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Abstract. Characterization of spatial variability of hydraulic
properties of groundwater systems at high resolution is es-
sential to simulate flow and transport phenomena. This paper
investigates two schemes to invert transient hydraulic head
data resulting from multiple pumping tests for the purpose
of estimating the spatial distributions of the hydraulic con-
ductivity, K, and the specific storage,Ss, of an aquifer. The
two methods are centralized fusion and decentralized fusion.
The centralized fusion of transient data is achieved when
data from all pumping tests are processed concurrently using
a central inversion processor, whereas the decentralized fu-
sion inverts data from each pumping test separately to obtain
optimal local estimates of hydraulic parameters, which are
consequently fused using the generalized Millman formula,
an algorithm for merging multiple correlated or uncorrelated
local estimates. For both data fusion schemes, the basic in-
version processor employed is the ensemble Kalman filter,
which is employed to assimilate the temporal moments of
impulse response functions obtained from the transient hy-
draulic head measurements resulting from multiple pumping
tests. Assimilating the temporal moments instead of the hy-
draulic head transient data themselves is shown to provide a
significant improvement in computational efficiency. Addi-
tionally, different assimilation strategies to improve the esti-
mation ofSs are investigated. Results show that estimation of
the K andSs distributions using temporal moment analysis
is fairly good, and the centralized inversion scheme consis-
tently outperforms the decentralized inversion scheme.

1 Introduction

A detailed description of hydraulic properties, such as hy-
draulic conductivity,K, and specific elastic storage,Ss, of
groundwater systems is essential to predict flow and solute
transport in porous media. Typically, these properties are in-
herently heterogeneous, and cannot be determined uniquely
using a finite set of sparse measurements. A direct method to
map the spatial variability of these properties is based on the
collection of a large number of core samples, which are then
analyzed in the laboratory to obtain conductivity and storage
properties. These methods, however, are laborious, expen-
sive, and time consuming (Butler Jr. et al., 1999). In general,
sampling of groundwater system states, such as hydraulic
head or solute concentrations, is relatively easier and more
cost-effective. Therefore, characterization of the aquifer pa-
rameters using system states can be achieved by solving an
inverse problem (Sun, 1994; Tarantola, 2004).

Analyses of hydraulic head data resulting from pumping
tests (Theis, 1935; Cooper and Jacob, 1946) and slug tests
(Butler Jr., 1998) using type-curve techniques are classic ex-
amples of inverse methods used to infer hydraulic properties
of porous media. In a pumping test, an aquifer is stressed at
a well and the response of the hydraulic head field is moni-
tored at a number of observation wells. The resulting data are
processed using an analytical solution to obtain a lumped es-
timate of the transmissivity and the storativity of the aquifer
at a scale equal to the radius of the developed cone of de-
pression. While these estimates are useful to guide future
groundwater development of an aquifer at a regional scale,
they provide little or no information about the local spatial
variability of parameters, which is essential, for example, to
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model solute transport processes. In addition, the estimates
obtained by pumping tests are shown to be affected by the
location of the pumping well and the degree of heterogeneity
within the cone of depression (Wu et al., 2005).

A relatively recent alternative method for estimating the
spatial distribution of aquifer parameters at a high resolution
is hydraulic tomography (HT) (Gottlieb and Dietrich, 1995;
Butler Jr. et al., 1999; Yeh and Liu, 2000; Berg and Illman,
2011). In HT, an aquifer is stressed at different locations and
the responses to these stresses at a network of observation
wells are inverted to map the parameters spatially.

During the last decade, HT has been intensively studied
both numerically and experimentally to assess its perfor-
mance with a few field applications (Straface et al., 2007;
Bohling et al., 2007). HT studies have covered several flow
conditions, ranging from steady-state flow (Yeh and Liu,
2000) to transient flow (Zhu and Yeh, 2005) in both confined
and unconfined aquifers (Cardiff and Barrash, 2011). HT has
been applied to joint unconfined and vadose zone flow prob-
lems (Mao et al., 2013) and for both 2-D (two-dimensional)
(Yeh and Zhu, 2007) and 3-D settings (Cardiff et al., 2012;
Illman et al., 2009; Berg and Illman, 2013). A number of
sandbox laboratory experiments have been performed to val-
idate HT methods off-site (Liu, 2002; Liu et al., 2007; Illman
et al., 2010), which have deemed HT a promising technique
for characterizing aquifer properties at high resolution. For
instance,Illman et al.(2010) compared various approaches
to characterize theK field using a sandbox and found that
HT consistently outperformed kriging interpolation of small-
scaleK measurements. Similar results reported byIllman
et al.(2012) revealed that predictions of solute transport are
better characterized with estimates from HT surveys in com-
parison to traditional geostatistical analyses and effective pa-
rameters. A comprehensive list of previous HT studies is pro-
vided byCardiff and Barrash(2011).

In HT studies, hydraulic head transient data have been in-
verted using different algorithms, such as the sequential suc-
cessive linear estimator (SSLE) (Yeh and Liu, 2000), the
quasi-linear approach (Kitanidis, 1995; Liu and Kitanidis,
2011), the Bayesian maximum a posteriori (MAP) approach
(Castagna and Bellin, 2009), and the ensemble Kalman filter
(EnKF) (Schöniger et al., 2012).

Despite the success in verifying its estimates numerically
and experimentally, HT faces two major challenges related
to the heavy computational burden associated with the inver-
sion process (Zhu and Yeh, 2005) and the nonuniqueness of
the solution of the inverse problem, a situation where infinite
possible combinations of input parameters and model struc-
tures produce the same model output (Moore and Doherty,
2006). With respect to the latter,Bohling and Butler(2010)
caution practicing hydrologists against “overselling” the re-
liability of HT estimates based on their pilot point inverse
method, and argue that some form of regularization is typ-
ically necessary to reduce uncertainties associated with the
nonuniqueness effect. In this work, HT data are inverted

using the EnKF. While not resolving the nonuniqueness issue
completely, inversion algorithms based on the EnKF consti-
tute an ideal framework to handle the problem of nonunique-
ness resulting from parameter uncertainty only, as opposed
to nonuniqueness resulting from uncertainty in conceptual
models and process assumptions.

With its roots in Bayesian analysis, the EnKF updates
a prior ensemble of possible realizations of system states
and parameters based upon collected state measurements,
so that the posterior state-parameter ensemble resembles a
nonunique set of possible solutions. Therefore, the ensem-
ble mean of the posterior ensemble provides an unbiased es-
timate of the system parameters. The EnKF offers several
other advantages, such as computational efficiency (Franssen
and Kinzelbach, 2009), avoiding sensitivity computations,
such as those required by the SSLE (Yeh and Liu, 2000),
and improved accuracy when using ensemble-based covari-
ance estimations instead of sensitivity-based covariance esti-
mations (Schöniger et al., 2012).

A possible effective approach to improving parameter es-
timations for ill-posed problems is by integrating data from
independent sources, which may be related to different phys-
ical processes, such as hydraulic, geophysical, geomechani-
cal, and chemical processes (Bohling and Butler, 2010). In
this situation, different physical processes (models) are uti-
lized to relate measured responses to aquifer properties. The
inversion of such multi-source data may take two general
avenues: centralized fusion (CF) and decentralized fusion
(DF). In this work, we investigate and compare the two ap-
proaches, one based on CF and another based on DF, to as-
similate transient hydraulic head HT data for the character-
ization of theK and Ss fields of a confined aquifer. With
the CF method, all data resulting from all experiments are
inverted simultaneously using a single “global” EnKF. The
DF method, however, assimilates each data set resulting from
a single experiment separately using a “local” EnKF to ob-
tain a local estimate of parameters. The multiple local esti-
mates are then “fused” using the generalized Millman for-
mula (GMF) algorithm (Bar-Shalom and Campo, 1986; Shin
et al., 2006), which constitutes an unbiased linear estimator
of multiple correlated or uncorrelated estimates. The two in-
version schemes are implemented to assimilate the responses
resulting from five pumping tests. However, the methodology
can be generalized to merge multiple parameter estimations
resulting from inverting different physical processes.

