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Abstract. Fluxes of the three main greenhouse gases (GHG)
CO2, CH4 and N2O from peat and other soils with high or-
ganic carbon contents are strongly controlled by water ta-
ble depth. Information about the spatial distribution of water
level is thus a crucial input parameter when upscaling GHG
emissions to large scales. Here, we investigate the potential
of statistical modeling for the regionalization of water lev-
els in organic soils when data covers only a small fraction
of the peatlands of the final map. Our study area is Germany.
Phreatic water level data from 53 peatlands in Germany were
compiled in a new data set comprising 1094 dip wells and
7155 years of data. For each dip well, numerous possible
predictor variables were determined using nationally avail-
able data sources, which included information about land
cover, ditch network, protected areas, topography, peatland
characteristics and climatic boundary conditions. We applied
boosted regression trees to identify dependencies between
predictor variables and dip-well-specific long-term annual
mean water level (WL) as well as a transformed form (WLt).
The latter was obtained by assuming a hypothetical GHG
transfer function and is linearly related to GHG emissions.
Our results demonstrate that model calibration on WLt is su-
perior. It increases the explained variance of the water level in
the sensitive range for GHG emissions and avoids model bias
in subsequent GHG upscaling. The final model explained
45 % of WLt variance and was built on nine predictor vari-
ables that are based on information about land cover, peat-
land characteristics, drainage network, topography and cli-
matic boundary conditions. Their individual effects on WLt
and the observed parameter interactions provide insight into
natural and anthropogenic boundary conditions that control

water levels in organic soils. Our study also demonstrates
that a large fraction of the observed WLt variance cannot be
explained by nationally available predictor variables and that
predictors with stronger WLt indication, relying, for exam-
ple, on detailed water management maps and remote sensing
products, are needed to substantially improve model predic-
tive performance.

1 Introduction

Greenhouse gas (GHG) emissions from organic soils can be
high compared to mineral soils. In Germany, the fraction of
organic soils classified as peatland covers only 5 % of the
land surface, but does account for 40 % of GHG emissions in
the reporting categories “agriculture” and “land use, land use
change and forestry” of the UN Framework Convention on
Climate Change (UNFCCC) (UBA, 2012). Also, other or-
ganic soils with a lower soil organic carbon content (SOC)
but still meeting the definition of organic soils according to
IPCC (2006) are important sources of persistently high GHG
emissions (Leiber-Sauheitl et al., 2014). In our study, we also
consider these soils. For simplification, we will refer in the
following to the total of peatlands and “other organic soils”
as organic soils. Current estimates of GHG emissions from
organic soils are fairly uncertain and reporting of most coun-
tries relies on IPCC default emission factors (EF) for CO2
emissions which are stratified for land use and climatic re-
gion, e.g., 10 t C ha−1 year−1 for arable land in the warm
temperate zone.
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Artificial drainage turns the function of former natural
peatlands from a C sink into a C source. Experimental work
with organic soils during the last 2 decades showed that the
aerated soil pore space above the water level is one of the key
variables explaining the amount of CO2 emissions (Moore
and Dalva, 1993). Frequently, the water level relative to soil
surface (further simply referred to as “water level”, with neg-
ative values below ground) is used as proxy for air-filled
porosity, given the simplicity and availability of water level
measurements. Additionally, low water levels and oxygen
availability are also key drivers of nitrous oxide (N2O) pro-
duction in organic soils (Regina et al., 1996), which increases
the relevance of organic soils for climate change mitigation
policy. During anaerobic conditions when water levels are at
or above the land surface, substantial methane (CH4) emis-
sions can occur (Levy et al., 2012).

It is postulated that the GHG budget – the sum of the
CO2-equivalents of the three main greenhouse gases (CO2,
N2O, CH4) – is at a minimum for annual mean water lev-
els (annual mean further defined by the variable name WL)
at about−0.05 to−0.1 m (Drösler et al., 2011). Following
atmospheric sign convention, a positive sign stands for net
emissions, while a negative sign indicates a net uptake of
GHGs. Other parameters, such as physical and chemical soil
properties and vegetation, also influence the amount of the
emissions and thus weaken the relation between total GHG
budget and WL.

If available, information about the spatial distribution of
WL can identify GHG hot spot regions and improve the ac-
curacy of the total GHG budgets at large scales. The applica-
tion of transfer functions that relate GHG emissions to WL
and potential other influencing site characteristics can refine
the estimates derived from simple application of IPCC de-
fault EFs. However, in many countries and regions, as for
example Germany and Europe, a map of WL in organic soils
does not exist. The spatial availability of measured WL is
much higher than that of measured GHG fluxes, which sug-
gests the use of WL as scaling parameter for upscaling GHG
emissions.

Several methods were applied in the past to produce WL
maps. Their suitability is strongly related to data availabil-
ity, which very often decreases in quality and spatial density
with increasing scale of the study area. Spatially distributed
process-based modeling (Thompson et al., 2009) and semi-
physical statistical approaches (Bierkens and Stroet, 2007)
are able to reproduce well the water level dynamics in wet-
lands environments including peatlands. However, they heav-
ily rely on spatial information about the system’s physical
properties and boundary conditions (peat hydraulic proper-
ties, hydraulic conductivity of peat base, drainage system),
data that is often only available with sufficient detail at a re-
gional scale (Limpens et al., 2008). Despite this difficulty
there are studies in which process-based models were ap-
plied to model peatland water levels at a large scale (na-
tional or continental). Gong et al. (2012) adopted a common

soil–vegetation–atmosphere transfer model to account for
the differing hydrological processes in pristine fens, pristine
bogs and drained peatlands, and modeled water level fluctu-
ations in boreal peatlands for all Finland. But calibration and
validation with data from only three mires does not allow for
conclusions about the accuracy and general applicability of
the model. Numerous large-scale hydrological wetland mod-
els are often developed with a focus on delineating wetland
extent (Melton et al., 2013). TOPMODEL-based schemes
(Ju et al., 2006) and more advanced large-scale hydrologic
frameworks (Fan and Miguez-Macho, 2011) are suited to
model WL but do not account for anthropogenic drainage
and thus are only applicable to pristine (or nearly pristine)
peatland systems.

When detailed physical model input that is needed for a
physically based approach is lacking, statistical or machine-
learning tools represent a promising alternative (Finke et al.,
2004). Potential predictor variables that are available at the
final map scale are determined for each location with water
level data and the algorithm identifies dependencies between
potential predictors and target variables, such as WL or other
statistical values that describe water level dynamics. For ar-
eas rich in water level data, e.g., the Netherlands, residuals
of the statistical model can afterwards be analyzed for spatial
correlation. If this is present, it can be used to correct for spa-
tially correlated model bias by kriging. This scheme has been
applied to agricultural areas by Finke et al. (2004) and to na-
ture conservation areas by Hoogland et al. (2010). Spatial
interpolation approaches can include ancillary data such as
mapped geophysical parameters (Buchanan and Triantafilis,
2009). Statistical approaches strongly rely on both the quan-
tity and quality of the data on the target variable itself, i.e.,
the water level data. An important quality criterion for wa-
ter level data from organic soils is the measurement depth.
It is crucial that there is little or no hydraulic resistance by
a low conductive layer between the perforated part of the
monitoring well and the fluctuating water level. If hydraulic
resistance is too high, the monitoring well acts as a piezome-
ter and water levels may substantially differ from the actual
phreatic level as shown for peatlands by van der Gaast et
al. (2009). If such piezometer data is part of a data set and
interpreted as phreatic water level data during model calibra-
tion, this can lead to an under- or overestimation of predicted
water levels in organic soils. An underestimation of water
level predictions (too dry) is discussed for Dutch modeling
studies in van der Gaast et al. (2009).

