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Abstract. Characterization of spatial variability of hydraulic 1 Introduction

properties of groundwater systems at high resolution is es-

sential to simulate flow and transport phenomena. This paper

investigates two schemes to invert transient hydraulic head® detailed description of hydraulic properties, such as hy-
data resulting from multiple pumping tests for the purposedraulic conductivity,K', and specific elastic storagss, of

of estimating the spatial distributions of the hydraulic con- groundwater systems is essential to predict flow and solute
ductivity, K, and the specific storagss, of an aquifer. The  transportin porous media. Typically, these properties are in-
two methods are centralized fusion and decentralized fusionferently heterogeneous, and cannot be determined uniquely
The centralized fusion of transient data is achieved wherHsing a finite set of sparse measurements. A direct method to
data from all pumping tests are processed concurrently using'@p the spatial variability of these properties is based on the
a central inversion processor, whereas the decentralized fucollection of a large number of core samples, which are then
sion inverts data from each pumping test separately to obtaignalyzed in the laboratory to obtain conductivity and storage
optimal local estimates of hydraulic parameters, which areProperties. These methods, however, are laborious, expen-
consequently fused using the generalized Millman formula,Sive, and time consuming@(tler Jr. et al. 1999. In general,

an algorithm for merging multiple correlated or uncorrelated S8mpling of groundwater system states, such as hydraulic
local estimates. For both data fusion schemes, the basic iff?€ad or solute concentrations, is relatively easier and more
version processor employed is the ensemble Kalman filtercost-effective. Therefore, characterization of the aquifer pa-
which is employed to assimilate the temporal moments off@meters using system states can be achieved by solving an
impulse response functions obtained from the transient hyinverse problem&un 1994 Tarantola2004.

draulic head measurements resulting from multiple pumping Analyses of hydraulic head data resulting from pumping
tests. Assimilating the temporal moments instead of the hyIests Theis 1935 Cooper and Jacoti94§ and slug tests
draulic head transient data themselves is shown to provide g8utler Jr, 1998 using type-curve techniques are classic ex-
significant improvement in computational efficiency. Addi- @mples of inverse methods used to infer hydraulic properties
tionally, different assimilation strategies to improve the esti- Of porous media. In a pumping test, an aquifer is stressed at
mation ofSs are investigated. Results show that estimation of@ Well and the response of the hydraulic head field is moni-
the K and Ss distributions using temporal moment analysis tored ata number of observation wells. The resulting data are
is fairly good, and the centralized inversion scheme consisProcessed using an analytical solution to obtain a lumped es-

at a scale equal to the radius of the developed cone of de-

pression. While these estimates are useful to guide future
groundwater development of an aquifer at a regional scale,
they provide little or no information about the local spatial

variability of parameters, which is essential, for example, to
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model solute transport processes. In addition, the estimatesgsing the EnKF. While not resolving the nonuniqueness issue
obtained by pumping tests are shown to be affected by theompletely, inversion algorithms based on the EnKF consti-
location of the pumping well and the degree of heterogeneitytute an ideal framework to handle the problem of nonunique-
within the cone of depressiolMu et al, 2005. ness resulting from parameter uncertainty only, as opposed
A relatively recent alternative method for estimating the to nonuniqueness resulting from uncertainty in conceptual
spatial distribution of aquifer parameters at a high resolutionmodels and process assumptions.
is hydraulic tomography (HT)Qottlieb and Dietrich1995 With its roots in Bayesian analysis, the EnKF updates
Butler Jr. et al. 1999 Yeh and Liy 200Q Berg and lliman a prior ensemble of possible realizations of system states
2011). In HT, an aquifer is stressed at different locations andand parameters based upon collected state measurements,
the responses to these stresses at a network of observatigo that the posterior state-parameter ensemble resembles a
wells are inverted to map the parameters spatially. nonunique set of possible solutions. Therefore, the ensem-
During the last decade, HT has been intensively studiecble mean of the posterior ensemble provides an unbiased es-
both numerically and experimentally to assess its perfortimate of the system parameters. The EnKF offers several
mance with a few field applicationS{raface et a).2007, other advantages, such as computational efficieRnssen
Bohling et al, 2007). HT studies have covered several flow and Kinzelbach2009, avoiding sensitivity computations,
conditions, ranging from steady-state floweh and Liy such as those required by the SSL¥el§ and Liy 2000,
2000 to transient flow Zhu and Yeh2009 in both confined  and improved accuracy when using ensemble-based covari-
and unconfined aquifer€ardiff and Barrasi?011). HT has  ance estimations instead of sensitivity-based covariance esti-
been applied to joint unconfined and vadose zone flow probmations Schoniger et al2012).
lems (Mao et al, 2013 and for both 2-D (two-dimensional) A possible effective approach to improving parameter es-
(Yeh and Zhy 2007 and 3-D settingsGardiff et al, 2012 timations for ill-posed problems is by integrating data from
Ilman et al, 2009 Berg and lliman 2013. A number of  independent sources, which may be related to different phys-
sandbox laboratory experiments have been performed to vaieal processes, such as hydraulic, geophysical, geomechani-
idate HT methods off-sitd {u, 2002 Liu et al., 2007 lllman cal, and chemical processdBohling and Butler 2010. In
et al, 2010, which have deemed HT a promising technique this situation, different physical processes (models) are uti-
for characterizing aquifer properties at high resolution. Forlized to relate measured responses to aquifer properties. The
instance lliman et al. (2010 compared various approaches inversion of such multi-source data may take two general
to characterize th& field using a sandbox and found that avenues: centralized fusion (CF) and decentralized fusion
HT consistently outperformed kriging interpolation of small- (DF). In this work, we investigate and compare the two ap-
scale K measurements. Similar results reportedllijpan proaches, one based on CF and another based on DF, to as-
et al. (2012 revealed that predictions of solute transport aresimilate transient hydraulic head HT data for the character-
better characterized with estimates from HT surveys in com-zation of the K and Ss fields of a confined aquifer. With
parison to traditional geostatistical analyses and effective pathe CF method, all data resulting from all experiments are
rameters. A comprehensive list of previous HT studies is pro-inverted simultaneously using a single “global” EnKF. The
vided byCardiff and Barrasl{2011). DF method, however, assimilates each data set resulting from
In HT studies, hydraulic head transient data have been ina single experiment separately using a “local” EnKF to ob-
verted using different algorithms, such as the sequential suctain a local estimate of parameters. The multiple local esti-
cessive linear estimator (SSLEYgh and Liy 2000, the mates are then “fused” using the generalized Millman for-
quasi-linear approachKitanidis, 1995 Liu and Kitanidis mula (GMF) algorithm Bar-Shalom and Camp&986 Shin
2011), the Bayesian maximum a posteriori (MAP) approach et al, 2006, which constitutes an unbiased linear estimator
(Castagna and Belljr2009, and the ensemble Kalman filter of multiple correlated or uncorrelated estimates. The two in-
(EnKF) (Schoniger et al2012). version schemes are implemented to assimilate the responses
Despite the success in verifying its estimates numericallyresulting from five pumping tests. However, the methodology
and experimentally, HT faces two major challenges relatedcan be generalized to merge multiple parameter estimations
to the heavy computational burden associated with the inverresulting from inverting different physical processes.
sion processZhu and Yeh2005 and the nonuniqueness of  As mentioned earlier, computational cost constitutes an is-
the solution of the inverse problem, a situation where infinitesue for the application of HT methods for aquifer charac-
possible combinations of input parameters and model structerization. Typically, HT-based algorithms require inverting
tures produce the same model outpMibpre and Doherty  a large amount of transient data resulting from multiple ex-
2006. With respect to the latteBohling and Butle2010 periments and at multiple observation wells, which produces
caution practicing hydrologists against “overselling” the re- the so-called “data-overload” problerdhu and Yeh2005.
liability of HT estimates based on their pilot point inverse Assimilation of transient data with the EnKF or the ensemble
method, and argue that some form of regularization is typ-smoother (ES)Evensen2009 is computationally intensive
ically necessary to reduce uncertainties associated with thér two reasons. First, the computation of the forecast en-
nonuniqueness effect. In this work, HT data are invertedsemble of states and parameters requires simulating transient
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flow for a large number of realizations, which typically in- the same section. Two numerical models — one to predict the
volves a considerable computational effort. Second, the rezeroth temporal momento and another to predict the first
sulting spatiotemporal cross-covariance matrix is typically temporal moment:; — are employed to simulate an ensem-
large and difficult to manipulate. In this study, we propose toble of randomly generated realizations of &iendSs fields.
assimilate temporal moments of the impulse response funcAt this point, the forecast temporal moments, obtained by
tion of transient drawdown datilarvey and Gorelickl995 solving the moment-generating PDEs numerically, and the