As mentioned earlier, computational cost constitutes an is-
sue for the application of HT methods for aquifer charac-
terization. Typically, HT-based algorithms require inverting
a large amount of transient data resulting from multiple ex-
periments and at multiple observation wells, which produces
the so-called “data-overload” problem (Zhu and Yeh, 2005).
Assimilation of transient data with the EnKF or the ensemble
smoother (ES) (Evensen, 2009) is computationally intensive
for two reasons. First, the computation of the forecast en-
semble of states and parameters requires simulating transient
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flow for a large number of realizations, which typically in-
volves a considerable computational effort. Second, the re-
sulting spatiotemporal cross-covariance matrix is typically
large and difficult to manipulate. In this study, we propose to
assimilate temporal moments of the impulse response func-
tion of transient drawdown data (Harvey and Gorelick, 1995;
Von Asmuth and Maas, 2001; Li et al., 2005; Bakker et al.,
2008; Olsthoorn, 2008; Von Asmuth et al., 2008), rather than
the hydraulic head data themselves.

In the temporal moment analysis, the original parabolic
partial differential equation (PDE) governing groundwater
flow is transformed into two simpler and easier to solve
Poisson-type PDEs (Zhu and Yeh, 2006; Li et al., 2005). Al-
though it has been shown that inversion of temporal moments
provides a drastic reduction in central processing unit (CPU)
time and a reliable estimate of theK field, it has also been
found to produce an unreliable characterization of theSs field
(Yin and Illman, 2009). In this work, we devise a strategy that
can optimize the estimation of theSs field, while still benefit-
ing from the reduced problem complexity achieved with the
temporal moment formulation.

The article is organized as follows. The methodologies of
the two inversion schemes are presented in Sect.2. A de-
scription of the numerical experiments used to investigate
the inversion approaches is provided in Sect.3. In Sect.4,
the obtained results are presented and discussed.

2 Methodology

In the following, we provide an overall description of the pro-
posed HT approaches, followed by a detailed description of
each component of the methodology. For the purpose of es-
timating the hydraulic parametersK andSs, we assume that
a series of separate pumping tests is conducted atNp wells
installed at different locations within a confined aquifer. In
each pumping test, the pumping welli (i ∈ {1, 2, . . . , Np}) is
operated at the flow rateQi . The resulting transient hydraulic
head data,hij (t), are recorded at numberNo of observation
wells (j ∈ {1, 2, . . . , No}).

The size of such measurement data sets is typically quite
large. To reduce the computational requirement associated
with the inversion of large amount of temporal data, the hy-
draulic head hydrographs are used to compute the temporal
moments of the impulse response function (IRF) at each ob-
servation wellj , in particular, the zeroth temporal,m

j

0, and

the first temporal moments,mj

1. Procedures followed to cal-
culate the temporal moments of the IRF using the measured
hydraulic head are discussed in Sect.2.1. These temporal
moments are treated as observations.

The effect of the spatial variability of the aquifer hydraulic
parameters, namelyK andSs, on the spatial distribution of
the temporal moments of the IRF are achieved by means of
moment-generating PDEs, which are discussed in Sect.2.2.
The numerical solution of these equations is also discussed in

the same section. Two numerical models – one to predict the
zeroth temporal momentm0 and another to predict the first
temporal momentm1 – are employed to simulate an ensem-
ble of randomly generated realizations of theK andSs fields.
At this point, the forecast temporal moments, obtained by
solving the moment-generating PDEs numerically, and the
observed moments, computed from transient hydraulic head
measurements, are available and can be subsequently utilized
by the EnKF to update bothK andSs fields. Finally, the over-
all inversion algorithm is applied either through a CF scheme
or a DF scheme, as discussed in Sect.2.3.

2.1 Estimation of temporal moments of measured
hydraulic head

In pumping tests, data may be recorded with high tempo-
ral frequency or even continuously in time. Assimilating
such a large amount of transient data using a Kalman fil-
ter (Kalman, 1960) scheme is computationally prohibitive
and impractical (Evensen, 2009). Time series analyses al-
low for shrinking hydrographs of hydraulic head data into
low-order temporal moments, which are related to aquifer
hydraulic properties through moment-generating partial dif-
ferential equations. To illustrate, assume that an aquifer sys-
tem is stressed by a well with a time dependent flow rate
Q(t) resulting in transient change in hydraulic headh(x; t),
where the vectorx includes the coordinates of the location
of an observation well, andt represents time. For linear sys-
tems,h(x; t) can be expressed as a function ofQ(t) through
a convolution integral (Von Asmuth and Maas, 2001; Li et al.,
2005; Bakker et al., 2008; Olsthoorn, 2008; Von Asmuth
et al., 2008):

h(x; t) =

t∫
0

Q(τ)θ(x; t − τ)dτ, (1)

whereθ(x; t − τ) is the IRF; that is, the response of the
aquifer at locationx and timet to a unit flow rate impulse
at the well at timeτ . Accordingly, the objective of time se-
ries analysis is to obtain the IRF for every stress source and at
each observation well. A possible approach to achieve this is
by fitting a parametric function to represent the IRF for each
stress source at each observation well (Von-Asmuth et al.,
2002; Bakker et al., 2008). Consequently, the obtained IRF
function can be used to calculate thekth temporal moment as
follows:

mk(x) =

∞∫
0

tk θ(x; t)dt. (2)

Alternatively,Li et al. (2005) proposed the following equa-
tions for calculating the zeroth moment,m0, and the first mo-
ment,m1, of the IRF using hydraulic head measurements re-
sulting from a constant continuous extraction rateQ:
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m0(x) =
h(x; 0) − h(x; ∞)

Q
, (3)

m1(x) =

∞∫
0

[h(x; t) − h(x; ∞)]dt

Q
, (4)

whereh(x; 0) andh(x; ∞) represent, respectively, the ini-
tial and the steady state hydraulic heads at locationx. Us-
ing Eqs. (3) and (4), the observed zeroth temporal moment
and the first temporal moment are computed at all observa-
tion wells and for each pumping test. In symbolic form, the
observed moments from each pumping test can be denoted
asm0,ij andm1,ij (i ∈ {1, 2, . . . , Np}; j ∈ {1, 2, . . . , No}).
At this point, the transient-hydraulic head large data set at
each observation well is shrunk into the two valuesm0,ij and
m1,ij . In the following sections, the numerical simulation of
temporal moments is presented.

2.2 Moment generating equations

Transient groundwater flow in a saturated heterogeneous
porous medium is governed by the PDE:

∇[K(x)∇h] + Q(x; t) = Ss(x)
∂h

∂t
, (5)

where ∇ is the differential operator,K is the hydraulic
conductivity tensor,Ss is the specific elastic storage, and
Q(x; t) represents generic source/sink terms at locationx

and timet . Equation (5) may be solved by imposing Dirich-
let boundary conditionsh(x; t) = hD(x; t) at a prescribed
portion of the domain boundary0D, Neumann boundary
conditionsK(x)∇h(x; t) = qN(x; t) at another portion of
the domain boundary0N, and initial boundary conditions
h(x; 0) = h0(x) throughout the domain.