At present in Germany, a map of water levels in organic
soils that could be used for GHG upscaling is lacking. This
fact and current efforts on improving GHG emission esti-
mates for German organic soils were the main drivers for
our study. Thus, the major goal of this study was the devel-
opment of a model concept that produces a water level map
at the scale of all organic soils in Germany that is specifically
optimized for water level ranges to which GHG emissions re-
act sensitively. We emphasize that the objective of our study
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was to regionalize annual mean water levels and not the GHG
emissions themselves. The latter are influenced by more site
characteristics, in particular soil properties. Furthermore, we
suppose that annual mean water level is probably not the only
or optimal statistical measure to describe the water level ef-
fect on annual GHG emissions. However, we are not aware
of well-established information about transfer functions that
relate more complex statistical measures of water level dy-
namics to GHG emissions. Therefore, we here focused on the
simple and frequently applied “annual mean water level”.

As a first step, we compiled a new data set of phreatic wa-
ter level time series of organic soils with contributions from
numerous data sources. Based on this data, we developed a
modeling approach for the annual mean water level that fol-
lows the basic idea of the statistical regionalization presented
in Finke et al. (2004). However, the data coverage in our
study substantially differed from their study. Our data cov-
ers only a small fraction of the peatlands of the final map and
spatial interpolation of residuals was not possible. We thus
extended their approach by:

– including additional possible predictor variables,

– using boosted regression trees as a modeling tool to
identify the influence of both numerical and categorical
variables simultaneously,

– applying a new weighting scheme that balances out het-
erogeneous water level data sets with highly variable
spatial data density,

– transforming the annual mean water level, WL, into a
transformed annual mean water level, WLt, that shows a
linear relationship with the GHG budget and optimizes
model calibration for the WL range relevant for GHG
emissions and

– restricting the water level regionalization to phreatic
water levels of organic soils.

We present a detailed analysis of the influence of the individ-
ual predictor variables on water levels of organic soils as well
as their interactions. Furthermore, the manuscript includes
the estimation of model uncertainty and possible paths of
future model improvement. Finally, the calibrated model is
used to derive a map of WLt for all organic soils in Germany,
and the regionalization results are presented.

2 Data set and methods

2.1 Data set of phreatic water levels in organic soils

Available data of phreatic water levels in organic soils are
scarce. In contrast to data of rather deeply drilled observa-
tion wells of official groundwater monitoring networks, short
peatland observation wells of only 1 or 2 meters length that

Figure 1. Locations of the 1094 dip wells of the data set. Base map
(geological map 1 : 200 000, BGR) shows the distribution of bog
and fen peat, and other organic soils.

measure the phreatic water level of the peat layer are cur-
rently not collected in central data management systems in
Germany or any of its federal states. With a comprehensive
questionnaire started in 2011, we collected water level time
series of organic soils from local agencies, non-governmental
organizations, universities, consultants and other sources,
and combined this data with water level data from our
projects. Time series included manual and automatic mea-
surements. Years with less than six measurements or data
gaps of more than 3 months were excluded. Water level time
series of each dip well were visually checked on plausible dy-
namics by comparing with data from neighboring dip wells
and weather data time series. Based on auxiliary data and
local knowledge, we further identified dip wells that reached
down to the underlying aquifer. If dip wells failed these qual-
ity checks, they were removed from the data set.

The final data set comprised 7155 years of data from
53 German peatlands and 1094 dip wells. On average time
series ranged over 7 years. All time series were collected at
some period between the years 1988 to 2012. Data are well
distributed over most of the German peatland regions and
cover the three major types of organic soils (Fig. 1). Com-
pared with the distribution of the types of organic soils in
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Germany, the fraction of dip wells on bogs is overrepresented
in the data set by the factor of 2.5, while dip wells on fens
and other organic soils are slightly underrepresented. Data
also cover the common land-use types (for data sources see
Table 1). However, dip wells on organic soils that are neither
used for agriculture, forestry or peat mining, further referred
to as “unused peatlands”, are overrepresented in the data set
by a factor of 6 as data was collected more frequently and
in higher spatial data density in the frame of conservation
projects. The fraction of unused peatlands of the German or-
ganic soils is 6 % and the fraction in the data set is 36 %.
In contrast, dip wells on arable land are underrepresented in
the data set by a factor of 6. The fraction of arable land on
German organic soils is 24 %, and the fraction in the data set
is 4 %. The other two key land-use types of organic soils in
Germany, grassland and forest, are well represented in the
data set. The misbalance of the land-use types in the data set
is accounted for in the weighting of data (see Sect. 2.3.2).

If land use changed within the measurement period of a
dip well, the time series was split at the moment when the
land-use record indicates the transition. For each segment the
annual mean water level, WL (here with negative values de-
fined as water levels below ground), was calculated as the
multi-year average value over the whole measurement period
of the specific land use.

The primary application of the WL map produced in this
study is for the upscaling of long-term GHG emissions as
emission reporting may only reflect anthropogenic effects,
but not interannual climatic effects. As GHG transfer func-
tions are developed on annual data, their application requires
both the long-term annual mean water level, as well as its
interannual variability. Due to the non-linear dependence of
GHG emissions on WL, single years with extreme water lev-
els can strongly influence long-term average GHG fluxes.
This study is focused on the regionalization of the long-term
annual mean water levels. For this objective, model building
should be based on long-term water level time series to av-
erage out the effect of weather variation within a complete
climatic period (commonly 30 years). The existing nation-
ally available data on water level time series of organic soils,
however, does not comprise a single time series with com-
plete data coverage over the last 30 years. Due to the lack
of sufficient long-term water level time series, we included
all time series in the model building process. Average cli-
matic boundary conditions (precipitation, reference evapo-
transpiration, water balance) of the specific measurement pe-
riod of each dip well are part of the predictor variables (see
Sect. 2.2), and thus are supposed to partly account for the
effect of specific weather conditions on WL in case of short
measurement periods.

2.2 Predictor variables

Spatial coverage of phreatic water level data of organic soils
is too low to obtain WL maps by simple spatial interpolation

(Fig. 1). Additional spatial data is needed as basis for region-
alization. Ancillary information that covers fully or at least
most of the extent of the final map are necessary. They can be
used as predictor variables. A comprehensive set of variables
(numerical and categorical) with potential indication for the
hydrological condition of an organic soil were determined
for each dip well (Fig. 2 and Table 1).

The predictor variables, which can partly be found also in
Finke et al. (2004), can be divided into seven groups:

2.2.1 Land cover

As certain land use and vegetation require and reflect cer-
tain WL, such information can be used as an indicator for
the average drainage level around the dip well. Land-use and
vegetation information is based on the German Digital Land-
scape Model (ATKIS Basis-DLM), which is updated contin-
uously by aerial photos as well as sporadic ground mapping
and has a temporal accuracy of 3 months to 5 years. It is pro-
vided as fine-scaled polygons and represents the best uniform
land cover information available in Germany. It contains in-
formation on primary land-use type, few optional vegetation
attributes and whether “wet soil” has been observed during
mapping. As we noticed that the use of a large number of
categorical variables lowers the performance of boosted re-
gression trees, we further aggregated the three information
types (i) land use, (ii) vegetation and (iii) wet soil into a set
of nine combined land cover classes (Table 1). These land
cover classes were a trade-off between fine differentiation
and the number of replicates in each class. For grasslands,
a “wet grassland” class was separated when grassland was
overlaid with wet soil and/or tree or shrubs vegetation, which
may indicate a less intensive management. Forests overlaid
with wet soil were separated as “wet forest”. Further, unused
peatlands overlaid with wet soil and showing no coverage
with tree attributes were characterized by higher water levels
and were thus separated as “wet unused peatland”. The very
few dip wells classified as open water (n = 2) and peat cut-
ting (n = 5) were merged to the reed and arable land cover
class, respectively. Land-use type and land cover class were
extracted at the dip well (point extraction) and as fractions in
various buffers around the dip well (Table 1). As using too
many weak predictor variables lowers model performance
and increases overfitting, the numerous land cover fractions
were further aggregated into two classes: the fraction of dry
(arable and grassland) and wet (reed, wet grassland, wet for-
est and wet unused peatland) land cover on organic soils. For
the calculation of the fraction of dry land cover, we tested
various factors for the reduction of the contribution of grass-
land compared to arable land as the grassland class also in-
cludes wetter grasslands that could not be detected with the
available land cover catalogue. A factor of 0.5 was an optimal
value, which was then set fixed.
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2.2.2 Drainage network

Locations of ditches that are included as lines in the Digital
Landscape Model were used to obtain information about the
drainage network. The total ditch length was calculated for
various buffer sizes. Further, the distance to the next ditch
was calculated for each dip well. A short distance to the next
ditch may indicate either lower or higher water levels, de-
pending on whether the ditches are used for drainage or al-
ready blocked and used for rewetting measures. Similarly,
the indication of the total length of ditches is not unique.
Therefore, we defined two different sets of ditch variables.
A first set, for which we calculated values for all land cover
classes and a second one, for which we only calculated val-
ues for land cover classes for which ditches are undoubtedly
used for drainage, i.e., arable and grassland.

