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Table SM-1. Process Matrix of the applied hydrological model®

Process Symbol Rate Affected storageP
hsnow hc hS hgw hp hq
P T <Terit
snowfall Psnow { 0 otherwise *
kmelt (T — Tmelt) if T > Tmelt
snowmelt Preit 0 otherwise - " *
_ . P T >Teri
rainfall Prain 0 otherwise * ’
throughfall Pth’rough (1 — kca,pi) (Pmelt + Prain) - +
h .
c fhe<h
canopy evapotr. E. keeBpord Tesar e = Rosal B
1 otherwise
o he —he,sat  if he > he sat
dripping Pyrip karip { ‘ 0C - oth;rwisec B -7
ground evapotr. E Epot fet -
sat. excess runoff Qr fsat (Pdm-p + Pthrough) - +
groundwater rech.  Qyge rge fsat diecp -7
subsurface flow Qssy (1= krge) fsat dsecp B N
baseflow Qb kpf hgw - +
P -
paved evapor. Ep kp,e Epot hpthp,e
kp’r (hp - hp,sat) if hp Z hP,Sat
paved runoff Qp { 0 otherwise -7
stream discharge Qq kghq _

aAll storages are in [mm] while processes are in [nm d—1]. fsq: and fet are defined in equations (1) and (2), respectively.

bStorages: hsnow: SNOW; he: canopy; hs: soil; hgw: groundwater; h,: paved area; hy: stream.
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Table SM-2. Prior distributions of snow and canopy parameters
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Parameter  Description Reference Applied distribution®
[Unit] Values?
Terit Critical temperature for snowfall N(1, 0.5) o
[°C] +1.0-+1.6 (Kokkonen et al., 2006)
Tnelt Threshold temperature for snowmelt N(O, 1) —
[°C] -1.8-+0.6 (Kokkonen et al., 2006) ?’
0 (without calibration) (Martinec and Rango, 1981) ;
Kmelt Temperature-specific snowmelt rate constant LN(3, 1.2) z
ocql 1.5 - 4.0 (Sweden) (Bergstrom, 1990) <)
1.2 - 6.0 (Finnland) (Kokkonen et al., 2006) -
keapt Precipitation capturing efficiency of fully developed canopy B(0.7, 0.15) :v
-] 0.72 — 0.94 (Douglas fir) (Vrugt et al., 2003) )
0.68 — 0.74 (Scots pine) (Gash, 1979) H
0.44 — 0.71 (dense Spruce forest) (Alavil et al., 2001)
ke,c Evaporation multiplier of canopy LN(1, 0.1) grass T
[ 0.69 — 1.26 (Douglas fir) (Vrugt et al., 2003) LN(0.8, 0.1) forest
karip Dripping rate from canopy storage §(400) -
[d=1 120 — 880 (Douglas fir) (Vrugt et al., 2003) z
he,sat Storage in fully wetted canopy LN(1.2, 0.2) forest g
[mm] 1.01 —1.13 (black pine) (Rutter et al., 1971) LN(1.0, 0.2) grass é
0.8+0.08 (Scots pine) (Gash, 1979) =
2.7+1.3 (European crops) (Breuer et al., 2003) g
1.4+0.9 (European grasses) (Breuer et al., 2003) =
1.5+1.2 (European coniferous trees)  (Breuer et al., 2003) &
1.0+0.9 (European deciduous trees)  (Breuer et al., 2003) '
1.8 — 2.6 (Douglas fir) (Vrugt et al., 2003) .
2.0 (dense Spruce forest) (Alavil et al., 2001)
1.7 — 2.3 (forest floor debris) (Putuhena and Cordery, 1996)
KLAILin Relative winter leaf area index

5 — 15% (grassland)
10 — 30% (forest)

estimation
estimation

B(0.1, 0.05) grass
B(0.2, 0.1) forest

2Values are represented by range (min — max) or mean4standard deviation.

