highest sensitivity of GHG emis-
series in the data set were of different lengths and rangedions in the wet range of water levels £0.5m). Conse-
from 1 to 20 years. Interannual variability of water levels can quently, the rather high variance of WL for arable land cor-
be large (e.g., Knotters and van Walsum, 1997). For simplictesponds to a rather low variance of Wle., to a rather low
ity, in our analysis, data were not harmonized by extrapolat-assumed effect of WL variability on the GHG budget.
ing WL time series using weather data to a 30-year period.
Thus, the nugget also includes errors that are introduced bg.3 BRT model calibration and validation: WL vs. WL
dip wells with different measurement periods that are located
in the range of spatial correlation. In consideration of theseln contrast to land cover class, the other predictor variables
error sources, the fitted nugget of 0.11 m appears to be a reshowed, if at all, only weak relations to WL and \Mixhen
alistic value. At 0.3 m, the fitted sill matched nearly perfectly evaluating them with box plots, 2-D cross plots and simple
with the standard deviation of the data (0.31 m), which in- correlation matrices. Here, we expected BRT to detect the
dicates consistency between semivariogram model and datstrongest predictor interactions and to identify the most in-
set. The fitted range of spatial correlation of 2700 m reflectsformative predictors.
both physical effects, i.e., the average range of lateral flow After model calibration with all predictors, subsequent
due to hydraulic gradients, as well as the effect of averaganodel simplification successively dropped those parameters
land-use patterns in Germany on the spatial correlation ofvith correlation> 0.7 and the lowest contribution. For both,
WL. Fitted values were used in the calculation of the dip- WL and WL, model performance improved during this sim-
well-specific weights using Eq. (6). plification. For WLy, the highest values of NS&of approxi-
mately 0.46 were achieved with 21 to 9 model parameters.
The development of NSE for the last 50 parameters is

3 Results and discussion
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Figure 5. Water level relative to ground surface, WL (m), and transformed water leve] (W), by land cover class illustrated as a weighted
box plot. WLt = —1 corresponds to maximum GGmissions and Wl=1 to maximum CH emissions. In the top horizontal axes, the
number of dip wells in each class is indicated.

© ° Table 2. Weighted mean and standard deviation of WL and{WL
S o °E0, data, and of the WiLmap presented in Sect. 3.6, for the nine land
0 O cover classes.
g‘. 1 0y O CLE
S o ©
s a | eSS o WLm) WL
L ¥ 40 o0 0 WLt (_),
2 ° |l o Mean sd Meantsd  Map meaet sd
S ° Arable land —0.69+0.30 —0.76£0.17 —0.66+0.22
Deciduous f. —0.45+0.34 —-0.49+0.37 —-0.47+0.35
R o Grassland —0.44+0.29 -0.52+0.32 —-0.494+0.30
e o Unused peatl. —0.39+0.36 —0.39+£0.41 —0.37£0.40
T T T T T Coniferous f. —0.36+£0.36 —0.37+0.37 —0.46+0.35
50 40 30 20 10 Wet unused peatl. —0.22+0.27 —-0.18+£0.40 —0.17+0.36
Number of predictor variables Wet forest —0.22+0.29 -0.17+0.43 -0.214+0.39
Wet grassland —0.10+0.14 -0.00£0.31 —0.15£0.39
Reed —0.01+0.17 0.20£0.29 —0.06+0.32

Figure 6. NSEy as a function of number of predictor variables used
in the model of Wl during model simplification and shown for the
last 50 parameter drops.