2.2.3 Peatland characteristics

The geological map of Germany (scale 1 : 200 000) defined
the area for which WL predictions were modeled. It is also
the basis for topological peatland predictor variables, i.e., the
fraction of organic soils in different buffer sizes as well as
the dip well distance to the edge of the peatland. Information
about the peatland type and the substrate at the peat base is
presented in more detail in a newly compiled raster map of
organic soils (Roßkopf et al., 2014) and was thus extracted
from this map. Peatland types were aggregated into five
classes: lowland bog (North German Plains and Alpine Fore-
lands), upland bog (Central Uplands and Alps), fen neighbor-
ing surface water, fen without neighboring surface water, and
a class of “other organic soils” that do not fulfill the C content
and thickness criteria to be classified as peatland. Substrates
at the peat base included loose unconsolidated rock (alluvial
sand and gravel deposits), consolidated rock (bedrock) and
peat clay layer. The first type may indicate the occurrence of
seepage (positive or negative), whereas the latter two types
may indicate rather a hydraulic decoupling from the aquifer
hydraulic head.

2.2.4 Climatic boundary conditions

Climatic boundary conditions directly influence water level.
On the one hand, the typical long-term climatic boundary
conditions may indicate the general vulnerability of peat-
lands in a specific region. On the other hand, given the dif-
ferent lengths of measurement periods of the time series
in this study, climatic boundary condition predictor vari-
ables may account for the effect of a climatically wetter or
drier measurement period, compared to the long-term av-
erages, on the water level. Climatic boundary conditions
were extracted from a 1× 1 km raster from the German
Weather Service. Annual, summer and winter precipitation,
FAO56 Penman–Monteith reference evapotranspiration and
climatic water balance (difference between precipitation and

reference evapotranspiration) were determined for the indi-
vidual measurement period of each dip well and as long-term
averages (30 years).

2.2.5 Relative altitude

Relative altitude was calculated by subtracting the median
altitude of various buffer sizes from the absolute altitude at
each dip well in the digital elevation model (DEM). Rela-
tive altitude is expected to have two different indications de-
pending on the applied buffer size: (i) in many peatlands, the
former smooth peatland relief at the scale of approximately
> 5 m has been disturbed due to peat cutting and differences
in drainage and mineralization rate. As a consequence, the
rather smooth phreatic surface often does not follow the un-
even and patchy terrain. Relative altitude with respect to
smaller buffer sizes (< 250 m) may therefore explain part of
the WL variation, e.g., a dip well that is located at a surface
much higher than the surroundings may indicate deeper wa-
ter levels; (ii) for large buffer sizes (> 250 m) relative altitude
indicates whether the peatland lies in a larger morphological
depression or elevation, and thus may indicate whether large-
scale lateral inflow of water can be expected or not. Similar
indication is provided by the topographic index (see below).
The accuracy of relative altitude values depends on the reso-
lution and accuracy of the DEM. The nation-wide available
DEM is based on data sets of varying quality, which may
lower the influence of this variable.

2.2.6 Topographic wetness index

The topographic wetness index is a common wetness indi-
cator used in hydrology (Beven and Kirby, 1979). It is a
combined measure of catchment area and slope at a given
point and indicates the extent of flow accumulation. High val-
ues indicate wetter conditions. If calculated at larger scales,
higher values may hint at the occurrence of positive seepage,
i.e., upward flow of water from the aquifer. Topographic wet-
ness index was calculated for various DEM resolutions using
the GRASS 7 module r.watershed.

2.2.7 Protection status

The protection status of a peatland area may reflect hydrolog-
ical conditions. Therefore we checked for seven protection
status at each dip well (see Table 1 for details).

2.3 Model building scheme

Model building was performed using boosted regression
trees (BRT), implemented in the two R packages “gbm”
(Ridgeway, 2013) and “dismo” (Hijmans, 2013). BRT is a
machine-learning algorithm, in which the final model is de-
rived from the data. Functions that relate target to predictor
variables are not predetermined but freely developed. BRT
is based on the decision (or regression) tree concept. In the
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decision tree concept, the parameter space is searched se-
quentially for the best split that results in the lowest model
mean squared error. The mean responses of the groups that
result from the various splits, and correspond to certain pa-
rameter ranges, represent the model. The common procedure
is the growth of a large tree which is subsequently simpli-
fied by dropping weak links that are identified with cross-
validation. Growing only a single tree has several disadvan-
tages such as uneven functions that are very sensitive to the
specific sample of the data. Therefore, ensemble techniques
have been combined with the decision tree concept. These
were, first, the development of multiple models by bootstrap-
ping of the samples (bagging technique) and the random
creation of subsets of predictors at each split (random for-
est technique). Later, with the “boosting” technique of BRT,
a sequential procedure was developed in which data is re-
weighted after each tree to increase emphasis on data that is
poorly modeled by the existing collection of trees (Elith et
al., 2008).

BRT modeling is increasingly applied in spatial model-
ing of species or numerical environmental variables (Elith
et al., 2008, Martin et al., 2011), thereby often showing su-
perior performance compared to other machine-learning al-
gorithms. The increasing application of BRT is related to
several of its favorable characteristics: the strength of this
method lies in the ability to fit complex functional dependen-
cies including non-linear relationships and interactions be-
tween predictor variables. Based on its flexibility, BRT is in-
variant to monotonic transformations of predictors. Further-
more, BRT allows for missing values in the predictor vari-
ables, thus predictor variable information does not necessar-
ily need to fully cover the total map extent. The gbm package
handles missing values in predictor variables by introducing
surrogate splits. The mean target value belonging to the miss-
ing predictor values is attributed to these surrogate splits dur-
ing model building. We observed that the contribution of a
predictor variable to the final model decreases with an in-
creasing number of missing values. This is intuitive as target
observations of missing predictor values are mostly supposed
to scatter strongly. BRT is further fairly insensitive to out-
liers and allows estimating the relative contribution of each
predictor variable to the model. Due to these characteristics
we expected BRT to be very well suited to the very hetero-
geneous data set of this study.

BRT model calibration is prone to overfitting, and there
are various options to reduce this behavior. Due to the over-
fitting behavior, cross validation is generally part of the
model building process. However, cross validation can be
performed in several ways and, if performed carelessly, can
lead to overly optimistic model performance (De’ath, 2007).
Here, cross validation was performed by leaving out whole
peatland areas instead of a random set of dip wells. This
represents a stricter cross validation, and we noticed that it
strongly reduced overfitting of the water level data, and thus
contributed to the development of a more robust model.

Figure 2. Illustration of the predictor variables determined for each
dip well based on available national maps (see Table 1).

Another option to avoid overfitting is to impose mono-
tonic slopes on the effects of individual parameters, which
can even lead to improved prediction performance (De’ath,
2007). For all our numerical variables, we expected mono-
tonic slopes rather than optimum functions. To avoid pre-
defining any expected direction, all numerical variables were
added twice to the set of predictors, constraining the slope to
a monotonic increase and decrease. We let the model decide
whether monotonic increase or decrease has higher predic-
tive power.

Models were calibrated using a Gaussian response type,
aimed at minimizing deviance (squared error) (Ridgeway,
2013). In all calibration runs, we applied the gbm.step func-
tion of the dismo package, which assesses the optimal num-
ber of boosting trees using cross validation. We tested various
learning rates (0.001–0.01), bag fractions (0.1–0.8) and lev-
els of tree complexity (3 to 7), i.e., the number of nodes in a
tree. By trial and error we determined the most effective algo-
rithm parameters for our data set being 0.005 for the learning
rate, 0.6 for the bag fraction and 5 for the tree complexity.