For a unit impulse extractionQ(x; t) = δ(xw) at location
xw, thekth temporal moment,mk, of the IRF of drawdown,
s(x; t) = h(x; 0) − h(x; t), might be computed by multi-
plying Eq. (5) by tk and integrating over the time interval
[0,+∞). The resulting moment-generating equation is (Li
et al., 2005; Yin and Illman, 2009) the following:

∇ [K(x)∇ mk] + δk (xw) + k Ss(x)mk−1 = 0, (6)

whereδk(xw) is equal to unity ifk = 0 and equal to zero if
k > 0. Similarly, the boundary conditions of the temporal-
moment equations are expressed asmk(x) = 0 for the Dirich-
let boundary0D andK(x)∇ mk = 0 for the Neumann bound-
ary0N.

Because the observations (Sect.2.1) consist of the zeroth
and the first temporal moments, the simulation of onlym0
andm1 is sought. These moments can be obtained by solving
numerically the following two PDEs:

∇ [K(x)∇ m0] + 1(xw) = 0, (7)

∇ [K(x)∇ m1] + Ss(x)m0 = 0. (8)

Equation (7) is equivalent to a steady-state flow problem
characterized by a unit extraction rate, denoted as 1(xw), at
well locationxw. Equation (8) is equivalent to a steady-state
flow problem with a forcing term constituted by a spatially
variable recharge equal toSs(x)m0. Both Eqs. (7) and (8)
can be solved using a common groundwater flow simulator,
such as the well-known finite-difference model MODFLOW-
2000 (Harbaugh et al., 2000).

2.3 Inversion approaches

This section presents the approaches adopted here to invert
the temporal moments in order to characterize the spatial dis-
tributions ofK andSs. Using a Bayesian framework to pose
the inversion problem, the vector of system parameters,φ,
can be updated in light of newly collected datam as follows:

p(φ|m, I ) =
p(m|φ, I )p(φ, I )

p(m, I )
, (9)

where p(φ|m, I ) is the posterior probability distribution
function (PDF) ofφ given the measurementsm and the
generic “prior” informationI ; p(m|φ) is the likelihood PDF,
that is, the probability of the measurementsm conditional to
the parametersφ; p(φ, I ) is the prior PDF ofφ; andp(m, I )

is a normalization term. An exact solution to Eq. (9) can be
obtained if the measurementsm are related to the parameters
φ through a linear relationship, and when all PDFs in Eq. (9)
are Gaussian. This solution is widely known as the Kalman
filter (KF) (Kalman, 1960).

In the classical implementation of the KF, the data assimi-
lation of state follows a two-stage forecast-update process. In
the forecast stage, a forward-in-time prediction of the current
state, along with its error covariance is made. The forecast
state is then updated as field measurements become avail-
able. In this work, the inversion problem is reduced to a time-
independent inversion problem, which means that the fore-
cast stage does not include any forward-in-time prediction.
That is to say, the forecast stage is limited to the solution of
the equivalent steady-state groundwater problems expressed
by Eqs. (7) and (8).

In addition to being limited to Gaussian linear systems,
the KF is computationally expensive when applied to large-
scale problems.Evensen(1994) expanded the applicability
of the KF to nonlinear systems through the EnKF. Within the
EnKF, the prior PDFs of the system states are approximated
using an ensemble of realizations that characterize the prior
uncertainty in the system parameters and states.

2.3.1 Forecast of parameters and system states

From the perspective of subsurface flow, the major param-
eters that typically characterize a groundwater system are
the hydraulic conductivity,K, and the specific storage,Ss.
These parameters are inherently heterogeneous and cannot
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be determined uniquely using a finite set of measurements.
Therefore, it is convenient to describe these parameters using
a geostatistical conceptual model (Matheron, 1962; Isaaks
and Srivastava, 1990; Cressie, 1993; Diggle and Ribeiro,
2007), according to which a heterogeneous field is modeled
as a spatially distributed random process, characterized by a
trend model and a covariance model. In this study, we assume
the log-transformed parametersY = ln(K) andZ = ln(Ss) to
fit to two independent isotropic and stationary (with no trend)
Gaussian processes (de Marsily, 1986), with prescribed co-
variance modelsCYY (d; σ 2

Y ; λY ) and CZZ(d; σ 2
Z; λZ), re-

spectively. The scalard represents the distance between any
two points. The parametersσ 2 andλ represent variance and
the correlation length of each random process. The station-
ary means of the two fields are denoted asµY andµZ. A
spherical covariance function is assumed for bothCYY and
CZZ (Deutsch and Journel, 1997). This choice is somewhat
arbitrary and other covariance functions might be used to de-
scribe the spatial correlation of random fields without alter-
ing the general inversion methodology.

Using these geostatistical models, it is possible to gen-
erate an ensemble ofNens equally likely realizations for
both Y and Z. The ensemble of the natural logarithm of
K is obtained asY = [Y1, . . . , YNens], whereYk ∈ Rn×1

(k ∈ {1, 2, . . . , Nens}) is a realization ofY , andn is the num-
ber of cells of the finite-difference grid adopted to discretize
the aquifer domain. The ensemble of the natural logarithm of
Ss, Z ∈ Rn×Nens is generated in a similar fashion. The result-
ing ensembles can be seen as discrete approximations of the
forecast, or prior, joint PDFs ofY andZ.

In the forecast stage, Eqs. (7) and (8) are solved nu-
merically to predict the system states, that is, the tempo-
ral moments, in each pumping test. Each realizationYk

in the ensembleY is numerically simulated using Eq. (7)
to obtain m0,k ∈ Rn×1, a vector including the spatial dis-
tribution of the zeroth moment at the cells of the finite-
difference grid. Next,m0,k and the parametersYk and Zk

are used to compute the first-moment vectorm1,k ∈ Rn×1

by solving Eq. (8). Therefore, all realizations of states
m0,k and m1,k (k ∈ {1, 2, . . . , Nens}) can be assembled
into the n × Nens matricesM0 = [m0,1, . . . , m0,Nens] and
M1 = [m1,1, . . . , m1,Nens], respectively. To proceed to the
update stage, we propose two alternatives: CF and DF.
Schematic diagrams of the two methods are provided in
Fig. 1.

2.3.2 Parameter estimation by centralized fusion

In the CF scheme (Fig.1b), forecast ensembles ob-
tained from simulating independent pumping tests
are augmented into a single global forecast matrix

XY
f = [Y, M1

0, . . . , M
Np
0 ]

T , where M i
0 represents the

zeroth-moment ensemble for theith pumping test
(i ∈ {1, 2, . . . , Np}). Note that the matrixXY

f has size
(Np + 1)n × Nens. As a matter of fact, there are several

Figure 1. Flowcharts illustrating the structure of(a) the CF ap-
proach and(b) the DF approach.

possibilities to assemble the forecast matrix, some of which
are listed in Table1. Formulations A, B, and C provide
alternatives for formingXY

f in order to estimate theY field,
whereas formulations D and E address possible alternatives
for estimating theZ field. In Sect.4 we investigate the
implications of employing different formulations of the fore-
cast matrix. Here, we focus exclusively on formulation A in
Table1 to illustrate the CF procedure.