Von Asmuth and Mag<2003; Li et al., 2005 Bakker et al. observed moments, computed from transient hydraulic head
2008 Olsthoorn 2008 Von Asmuth et al.2008, ratherthan  measurements, are available and can be subsequently utilized
the hydraulic head data themselves. by the EnKF to update botki andSs fields. Finally, the over-

In the temporal moment analysis, the original parabolicall inversion algorithm is applied either through a CF scheme
partial differential equation (PDE) governing groundwater or a DF scheme, as discussed in SB@.
flow is transformed into two simpler and easier to solve
Poisson-type PDEZhu and Yeh20086 Li et al., 2009. Al- 2.1 Estimation of temporal moments of measured
though it has been shown that inversion of temporal moments ~ hydraulic head
provides a drastic reduction in central processing unit (CPU) . ) )
time and a reliable estimate of the field, it has also been " Pumping tests, data may be recorded with high tempo-
found to produce an unreliable characterization ofsfield ral frequency or even continuously in time. Assimilating

(Yin and lllman 2009. In this work, we devise a strategy that such a large amount of transient data using a Kalman fil-

can optimize the estimation of ttsg field, while still benefit- (€7 (Kalman 1960 scheme is computationally prohibitive
ing from the reduced problem complexity achieved with the 21d impractical Evensen 2009. Time series analyses al-
temporal moment formulation. low for shrinking hydrographs of hydraulic head data into

The article is organized as follows. The methodologies of OW-order temporal moments, which are related to aquifer
the two inversion schemes are presented in Szoh de- hydrayllc propgmes thr_ough moment-generating par_t|al dif-
scription of the numerical experiments used to investigatel€"ential equations. To illustrate, assume that an aquifer sys-
the inversion approaches is provided in S&ctin Sect.4, tem is stressed by a well with a time dependent flow rate

the obtained results are presented and discussed. Q(z) resulting in transient change in hydraulic heaa; 1),
where the vectox includes the coordinates of the location

of an observation well, andrepresents time. For linear sys-
2 Methodology tems,h(x; r) can be expressed as a function®() through

a convolution integraMon Asmuth and Mag200Z Lietal.,
In the following, we provide an overall description of the pro- 2005 Bakker et al. 2008 Olsthoorn 2008 Von Asmuth
posed HT approaches, followed by a detailed description okt al, 2008:
each component of the methodology. For the purpose of es-
timating the hydraulic parametefs and Ss, we assume that f
a series of separate pumping tests is conductédyatells ~ 2(x; 1) = / Q()0(x; 1t — 1)dr, (1)
installed at different locations within a confined aquifer. In 0
each pumping test, the pumping wie(f € {1, 2, ..., Np})is . i
operated at the flow rat@; . The resulting transient hy?jraulic where 6 (x; 1 — 7) is the IRF; that is, the response of the
head datag;; (¢), are recorded at numbe, of observation aquifer at Ioca_tlorx and t|m_et to a unit flow rate w_npulse
wells G e {L 2, ..., No}). qt the welllat_ timer. Agcordlngly, the objective of time se-

The size of such measurement data sets is typically quit&i€S analysis |s_to obtain the IR_F for every stress source aqd gt

large. To reduce the computational requirement associate§2ch observation well. A possible approach to achieve this is
with the inversion of large amount of temporal data, the hy- by fitting a parametric function tq represent the IRF for each
draulic head hydrographs are used to compute the tempor&ff€SS source at each observation wedntAsmuth et al.

moments of the impulse response function (IRF) at each 0b2002 Bakker et al. 2008. Consequently, the obtained IRF

servation wellj, in particular, the zeroth temporak;, and function can be used to calculate #th temporal moment as

i follows:
the first temporal momentm{. Procedures followed to cal-
culate the temporal moments of the IRF using the measured *®
hydraulic head are discussed in Se&xtl. These temporal mi(x) = / *0@x; 1)dr. (2)
moments are treated as observations. 0

The effect of the spatial variability of the aquifer hydraulic
parameters, nameli and Ss, on the spatial distribution of ~ Alternatively, Li et al. (2009 proposed the following equa-
the temporal moments of the IRF are achieved by means ofions for calculating the zeroth momentg, and the first mo-
moment-generating PDEs, which are discussed in ezt. ment,m1, of the IRF using hydraulic head measurements re-
The numerical solution of these equations is also discussed ifulting from a constant continuous extraction rate
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h(x; 0) — h(x; 00) Equation 7) is equivalent to a steady-state flow problem
mo(x) = 0 , 3) characterized by a unit extraction rate, denoted ag ) (at

~ well locationx,. Equation 8) is equivalent to a steady-state

[ [h(x; 1) — h(x; co)]dt flow problem with a forcing term constituted by a spatially
ma(x) = 0 7 4) variable recharge equal t8(x)mo. Both Egs. {) and @)