The final BRT model building is commonly performed as
a two-step procedure (Elith et al., 2008) which we basically
also followed in our study:

i. In the first step, the whole set of predictor variables is
used to calibrate a BRT model.

ii. In a second step, the number of parameters is re-
duced sequentially to avoid overfitting and to derive a
more parsimonious model. We tracked predictive per-
formance criteria during the simplification process. As
various variables were calculated for different buffer
sizes, our predictors included a large number of cor-
related variables. Correlation coefficients between pre-
dictor variables of> 0.7 are known to severely distort
model estimation and subsequent prediction (Dormann
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Figure 3. Illustration of the annual mean water level (WL) transformation. Hypothetical transfer function relating GHG budget to WL (m)
(a). GHG budget vs. the transformed water level (WLt) (b). WLt vs. WL. The lines along thex axes indicate the data quantiles of the
analyzed data set(c).

et al., 2013). Thus, we performed this simplification
process by first dropping those parameters with a cor-
relation> 0.7 (either Pearson or Spearman type) to an-
other parameter with a higher contribution (Clapcott et
al., 2011). This ensured that two highly correlated pa-
rameters would not remain in the parameter set longer
than the last parameter of another group of variables,
which may contribute less compared to the two highly
correlated parameters but provides extra information
that is not covered by the other parameters. After all
highly correlated parameters have been dropped, fur-
ther parameters with low contribution were dropped
progressively.

Predictor contributions are calculated as proportional con-
tributions to the total error reduction and can be considered
as a measure for the influence of the individual predictors.
Additionally, a BRT model allows the derivation of partial
dependence plots which indicate how the response is affected
by a certain predictor after accounting for the average effects
of all other predictors in the model (Elith et al., 2008). These
plots do not show the full effect of each parameter on the
model response due to interactions with other parameters that
are fixed to derive theses plots as well as due to parameter co-
correlation. However, they can be used for interpreting model
behavior (Elith et al., 2008).

2.3.1 WLt : transformation of WL

The map of water levels of this study was developed to im-
prove the upscaling of greenhouse gas emissions from or-
ganic soils. Therefore, the final map should provide the high-
est accuracy for the water level range for which the high-
est differences of greenhouse gas emissions occur. This can
be achieved by transforming WL into a transformed vari-
able WLt, which shows a linear relationship with GHG emis-
sions. The sensitivity of greenhouse gas emissions to water
level has been analyzed in several laboratory and field ex-
perimental and monitoring studies (Berglund and Berglund,

2011; Drösler et al., 2011; Hahn-Schöfl et al., 2011; Leiber-
Sauheitl et al., 2014; Moore and Roulet, 1993; Moore and
Dalva, 1993; van den Akker et al., 2012). General trends are a
strong increase of methane (CH4) emissions for annual mean
water levels of approximately> −0.1 m and an increase of
CO2 emissions for water levels< −0.1 m with a trend simi-
lar to a saturation function that levels out approximately be-
tween−0.4 and−0.8 m (Fig. 3a). While studies agree over
these general trends, the exact shape of the transfer function
and the maximum levels of emissions as well as their depen-
dence on soil properties and other environmental parameters
are still controversial. Here, we assume a hypothetical trans-
fer function, relating the normalized GHG budget, ranging
from 0 to 1, to the water level (see also Fig. 3),

GHG Balance=

{
−e3(WL+0.1)

+1 WL<=−0.1
1−e−3(WL+0.1) WL>−0.1

}
. (1)

As the GHG budget can be positive for both low and high
WL, we introduced the transformed water level, WLt, as
(Fig. 3),

WLt =

{
e3(WL+0.1)

− 1 WL <= −0.1
1 − e−3(WL+0.1) WL > −0.1

}
. (2)

By calibrating the model to both WL and WLt, we test if the
optimization of WLt provides the highest model accuracy for
the water level range relevant for GHG emissions and if it
optimizes the map for application to GHG upscaling.

2.3.2 Weighting scheme

When considering possible data weighting schemes, it is
worth emphasizing, at this point, that the goal of this study is
the development of a statistical model that can explain both
the water level variability within a peatland as well as among
different peatlands. The data of target and predictor variables
for building this model is highly heterogeneous. First, the tar-
get variable data set contains peatland areas that strongly dif-
fer in their spatial extent and in the number of installed dip
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wells. Second, the predictor variable data set contains cate-
gorical and numerical data, and part of the predictor variables
predominantly vary from peatland to peatland (e.g., climatic
boundary conditions, large-scale topographic wetness index,
peatland characteristics) whereas others also show within-
peatland variability (e.g., land use, small-scale topographic
wetness index, drainage network). As the influence of the in-
dividual predictor variables on our target WLt is expected to
be rather diffuse due to abundant interactions with other site
characteristics, the robustness of derived dependencies will
strongly depend on the number of different peatlands in the
data set.

There are no universal data weighting rules for similarly
heterogeneous data situations and some degree of expert
judgment and subjectivity is inevitable involved when de-
veloping an appropriate scheme (Francis, 2011). The need
for introducing a data weighting scheme is obvious, as with-
out data weighting during calibration, too much influence
would be given to small and well-studied peatlands, which
will reduce predictive model performance for large, less-
well-studied peatland areas. To avoid this in a simple man-
ner, weight could be reduced by the number of dip wells in
each peatland, which results in each peatland being equally
weighted. This scheme, however, does not sufficiently use
the high information content provided by well-studied large
peatlands, which should have a higher impact on model cali-
bration than a small peatland with only few dip wells.

Here, we propose a new weighting scheme that takes into
account both factors, peatland size and local density of dip
wells, to derive dip well specific weighting factors. It is based
on principles of data uncertainty reduction, by repeated mea-
surements, and of geostatistics. First, we consider our data
situation as an analogue of meta-analysis with grouped data.
It is has been shown for homogeneous problems (all data
from same population) that optimal group weights for meta-
analysis is 1/SE2 (Hedges and Olkin, 1985) with SE being
the standard error of each group,

SE =
σe

√
N

, (3)

whereσe is the error standard deviation of a measurement
andN is the number of measurements in a group. For ho-
mogeneous problems and uniformσe, this results in weights
that are linearly dependent onN , which we here call the first
end member of weighting. Heterogeneity (within-group vari-
ance) reduces the variation of the group weights which can
be shown by random effect models (Cumming, 2012). As
with second end member of weighting, when heterogene-
ity totally dominates within-group variance, optimal group
weights are uniform for all groups, i.e., weights are inde-
pendent ofN . We are not aware of a method that allows
the estimation of the degree of heterogeneity for the com-
plex target and predictor data situation in this study, includ-
ing data (spatial and temporal variability, measurement er-
ror) and model errors (missing parameters). As a trade-off

Figure 4. Sample semivariogram and fitted semivariogram model
of the annual mean water level data, WL.

between 1/SE2(homogeneous end member) and 1 (heteroge-
neous end member), we decided on a group weight that is
the inverse of the standard error, 1/SE, which is, for exam-
ple, often used in econometric studies (Dickens, 1990). We
emphasize that this is a subjective decision.

The group weight, 1/SE, is the basis for the geostatistical
part of our weighting scheme. There are two reasons why we
cannot directly treat our peatlands as groups. First, there is
within-peatland variability, which is related to changing site
characteristics. It is one objective of our study to describe
this variability by statistical modeling. Thus, dip wells must
be treated individually and data cannot be aggregated at the
peatland level. Second, we expect the model to learn more
when the same number of dip wells is installed in a larger
peatland. In a small peatland, spatial autocorrelation between
dip wells is higher, i.e., the information content is lower than
for large peatlands. As a consequence of the first point, we
do not aggregate and keep all dip wells in the target variable
data set by attributing to each dip well the fraction 1/N of
its group weight, so that the relative weights of the groups
remain constant. As a consequence of the second point, we
use principles of geostatistics in our weighting scheme. We
replace the group sizeN (positive integer number) by the
“statistical” group sizen (positive continuous number be-
ing> 1), which we derive from the spatial autocorrelation
among the dip wells.