From the augmented state-parameter forecast matrixXY
f ,

the global prior covariance matrixPY
f ∈ R(Np+1)n×(Np+1)n

can be approximated as

PY
f =

(
XY

f − X
Y

f

)
·

(
XY

f − X
Y

f

)T

Nens−1
, (10)

whereX
Y

f is the prior ensemble mean matrix, calculated as

X
Y

f = XY
f · 1Nens and 1Nens∈ RNens×(Np+1)n is a matrix with

all elements equal to 1/Nens.
To facilitate the assimilation procedure, measurements

collected fromN0 observations wells andNp pumping tests
are vertically concatenated in a single vector. Therefore, the
vector of measurements for the zeroth moment can be de-
noted asd0 = [m0,i,j ] ∈ RNpN0×1, where i is the pumping
test index, andj is the observation well index.

Following an EnKF-like procedure, the measurements
d0 are assimilated to update both systems states and
parameters. Therefore, the update state-parameter ma-
trix, XY

u ∈ R(Np+1)n×Nens and the update covariance matrix,
PY

u ∈ R(Np+1)n×(Np+1)n can be expressed as follows:

XY
u = XY

f + K ·

(
D0 − H · XY

f

)
, (11)

PY
u = (I − K · H) · PY

f · (I − K · H)T + K · R · KT , (12)

whereD0 ∈ RNpN0×Nens is a matrix whose columns are ob-
tained by perturbing the measurement vectord0 with a Gaus-
sian zero-mean noise, characterized by the error covari-
ance matrixR ∈ RNpN0×NpN0; H ∈ RNpNo×(Np+1)n is a ma-
trix that maps each measurement to its location in the finite-
difference grid and to its corresponding pumping test. The
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Table 1.Alternative formulations of the forecast matrix investigated in the numerical experiments.

Formulation Description Forecast matrix

A EstimateK field by assimilatingm0 measure-
ments only, with PDE (Eq.7) as forecast model.

XY
f =

[
Y; M1

0; . . . ; M
Np
0

]
B EstimateK field by assimilatingm1 measure-

ments only, with PDE (Eq.8) as forecast model,
in which theY forecast ensemble and its corre-
spondingm0 forecast ensemble (obtained from
PDE Eq.7) are used.

XY
f =

[
Y; M1

1; . . . ; M
Np
1

]

C EstimateK field by joint assimilation ofm0
andm1 measurements, with PDEs (Eqs.7, 8)
as forecast model.

XY
f =

[
Y; M1

0; . . . ; M
Np
0 ; M1

1; . . . ; M
Np
1

]

D EstimateSs field by assimilatingm1 measure-
ments only, with PDE (Eq.8) as forecast model,
in which theY forecast ensemble and its corre-
spondingm0 forecast ensemble (obtained from
PDE Eq.7) are used.

XZ
f =

[
Z; M1

1; . . . ; M
Np
1

]

E EstimateSs field by assimilatingm1 measure-
ments only, with PDE (Eq.8) as forecast model,
in which the posterior mean ofY , as estimated
in A, and its correspondingm0 distribution (ob-
tained from PDE Eq.7) are used.

XZ
f =

[
Z; M1

1; . . . ; M
Np
1

]

matrix K ∈ R(Np+1)n×NpNo is called “Kalman gain”, and is
computed as

K = PY
f · HT

·

(
H · PY

f · HT
+ R

)−1
. (13)

In the context of parameter estimation, we are inter-
ested exclusively in updated parameters. Consequently,
the ensemble of log-transformed hydraulic conductivity
fields is extracted from the updated state-parameter matrix
(Eq. 11) asYu = XY

u (1 : n, 1 : Nens). The posterior ensem-
ble mean of the hydraulic conductivity is thus computed as
Ŷ = Yu · 1̂Nens, where1̂Nens is aNens× 1 vector in which all
elements are equal to 1/Nens.

A procedure similar to that described above to obtain the
ensembleYu by assimilating the zeroth moment of the IRF
computed from hydraulic head measurements (Eq.3) may
be devised to derive the specific elastic storage ensembleZu,
using observations of the first moment of the IRF (Eq.4).
The formulations D and E, presented in Table1, provide
two possible methods for assembling the forecast matrix in
order to estimate theZ field. Since the first temporal mo-
ment m1 (Eq. 3) depends on the zeroth temporal moment
m0, as well as theK and Ss fields, the uncertainty onK
might affect the estimation ofSs. To reduce the influence
of the uncertainty onK on the estimation ofSs, it is pos-
sible, for example, to use the posterior ensemble meanŶ

to solve Eqs. (7) and (8). This assimilation strategy is de-
noted as E in Table1. In this case, the forecast matrix is
expressed asXZ

f = [Z, M1
1, . . . , M

Np
1 ]

T , whereM i
1 repre-

sents the first-moment ensembles for theith pumping test.

XZ
f is updated by assimilating the observations of the hy-

draulic head first-momentd1 = [m1,i,j ] ∈RNpN0×1, wherei

is the pumping test index andj is the observation well in-
dex – and applying equations similar to Eqs. (11) and (12).
The ensemble mean of the updatedZ is thus computed as
Ẑ = Zu1Nens. This mean represents the best unbiased esti-
mate of the unknown true parameter. In Sect.4.1 we show
that this approach significantly improves the estimation of
Ss.

2.3.3 Parameter estimation by decentralized fusion

For conciseness, this section describes the DF algorithm to
estimate theK field only. The estimation of theSs field is
achieved by applying an analogous procedure.

In the DF approach (Fig.1b), the data from each pump-
ing test are assimilated separately using a “local” EnKF. The
application of the EnKF to each of theNp pumping tests pro-
duces multiple estimates of the hydraulic properties of the
aquifer, which are characterized by the means of the poste-

rior ensembles,̂Y 1
u, . . . , Ŷ

Np
u , and their corresponding pos-

terior covariances,PY,1
u , . . . , P

Y,Np
u . The objective of the DF

algorithm is to merge these estimates and produce an inte-
grated global estimatẽY of the parameters. The multiple es-
timates are fused using the GMF (Bar-Shalom and Campo,
1986; Shin et al., 2006):
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Ỹ = WT
· Ŷ

1:Np
u =

Np∑
i=1

wi Ŷ
i
u, (14)

where the matrix W = [w1, w2, . . . , wNP
]
T , of size

nNP × n, includes the n × n weight matrices wi

(i = 1, 2, . . . , Np) and the Npn× 1 vector Ŷ
1:Np
u is as-

sembled by vertical concatenation of the means of the

posterior ensembleŝY 1
u, . . . , Ŷ

Np
u .

The weight matrices in Eq. (14) are given by the solution
of the optimization problem:

W = min
W

|Y − Ỹ |2, (15)

where‖ · ‖2 represents the Euclidean norm operator. In ad-
dition, Eq. (15) is subject to a constraint required to obtain
a “best linear unbiased estimate” (BLUE) ofY , which is ex-
pressed by the following set of linear equations:

In,Np · W = In, (16)

where In is the n × n identity matrix, andIn,Np is the
n × nNp matrix formed by horizontal concatenation ofIn for
Np times.

The solution to Eq. (15) is obtained by least-square mini-
mization, which, together with Eq. (16), yields the following
linear sets of equations:

C · W = B, (17)

where

C =


c1,1 . . . c1,Np

...

cNp−1,1 . . . cNp−1,Np

In . . . In

 , (18a)

B =


0n

...

0n

In

 . (18b)

Matrix C has sizenNp × nNp, whereas matrixB has size
nNp × n. In matrixB, Eq. (18a), 01 is a zero matrix with size
n × n. The generic termci,j in matrix C, Eq. (18a), is given
by

ci,j = PY,i,j
u − P

Y,i,Np
u , (19)

wherePY,i,j
u is the updated cross-covariance matrix for the

Y fields estimated from the assimilation of data correspond-
ing to pumping testsi andj , which is calculated as

PY,i,j
u =

(
Yi

u − Ŷi
u

) (
Yj

u − Ŷj
u

)T

/(Nens− 1) . (20)

Figure 2. Illustration of localized decentralized fusion. The figure
shows five images of hydraulic parameters to be merged. The cells
at the center of the circles are the cells to be fused using cell blocks
within a specified distance from the center.