0 can be solved using a common groundwater flow simulator,

whereh(x: 0) andh(x: oc) represent, respectively, the ini- such as the well-known finite-difference model MODFLOW-

tial and the steady state hydraulic heads at locatiob)s- 2000 Harbaugh et al2000.
ing Eqgs. B) and @), the observed zeroth temporal moment 23
and the first temporal moment are computed at all observa-"

tion wells and for each pumping test. In symbolic form, the g section presents the approaches adopted here to invert
observed moments from each pumping test can be denotegle temporal moments in order to characterize the spatial dis-
asmo,;j andmay;j (i €{1,2, ..., Npk j€{1,2, ..., No}).  triputions of K andSs. Using a Bayesian framework to pose
At this point, the transient-hydraulic head large data set atne inversion problem, the vector of system parametgys,

each observation well is shrunk into the two valugs; and ¢4 pe updated in light of newly collected datas follows:
my ;;. In the following sections, the numerical simulation of

temporal moments is presented.

Inversion approaches

_ pmig, ) p@, D

2.2 Moment generating equations p(¢lm, I) p(m, 1) ’ ©)
Transient groun@water flow in a saturated heterogeneoughere p(¢|m, I) is the posterior probability distribution
porous medium is governed by the PDE: function (PDF) of¢ given the measurements and the
9h generic “prior” informationl’; p(m|¢) is the likelihood PDF,
VIK (x)Vh] + Q(x: 1) = Ss(x) e (5)  thatis, the probability of the measurememtsonditional to

the parameterg; p(¢, I) is the prior PDF ofp; andp(m, I)
where V is the differential operatorK is the hydraulic s 3 normalization term. An exact solution to E) ¢an be
conductivity tensor,Ss is the specific elastic storage, and gptained if the measurementsare related to the parameters
Q(x; 1) represents generic source/sink terms at location g through a linear relationship, and when all PDFs in B. (
and timer. Equation §) may be solved by imposing Dirich-  are Gaussian. This solution is widely known as the Kalman
let boundary condition&(x; t) =hp(x; t) at a prescribed fjjter (KF) (Kalman 1960.
portion of the domain boundaryp, Neumann boundary In the classical implementation of the KF, the data assimi-
conditions K (x)Vh(x; 1) =gn(x; 1) at another portion of  |ation of state follows a two-stage forecast-update process. In
the domain boundary’y, and initial boundary conditions e forecast stage, a forward-in-time prediction of the current
h(x; 0) = ho(x) throughout the domain. _ state, along with its error covariance is made. The forecast

For a unit impulse extractio® (x; 1) = 8(xw) at location  gtate is then updated as field measurements become avail-
xw, thekth temporal momentyy, of the IRF of drawdown,  ape_ |n this work, the inversion problem is reduced to a time-
s(x; 1) =h(x; 0) —h(x; 1), might be computed by multi- jgependent inversion problem, which means that the fore-
plying Eq. €) by r* and integrating over the time interval  cast stage does not include any forward-in-time prediction.
[0, +-00). The resulting moment-generating equationlis ( That is to say, the forecast stage is limited to the solution of
etal, 2003 Yin and lllman 2009 the following: the equivalent steady-state groundwater problems expressed

_ by Egs. ) and @).
VIEE) V] + 8 (ew) + k Ssx)mi—1 = 0, © In addition to being limited to Gaussian linear systems,
whered (xw) is equal to unity ifk =0 and equal to zero if the KF is computationally expensive when applied to large-
k> 0. Similarly, the boundary conditions of the temporal- scale problemsEvensen(1994 expanded the applicability
moment equations are expressediaée) = 0 for the Dirich-  of the KF to nonlinear systems through the EnKF. Within the
let boundary"p andK (x) Vmy =0 for the Neumann bound- EnKF, the prior PDFs of the system states are approximated
aryI'y. using an ensemble of realizations that characterize the prior

Because the observations (Settl) consist of the zeroth  uncertainty in the system parameters and states.
and the first temporal moments, the simulation of omly
andm is sought. These moments can be obtained by solving.3.1 Forecast of parameters and system states

numerically the following two PDESs: _
From the perspective of subsurface flow, the major param-

V[K(x)Vmo] + 1(xw) =0, (7)  eters that typically characterize a groundwater system are
VI[K(x)Vmi] + Ss(x)mo = 0. (8) the hydraulic conductivityK, and the specific storagés.
These parameters are inherently heterogeneous and cannot
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be determined uniquely using a finite set of measurements, (a) Centralized Fusion

Therefore, itis convenient to describe these parameters using -

a geostatistical conceptual mod@ligtheron 1962 Isaaks

and Srivastaval99Q Cressie 1993 Diggle and Ribeiro | Pumping Test 2 15[ Global EnKF |> ¥
2007, according to which a heterogeneous field is modeled

as a spatially distributed random process, characterized by ¢

trend model and a covariance model. In this study, we assume (b) Decentralized Fusion
the log-transformed parametéfs=In (K) andZ = In (Ss) to [ Pumping Test 1 |_>| Local EnKF |>(v,),
fit to two independent isotropic and stationary (with no trend) = *

Gaussian processese( Marsily, 1986, with prescribed co- | Pumping Test 2 |->{ Local EnKF |F>(v,); — [ Millman's Fusion | 7
variance modelyy (d; o2; Ay) and Czz(d; 02; A7), re- [ Pumping Test 3 || Local EnkF |5(v,)5

spectively. The scalaf represents the distance between any

two points_ The parametebsz andi represent variance and Figure 1. Flowcharts i”UStrating the structure @) the CF ap-
the correlation length of each random process. The stationProach andb) the DF approach.

ary means of the two fields are denotedigsand ;. A

spherical covariance function is assumed for bGily and  ossipilities to assemble the forecast matrix, some of which
Czz (Deutsch and Journel997. This choice is somewhat 56 |isted in Tablel. Formulations A, B, and C provide

arbitrary and other covariance functions might be used to deziarnatives for forming<fY in order to estimate th# field,

scribe the spatial correlation of random fields without alter-\yhereas formulations D and E address possible alternatives
ing the general inversion methodology. _ for estimating theZ field. In Sect.4 we investigate the

Using these geostatistical models, it is possible 10 genymyjications of employing different formulations of the fore-
erate an ensemble Q¥ens equally likely realizations for — caqt matrix. Here, we focus exclusively on formulation A in
both Y and Z. The ensemble of the natural logarithm of Tpie1 toillustrate the CF procedure.