Therefore, we analyze the spatial autocorrelation structure
of the data set. A single spherical variogram model was fit-
ted to the sample variogram of all data (Fig. 4 in Sect. 3.1).
Variogram models allow the differentiation of the total data
variance (called “sill”) into a spatially uncorrelated variance
(called “nugget”) and a spatially correlated variance (called
“structural variance” and defined as sill–nugget) (Wacker-
nagel, 2003). The variogram model allows for derivation for
any distance between two locations the average squared dif-
ference of values, here defined asγ . By definition, at dis-
tance 0, the average squared difference equals the nugget,
and at distances greater than that called the “range” of spatial
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autocorrelation, the average squared difference equals the
sill. Accordingly, the autocorrelated fraction,f , of the av-
erage squared difference between two dip wellsi and j is

fi,j =
sill − γi,j

sill − nugget
. (4)

We now define the “statistical” group sizen of each dip welli
to be the sum of one plus the autocorrelated fractionsfi,j of
all dip wells that are within the range of spatial autocorrela-
tion of i,

ni = 1 +

m∑
j=1

sill − γi,j

sill − nugget
. (5)

According to the discussion above, dip-well-specific weights
can then be calculated with

wi =
1

ni SEi

=
1

σe,i
√

ni

, (6)

whereni is derived from Eq. (5). The equation shows that
with increasing “statistical” group sizen, i.e., with increas-
ing spatial data density, the weight of an individual dip well
is “down-weighted” to some degree, a behavior that corre-
sponds to our initial intention to lower the influence of small
peatlands compared to large ones. The error standard devia-
tion σe is dependent on several factors, e.g., the length of the
time series, the temporal measurement density and the mi-
crotopography around the dip well. For simplicity, we here
assumedσe to be uniform for all dip wells, which simplifies
Eq. (6) towi =

1
√

ni
.

Only dip wells with the same land-use type were summed
up with Eq. (5), which avoids the down-weighting by dip
wells that have different land-use types. The latter are mostly
characterized by fairly different WLt and thus by rather low
spatial autocorrelation to dip welli.

After spatial correlation has been accounted for, the sum
of the weights of all dip wells of each land-use type were ad-
justed that they correspond to the fractions of this land-use
type in Germany. This adjustment accounts for the overrep-
resentation in the data set of dip wells in unused peatlands
and underrepresentation of dip wells in arable land.

2.3.3 Model performance criteria

Model fit and predictive performance after cross-validation
were quantified by the weighted root mean square error,

RMSE =

√√√√ 1∑m
i=1 wi

m∑
i=1

(
wi

(
xo,i − xs,i

)2
)
, (7)

wherem is the number of dip wells,xo,i is observed WL
or WLt of dip well i, xs,i is simulated WL or WLt of dip
well i andwi is the data weight of dip welli (see below). We

refer to the root mean square error of the predicted data of
cross validation as RMSEcv. Model performance was further
quantified by Nash–Sutcliffe efficiency (NSE),

NSE = 1 −

m∑
i=1

wi

(
xo,i − xs,i

)2

m∑
i=1

wi

(
xo,i − xo

)2
, (8)

wherexo is the mean of all observed WL or WLt. It indicates
how well observed vs. predicted values match the 1 : 1 line.
NSE is a good overall indicator of predictive performance
because it combines scatter and bias (common offset and/or
slope difference from 1:1 line) (Nash and Sutcliffe, 1970).
Values greater than 0 signify a model that is better than the
reference model based on the data mean. We refer to the NSE
of the training data as NSEcal, and of the predicted data of
cross validation as NSEcv.

Systematic errors were quantified by calculating the model
bias, here defined as,

BIAS =

m∑
i=1

(
wi xo,i − wi xs,i

)
. (9)

2.4 Model uncertainty and stability evaluation

Uncertainty of the model predictions was assessed by boot-
strapping, cross-validation and residual analysis.

For the bootstrapping analysis, we followed the procedure
of Leathwick et al. (2006). We estimated the confidence in-
tervals around the predictions and the fitted functions by tak-
ing 1000 bootstrap samples of the 53 peatlands. The number
of peatlands in each sample was equivalent to the data set, but
peatlands were selected randomly with replacement. Using
the predictor variables of the final model, a BRT model was
fitted to each sample. Cross validation was again performed
on peatlands, thus a peatland in the calibration data set was
not part of the cross-validation data set to avoid overly opti-
mistic results. Variances of the predictions and of the fitted
functions of the 1000 models were evaluated.

If data sets are relatively small (e.g.,n < 1000, De’ath,
2007) then the small size of the training and test data sets
lowers model accuracy. Given the fairly small number of
peatlands in the data set and the partly high spatial corre-
lation of dip wells within these peatlands, we decided not to
split the data set into a training and test data set. Estimates
of model accuracy can then be based on cross-validation,
thereby making effective use of all the data (De’ath, 2007).
The prediction uncertainty of the final model is estimated
by the root mean square error of prediction (RMSEcv, see
above) for each land cover class. After testing for near-
normal distribution of the residuals, RMSEcv can be used to
derive the 68 and 95 % confidence intervals of the predictions
with RMSEcv and 2× RMSEcv, respectively.
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Finally, additional residual analysis was performed to eval-
uate whether the predictions are biased for different land
cover classes or geographical regions.

2.5 Regionalization

In the final regionalization step, the predictor variables con-
tributing to the final model were determined at a 25× 25 m
raster for all organic soil in Germany. Predictor variables
were determined with the same map input that was used for
model building. Land cover information including informa-
tion on ditches was based on the data from year 2012 and the
climatic data was based on the average of the last 30 years.
The fine spatial resolution of 25× 25 m was not chosen to
fool the reader with a highly spatially accurate model. Rather
this fairly fine scale was necessary to map the relatively
small-scale effects of the topography, land use and peatland
geometry variables. The final model was then used to make
a prediction for each of these raster cells.

3 Results and discussion

3.1 Spatial correlation structure of the data set

The variogram model fitted to the sample variogram provided
a nugget (0.012 m2; 0.11 m), a sill (0.09 m2; 0.3 m) and a
range of spatial correlation (2700 m) for our data set of WL
(Fig. 4). The nugget represents the very small-scale soil hy-
draulic variability and micro-topography effects on WL (van
der Ploeg et al., 2012) and measurement error, e.g., by dif-
ferences in the determination of the ground surface and in
the timing of the manual measurements. Furthermore, micro-
topography (e.g., hummocks) and oscillating peat surfaces of
wet peatlands pose a challenge for an accurate determination
of both ground surface and water level. The water level time
series in the data set were of different lengths and ranged
from 1 to 20 years. Interannual variability of water levels can
be large (e.g., Knotters and van Walsum, 1997). For simplic-
ity, in our analysis, data were not harmonized by extrapolat-
ing WL time series using weather data to a 30-year period.
Thus, the nugget also includes errors that are introduced by
dip wells with different measurement periods that are located
in the range of spatial correlation. In consideration of these
error sources, the fitted nugget of 0.11 m appears to be a re-
alistic value. At 0.3 m, the fitted sill matched nearly perfectly
with the standard deviation of the data (0.31 m), which in-
dicates consistency between semivariogram model and data
set. The fitted range of spatial correlation of 2700 m reflects
both physical effects, i.e., the average range of lateral flow
due to hydraulic gradients, as well as the effect of average
land-use patterns in Germany on the spatial correlation of
WL. Fitted values were used in the calculation of the dip-
well-specific weights using Eq. (6).