From Eq. (17), W is obtained as

W = C−1
· B. (21)

Once the weight matrixW is calculated, it is substituted in
Eq. (14) to provide the estimatẽY . The posterior covariance
of Ỹ can be computed as (Shin et al., 2006)

P̃ = WT
· P · W, (22)

whereP is a nNp × nNp matrix formed by the covariance

matricesPY,i,j
u (i, j = 1, . . . ,Np).

2.3.4 Localization of decentralized fusion

The inversion of the matrixC in Eq. (21) constitutes the most
intensive part of the GMF. In HT, it is typically required to es-
timate hydrogeological parameters at high resolution, which
often renders the GMF approach computationally very inten-
sive. To circumvent this obstacle, we propose the following
novel localized fusion algorithm.

In essence, instead of computing Eq. (21) for all the cells
in the domain at once, the fused estimate at any given cell is
computed by considering only a circular block of cells within
a specified radius around the cell of interest (Fig.2). The lo-
calized DF algorithm visits each cell within the domain se-
quentially or in parallel and fuses these circular blocks. The
resulting fused estimate for the cell at the center is returned,
and the algorithm moves to the next cell. Indicating asn′

(< n) the number of grid cells within a specified distance
from the cell of interest, the resulting size for the “local” ma-
trices in Eq. (21) is n′

× n′ Np for B, andn′ Np × n′ Np for C.
The implicit assumption behind this method is that neigh-

boring cells will have the majority of influence on the
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Table 2.Model setting for the numerical experiments.

Finite-difference grid properties

Domain dimensions[x, y, z] (m, m, m) [1000, 1000, 10]
Cell size[x, y, z] (m, m, m) [10, 10, 10]
Total number of cells 10 000

Boundary conditions

Dirichlet boundary conditions at
x = 0 m h = 45 m
x = 1000 m h = 45 m
Neumann boundary conditions at
y = 0 m no-flow
y = 1000 m no-flow

Geostatistical parameters

[µY , σY , λY ] (ln m day−1, ln m day−1, m) [1.5, 1, 350]
[µZ , σZ , λZ] (ln m−1, ln m−1, m) [−10, 1, 350]

Pumping tests

Well #1 [x, y; Q] (m, m; m3 day−1) [500, 500; 500]
Well #2 [x, y; Q] (m, m; m3 day−1) [200, 500; 500]
Well #3 [x, y; Q] (m, m; m3 day−1) [800, 500; 500]
Well #4 [x, y; Q] (m, m; m3 day−1) [500, 200; 500]
Well #5 [x, y; Q] (m, m; m3 day−1) [500, 800; 500]

Observation wells See layout in Fig.3

estimation. The GMF localization is meant to improve the
computational efficiency in two ways: first, the inversion of
matricesC of smaller size is less CPU intensive; second, the
fusion algorithm can be directly parallelized on multicore
processors.

2.4 Options for data fusion formulation

The forecast matrixXf can be assembled according to differ-
ent formulations of the data fusion problem. Table1 shows a
list of the formulations investigated herein.

Formulations A, B, and C seek the estimation of the
Y field. Formulation A consists of assimilating measure-
ments of the zeroth temporal momentm0 (Eq. 3), with
the forecast model given by numerical solution of the PDE
(Eq. 7). Formulation B consists of assimilating measure-
ments of the first temporal momentm1 (Eq.4), with the fore-
cast model given by numerical solution of the PDE (Eq.8),
in which theK forecast ensemble and its correspondingm0
forecast ensemble, in turn obtained from the numerical solu-
tion of the PDE (Eq.7), are used. In formulation C, measure-
ments of bothm0 andm1 are assimilated, and the forecast
model is obtained by solving Eqs. (7) and (8) combined.

Formulations D and E aim at estimating theZ field. In
the estimation ofSs, it is possible to find a one-to-one corre-
spondence betweenSs andm1 based on Eq. (8) if the K field
and its correspondingm0 field are known. However, since
theK field is unknown, one can choose instead to represent
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Figure 3. Locations of pumping wells, observation wells, and
boundary conditions.

it using, for example, its forecast ensembleY, or a best un-
biased estimate, calculated as the mean of the posterior en-
sembleŶ obtained in formulation A. These alternatives are
investigated in formulations D and E. In both instances, mea-
surements ofm1 are assimilated, and the forecast model con-
sists of the numerical solution of the PDE (Eq.8). In for-
mulation D, theK forecast ensemble and its corresponding
m0 forecast ensemble, obtained from the numerical solution
of the PDE (Eq.7), are used. Instead, in formulations E, the
posterior mean ofY , as estimated in formulation A, and its
correspondingm0 distribution, obtained from the numerical
solution the PDE (Eq.7), are used.

3 Numerical experiments

3.1 Model setup

The testing of the inversion schemes proposed in this work
is based on a number of hypothetical two-dimensional
cases. The method is, however, directly applicable to three-
dimensional problems. We consider a two-dimensional hori-
zontal 1 km× 1 km, 10 m thick confined aquifer, discretized
into 10 000 cells (100 gridblocks along thex–y coordinate
directions, and a single grid block along thez direction). Ta-
ble 2 and Fig.3 provide detailed descriptions of data regard-
ing the aquifer model.

The aquifer is subject to constant-head boundary con-
ditions on the left and right edges of the domain, at
which the hydraulic headh is set equal to 45 m. Any-
where else no-flow boundary conditions are imposed.
The “true” K and Ss fields in the aquifer are as-
sumed to fit to the geostatistical models introduced in
Sect. 2.3.1 and generated synthetically using the sequen-
tial Gaussian simulation algorithm SGSIM (Deutsch and
Journel, 1997), with the geostatistical parametersµY = 1.5 ln
m day−1, σY = 1 ln m day−1, λY = 350 m,µZ = −10 ln m−1,
σZ = 1 ln m−1, andλZ = 350 m (Table2). These two fields
are used in five MODFLOW-2000 (Harbaugh et al., 2000)
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simulations to reproduce the aquifer response to five sepa-
rate pumping tests, conducted from the locations and with
the pumping rates specified in Table2 and Fig.3.

The duration of these hypothetical pumping tests is
10 days. The output of each simulation provides the refer-
ence system from which the collection of hydraulic head data
is simulated. Hydraulic head observations are recorded from
a network of 36 monitoring wells, whose locations are de-
picted in Fig.3.

Three sets of numerical experiments are carried out to
evaluate and compare the performances of the CF and DF
schemes. The first experiment set investigates the perfor-
mance of different formulations of the forecast matrix, as
listed in Table1, using the CF approach. The second exper-
iment set is similar to the first experiment set, but the DF
approach is used instead. In the third experiment, we inves-
tigate the effects of assimilating temporal moments instead
of hydraulic head data. To do this, we compare theY and
Z fields obtained by direct assimilation of transient hydraulic
head data with those obtained by assimilating zeroth and first
temporal moments of the IRF. The comparison in the third
experiment set is limited only to a single pumping test at
well number 1 in Fig.3. In all experiment sets, the param-
eters characterizing the geostatistical models ofY andZ are
assumed to be known as prior information and equal to those
of the “true” fields given in Table2. The prior ensembles of
Y andZ realizations are assumed be uncorrelated.