observed overfitting behavior of BRT models. The different

measures that we conducted to minimize overfitting (cross-
shown in Fig. 6. Further elimination of parameters led to avalidation on peatlands, restriction to monotonic responses
pronounced decline of model performance. Similar behav-and model simplification including elimination of highly cor-
ior was observed for the calibration on WL. In favor of a related variables) lowered the difference between N&hd
more parsimonious model, we chose the model with the low-NSE;, but could not totally avoid overfitting. NSk of the
est number of parameters before the pronounced decline dVL; model (0.453) indicates higher predictive model perfor-
model performance occurred. For the calibration ontWL mance compared to the WL model (0.381). However, as the
this corresponded to the model with lowest number of param-data ranges differ due to the transformation, this comparison
eters that still achieved NGEvalues of> 0.45 (Fig. 6). The may be misleading. Therefore, we transformed the predic-
final WL; model comprised nine predictor variables, and thetions of the WL model to obtain Wlvalues from this model
final WL model, seven parameters. The percentages of paand equally calculated the performance criteria (Table 3, sec-
rameter contributions to the final model and their individual ond column). Then, NS is slightly increased (0.397), but
influences are discussed for \Wh Sect. 3.4. does not achieve the values of the model that was calibrated

Table 3 summarizes the statistical performances of theon WL;. A better predictive model performance of the model

models calibrated on WL and WLFor both models NSk calibrated on WL is also visible for the RMSE values.
is considerably higher than NgEand shows the commonly The total RMSE,, as well as the RMSE values for the
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Table 3. Performance criteria of the different models; dry range de- with 10.3 %. The monotonic decrease of Wikith increas-

fined as WL< —0.3 m and wet range as W& —0.3 m. ing fary (2500) is plausible as higher values reflect intensive
land use in the surroundings of the dip well and thus indicate
WL (m) WLt (-) WLt (-) intensive artificial drainage. Together both parameter con-
(Caé'r:’r\;vatf)d (calibrated on WL)  (calibrated on WL iy ted 35.5 9% and thus land cover represents the parameter
group with the strongest model contribution.
mggcca' g'ggz 8'283 8'2‘512 Peatland characteristics are the second most important
RMSEwy 0.269 0299 0284 parameter group. The peatland type contributed 16 %. The
RMSEqy, dry 0.284 0.263 0.259 model indicates that peatlands without any connection to sur-
RMSEcv,wet 0.222 0.382 0.355 face water bodies (river or lake) and the class of other organic
S:Z; :8:822 8:85733 8:88; soils are characterized by lower Weompared to the peat-
BiaS/th 0.021 0.120 0.000 land types lowland bog, upland bog and fen neighboring sur-

face water. As the class of other organic soils is generally
expected to reflect lower water levels and as surface water

dry (WL <—0.3m) and wet range (Wt —0.3m), show Ma&Y have a stabilization effect on water levels of organic

slightly lower values for the WLmodel compared to WL soils,.the inﬂugnce of the peatland type can be considered
values from the model calibrated on WL. Given our hypo- Plausible. Besides peatland type, the substrate of the peat
thetical transfer function (Fig. 3) in which the GHG budget base contributes 56% Here, organic soils overlying peat
is linearly related to WL, the higher accuracy of Wlpre- clay layers (e.g., limnic sediments such as calcareous gyt-

dictions directly corresponds to a higher accuracy of GHGU) or basement rock are characterized by higheg ¥dm-
budget predictions. pared to organic soils overlying unconsolidated rock. This

Superior model performance is also evident when evaluat€@n Pe explained by the lower drainage resistance of uncon-
ing model bias. Only when calibrating directly on Ware solidated rocks. This may cause an increased efficiency of

the WL predictions bias-free. Calibration on WL and subse- anthropogenic drainage and/or a general higher vulnerabil-
quent transformation to Wlintroduces a model bias towards 1Y {0 seepage losses. Finally, slightly lower Wialues are

systematically lower Wivalues. In subsequent applications Indicated by a high fraction of organic soils for the 500m
to GHG emission upscaling, lower Wialues would lead to ~ PUffer, fpeat(500). This may reflect the higher land-use pres-

an overestimation of COemissions and to an underestima- SUré on large peatlands compared to rather small peatlands,
tion of CH, emissions. which tentatively are more easily preserved by nature protec-

tion efforts.
3.4 Influence of predictor variables on WL The remaining four parameter groups are represented in
the model by only one parameter each. The third most influ-