- - _ l .
K is obtained asy =[Y1, - YNens]]{/ where'Ykhe R From the augmented state-parameter forecast mfix
éke {%’ 2’""‘}3"6”?}) 'Its adfffa Ization qd ' an'tl 'Z'f[ edf‘“m't_ the global prior covariance matriR} e R(NeFDnx(Npt+bn
er of cells of the finite-difference grid adopted to discre 'Zefcan be approximated as

the aquifer domain. The ensemble of the natural logarithm o

Ss, Z € R"*Nensjs generated in a similar fashion. The result- (Xy _ YY> ) (Xy _ YY)T
ing ensembles can be seen as discrete approximations of thﬁ? _ f f f f (10)
forecast, or prior, joint PDFs df andZ. Nens—1

In the forecast stage, Eqs7)(and @) are solved nu- herexX” is th . bl . lculated
merically to predict the system states, that is, the tempo—y ereX; Is the prior ensemble mean matrix, calculated as

ral moments, in each pumping test. Each realizatitn Xt =X{ - Inens @nd 1y, € RVers* VoD is @ matrix with

in the ensembleY is numerically simulated using Eq7)(  all elements equal to/Nens

to obtainmo € R**1, a vector including the spatial dis- To facilitate the assimilation procedure, measurements
tribution of the zeroth moment at the cells of the finite- collected fromNg observations wells ant¥, pumping tests
difference grid. Nextg; and the parameterg; andZ; are vertically concatenated in a single vector. Therefore, the
are used to compute the first-moment veator; € R"*1 vector of measurements for the zeroth moment can be de-
by solving Eq. 8). Therefore, all realizations of states hoted asdo=[mo, j] € R*Nox1 wherei is the pumping
mor and myy (kef{l,2, ..., Nend) can be assembled testindex, ang is the observation well index.

into the n x Nens matricesMo=[mo1, ..., mo N, and Following an EnKF-like procedure, the measurements
Mi=[m11, ..., m1n,,J, respectively. To proceed to the do are assimilated to update both systems states and
update stage, we propose two alternatives: CF and DFparameters. Trllerefore, the update state-parameter ma-
Schematic diagrams of the two methods are provided irtrix, X{| € RNet1nxNens and the update covariance matrix,

Fig. 1. PF e RWptDnx(No+Din can pe expressed as follows:

2.3.2 Parameter estimation by centralized fusion Xy =X{ +K- (DO —-H- fo) (11)
Y = —_— . . Y . —_— . T . . T

In the CF scheme (Figlb), forecast ensembles ob- Py=(-K-H)-Pr-(I-K-H)" +K-R-K", (12)

tained from simulating independent pumping testshereDge RNpNoxNens js a matrix whose columns are ob-
are augmented into a single global forecast matrixtained by perturbing the measurement vedipwith a Gaus-

XfY=[Y, M(l), M(I)VP]T, where Mg represents the sian zero-mean noise, characterized by the error covari-
zeroth-moment ensemble for théth pumping test ance matrixR € RNpNoxNpNo: | ¢ RNpNox(Np+D1 g 3 ma-
(ief{l, 2, ..., Np}). Note that the matrifoY has size trix that maps each measurement to its location in the finite-

(Np+1)n x Nens As a matter of fact, there are several difference grid and to its corresponding pumping test. The
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Table 1. Alternative formulations of the forecast matrix investigated in the numerical experiments.

Formulation  Description Forecast matrix

A Estimatek field by assimilatingng measure- XY = [Y; M(l); MNP]
ments only, with PDE (Ed/) as forecast model.
B EstimateK field by assimilatingnq measure- XfY = [Y; M%; Mlep]
ments only, with PDE (E) as forecast model,
in which theY forecast ensemble and its corre-
spondingng forecast ensemble (obtained from
PDE Eq.7) are used.
C Estimatek field by joint assimilation ofing X{:[Y; M . Mév"; MI: . MNP]
andmq1 measurements, with PDEs (EG5.8)
as forecast model.
D EstimateSs field by assimilatingn, measure- XZ = [Z; Mi; MNp]
ments only, with PDE (E) as forecast model,
in which theY forecast ensemble and its corre-
spondingmn forecast ensemble (obtained from
PDE Eq.7) are used.
E EstimateSs field by assimilatingn; measure- XZ = [Z; M%; MN"]
ments only, with PDE (Ec) as forecast model,
in which the posterior mean df, as estimated
in A, and its correspondingg distribution (ob-
tained from PDE Eq7) are used.

matrix K € RWVp+DnxNpNo s called “Kalman gain”, and is X7 is updated by assimilating the observations of the hy-

computed as draulic head first-moment; = [m1; ;1€ RV?Nox1 wherei
v our - -1 is the pumping test index anglis the observation well in-
K=Fpk -H - (H -Pp - HY + R) . 13) dex — and applying equations similar to Egsl)(and (2).

The ensemble mean of the updatéds thus computed as

In the context of parameter estimation, we are inter- . _7.1 Thi ts the best unbiased esti
ested exclusively in updated parameters. Consequently,z_ u-Nens: |NNIS MeAn represents the best unbiased esti-

the ensemble of log-transformed hydraulic conductivity Mmate O.f the unknowr_l trp_e parameter. In Sect we shgw

fields is extracted from the updated state-parameter matri%hat this approach significantly improves the estimation of
(Eq.11) asYy =X§(1 :n,1: Nend. The posterior ensem- *°%
ble mean of the hydraulic conductivity is thus computed as

2 A A . ) _ 2.3.3 Parameter estimation by decentralized fusion
Y=Yy Iy, Wherely,, is aNensx 1 vector in which all y
elements are equal tg' Nens For conciseness, this section describes the DF algorithm to

A procedure similar to that described above to obtain thegstimate thex field only. The estimation of thés field is
ensembleY, by assimilating the zeroth moment of the IRF achieved by applying an analogous procedure.
computed from hydraulic head measurements Eomay In the DF approach (Figlb), the data from each pump-
be devised to derive the specific elastic storage ensefible  jng test are assimilated separately using a “local’ EnKF. The
using observations of the first moment of the IRF (E). application of the EnKF to each of th\, pumping tests pro-
The formulations D and E, presented in Talileprovide  qgyces multiple estimates of the hydraulic properties of the

two possible methods for assembling the forecast matrix inaquifer, which are characterized by the means of the poste-
order to estimate th& field. Since the first temporal mo- rior ensemblesf’ﬁ, %\'p, and their corresponding pos-

mentmj (Eq. 3) depends on the zeroth temporal moment . v Y.Np L
mo, as well as thek and Ss fields, the uncertainty oK terior covariances?;", ..., Py °. The objective of the DF

might affect the estimation ofs. To reduce the influence &lgorithm is to merge these estimates and produce an inte-
of the uncertainty ok on the estimation ofs, it is pos- grated global estlmat_\é of the parameters. The multiple es-
sible, for example, to use the posterior ensemble nmigan timates are fused using the GMB4-Shalom and Campo

to solve Egs. 7) and @). This assimilation strategy is de- 1986 Shin etal, 2008:

noted as E in Tabld. In this case, the forecast matrix is

expressed aXZ =[Z, M1, ..., M}?]7, whereM{ repre-

sents the first-moment ensembles for tte pumping test.
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Np
y — WT . ?a-Np = ZWI' ?L, (14)
i=1
where the matrix W =[wq, wo, ..., WNP]T, of size
nNp xn, includes the nxn weight matrices w;