In the three experiment sets, the sizeNens of the ensem-
ble is 200. The temporal moments at each observation well
are estimated using Eqs. (3) and (4). Since the temporal mo-
ments are assumed to be the measured quantities, their mea-
surement error is assumed to fit to a normal distribution with
zero mean and standard deviation equal to the corresponding
forecast’s standard deviation multiplied by 0.01.

3.2 Performance metrics

The performances of the fusion methods may be evaluated
qualitatively by visual comparison of the maps of the esti-
mated hydraulic parameters, represented by the average dis-
tributionsŶ andẐ (Sect.2.3.2), with the corresponding maps
of the “true” reference fields. In addition, a quantitative eval-
uation of these performances is achieved using the following
statistics: the mean absolute errorL1, the root mean square
errorL2, the mean errorµe, and the correlation coefficientr.
L1 is computed as

L1 =
1

n

n∑
i=1

|φtrue(i) − φ̂(i)|, (23)

whereφtrue(i) is the value of “true” parameter at the grid
cell i and φ̂(i) is the corresponding value of estimated pa-
rameter.L2 is computed as

L2 =

√√√√1

n

n∑
i=1

[
φtrue(i) − φ̂(i)

]2
. (24)

The correlation between the estimated parameter field and
the true parameter field, both represented as two-dimensional
images, can be computed using Pearson’s correlation coeffi-
cientr as follows:

r=

nr∑
i=1

nc∑
j=1

[
φtrue(i,j)−φtrue

]
[φ̂(i,j)−φ]√

nr∑
i=1

nc∑
j=1

[
φtrue(i,j)−φtrue

]2 nr∑
i=1

nc∑
j=1

[φ̂(i,j)−φ]2

, (25)

whereφtrue andφ are the overall means of the true and the
estimated parameter fields, respectively, andnr and rc are
the number of rows and the number of columns of the two-
dimensional field, respectively. Values ofr range between 1
and−1, with r = 1 indicating perfect positive linear correla-
tion, r = 0 indicating no correlation, andr = −1 indicating
perfect negative correlation. Finally, the error meanµe is ob-
tained as

µe =
1

n

n∑
i=1

[
φtrue(i) − φ̂(i)

]
(26)

and is meant to provide a measure of the biasedness of the
estimate. Values ofµe close to zero indicate an unbiased
estimate.

4 Results and discussions

4.1 Centralized fusion of HT data

In this section, the performance of each of the forecast for-
mulations given in Table1 is evaluated using the CF scheme
(Fig. 1). The results of the inversion tests are summarized
in Table 3, which reports values of the four performance
statistics,L1, L2, r and µe (Eqs. 23–26) for the formula-
tion schemes A–E. As explained in Sect.2.4, formulations
A–C seek the estimation of theY field. The comparison of
the metricsL1, L2, andr reported in Table4 reveals that the
CF scheme performs significantly better under formulation A
than under formulation C. In turn, formulation B is slightly
less effective than formulation C.

These results find an explanation in that with formula-
tion A theY field is estimated by assimilatingm0 data only,
whereas with formulation C theY field is estimated by as-
similating bothm0 andm1 data. While in formulationA the
heterogeneity of theY field affects directly the spatial vari-
ability of m0 via the PDE (Eq.7), in formulation C such het-
erogeneity influences both them0 and m1 spatial distribu-
tions via PDEs (Eqs.7, 8). In addition, the spatial variability
of m1 depends not only onY but also onZ. This makes the
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Figure 4.Maps of (a, b) the “true” referenceY andZ fields, and (c, d) theY andZ fields estimated using the CF scheme with formulations A
and E, respectively. (e, f) Scatter plots ofY true vs. Ŷ andZtrue vs. Ẑ.

estimation ofY using PDEs (Eqs.7, 8) less effective given
the added uncertainty inZ.

In the case of formulation B, the performance of the CF
scheme is even lower than with formulation C since onlym1
data are assimilated and thus the impact of the added un-
certainty inZ is inevitably more pronounced. In Table3, it
is worth observing that for all formulations A–C, the mean
error µe is very low, on the order of 10−5, which provides
substantial evidence of the unbiasedness of the estimates ob-
tained by CF.

Figure4a and c present the maps of the “true” reference
fieldY true and the average of the update ensembleŶ obtained
using the forecast formulation A, respectively. The similarity
between the two maps is remarkable. Figure4e shows a scat-
ter plot obtained using the components ofY true on thex axis,
and the corresponding components ofŶ on they axis. The
data points in this plot tend to gather along the identity line,

which provides a further visual proof of the satisfactory per-
formance of the CF scheme.

In formulations D and E (Table1), the estimation of the
Z field is sought using the CF approach. The values of the
metricsL1, L2, andr given in Table3 indicate that with for-
mulation D the CF scheme performs significantly worse than
with formulation E. Indeed, estimating theZ field based ex-
clusively onm1 data through the PDE (Eq.8) is inevitably
affected by the uncertainty on theY and them0 fields, in a
fashion very similar to that highlighted above for formula-
tion B. A similar outcome has been observed by other re-
searchers (Yin and Illman, 2009). It is interesting to note that
formulations B and D are substantially the same, although
they attempt to estimate different parameters. Thus it is not
coincidental that their performance exhibits the two lowest
estimations.
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Table 3.Performance statistics for the formulations of Table1 using CF.

Performance statistics Formulation

Y = ln K Z = ln Ss

A B C D E

Mean absolute error:L1 0.318 0.353 0.343 0.596 0.363
Root mean square error:L2 0.408 0.446 0.438 0.730 0.460
Correlation coefficient:r 0.825 0.787 0.803 0.292 0.759
Mean error:µe 1.40× 10−5 1.54× 10−5 1.01× 10−5

−6.13× 10−6
−5.31× 10−6

Table 4.Performance statistics for the formulations of Table1 using DF.

Performance statistics Formulation

Y = ln K Z = ln Ss

A B C D E

Mean absolute error:L1 0.412 0.458 0.442 0.776 0.466
Root mean square error:L2 0.521 0.570 0.556 0.953 0.605
Correlation coefficient:r 0.723 0.683 0.700 0.246 0.645
Mean error:µe 2.0× 10−2 2.2× 10−2 1.4× 10−2

−1.05× 10−1
−9.1× 10−2

Based on the results of formulation B, the estimation ofZ

may be improved if the uncertainty on theY andm0 fields
can be reduced. Formulation E (Table1) stems from the idea
of using the best unbiased estimateŶ obtained with formula-
tion A, and the correspondingm0 field calculated by solving
the PDE (Eq.7), within the the forecast model based on the
PDE (Eq.8) and assimilatedm1 measurements only, as in
formulation D. The values ofL1, L2, andr shown in Table3
reveal that this solution allows for a significant improvement
in the estimation of theZ field, and the performance of the
CF approach becomes comparable with that observed in for-
mulations A–C, when estimating theY field. Note in Table3
that with both formulations D and E the CF approach pro-
duces negligible values ofµe (10−6), which demonstrates
that the estimates ofZ are substantially unbiased.

Figure 4b and d depict the “true”Z field and that esti-
mated by CF using formulation E, respectively. A compari-
son between the two maps shows that the CF scheme is able
to capture fairly well the spatial heterogeneity ofZ. Figure4f
shows a scatter plot ofZtrue againstẐ. Similar to Fig.4e, the
data are distributed along the identity line, that is, a general
agreement between “true” and the estimatedZ can be ob-
served. However, Fig.4f shows that higher and lower values
of Z, located on the “tails” of the distribution, are not well
identified, which highlights the tendency of the CF scheme
to produce smoothed estimates of theZ field.