Given the beneficial characteristics of the model calibratedential parameter was the length of ditches on arable land and
on WL; for GHG upscaling, presentation and discussion ofgrassland for the 250 m buffer, & qry (250). At first glance,
further model results is restricted to the Whodel. it may be surprising that with increasing ditch density, WL

The BRT method allows the analysis of the parameter convalues tend to be higher as ditches are supposed to drain the
tributions to, and influences on, the model (Elith et al., 2008)water when land is used as arable land and grassland. The
and thus may contribute to system understanding. The perfact that the model identifies a rather strong effect in the op-
centages of the contributions of the nine predictor variablesposite direction may be caused by incomplete information
to the final model ranged from 25.2 to 5.6 % (Fig. 7). Ex- about the drainage network. There is not detailed informa-
cept protection status, at least one parameter of each of thigon about the spatial distribution of tile drains. Based on ex-
seven parameter groups contributed to the final model. Allpert knowledge, agricultural areas with a lower ditch density
protection status information was dropped early during theare more likely to have tile drains. As these drains, easily
simplification process due to low contribution, although WL installed with a narrow drain spacing, are more effective at
showed slightly higher values for data from nature protectiondraining organic soils, low W{lvalues for arable land and
or special areas of conservation. However, other parametergrassland may be related to low ditch densities. Furthermore,
seem to be able to fully compensate the information that isditches were originally dug at narrow spacing in especially
lost by dropping this predictor. wet areas of organic soils but there is no information avail-

Land cover class, Ic, at the dip well was the parameter withable whether these ditches still function properly.
strongest contribution (25.2 %). It basically follows the trend  The parameters Wimmes /rel and tias2sall show expected
illustrated in Fig. 5b. The bootstrap error plotted as standardrends. The model predicts higher Wifor increasing cli-
deviation (Fig. 7) shows the variation of this influence over matic water balance in the summer period (May to October),
the 1000 bootstrap models. A second land cover parametewbs,mmes for dip wells located in depressions (low values of
the fraction of dry land cover classes on organic soils in akre) and for higher small-scale topographic wetness indices
buffer of 2500 m radiusfury (2500), contributed to the model calculated on the 2& 25 digital elevation model (ts29.
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Figure 7. Partial dependence plots for the predictor variables. For an explanation of variables see Table &xd@hare on W{scale and

are centered around the mean \Error bars and grey area indicate standard deviation of the response of over 1000 bootstrap models. The
relative contribution of each predictor is indicated as percentage. The lines alongxthe of each plot show distribution of data across that
variable, in deciles.

The fact that all parameters show expected or explainabletrongly interacts withpype. The generally lower values of
responses in the model corroborates the reliability of the cal\WL; of fens without surface water connection and other or-
ibrated WL model. The standard deviation of the predictor ganic soils show a stronger dependency on the summer cli-
responses based on the bootstrap samples shows the stabilityatic water balance. While a summer climatic water balance
of the observed responses. of > —80 mm shows a rather weak effect on War the wet-

Further insight into model behavior can be obtained by an-ter peatland types, in contrast to the two drier peatland types
alyzing parameter interactions. This is obtained by changinghere is still a strong effect with increasing yhmer The
two parameters simultaneously while keeping mean valuesrend for wkyymmer> 130 mm for the dry peatland types is
for all other parameters (Elith et al., 2008). Figure 8 showssupported by seven different peatlands.
the two strongest parameter interactions. Parametgpywar
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Another strong interaction is observed f@ihase and
fary (2500). While a rather weak effect of the fraction of
arable land and grassland is observed for organic soils over-
lying basement rock and peat clay layer, a strong effect is ob-
served for organic soils overlying unconsolidated rock. This
interaction reflects the higher lateral range of drainage effects
for organic soils with little flow resistance at the peat base. In
these organic soils, intensive land use lowers the water level
over large areas.