(=12, ..., Ny) and the Npnx 1 vector ¥;"® is as-

sembled by vertical concatenation of the means of the

posterior ensembleit, ..., ¥,°.
The weight matrices in Eql4) are given by the solution
of the optimization problem:

W = mWin|Y — Y|y, (15)
where| - |2 represents the Euclidean norm operator. In ad-
dition, Eq. (L5) is subject to a constraint required to obtain
a “best linear unbiased estimate” (BLUE) bf which is ex-
pressed by the following set of linear equations:

|n,Np W =1, (16)
where |, is the n x n identity matrix, andl, n, is the
n x n Np matrix formed by horizontal concatenationlgffor
Np times.

The solution to Eqg.X5) is obtained by least-square mini-
mization, which, together with Eq16), yields the following
linear sets of equations:

where
[ c1a CLN,
C = , (1861)
CNp—1,1 CNp—1,Np
L In In
o,
B=|: (18b)
On
_In

Matrix C has sizen Np x n Np, whereas matriB has size
n Np x n. In matrixB, Eq. (183, 0y is a zero matrix with size
n x n. The generic terng; ; in matrix C, Eq. (183, is given

by

Y,i,j
u

Ci,j = P — ngi’Np, (19)
WherePE’i’j is the updated cross-covariance matrix for the
Y fields estimated from the assimilation of data correspond
ing to pumping tests andj, which is calculated as

PL = (Y= V) (YO 94) / Vers— 1. (20)
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Local Parameter Esimates Resulting
from Multiple Pumping Tests

Cells Blocks to Be Fused

Figure 2. lllustration of localized decentralized fusion. The figure
shows five images of hydraulic parameters to be merged. The cells
at the center of the circles are the cells to be fused using cell blocks
within a specified distance from the center.

From Eqg. 7), W is obtained as

W=C"1.B. (21)
Once the weight matri¥V is calculated, it is substituted in
Eq. (14) to provide the estimat¥. The posterior covariance
of Y can be computed aS$kin et al, 2006

P=WT.P.W, (22)

whereP is an Np x n Np matrix formed by the covariance
matricesP,"’ (i, j =1, ...,Np).

2.3.4 Localization of decentralized fusion

The inversion of the matri in Eq. (21) constitutes the most
intensive part of the GMF. In HT, it is typically required to es-
timate hydrogeological parameters at high resolution, which
often renders the GMF approach computationally very inten-
sive. To circumvent this obstacle, we propose the following
novel localized fusion algorithm.

In essence, instead of computing EgL)(for all the cells
in the domain at once, the fused estimate at any given cell is
computed by considering only a circular block of cells within
a specified radius around the cell of interest (R)g.The lo-
calized DF algorithm visits each cell within the domain se-
quentially or in parallel and fuses these circular blocks. The
resulting fused estimate for the cell at the center is returned,
and the algorithm moves to the next cell. Indicatingras

(< n) the number of grid cells within a specified distance
from the cell of interest, the resulting size for the “local” ma-
trices in Eq. R1) isn” x n’ Np for B, andn’ Np x n’ Ny for C.
The implicit assumption behind this method is that neigh-
boring cells will have the majority of influence on the

Hydrol. Earth Syst. Sci., 18, 32223 2014



3214 A. H. Alzraiee et al.: Hydraulic tomography data fusion

Table 2. Model setting for the numerical experiments. 1000 - @ Pumping Wells
B o® o2 0B gu g0 g . O Observation Wells
. R . R : W5 : » m m Constant Head Boundary
Finite-difference grid properties soo: BER D17. LB ® D35: o NoFlow Boundary
Domain dimensiongr, y, z] (M, m, m) (1000, 1000, 1P E R 0w 28 344
Cell size[x, y, z] (m, m, m) [10, 10, 10 g oOp e o o o 2 o ]
Total number of cells 10000 £ e ® ° !
g 400" g3 0® g o2 g?% D33|
Boundary conditions - :
iy . . R 02 0f oM 2 526 DBZ'
Dirichlet boundary conditions at 2008 ows .
x=0m h=45m s R A E R 25 D31:
x=1000m h=45m £ .
Neumann boundary conditions at % 200 400 600 800 1000
y=0m no-flow X—Coordinate (m)
y=1000m no-flow Figure 3. Locations of pumping wells, observation wells, and
Geostatistical parameters boundary conditions.
[y, oy, Ayl (Inmday ™, Inmday1, m) [1.5, 1,350
[z, 0z, 2z] (nm~1 Inm=1, m) [-10, 1,350 L .
: it using, for example, its forecast ensembleor a best un-
Pumping tests biased estimate, calculated as the mean of the posterior en-
Well #1 [x, y; Q] (m, m; n® day 1) [500, 500; 500 sembleY obtained in formulation A. These alternatives are
Well #2[x, y; Q1 (m, m; S day™1) [200, 500; 500 investigated in formulations D and E. In both instances, mea-
Well #3[x, y; Q] (m, m; n? day 1) [800, 500; 500 surements ofz1 are assimilated, and the forecast model con-
Well #4[x, y; Q] (m, m; mo’Oh?ly_i) [500, 200; 50D sists of the numerical solution of the PDE (E). In for-
Well #5[x, y; Q] (m, m; P day 1) (500, 800; 500 mulation D, theK forecast ensemble and its corresponding
Observation wells See layout in Fig. mg forecast ensemble, obtained from the numerical solution

of the PDE (Eqv), are used. Instead, in formulations E, the
posterior mean of, as estimated in formulation A, and its

o S ) correspondingng distribution, obtained from the numerical
estimation. The GMF localization is meant to improve the ¢, tion the PDE (Eq7), are used.

computational efficiency in two ways: first, the inversion of
matricesC of smaller size is less CPU intensive; second, the
fusion algorithm can be directly parallelized on multicore 3 Numerical experiments
processors.
3.1 Model setup
2.4 Options for data fusion formulation
The testing of the inversion schemes proposed in this work

The forecast matriX ; can be assembled according to differ- is based on a number of hypothetical two-dimensional
ent formulations of the data fusion problem. Tablehows a  cases. The method is, however, directly applicable to three-
list of the formulations investigated herein. dimensional problems. We consider a two-dimensional hori-