3.2 Typical water levels for land-use types in German
organic soils

The land cover classes are characterized by plausible mean
and median water levels, which show consistent differences
between each other (Table 2 and Fig. 5a). The mean values
of arable land and grassland agree with what can be expected
for their agronomic requirements, with slightly lower water
levels for arable land. The high variability observed for both
classes may be related to the variability of the efficiency of
installed drainage systems, as for example the presence and
condition of tile drains and the depth of ditches. Grasslands
can be managed with very variable intensity, which is partly
reflected in different water levels. Figure 5a further shows
that deciduous forests seem to dominate slightly drier organic
soils compared to coniferous forests, which dominate under
wetter conditions. A high variability of water levels is ob-
served for the land cover class unused peatland. On the one
hand, post peat-cutting topography increases the variability
of WL over short distances. It probably contributes to the
high variance observed for this class. On the other hand, this
class comprises both rather dry unused peatlands and wetter
peatlands in which re-wetting measures already took place,
which however do not show yet a wet soil attribute in the
ATKIS Digital Landscape Model. This may also cause part of
the variance observed in the grassland and forest land cover
class. All wet land cover classes (reed, wet grassland, wet
forest and wet unused peatland) that were separated by wet-
ness indication clearly show higher water levels, showing the
wetness attribute of the Digital Landscape Model is a useful
attribute.

Figure 5b shows the transformed water level for all classes.
It can be observed that the variances of the wetter land
cover increase relative to the variances of the dry land cover
classes. This is due to the highest sensitivity of GHG emis-
sions in the wet range of water levels (> −0.5 m). Conse-
quently, the rather high variance of WL for arable land cor-
responds to a rather low variance of WLt, i.e., to a rather low
assumed effect of WL variability on the GHG budget.

3.3 BRT model calibration and validation: WL vs. WL t

In contrast to land cover class, the other predictor variables
showed, if at all, only weak relations to WL and WLt when
evaluating them with box plots, 2-D cross plots and simple
correlation matrices. Here, we expected BRT to detect the
strongest predictor interactions and to identify the most in-
formative predictors.

After model calibration with all predictors, subsequent
model simplification successively dropped those parameters
with correlation> 0.7 and the lowest contribution. For both,
WL and WLt, model performance improved during this sim-
plification. For WLt, the highest values of NSEcv of approxi-
mately 0.46 were achieved with 21 to 9 model parameters.
The development of NSEcv for the last 50 parameters is
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Figure 5. Water level relative to ground surface, WL (m), and transformed water level, WLt (−), by land cover class illustrated as a weighted
box plot. WLt = −1 corresponds to maximum CO2 emissions and WLt = 1 to maximum CH4 emissions. In the top horizontal axes, the
number of dip wells in each class is indicated.

Figure 6.NSEcv as a function of number of predictor variables used
in the model of WLt during model simplification and shown for the
last 50 parameter drops.

shown in Fig. 6. Further elimination of parameters led to a
pronounced decline of model performance. Similar behav-
ior was observed for the calibration on WL. In favor of a
more parsimonious model, we chose the model with the low-
est number of parameters before the pronounced decline of
model performance occurred. For the calibration on WLt,
this corresponded to the model with lowest number of param-
eters that still achieved NSEcv values of> 0.45 (Fig. 6). The
final WLt model comprised nine predictor variables, and the
final WL model, seven parameters. The percentages of pa-
rameter contributions to the final model and their individual
influences are discussed for WLt in Sect. 3.4.

Table 3 summarizes the statistical performances of the
models calibrated on WL and WLt. For both models NSEcal
is considerably higher than NSEcv and shows the commonly

Table 2. Weighted mean and standard deviation of WL and WLt
data, and of the WLt map presented in Sect. 3.6, for the nine land
cover classes.

WL (m) WLt (−)
WLt (−),

Mean± sd Mean± sd Map mean± sd

Arable land −0.69± 0.30 −0.76± 0.17 −0.66± 0.22
Deciduous f. −0.45± 0.34 −0.49± 0.37 −0.47± 0.35
Grassland −0.44± 0.29 −0.52± 0.32 −0.49± 0.30
Unused peatl. −0.39± 0.36 −0.39± 0.41 −0.37± 0.40
Coniferous f. −0.36± 0.36 −0.37± 0.37 −0.46± 0.35
Wet unused peatl. −0.22± 0.27 −0.18± 0.40 −0.17± 0.36
Wet forest −0.22± 0.29 −0.17± 0.43 −0.21± 0.39
Wet grassland −0.10± 0.14 −0.00± 0.31 −0.15± 0.39
Reed −0.01± 0.17 0.20± 0.29 −0.06± 0.32

observed overfitting behavior of BRT models. The different
measures that we conducted to minimize overfitting (cross-
validation on peatlands, restriction to monotonic responses
and model simplification including elimination of highly cor-
related variables) lowered the difference between NSEcal and
NSEcv but could not totally avoid overfitting. NSEcv of the
WLt model (0.453) indicates higher predictive model perfor-
mance compared to the WL model (0.381). However, as the
data ranges differ due to the transformation, this comparison
may be misleading. Therefore, we transformed the predic-
tions of the WL model to obtain WLt values from this model
and equally calculated the performance criteria (Table 3, sec-
ond column). Then, NSEcv is slightly increased (0.397), but
does not achieve the values of the model that was calibrated
on WLt. A better predictive model performance of the model
calibrated on WLt is also visible for the RMSEcv values.
The total RMSEcv, as well as the RMSEcv values for the
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Table 3.Performance criteria of the different models; dry range de-
fined as WL< −0.3 m and wet range as WL> −0.3 m.

WL (m) WLt (−) WLt (−)
(calibrated (calibrated on WL) (calibrated on WLt)

on WL)

NSEcal 0.627 0.559 0.642
NSEcv 0.381 0.397 0.453
RMSEcv 0.269 0.299 0.284
RMSEcv,dry 0.284 0.263 0.259
RMSEcv,wet 0.222 0.382 0.355
Bias −0.003 0.083 0.002
Biasdry −0.012 0.070 0.003
Biaswet 0.021 0.120 0.000

dry (WL < −0.3 m) and wet range (WL> −0.3 m), show
slightly lower values for the WLt model compared to WLt
values from the model calibrated on WL. Given our hypo-
thetical transfer function (Fig. 3) in which the GHG budget
is linearly related to WLt, the higher accuracy of WLt pre-
dictions directly corresponds to a higher accuracy of GHG
budget predictions.

Superior model performance is also evident when evaluat-
ing model bias. Only when calibrating directly on WLt are
the WLt predictions bias-free. Calibration on WL and subse-
quent transformation to WLt introduces a model bias towards
systematically lower WLt values. In subsequent applications
to GHG emission upscaling, lower WLt values would lead to
an overestimation of CO2 emissions and to an underestima-
tion of CH4 emissions.

3.4 Influence of predictor variables on WLt

Given the beneficial characteristics of the model calibrated
on WLt for GHG upscaling, presentation and discussion of
further model results is restricted to the WLt model.

The BRT method allows the analysis of the parameter con-
tributions to, and influences on, the model (Elith et al., 2008)
and thus may contribute to system understanding. The per-
centages of the contributions of the nine predictor variables
to the final model ranged from 25.2 to 5.6 % (Fig. 7). Ex-
cept protection status, at least one parameter of each of the
seven parameter groups contributed to the final model. All
protection status information was dropped early during the
simplification process due to low contribution, although WL
showed slightly higher values for data from nature protection
or special areas of conservation. However, other parameters
seem to be able to fully compensate the information that is
lost by dropping this predictor.

Land cover class, lc, at the dip well was the parameter with
strongest contribution (25.2 %). It basically follows the trend
illustrated in Fig. 5b. The bootstrap error plotted as standard
deviation (Fig. 7) shows the variation of this influence over
the 1000 bootstrap models. A second land cover parameter,
the fraction of dry land cover classes on organic soils in a
buffer of 2500 m radius,fdry (2500), contributed to the model

with 10.3 %. The monotonic decrease of WLt with increas-
ing fdry (2500) is plausible as higher values reflect intensive
land use in the surroundings of the dip well and thus indicate
intensive artificial drainage. Together both parameter con-
tributed 35.5 % and thus land cover represents the parameter
group with the strongest model contribution.