WL, (-) Observation
0.0

3.5 Discussion of model uncertainty

-1.0

Plotting observed vs. predicted WErom cross-validation 40 05 0.0 05
(Fig. 9) illustrates the rather large residual variance that can-
not be explained by the model. As indicated by the higher
RMSEy for the wet range (Table 3), scatter increases withrigure 9. Observed vs. predicted transformed annual mean water
increasing W Error bars in they direction indicate data |evel (WLy) from cross-validation results. Error bars show selected
error derived from the nugget of the variogram. It is shown data and bootstrap model errors as standard deviation. Data points
for a few data points as an example. Due to transformationare scaled by their weights.

data error increases for higher WIFigure 9 demonstrates

that the fraction of unexplainable variance related to data er-

ror is much higher for the wet than for the dry range. Boot- scatter fairly well around zero, indicating low bias for the var-
strap error indicating the variation of the model predictionsious land cover classes. Land-cover-class-specific confidence
for 1000 bootstrap samples is shown in thdirection for the intervals of model predictions can thus be derived from the
same data points. Bootstrap error is lower than the data errdRMSE., of each land cover class, e.g.xRMSE,, repre-

for the wet range and slightly higher for the dry range. senting the 95 % confidence interval.

Bootstrap errors demonstrate the sensitivity of model pre- The prediction uncertainty derived from cross-validation
dictions to changes of the data set used for calibration. Whetis much higher than the bootstrap prediction uncertainty ob-
a model possesses structural deficits such as missing preained from the bootstrap standard deviation (sd), withs2l
dictor variables, bootstrap errors should not be used to deeorresponding to the 95% confidence interval (Fig. 10).
fine confidence intervals for the model predictions. Figure 10The large difference between these values indicates that the
shows residuals from cross-validation and standard deviatiomodel has structural deficits that can be attributed to several
of bootstrap predictions for all land cover classes. The residerror sources:
uals of each land cover class show near-normal distributions.

WL, (-) Prediction

For five of the nine land cover classes (wet forest, wet un- i. Key influences on Wi are missing in the set of pre-
used peatland, arable land, coniferous forest and reed), the dictor variables. None of the predictor variables in-
Shapiro—Wilk test of normality is positivep(> 0.05). Fig- dicate whether and to which extent water level in-

ure 10a further indicates that residuals of each land cover crease due to re-wetting measures took place in the last
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nine land cover classes. In the upper part, the number of dip wells in each class is indicated.
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years. Wetness indicators (wet soil and/or vegetation at- 427 246 545

tributes) that are obtained from the Digital Landscape 2 © o °

Model probably react with a delay of several years. _'_

Thus, we expect the occurrence of several observed high g B B

WL values that cannot be explained by any of the pre- ks !
=

dictor variables. 3 S - . ’_‘

. Small-scale topography that is not represented with suf- e : i
ficient detail and accuracy in the DEM may cause sev- S 4 — — e
eral predictions to strongly differ from what would be o o
expected from the other predictor variables. A common 2 1 o
example may be a dip well that is located on a narrow

peat ridge, which remained after peat-cutting and is ab- NE

sent in the DEM, and that is situated in an area classi-

fied as wet soil by the Digital Landscape Model. Then, Figure 11. Residuals (observation—prediction) of \Whredictions
the model indicates a Wlthat is much higher than the for the three major geographical peatland regions of Germany. In
observed WL as for the observed value, the reference the upper part, the number of dip wells in each class is indicated.
surface was the surface of the peat ridge.

NW S

Consistent information about tile drains is missing and The water balance of fens Strong]y depends on the size

only exists on the regional scale (Tetzlaff et al., 2009).