Formulations A, B, and C seek the estimation of the zontal 1 kmx 1km, 10 m thick confined aquifer, discretized
Y field. Formulation A consists of assimilating measure- into 10000 cells (100 gridblocks along they coordinate
ments of the zeroth temporal momemyp (Eg. 3), with directions, and a single grid block along thdirection). Ta-
the forecast model given by numerical solution of the PDEDble 2 and Fig.3 provide detailed descriptions of data regard-
(Eq. 7). Formulation B consists of assimilating measure- ing the aquifer model.
ments of the first temporal moment (Eq.4), with the fore- The aquifer is subject to constant-head boundary con-
cast model given by numerical solution of the PDE (By. ditions on the left and right edges of the domain, at
in which theK forecast ensemble and its correspondinng ~ which the hydraulic head: is set equal to 45m. Any-
forecast ensemble, in turn obtained from the numerical soluwhere else no-flow boundary conditions are imposed.
tion of the PDE (Eq7), are used. In formulation C, measure- The *“true” K and Ss fields in the aquifer are as-
ments of bothmy andm, are assimilated, and the forecast sumed to fit to the geostatistical models introduced in
model is obtained by solving Eq¥)(and 8) combined. Sect.2.3.1 and generated synthetically using the sequen-

Formulations D and E aim at estimating tiefield. In tial Gaussian simulation algorithm SGSIMD€utsch and
the estimation ofs, it is possible to find a one-to-one corre- Journe] 1997, with the geostatistical parameterg =1.51In
spondence betweefy andm based on Eq8) ifthe K field  mday !, oy =1Inmday?, Ay =350m,uz = —10Inm 1,
and its corresponding: field are known. However, since oz =1Inm™1, andi; =350 m (Table2). These two fields
the K field is unknown, one can choose instead to represenare used in five MODFLOW-200(H@arbaugh et al.2000
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simulations to reproduce the aquifer response to five sepa-
rate pumping tests, conducted from the locations and with 1 . A 72
the pumping rates specified in Tatll@nd Fig.3. L2= 0 Z [¢tfue<l) - ¢(’)] :

The duration of these hypothetical pumping tests is

10 days. The output of each simulation provides the referrne correlation between the estimated parameter field and

ence system from which the collection of hydraulic head datgye trye parameter field, both represented as two-dimensional
is simulated. Hydraulic head observations are recorded fro”i‘mages can be computed using Pearson’s correlation coeffi-
a network of 36 monitoring wells, whose locations are de-jant, as follows:

(24)
i—1

picted in Fig.3.
Three sets of numerical experiments are carried out to LA ST N
evaluate and compare the performances of the CF and DF ,;l ng [P, ) —unue] 19, /)=
schemes. The first experiment set investigates the perfor-= R — ., (25)
mance of different formulations of the forecast matrix, as >3 [d’trUE(i»J.)_atrue]z S S [éG, -2
listed in Tablel, using the CF approach. The second exper- i=1j=1 i=1j=1

iment set is similar to the first experiment set, but the DF _ _

approach is used instead. In the third experiment, we inveswhereg,c and¢ are the overall means of the true and the
tigate the effects of assimilating temporal moments insteadestimated parameter fields, respectively, apdnd r; are

of hydraulic head data. To do this, we compare thand  the number of rows and the number of columns of the two-
7 fields obtained by direct assimilation of transient hydraulic dimensional field, respectively. Valuesofange between 1
head data with those obtained by assimilating zeroth and firsand—1, with r = 1 indicating perfect positive linear correla-
temporal moments of the IRF. The comparison in the thirdtion, » =0 indicating no correlation, and= —1 indicating
experiment set is limited only to a single pumping test atperfect negative correlation. Finally, the error means ob-
well number 1 in Fig3. In all experiment sets, the param- tained as

eters characterizing the geostatistical model¥ ahdZ are 1
assumed to be known as prior information and equal to thosg,, = = Z [¢t,ue(i) — qé(i)] (26)
of the “true” fields given in Tabl@. The prior ensembles of ni3a

Y andZ realizations are assumed be uncorrelated.

In the three experiment sets, the si¥g,s of the ensem-
ble is 200. The temporal moments at each observation wel
are estimated using Eg®)(and @). Since the temporal mo-
ments are assumed to be the measured quantities, their mea-
surement error is assumed tc_) fiF to a normal distribution with4 Results and discussions
zero mean and standard deviation equal to the corresponding
forecast’s standard deviation multiplied by 0.01. 4.1 Centralized fusion of HT data

and is meant to provide a measure of the biasedness of the
pstimate. Values ofte close to zero indicate an unbiased
estimate.

3.2 Performance metrics In this section, the performance of each of the forecast for-

mulations given in Tablé is evaluated using the CF scheme

The performances of the fusion methods may be evaluatediy 1) The results of the inversion tests are summarized
qualitatively by visual comparison of the maps of the esti- i, Taple 3, which reports values of the four performance

mated hydraulic parameters, represented by the average di§fatistics,L1, La, r and pe (Egs. 23-26) for the formula-
tributionsY andZ (Sect.2.3.2, with the corresponding maps  tion schemes A—E. As explained in Se2t4, formulations
of the “true” reference fields. In addition, a quantitative eval- o_- seek the estimation of the field. The comparison of
uation of these performances is achieved using the following,o metricsL1, Lo, andr reported in Tablet reveals that the
statistics: the mean absolute ertoy, the root mean square ¢ scheme performs significantly better under formulation A
error Lz, the mean erroge, and the correlation coefficient  han ynder formulation C. In turn, formulation B is slightly
Ly is computed as less effective than formulation C.

12 These results find an explanation in that with formula-
Li= =Y lpwueld) — (), (23)  tion AtheY field is estimated by assimilatingo data only,

iz whereas with formulation C th& field is estimated by as-
similating bothmo andm1 data. While in formulatiord the
heterogeneity of th& field affects directly the spatial vari-
ability of mq via the PDE (Eq7), in formulation C such het-
erogeneity influences both they and m1 spatial distribu-
tions via PDEs (Eqst, 8). In addition, the spatial variability
of m1 depends not only oiif but also onZ. This makes the

Where¢tru9(i) is the value of “true” parameter at the grid
cell i and¢ (i) is the corresponding value of estimated pa-
rameter.L; is computed as
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Figure 4. Maps of @, b) the “true” referenc& andZ fields, and €, d) theY andZ fields estimated using the CF scheme with formulations A
and E, respectivelye(f) Scatter plots o trye vs. Y andZiye vs. Z.

estimation ofY using PDEs (Eqst, 8) less effective given  which provides a further visual proof of the satisfactory per-
the added uncertainty iA. formance of the CF scheme.