Peatland characteristics are the second most important
parameter group. The peatland type contributed 16 %. The
model indicates that peatlands without any connection to sur-
face water bodies (river or lake) and the class of other organic
soils are characterized by lower WLt compared to the peat-
land types lowland bog, upland bog and fen neighboring sur-
face water. As the class of other organic soils is generally
expected to reflect lower water levels and as surface water
may have a stabilization effect on water levels of organic
soils, the influence of the peatland type can be considered
plausible. Besides peatland type, the substrate of the peat
base contributes 5.6 %. Here, organic soils overlying peat
clay layers (e.g., limnic sediments such as calcareous gyt-
tja) or basement rock are characterized by higher WLt com-
pared to organic soils overlying unconsolidated rock. This
can be explained by the lower drainage resistance of uncon-
solidated rocks. This may cause an increased efficiency of
anthropogenic drainage and/or a general higher vulnerabil-
ity to seepage losses. Finally, slightly lower WLt values are
indicated by a high fraction of organic soils for the 500 m
buffer,fpeat(500). This may reflect the higher land-use pres-
sure on large peatlands compared to rather small peatlands,
which tentatively are more easily preserved by nature protec-
tion efforts.

The remaining four parameter groups are represented in
the model by only one parameter each. The third most influ-
ential parameter was the length of ditches on arable land and
grassland for the 250 m buffer, dilen,dry (250). At first glance,
it may be surprising that with increasing ditch density, WLt
values tend to be higher as ditches are supposed to drain the
water when land is used as arable land and grassland. The
fact that the model identifies a rather strong effect in the op-
posite direction may be caused by incomplete information
about the drainage network. There is not detailed informa-
tion about the spatial distribution of tile drains. Based on ex-
pert knowledge, agricultural areas with a lower ditch density
are more likely to have tile drains. As these drains, easily
installed with a narrow drain spacing, are more effective at
draining organic soils, low WLt values for arable land and
grassland may be related to low ditch densities. Furthermore,
ditches were originally dug at narrow spacing in especially
wet areas of organic soils but there is no information avail-
able whether these ditches still function properly.

The parameters wbsummer, hrel and tiras25all show expected
trends. The model predicts higher WLt for increasing cli-
matic water balance in the summer period (May to October),
wbsummer, for dip wells located in depressions (low values of
hrel) and for higher small-scale topographic wetness indices
calculated on the 25× 25 digital elevation model (tiras25).
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Figure 7. Partial dependence plots for the predictor variables. For an explanation of variables see Table 1. They axes are on WLt scale and
are centered around the mean WLt. Error bars and grey area indicate standard deviation of the response of over 1000 bootstrap models. The
relative contribution of each predictor is indicated as percentage. The lines along thex axes of each plot show distribution of data across that
variable, in deciles.

The fact that all parameters show expected or explainable
responses in the model corroborates the reliability of the cal-
ibrated WLt model. The standard deviation of the predictor
responses based on the bootstrap samples shows the stability
of the observed responses.

Further insight into model behavior can be obtained by an-
alyzing parameter interactions. This is obtained by changing
two parameters simultaneously while keeping mean values
for all other parameters (Elith et al., 2008). Figure 8 shows
the two strongest parameter interactions. Parameter wbsummer

strongly interacts withptype. The generally lower values of
WLt of fens without surface water connection and other or-
ganic soils show a stronger dependency on the summer cli-
matic water balance. While a summer climatic water balance
of > −80 mm shows a rather weak effect on WLt for the wet-
ter peatland types, in contrast to the two drier peatland types
there is still a strong effect with increasing wbsummer. The
trend for wbsummer> 130 mm for the dry peatland types is
supported by seven different peatlands.
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Figure 8.Partial dependence plots representing the two strongest interactions in the model:(a) betweenptype and wbsummerand(b) between
pbaseandfdry. Fitted WLt is plotted on they axis which is obtained after accounting for the average effect of all other predictor variables.

Another strong interaction is observed forpbase and
fdry (2500). While a rather weak effect of the fraction of
arable land and grassland is observed for organic soils over-
lying basement rock and peat clay layer, a strong effect is ob-
served for organic soils overlying unconsolidated rock. This
interaction reflects the higher lateral range of drainage effects
for organic soils with little flow resistance at the peat base. In
these organic soils, intensive land use lowers the water level
over large areas.

3.5 Discussion of model uncertainty

Plotting observed vs. predicted WLt from cross-validation
(Fig. 9) illustrates the rather large residual variance that can-
not be explained by the model. As indicated by the higher
RMSEcv for the wet range (Table 3), scatter increases with
increasing WLt. Error bars in they direction indicate data
error derived from the nugget of the variogram. It is shown
for a few data points as an example. Due to transformation,
data error increases for higher WLt. Figure 9 demonstrates
that the fraction of unexplainable variance related to data er-
ror is much higher for the wet than for the dry range. Boot-
strap error indicating the variation of the model predictions
for 1000 bootstrap samples is shown in thex direction for the
same data points. Bootstrap error is lower than the data error
for the wet range and slightly higher for the dry range.

Bootstrap errors demonstrate the sensitivity of model pre-
dictions to changes of the data set used for calibration. When
a model possesses structural deficits such as missing pre-
dictor variables, bootstrap errors should not be used to de-
fine confidence intervals for the model predictions. Figure 10
shows residuals from cross-validation and standard deviation
of bootstrap predictions for all land cover classes. The resid-
uals of each land cover class show near-normal distributions.
For five of the nine land cover classes (wet forest, wet un-
used peatland, arable land, coniferous forest and reed), the
Shapiro–Wilk test of normality is positive (p > 0.05). Fig-
ure 10a further indicates that residuals of each land cover

Figure 9. Observed vs. predicted transformed annual mean water
level (WLt) from cross-validation results. Error bars show selected
data and bootstrap model errors as standard deviation. Data points
are scaled by their weights.

scatter fairly well around zero, indicating low bias for the var-
ious land cover classes. Land-cover-class-specific confidence
intervals of model predictions can thus be derived from the
RMSEcv of each land cover class, e.g., 2× RMSEcv repre-
senting the 95 % confidence interval.

The prediction uncertainty derived from cross-validation
is much higher than the bootstrap prediction uncertainty ob-
tained from the bootstrap standard deviation (sd), with 2× sd
corresponding to the 95 % confidence interval (Fig. 10).
The large difference between these values indicates that the
model has structural deficits that can be attributed to several
error sources:

i. Key influences on WLt are missing in the set of pre-
dictor variables. None of the predictor variables in-
dicate whether and to which extent water level in-
crease due to re-wetting measures took place in the last
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Figure 10. (a)Residuals (observation–prediction) of WLt predictions and(b) standard deviation (sd) of bootstrap predictions shown for the
nine land cover classes. In the upper part, the number of dip wells in each class is indicated.

years. Wetness indicators (wet soil and/or vegetation at-
tributes) that are obtained from the Digital Landscape
Model probably react with a delay of several years.
Thus, we expect the occurrence of several observed high
WLt values that cannot be explained by any of the pre-
dictor variables.

ii. Small-scale topography that is not represented with suf-
ficient detail and accuracy in the DEM may cause sev-
eral predictions to strongly differ from what would be
expected from the other predictor variables. A common
example may be a dip well that is located on a narrow
peat ridge, which remained after peat-cutting and is ab-
sent in the DEM, and that is situated in an area classi-
fied as wet soil by the Digital Landscape Model. Then,
the model indicates a WLt that is much higher than the
observed WLt; as for the observed value, the reference
surface was the surface of the peat ridge.

iii. Consistent information about tile drains is missing and
only exists on the regional scale (Tetzlaff et al., 2009).
At the national scale, however, there are no maps on tile
drains. Tile drains are known to have a strong effect on
WLt for arable land and grassland. As explained above,
we expect parameter dilen,dry (250) to partially compen-
sate for this missing information.

iv. Another source of prediction uncertainty may comprise
inconsistent and erroneous land cover classification of
the Digital Landscape Model due to the high degree of
subjectivity for many of the attributes. Furthermore, the
temporal accuracy of the Digital Landscape Model may
be as inaccurate as 5 years which can cause time series
with land-use change to be split at the wrong date, and
vegetation and wetness attributes to be not yet updated
to the current conditions.