At the national scale, however, there are no maps on tile
drains. Tile drains are known to have a strong effect on
WL for arable land and grassland. As explained above,

and the hydraulic head of the groundwater catchment,
i.e., of the aquifer underlying the peat layer. Unfortu-
nately, there is no consistent map of hydraulic heads or
groundwater catchments for all Germany.

we expect parameterghi qry (250) to partially compen-

sate for this missing information. We checked model predictions for geographical bias. Ge-

o . ~ographical location was not one of the model parameters.
Another source of prediction uncertainty may comprise poever, the history and policy of land use on organic soils,
inconsistent and erroneous land cover classification of.rrent ditch water management and climate do show large-
the Digital Landscape Model due to the high degree ofgcqie geographical trends. We divided our data set into the
subjectivity for many of the_a'gtrlbutes. Furthermore, the {hree major German peatland regions (NE, NW and S) and
temporal accuracy of the Digital Landscape Model may eyajyated the model residuals (Fig. 11) to see whether our
be as inaccurate as 5 years which can cause time serigfode| is biased due to important missing geographical ef-

with land-use change to be split at the wrong date, andects. A serious bias for any of the three major German peat-
vegetation and wetness attributes to be not yet updateg,,q regions cannot be identified.

to the current conditions.
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Figure 12.Map of predictions of transformed annual mean water level {Mdr all German organic soil&) and an enlarged map sectii).
Probability distribution in(c) indicates the uncertainty of a specific point prediction for wet grassland as an example. Here, predicted value
is approximately Wk= 0, but note that wet grassland predictions do vary in space depending on the values of the other model parameters.
The histogram shows the residuals from cross-validation for wet grassland, to which the probability distribution was fitted.

When applying calibrated statistical models during region-very NE are wetter than the rest. For the rest of the north, a
alization, itis important to check model behavior for extrapo- slight gradient can be observed from less dry to dry from NW
lation outside the range of the parameter space that is coverdd E, which is mainly driven by the higher summer climatic
by the data upon which the model was built. BRT always ex-water balance in the NW. As both categorical and numeri-
trapolates at a constant value from the most extreme environeal predictor variables do also vary at the sub-regional scale,
mental value in the training data. In contrast to other typesthe resulting map also shows gradients within peatland areas,
of statistical models, e.g., generalized linear models, BRTe.g., due to small-scale land-use ditch density gradients and
does not continue the fitted trend beyond the last observatopography effects (Fig. 12b).
tion. Regarding the categorical variables, the data set covers We calculated Wi averages of the land cover classes us-
all classes occurring in Germany with several peatlands. Théng the regionalized W{from the map (Table 2, column 3).
data set also covers the major range of values occurring iThe given standard deviation comprises both the variability
Germany for the numerical predictor variables. Furthermorewithin a land cover class that is explained by the model as
Fig. 7 indicates that the constant values, at which the modelell as the uncertainty of each prediction. Resulting means
extrapolates the influence of the variables, do not raise majoand standard deviations slightly differ from the correspond-
concern for any extreme predictions outside the parameteing values of the data set. The land-cover-specifig Vlues

range. obtained from the map can be considered as being more rep-
resentative as the regionalization procedure is supposed to
3.6 Regionalization partly account for potential bias in the data set.

When applying this map and its predicted Wialues in
The map of W resulting from the application of the fitted sypsequent GHG upscaling, it is crucial that model uncer-
WL model to all grid cells shows gradients at the regionaltainty is propagated properly. An example demonstrates the
scale (Fig. 12a). In the south of Germany, for example, anecessity of uncertainty propagation. For a grid cell classi-
gradient from wet to dry can be observed for the pre-alpinefied as wet grassland, the probability distribution of ¥4

upland bogs and the peatlands of the moraine plain. In th&hown based on a normal distribution that was fitted to the
north of Germany, the map indicates that organic soils in the
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0.5
1

residuals of this land cover class (Fig. 12c¢). Without prop-

agating the uncertainty and when only translating the pre- L i St s -
dicted WL; (eventually in combination with other parame- o ° T _.-T
ters, e.g., soil properties) into a GHG budget, GHG budget .-
is strongly underestimated as the Yirediction is close to .
zero, indicating neither large Gor CH; emissions. When '
translating the full distribution of WLinto a GHG budget, J/
the resulting GHG budget would be much higher as at both
sides of the predicted W] the GHG budget increases.