Plots in Fig.5 compare the simulated heads using the es-
timatedY and Z fields using CF methods with heads ob-
tained by simulating true parameter fields. Figure5a shows
a scatter plot of simulated heads versus reference heads re-
sulting from the five pumping tests and for heads observed at

36 observation wells. The performance statisticsL1, L2, and
r are 0.09, 0.015, and 0.998, respectively, indicating fairly
good performance of the inversion method. Figure5b–f show
one sample of hydraulic head hydrographs resulting from
the five pumping tests at observation well 15 (see Fig.3),
which is located approximately in the middle of the simu-
lated domain. The figures show a general agreement between
observed and simulated head hydrographs.

In the tests presented above, the average CPU time re-
quired to calculate the spatial distributions of temporal mo-
ments – that is, to solve either of the PDEs (Eqs.7, 8) us-
ing MODFLOW-2000 (Harbaugh et al., 2000) – is about 2 s
per run. In practice, a forecast simulation with an ensemble
sizeNens of 200 requires a CPU time on the order of min-
utes. This is because the moment-generating PDEs (Eqs.7, 8)
are Poisson-type equations, which are computationally much
less intensive to solve than the parabolic PDE (Eq.5) from
which they are derived. In this regard, note the PDE (Eq.5)
is time dependent, whereas in PDEs (Eqs.7, 8) the time vari-
able is eliminated by integration (Eq.2).

Considering the temporal moments of the IRF measure-
ments allows also for a significant reduction of the CPU
requirements of data assimilation. In the numerical experi-
ments conducted here, 36 observation wells are used to mon-
itor the hydraulic head during each pump test. In each ob-
servation well 100 temporal measurements are recorded, re-
sulting in 3600 measurements per single pumping test. Since
we assumed that five pumping tests are performed to char-
acterize the aquifer, the total number of available hydraulic
head data is (36× 100× 5) 18 000. Direct assimilation of
transient hydraulic head data using either the EnKF or the
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Figure 5. Verification of the CF inversion method by comparing true hydraulic heads and hydraulic heads simulated using estimated param-
eters.(a) shows the scatter plot of true heads onx axis and estimated heads on they axis for the five pumping tests. (b–f) show time series
for the true and the estimated hydraulic heads at observation well no. 15 in Fig.3.

ensemble smoother (Evensen, 2009) would require, respec-
tively, the inversion (Eq.13) of a 180× 180 matrix for each
of the 100 measurement times, or the all-at-once inversion
of a 18 000× 18 000 matrix. In either situation, the compu-
tational effort would not be trivial. Instead, by introducing
temporal moments, for example when estimating theY field
with formulation A, the data assimilation step involves the
inversion of a 180× 180 matrix only once.

4.2 Decentralized fusion of HT data

In this section, the DF scheme based on the GMF
(Sect. 2.3.3) is employed to estimate aquifer parameters
based on the same HT data used in the previous section with
the CF scheme. Similar to the set of experiments used to
evaluate the CF inversion method, this experiments set in-
vestigates formulations A–C to estimate theY field, and for-
mulations D and E to estimate theZ field. It is worth noting
that forecast formulations of the forecast matrix in the DF
inversion are slightly different from those used in the CF in-
version. Forecast matrices in the DF inversion are formulated
for each local inversion, while in the CF inversion a single
global forecast matrix is formulated as shown in Table1.

Following the approach outlined in Sect.2.3.3 to reduce
computational intensity, in the calculation of the weight co-
efficientsW (Eq. 21), for each grid cell, only cells within
a radius of 50 m are used in the inversion of the matrixC.
The results of preliminary numerical tests (not shown here)
have suggested that, in this problem, no significant improve-
ment in accuracy is achieved if this radius is increased be-
yond 50 m, while a significant increase in computational cost
is required.

The performance criteria for the DF method using differ-
ent formulations are summarized in Table4. Comparing per-
formance criteria for the DF method shown in Table4 with
performance criteria for the CF method in Table3, reveals
that the performance of different formulations is independent
from the fusion method used. For example, formulation A
outperforms formulations B and C in estimating theY field
for both CF and DF methods, and formulation E outperforms
formulation D in estimatingZ for both CF and DF.

Figure 6 shows the “local” estimates of theY field ob-
tained using formulation A of the EnKF to assimilate HT
data collected separately in each of the five pumping tests.
Figure6f shows the global estimate of theY field produced
by Eq. (14), and Fig.6g show the “true”Y field. The similar-
ity between the two maps in Fig.6f and g indicates that the
DF scheme is able to estimate fairly well the spatial distribu-
tion of hydraulic conductivity. In Fig.6h, the scatter plot of
Y true vs.Ỹ provides further proof of the good performance of
the DF scheme. The resulting correlation coefficient,r, be-
tween the two distributions is equal to 0.723, which is less
than that obtained by using the CF scheme with formula-
tion A (r = 0.825, see formulation A in Table3).

Figure7 shows the estimations of theZ field obtained us-
ing formulation E and applying the EnKF separately to each
of the five pumping tests. Figure7f and g shows the DF
global estimate of theZ field and the “true” reference field,
respectively. The comparison of the two maps in subpanels f
and g indicates that the DF scheme is able to capture the
main features of the heterogeneity of theZ field. The scat-
ter plot ofZtrue vs. Z̃ shows that the correlation coefficientr

is equal to 0.645, which is smaller than that produced by the
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Figure 6.Maps of theY field obtained with (a–e) local EnKF estimates for each of the five hypothesized pumping tests, and(f) the application
of the DF scheme. The “true” reference field is given in(g). (h) shows the scatter plot ofY true vs. Ỹ .
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Figure 7.Maps of theZ field obtained with (a–e) local EnKF estimates for each of the five hypothesized pumping tests, and(f) the application
of the DF scheme. The “true” reference field is given in(g). (h) shows the scatter plot ofZtrue vs. Z̃.

CF scheme with formulation E (r = 0.759, see formulation E
in Table3).

Figure8 compares hydraulic heads obtained by simulat-
ing the estimatedY andZ fields using DF method with ob-
served hydraulic heads. Comparing the performance metrics
of the DF method, shown in Fig.8a, with the performance
metrics of the CF method, shown in Fig.5a, indicates that

the performance of CF inversion performs better than that of
DF inversion. The hydraulic heads at observation well no. 15
are plotted in Fig.8b–f for the five pumping tests. A gener-
ally fair agreement can be observed between the simulated
heads and true ones.
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Figure 8. Verification of the DF inversion method by comparing true hydraulic heads and hydraulic heads simulated using estimated param-
eters.(a) shows the scatter plot of true heads on thex axis and estimated heads on they axis for the five pumping tests.(b)–(f) show time
series for the true and the estimated hydraulic heads at observation well no. 15 in Fig.3.

The results presented above indicate that, in the joint es-
timation of Y and Z, the CF scheme consistently outper-
forms the DF scheme. This can be explained by observ-
ing that all of ther coefficients obtained with “local esti-
mations”, that is, the application of the EnKF separately to
the five pumping tests (panels a–e in Figs.6 and 7), are
smaller than the corresponding coefficients produced by the
CF scheme (see formulations A and E in Table3), which ap-
plies the EnKF “globally”, that is, to the five pumping tests
altogether. Since the GMF (Eq.14) constitutes in essence
a weighted average of the “local” estimates of theY and
Z fields, with weights (Eq.21) that are inversely related to
the corresponding “local” covariances (Shin et al., 2006), it
produces fused estimates with a coefficientr that cannot be
larger than those associated with the best “local” estimate
and, consequently, those obtained with the “global” CF esti-
mate. However, the DF scheme has an operational advantage
over the CF scheme, in that the “raw” transient data are not
required to apply fusion. Indeed, only estimates of the hy-
draulic parameter field and the covariances are required.