Figure 11. Residuals (observation–prediction) of WLt predictions
for the three major geographical peatland regions of Germany. In
the upper part, the number of dip wells in each class is indicated.

v. The water balance of fens strongly depends on the size
and the hydraulic head of the groundwater catchment,
i.e., of the aquifer underlying the peat layer. Unfortu-
nately, there is no consistent map of hydraulic heads or
groundwater catchments for all Germany.

We checked model predictions for geographical bias. Ge-
ographical location was not one of the model parameters.
However, the history and policy of land use on organic soils,
current ditch water management and climate do show large-
scale geographical trends. We divided our data set into the
three major German peatland regions (NE, NW and S) and
evaluated the model residuals (Fig. 11) to see whether our
model is biased due to important missing geographical ef-
fects. A serious bias for any of the three major German peat-
land regions cannot be identified.
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Figure 12.Map of predictions of transformed annual mean water level (WLt) for all German organic soils(a)and an enlarged map section(b).
Probability distribution in(c) indicates the uncertainty of a specific point prediction for wet grassland as an example. Here, predicted value
is approximately WLt = 0, but note that wet grassland predictions do vary in space depending on the values of the other model parameters.
The histogram shows the residuals from cross-validation for wet grassland, to which the probability distribution was fitted.

When applying calibrated statistical models during region-
alization, it is important to check model behavior for extrapo-
lation outside the range of the parameter space that is covered
by the data upon which the model was built. BRT always ex-
trapolates at a constant value from the most extreme environ-
mental value in the training data. In contrast to other types
of statistical models, e.g., generalized linear models, BRT
does not continue the fitted trend beyond the last observa-
tion. Regarding the categorical variables, the data set covers
all classes occurring in Germany with several peatlands. The
data set also covers the major range of values occurring in
Germany for the numerical predictor variables. Furthermore,
Fig. 7 indicates that the constant values, at which the model
extrapolates the influence of the variables, do not raise major
concern for any extreme predictions outside the parameter
range.

3.6 Regionalization

The map of WLt resulting from the application of the fitted
WLt model to all grid cells shows gradients at the regional
scale (Fig. 12a). In the south of Germany, for example, a
gradient from wet to dry can be observed for the pre-alpine
upland bogs and the peatlands of the moraine plain. In the
north of Germany, the map indicates that organic soils in the

very NE are wetter than the rest. For the rest of the north, a
slight gradient can be observed from less dry to dry from NW
to E, which is mainly driven by the higher summer climatic
water balance in the NW. As both categorical and numeri-
cal predictor variables do also vary at the sub-regional scale,
the resulting map also shows gradients within peatland areas,
e.g., due to small-scale land-use ditch density gradients and
topography effects (Fig. 12b).

We calculated WLt averages of the land cover classes us-
ing the regionalized WLt from the map (Table 2, column 3).
The given standard deviation comprises both the variability
within a land cover class that is explained by the model as
well as the uncertainty of each prediction. Resulting means
and standard deviations slightly differ from the correspond-
ing values of the data set. The land-cover-specific WLt values
obtained from the map can be considered as being more rep-
resentative as the regionalization procedure is supposed to
partly account for potential bias in the data set.

When applying this map and its predicted WLt values in
subsequent GHG upscaling, it is crucial that model uncer-
tainty is propagated properly. An example demonstrates the
necessity of uncertainty propagation. For a grid cell classi-
fied as wet grassland, the probability distribution of WLt is
shown based on a normal distribution that was fitted to the
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residuals of this land cover class (Fig. 12c). Without prop-
agating the uncertainty and when only translating the pre-
dicted WLt (eventually in combination with other parame-
ters, e.g., soil properties) into a GHG budget, GHG budget
is strongly underestimated as the WLt prediction is close to
zero, indicating neither large CO2 nor CH4 emissions. When
translating the full distribution of WLt into a GHG budget,
the resulting GHG budget would be much higher as at both
sides of the predicted WLt, the GHG budget increases.

3.7 Possible paths for model improvement

The model performance that is achieved by the statistical ap-
proach presented in our study raises the question whether
collecting more WL data can improve model performance
or whether the factor that is constraining the model perfor-
mance is the limited strength of the nation-wide available
predictor variables. To assess this question, additional “hold-
out models” were developed by fitting the BRT model to
various random sets of data with a limited number of peat-
land areas (from 10 to 50 peatlands). For each number of
peatland areas, 500 random selections were calibrated and
model performance was evaluated with NSEcv. As expected,
results indicate an increase of model performance with in-
creasing number of peatlands used in the model building pro-
cess (Fig. 13). Results also indicate a substantial flattening of
the learning curve. Thus, further collection of WL data may
only lead to a substantial model improvement when includ-
ing many more peatlands into the data set. More promising
would be the specific collection of more data on the weakly
represented and/or important land cover classes, arable land
and grassland.

Another path to achieve a stronger model is the develop-
ment of new predictor variables. In the future, the availability
of a more accurate DEM based on laser-scanning data, which
is already available at full coverage for some federal states of
Germany, may strongly increase the predictability of the ob-
served WL data. Additionally, a nation-wide map of water
management and of the distribution of tile drains would have
great potential to explain large parts of the residual variance
and/or even allow setting up a large-scale physically based
model that includes water management. Furthermore, data
harmonization by extrapolating the water level time series
of our data set with the climatic boundary conditions of the
last 30 years may lower the unexplainable variance of the
data set due to short measurement periods (Bartholomeus et
al., 2008), an effort that has been successfully conducted in
Finke et al. (2004) using the transfer noise model of Bierkens
et al. (1999). Finally, we believe that the inclusion of re-
mote sensing products in our statistical model approach, as
e.g., spaceborne microwave soil moisture observations (Su-
tanudjaja et al., 2013), may hold large potential to improve
model performance as moisture differences due to varying
water levels are high for organic soils.

Figure 13. NSE of cross-validation vs. number of randomly se-
lected peatland areas. Dashed lines indicate NSEcv ± sd.

4 Conclusions

Our study demonstrates the potential of statistical modeling
for the regionalization of water levels in organic soils when
data covers only a small fraction of peatlands of the final map
and thus spatial interpolation is not possible. With the avail-
able data set of target and predictor variables, it was possible
to predict 45 % of the GHG relevant water level variance in
the data set in a cross-validation scheme. The variance is ex-
plained by nine predictor variables. With the analysis of their
effect on the water level it was possible to gain insight into
natural and anthropogenic boundary conditions that control
water levels of organic soils in Germany.

Based on a hypothetical GHG transfer function relat-
ing GHG emissions to annual mean water levels (WL), we
showed the advantages of transforming the annual mean wa-
ter level into a new variable (WLt) to which GHG emissions
linearly depend on. The transformation improved model ac-
curacy, increased the explained variance of the water level
range that is relevant for GHG emissions and avoided model
bias.

The presented approach is transparent and allows succes-
sive improvement when new input data and predictor vari-
ables become available. Our results show that model im-
provement by increasing number of WLt data, however,
seems to be limited. If efforts are made, data collection
should be concentrated on agriculturally used organic soils
for which relatively few data is available. We believe that the
constraining factor of model performance is rather the weak-
ness of the predictor variables that are currently available at
large scales. The development of new, more informative pre-
dictor variables, as for example water management maps and
remote sensing products, may be the more promising path for
model improvement.

The proposed regionalization approach is suited to appli-
cation to any other country where similar data of target and
predictor variables is available. It is important that the spatial
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resolution of the predictor variables is high enough (Finke et
al., 2004). If predictor variables like land use and peatland
type are only available at a much coarser scale and provided
as percentages for grid cells, the dependency between pre-
dictor variables and the rather local WL will probably be lost
for most of the predictor variables.

Our work must be considered as one piece of a broader
framework for the regionalization of GHG emissions that in-
cludes other site characteristics and must be further devel-
oped in future research. For example, if for specific regions
detailed information on peat properties becomes available
and its effect on GHG emissions can be estimated by the
use of multivariate transfer functions, the map of transformed
water levels (WLt) can be used as an input for this follow-up
regionalization.
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