bDistribution types: N(u, ): normal, LN(x, o): lognormal, B(u, o): beta, 6(u): Dirac-delta. 1+ and o are the mean and the

standard deviation of the distributions, respectively.
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Table SM-3. Prior distributions of paved area parameters

Parameter  Description  Reference Applied distribution®

[Unit] Values?

hp,sat Paved area storage LN (1, 0.3)

[mm] 0.1-1.1 (Falk and Niemczynowicz, 1979)
0.1-15 (Kidd, 1978)
1.5 (Heaney et al., 1976)
04-0.7 (Arnell, 1982)

kp,r Paved area runoff rate LN (20, 1)

[d=14 18 -22 estimation
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2Values are represented by range (min — max).
bDistribution types: LN(u, o): lognormal. 1 and o are the mean and the standard deviation of the distribution, respectively.
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Table SM-4. Prior distributions of catchment and stream parameters

Parameter  Description Reference Applied distribution®
[Unit] Values?
hEs Catchment-scale equivalent of full saturation (fsa: = 98%) LN(430, 20) for loamy soils
[mm] 387 — 440 for clay-loam/loam/sandy loam  (Schaap et al., 2001)¢ LN(382, 3) for sandy soils
390 — 430 for clay-loam/loam/sandy loam  (Carsel and Parrish, 1988)¢
375 — 390 for sand/loamy sand (Schaap et al., 2001)¢
440 — 490 for silt/silt-loam/silt-clay-loam (Schaap et al., 2001)¢
hec Catchment-scale equivalent of field capacity (fsat = 2%) LN(220, 25) for loamy soils
[mm] 168 — 255 for clay-loam/loam/sandy loam  (Schaap et al., 2001)¢ LN(75, 9) for sandy soils
85 — 270 for clay-loam/loam/sandy loam (Carsel and Parrish, 1988)¢
55 — 105 for sand/loamy sand (Schaap et al., 2001)¢
280 — 305 for silt/silt-loam/silt-clay-loam (Schaap et al., 2001)©
hwp Catchment-scale equivalent of wilting point (E is 5% of E.t) LN(90, 10) for loamy soils
[mm] 60 — 150 for clay-loam/loam/sandy loam (Schaap et al., 2001)¢ LN(52.5, 1) for sandy soils
65 — 150 for clay-loam/loam/sandy loam (Carsel and Parrish, 1988)¢
52 — 53 for sand/loamy sand (Schaap et al., 2001)©
70 — 120 for silt/silt-loam/silt-clay-loam (Schaap et al., 2001)¢
krge Proportion of groundwater recharge from seepage B(0.7,0.1)
-] 40 — 90% estimation
Qeep Maximal seepage rate LN(100, 50)
[ 50 — 200 estimation
ky s Baseflow constant LN(0.0005, 0.0005)
[d=1 10~%-103 estimationd
kq Stream constant LN(10, 5)
[d=1 3-30 estimation

2 Values are represented by range (min — max).
b Distribution types: LN(x, o): lognormal, B(u, ¢): beta. p1 and o are the mean and the standard deviation of the distribution,

respectively.

¢ Full saturation (FS), field capacity (FC) or wilting point (WP) moisture content of homogenous soils of the given type with 1

m thickness.

dGroundwater residence time is estimated to be between 180 days and about 30 years.
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Table SM-5. ENSEMBLES model chains included in this study

Institution Code GCM RCM
CNRM cnrm Arpege Aladin
DMI dmi ECHAMS5 HIRHAM
ETHZ ethz HadCM3Q0® CLM
ICTP ictp ECHAMS5 RegCM
KNMI knmi ECHAMS5 RACMO
MetOffice-HC  hadley HadCM3Q0® HadRM3Q0
MPI mpi ECHAMS5 REMO
SMHI smhi_bcm BCM RCA
smhi_echam ECHAM5 RCA
smhi_had HadCM3Q3® RCA

2Normal sensitivity

bLow sensitivity
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