NSEq,
0.3
I
Cc

0.2

0.1

3.7 Possible paths for model improvement | T T . .

The model performance that is achieved by the statistical ap-
proach presented in our study raises the question whether
collecting more WL data can improve model performanceFigure 13. NSE of cross-validation vs. number of randomly se-
or whether the factor that is constraining the model perfor-lected peatland areas. Dashed lines indicate yStsd.

mance is the limited strength of the nation-wide available

predictor variables. To assess this question, additional “hold-

out models” were developed by fitting the BRT model to 4 Conclusions

various random sets of data with a limited number of peat-

land areas (from 10 to 50 peatlands). For each number op stydy demonstrates the potential of statistical modeling
peatland areas, 500 random selections were calibrated ang e regionalization of water levels in organic soils when
model performance was evaluated with NBEs expected, a4 covers only a small fraction of peatlands of the final map

results indicate an increase of model performance with in-yq thys spatial interpolation is not possible. With the avail-

creasing number of peatlands used in the model building progp|e gata set of target and predictor variables, it was possible

cess (Fig'. 13). Results also indicate asgbstantial flattening of, predict 45 % of the GHG relevant water level variance in
the learning curve. Thus, further collection of WL data may ihe gata set in a cross-validation scheme. The variance is ex-
only lead to a substantial model improvement when includ-p ained by nine predictor variables. With the analysis of their
ing many more peatlands into the data set. More promisingrect on the water level it was possible to gain insight into
would be the specific collection of more data on the weakly n4¢ra) and anthropogenic boundary conditions that control
represented and/or important land cover classes, arable lang,iar |evels of organic soils in Germany.
and grassland. _ _ Based on a hypothetical GHG transfer function relat-
Another path to achieve a stronger model is the develop-Ing GHG emissions to annual mean water levels (WL), we
ment of new predictor variables. In the future, the availability ¢powed the advantages of transforming the annual mean wa-

of a more accurate DEM based on laser-scanning data, whicf, |evel into a new variable (W to which GHG emissions
is already available at full coverage for some federal states Ofinearly depend on. The transformation improved model ac-

Germany, may strongly increase the predictability of the 0b-¢ a0y increased the explained variance of the water level

served WL data. Additionally, a nation-wide map of water ranqe that is relevant for GHG emissions and avoided model
management and of the distribution of tile drains would havey,; o

great potential to explain large parts of the residual variance 10 presented approach is transparent and allows succes-
and/or even allow setting up a large-scale physically basedjye improvement when new input data and predictor vari-
model that includes water management. Furthermore, dalgpjes pecome available. Our results show that model im-
harmonization by extrapolating the water level time Seriesprovement by increasing number of WHata, however,

of our data set with the climatic boundary conditions of the goams to be limited. If efforts are made, data collection
last 30 years may lower the unexplainable variance of theghgig be concentrated on agriculturally used organic soils
data set due to short measurement periods (Bartholomeus ¢, \yhich relatively few data is available. We believe that the
al., 2008), an effort that has been successfully conducted iR ynstraining factor of model performance is rather the weak-
Finke et al. (200_4) using the trgnsfer noise model Qf Bierkens,ass of the predictor variables that are currently available at
et al. (1999). Finally, we believe that the inclusion of re- g6 scales. The development of new, more informative pre-
mote sensing products in our statistical model approach, a§jctor variables, as for example water management maps and

e.g., spaceborne microwave soil moisture observations (Sygmgte sensing products, may be the more promising path for
tanudjaja et al., 2013), may hold large potential to improve j,qqe| improvement.

model performance as moisture differences due to varying e proposed regionalization approach is suited to appli-

water levels are high for organic soils. cation to any other country where similar data of target and
predictor variables is available. It is important that the spatial

Number of Peatlands
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