In the case of formulation B, the performance of the CF In formulations D and E (Tabl&), the estimation of the
scheme is even lower than with formulation C since only =~ Z field is sought using the CF approach. The values of the
data are assimilated and thus the impact of the added umetricsL1, L2, andr given in Table3 indicate that with for-
certainty inZ is inevitably more pronounced. In TabBe it mulation D the CF scheme performs significantly worse than
is worth observing that for all formulations A—C, the mean with formulation E. Indeed, estimating thefield based ex-
error e is very low, on the order of 1@, which provides  clusively onm; data through the PDE (E®) is inevitably
substantial evidence of the unbiasedness of the estimates obffected by the uncertainty on theand themg fields, in a
tained by CF. fashion very similar to that highlighted above for formula-

Figureda and c present the maps of the “true” referencetion B. A similar outcome has been observed by other re-
field Yyue and the average of the update enseritbtibtained  searchers¥in and lllman 2009. It is interesting to note that
using the forecast formulation A, respectively. The similarity formulations B and D are substantially the same, although
between the two maps is remarkable. Figdgeshows a scat- they attempt to estimate different parameters. Thus it is not
ter plot obtained using the component¥gf,e on thex axis, coincidental that their performance exhibits the two lowest
and the corresponding componentsf’obn they axis. The  estimations.
data points in this plot tend to gather along the identity line,
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Table 3. Performance statistics for the formulations of Tablgsing CF.

Performance statistics Formulation
Y=InK Z=InSs
A B C D E
Mean absolute errot- 1 0.318 0.353 0.343 0.596 0.363
Root mean square errat;  0.408 0.446 0.438 0.730 0.460
Correlation coefficient: 0.825 0.787 0.803 0.292 0.759
Mean errorjie 1.40x 1075 1.54x10™° 1.01x10°° —6.13x10°® -5.31x10°6

Table 4. Performance statistics for the formulations of Tablgsing DF.

Performance statistics Formulation
Y=InK Z=InSs
A B C D E
Mean absolute errot-q 0.412 0.458 0.442 0.776 0.466
Root mean square erraty;  0.521 0.570 0.556 0.953 0.605
Correlation coefficientr 0.723 0.683 0.700 0.246 0.645
Mean errorjie 20x1072 22x102 1.4x10°2 —1.05x 1071 —9.1x 1072

Based on the results of formulation B, the estimatio@of 36 observation wells. The performance statistigsL», and
may be improved if the uncertainty on theandm, fields r are 0.09, 0.015, and 0.998, respectively, indicating fairly
can be reduced. Formulation E (Tali)estems from the idea  good performance of the inversion method. Figlref show
of using the best unbiased estimatebtained with formula-  one sample of hydraulic head hydrographs resulting from
tion A, and the correspondingp field calculated by solving the five pumping tests at observation well 15 (see B)g.
the PDE (Eq~7), within the the forecast model based on the which is located approximately in the middle of the simu-
PDE (Eq.8) and assimilatedz; measurements only, as in lated domain. The figures show a general agreement between
formulation D. The values af1, Lo, andr shown in Table3 observed and simulated head hydrographs.
reveal that this solution allows for a significant improvement In the tests presented above, the average CPU time re-
in the estimation of th& field, and the performance of the quired to calculate the spatial distributions of temporal mo-
CF approach becomes comparable with that observed in forments — that is, to solve either of the PDEs (Efs8) us-
mulations A—C, when estimating thefield. Note in Table3 ing MODFLOW-2000 Harbaugh et al.2000 — is about 2 s
that with both formulations D and E the CF approach pro-per run. In practice, a forecast simulation with an ensemble
duces negligible values qie (10-6), which demonstrates —size Nens 0f 200 requires a CPU time on the order of min-
that the estimates & are substantially unbiased. utes. This is because the moment-generating PDEs TESjs.
Figure 4b and d depict the “true’Z field and that esti- are Poisson-type equations, which are computationally much
mated by CF using formulation E, respectively. A compari- less intensive to solve than the parabolic PDE (Bdrom
son between the two maps shows that the CF scheme is ablghich they are derived. In this regard, note the PDE @&q.
to capture fairly well the spatial heterogeneityAhfFigure4f is time dependent, whereas in PDEs (E48) the time vari-
shows a scatter plot &ye againstZ. Similar to Fig.4e, the  able is eliminated by integration (ER).
data are distributed along the identity line, that is, a general Considering the temporal moments of the IRF measure-
agreement between “true” and the estimaedan be ob- ments allows also for a significant reduction of the CPU
served. However, Figif shows that higher and lower values requirements of data assimilation. In the numerical experi-
of Z, located on the “tails” of the distribution, are not well ments conducted here, 36 observation wells are used to mon-
identified, which highlights the tendency of the CF schemeitor the hydraulic head during each pump test. In each ob-
to produce smoothed estimates of théeld. servation well 100 temporal measurements are recorded, re-
Plots in Fig.5 compare the simulated heads using the es-sulting in 3600 measurements per single pumping test. Since
timatedY and Z fields using CF methods with heads ob- we assumed that five pumping tests are performed to char-
tained by simulating true parameter fields. Figeeshows acterize the aquifer, the total number of available hydraulic
a scatter plot of simulated heads versus reference heads rhead data is (3& 100x 5)18000. Direct assimilation of
sulting from the five pumping tests and for heads observed atransient hydraulic head data using either the EnKF or the
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Figure 5. Verification of the CF inversion method by comparing true hydraulic heads and hydraulic heads simulated using estimated param-
eters.(a) shows the scatter plot of true headsxoaxis and estimated heads on thaxis for the five pumping testsh<f) show time series
for the true and the estimated hydraulic heads at observation well no. 15 & Fig.

ensemble smootheEyensen2009 would require, respec- The performance criteria for the DF method using differ-
tively, the inversion (Eql3) of a 180x 180 matrix for each  ent formulations are summarized in TaBle&Comparing per-

of the 100 measurement times, or the all-at-once inversiorformance criteria for the DF method shown in TaBlaiith

of a 18000x 18 000 matrix. In either situation, the compu- performance criteria for the CF method in TaBlereveals
tational effort would not be trivial. Instead, by introducing that the performance of different formulations is independent
temporal moments, for example when estimatingihield from the fusion method used. For example, formulation A
with formulation A, the data assimilation step involves the outperforms formulations B and C in estimating thdield

inversion of a 180« 180 matrix only once. for both CF and DF methods, and formulation E outperforms
_ _ formulation D in estimating for both CF and DF.
4.2 Decentralized fusion of HT data Figure 6 shows the “local” estimates of the field ob-

) ) tained using formulation A of the EnKF to assimilate HT
In this section, the DF scheme based on the GMFyais collected separately in each of the five pumping tests.
(Sect. 2.3.3 is employed to estimate aquifer parameters rjqre6f shows the global estimate of thefield produced
based on the same HT data used in the previous section W'tBy Eq. (L4), and Fig.6g show the “true™¥ field. The similar-
the CF scheme. _Slmlla}r to the set Of, experlments used_tqty between the two maps in Figf and g indicates that the
evaluate the CF inversion method, this experiments set iNpE scheme is able to estimate fairly well the spatial distribu-
vestigates formulations A-C to estimate théeld, and for- o of hydraulic conductivity. In Figéh, the scatter plot of

mulations D and E to _estimate tizefield. It is Wor_th _noting YuueVs. Y provides further proof of the good performance of
that forecast formulations of the forecast matrix in the DF the DF scheme. The resulting correlation coefficiente-

inversion are slightly different from those used in the CF in- \\aen the two distributions is equal to 0.723, which is less

version. Forecast matrices in the DF inversion are formulatedy, o that obtained by using the CF scheme with formula-
for each local inversion, while in the CF inversion a single tion A (r = 0.825, see formulation A in TabR).

global forecast matrix is formulated as shown in Table
Following the approach outlined in Se@.3.3to reduce
computational intensity, in the calculation of the weight co-

efficientsW (Eq. 21), for each grid cell, only cells within 4 5p7) estimate of the field and the “true” reference field,

a radius of 50m are used in the inversion of the ma@ix  regpectively. The comparison of the two maps in subpanels f
The results of preliminary numerical tests (not shown here), 4 g indicates that the DF scheme is able to capture the
have suggested that, in this problem, no significant improve,4in features of the heterogeneity of thfield. The scat-
ment in accuracy is achieved if this radius is increased bezg, plot of Ziue vs. Z shows that the correlation coefficient

yond 50 ”:j while a significant increase in computational costig equal to 0.645, which is smaller than that produced by the
is required.

Figure7 shows the estimations of th&field obtained us-
ing formulation E and applying the EnKF separately to each
of the five pumping tests. Figuréf and g shows the DF
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Figure 6. Maps of theY field obtained with&—€) local EnKF estimates for each of the five hypot~hesized pumping testéf)dahd application
of the DF scheme. The “true” reference field is giverfgh (h) shows the scatter plot aftrye vs.Y.

(a) Pumping Test (1) (b) Pumping Test (2)  (c) Pumping Test (3) (d) Pumping Test (4) o
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Figure 7.Maps of theZ field obtained with -€) local EnKF estimates for each of the five hypothesized pumping test¢f)ahe application
of the DF scheme. The “true” reference field is giverfgh (h) shows the scatter plot &rye vs. Z.

CF scheme with formulation & & 0.759, see formulation E  the performance of CF inversion performs better than that of
in Table3). DF inversion. The hydraulic heads at observation well no. 15
Figure 8 compares hydraulic heads obtained by simulat-are plotted in Fig8b—f for the five pumping tests. A gener-
ing the estimated” and Z fields using DF method with ob- ally fair agreement can be observed between the simulated
served hydraulic heads. Comparing the performance metrickeads and true ones.

of the DF method, shown in Figa, with the performance
metrics of the CF method, shown in Fi§a, indicates that
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(c) : Pumping Test No. 2
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Figure 8. Verification of the DF inversion method by comparing true hydraulic heads and hydraulic heads simulated using estimated param-
eters.(a) shows the scatter plot of true heads on thexis and estimated heads on thexis for the five pumping testéh)—f) show time
series for the true and the estimated hydraulic heads at observation well no. 153n Fig.

The results presented above indicate that, in the joint esTable 5. Performance statistics for estimates resulting from assimi-
timation of Y and Z, the CF scheme consistently outper- lating transient hydraulic head data and temporal moment data ob-
forms the DF scheme. This can be explained by observiained from a single pumping test at well no. 1.
ing that all of ther coefficients obtained with “local esti-
mations”, that is, the application of the EnKF separately to Performance statistics
the five pumping tests (panels a—e in Figsand 7), are

Data assimilated

Hydraulic head
smaller than the corresponding coefficients produced by the y 7

Temporal moments

Y z
CF scheme (see formulations A and E in TaBlewhich ap-

. « N . . . Mean absolute erroi:q 0.337 0.384 0.406 0.398
plies the EnKF “globally”, that is, to the five pumping tests o~ square errat, 0420 0479  0.509 0521
altogether. Since the GMF (E44) constitutes in essence  correlation coefficient: 0.908 0.880 0.694 0.628

a weighted average of the “local” estimates of theand

Z fields, with weights (Eq21) that are inversely related to
the corresponding “local” covarianceSHin et al, 20086), it

produces fused estimates with a coefficiehat cannot be
larger than those associated with the best “local” estimate
and, consequently, those obtained with the “global” CF esti- . . o .
mate. However, the DF scheme has an operational advanta%é(h”e aSS|m|Iat|ng te_mporal .mO.rT‘e”tS mslteaq of the t_ran—
over the CF scheme, in that the “raw” transient data are no ient data itself provides a significant saving in CPU time,

. . . It is important to verify to what extent this option affects the
required to apply fusion. Indeed, only estimates of the hy-accurart):y of the estir;yation To do so, we cgnduct an experi-

draulic parameter field and the covariances are required. .
Note also that when applying the DF scheme to the Consid_ment whose goal is to compare the performances of the EnKF

ered problem, the inversion of the mat@xEq. 21) would be when temporal moments are assimilated and when the “raw”
computationa{lly overwhelming since its siiel‘{ x n Np) transient hydraulic head data are assimilated. In this experi-
is equal to 50000 by 50000. This applicati%n is pmadem_ent’ we use data from a single pumping test at well no. 1 in
possible only by implementing the localized DF described_F'g' 3. Using data from a sm_gle_: pumping test allows reqlug-

in Sect.2.3.4 By doing so, the algorithm requires about Ing the scale .Of the data ass!m|lat|on proplem, thereby limit-

40 CPU minutes to complete the calculations without par-'ng the associated computational effort, without affecting the
allelization of the computation. Using a multicore computer

generality of conclusions drawn from the experiment.
would further reduce this time by a factor roughly equal to Table5 summarizes the performance statistics of the two
the number of processors available.

4.3 Assimilating transient head data versus
assimilating temporal moments

approaches. One can observe that assimilating the transient
data lead to better results compared with assimilating the
temporal moments. This observation can be made for the
estimation of botht and Z fields and can be explained by
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information loss resulting from lumping transient head dataextend the methodologies developed in this work to jointly
into low-order temporal moments. However, while assimilat- identifying the geostatistical model. This is the subject of an
ing transient head data provides a better characterization thamngoing research effort.

using temporal moments, the associated computational cost

is drastically higher. For example, in the case investigated

here, the overall CPU time required by the transient data forAcknowledgementsie would like to express our great apprecia-
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