Note also that when applying the DF scheme to the consid-
ered problem, the inversion of the matrixC (Eq.21) would be
computationally overwhelming since its size (nNp × nNp)
is equal to 50 000 by 50 000. This application is made
possible only by implementing the localized DF described
in Sect. 2.3.4. By doing so, the algorithm requires about
40 CPU minutes to complete the calculations without par-
allelization of the computation. Using a multicore computer
would further reduce this time by a factor roughly equal to
the number of processors available.

Table 5.Performance statistics for estimates resulting from assimi-
lating transient hydraulic head data and temporal moment data ob-
tained from a single pumping test at well no. 1.

Performance statistics Data assimilated

Hydraulic head Temporal moments

Y Z Y Z

Mean absolute error:L1 0.337 0.384 0.406 0.398
Root mean square error:L2 0.420 0.479 0.509 0.521
Correlation coefficient:r 0.908 0.880 0.694 0.628

4.3 Assimilating transient head data versus
assimilating temporal moments

While assimilating temporal moments instead of the tran-
sient data itself provides a significant saving in CPU time,
it is important to verify to what extent this option affects the
accuracy of the estimation. To do so, we conduct an experi-
ment whose goal is to compare the performances of the EnKF
when temporal moments are assimilated and when the “raw”
transient hydraulic head data are assimilated. In this experi-
ment, we use data from a single pumping test at well no. 1 in
Fig. 3. Using data from a single pumping test allows reduc-
ing the scale of the data assimilation problem, thereby limit-
ing the associated computational effort, without affecting the
generality of conclusions drawn from the experiment.

Table5 summarizes the performance statistics of the two
approaches. One can observe that assimilating the transient
data lead to better results compared with assimilating the
temporal moments. This observation can be made for the
estimation of bothY andZ fields and can be explained by
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information loss resulting from lumping transient head data
into low-order temporal moments. However, while assimilat-
ing transient head data provides a better characterization than
using temporal moments, the associated computational cost
is drastically higher. For example, in the case investigated
here, the overall CPU time required by the transient data for-
mulation is about 40 times larger than that required by the
temporal moment formulation.

It is worth noting that the correlation coefficientr for esti-
mation ofY resulting from a single pumping test (r = 0.908
in Table5) is higher than that resulting from five pumping
tests (r = 0.825 in Table3), while theL1 andL2 statistics
are better (lower) for multiple pumping tests. This is due to
the fact that the correlation coefficientr is invariant with re-
spect to linear transformation of the two fields, and thusr

provides a measure of similarity in the structure of spatial
variability with no information about the Euclidean distance
between the two fields, which is provided byL2.

5 Conclusions

In this work, two approaches have been developed and im-
plemented to characterize the spatial variability of aquifers’
hydraulic properties at high resolution: centralized fusion
(CF) and decentralized fusion (DF). CF utilizes a global
EnKF (ensemble Kalman filter) scheme to simultaneously in-
vert data obtained from multiple pumping tests. DF uses the
generalized Millman formula (GMF) to merge together es-
timates obtained from “local” EnKF applications to each of
the pumping tests. The proposed inversion methods assimi-
lated the zeroth and first temporal moments of the impulse
response function (IRF) inferred from hydraulic head data
collected in monitoring wells, which significantly expedites
the stochastic simulation procedures.

The performance of the fusion schemes, measured as the
deviation of the estimated field from the “true” reference
field, are promising for both inversion schemes. The numeri-
cal tests presented in this work show that the CF scheme us-
ing the global EnKF consistently outperforms the DF scheme
based on the GMF. To optimize the inversion procedures, dif-
ferent formulations of the forecast matrix were investigated,
and results indicate that the estimation of the aquifer param-
eters is significantly affected by the chosen formulation. For
instance, the estimation of the specific elastic storage field
was significantly improved by using a specific formulation
of the forecast matrix based on the assimilation of measure-
ments of the first temporal moment of the impulse response
function, with the posterior mean of hydraulic conductivity
obtained with the assimilation of measurements of the zeroth
temporal moment.

It is finally important to point out that in the numerical
experiments presented here the structure of the geostatistical
model and its parameters are assumed be be known a priori.
Since most often this hypothesis is not met, it is necessary to

extend the methodologies developed in this work to jointly
identifying the geostatistical model. This is the subject of an
ongoing research effort.

Acknowledgements.We would like to express our great apprecia-
tion to Colorado State University Libraries Open Access Research
and Scholarship Fund for their the financial support to publish this
article. We would like also to thank the three anonymous reviewers
for their valuable comments.

Edited by: A. Guadagnini

References

Bakker, M., Maas, K., and Von-Asmuth, J. R.: Calibration
of transient groundwater models using time series analy-
sis and moment matching, Water Resour. Res., 44, W04420,
doi:10.1029/2007WR006239, 2008.

Bar-Shalom, Y. and Campo, L.: The effect of the common process
noise on the two-sensor fused-track covariance, IEEE T. Aero.
Elec. Sys., AES-22, 803–805, doi:10.1109/TAES.1986.310815,
1986.

Berg, S. J. and Illman, W. A.: Three-dimensional transient hy-
draulic tomography in a highly heterogeneous glaciofluvial
aquifer-aquitard system, Water Resour. Res., 47, W10507,
doi:10.1029/2011WR010616, 2011.

Berg, S. J. and Illman, W. A.: Field Study of Subsurface Hetero-
geneity with Steady-State Hydraulic Tomography, Ground Wa-
ter, 51, 29–40, doi:10.1111/j.1745-6584.2012.00914.x, 2013.

Bohling, G. C. and Butler, J. J.: Inherent limitations of hydraulic
tomography, Ground Water, 48, 809–824, doi:10.1111/j.1745-
6584.2010.00757.x, 2010.

Bohling, G. C., Butler, J. J., Zhan, X., and Knoll, M. D.: A field as-
sessment of the value of steady shape hydraulic tomography for
characterization of aquifer heterogeneities, Water Resour. Res.,
43, W05430, doi:10.1029/2006WR004932, 2007.

Butler Jr., J. J.: The design, performance, and analysis of slug tests,
CRC Press, Boca Raton, FL, USA, 1998.

Butler Jr., J. J., McElwee, C. D., and Bohling, G. C.: Pump-
ing tests in networks of multilevel sampling wells: mo-
tivation and methodology, Water Resour. Res., 35, 3553,
doi:10.1029/1999WR900231, 1999.

Cardiff, M. and Barrash, W.: 3-D transient hydraulic tomography in
unconfined aquifers with fast drainage response, Water Resour.
Res., 47, W12518, doi:10.1029/2010WR010367, 2011.

Cardiff, M., Barrash, W., and Kitanidis, P. K.: A field proof-of-
concept of aquifer imaging using 3-D transient hydraulic tomog-
raphy with modular, temporarily-emplaced equipment, Water
Resour. Res., 48, W05531, doi:10.1029/2011WR011704, 2012.

Castagna, M. and Bellin, A.: A Bayesian approach for inversion of
hydraulic tomographic data, Water Resour. Res., 45, W04410,
doi:10.1029/2008WR007078, 2009.

Cooper, H. H. and Jacob, C. E.: A generalized graphical method
of evaluating formation constants and summarizing well-field
history, US Dept. of the Interior, Geological Survey, Water
Resources Division, Ground Water Branch, Washington, D.C.,
USA, 1946.

www.hydrol-earth-syst-sci.net/18/3207/2014/ Hydrol. Earth Syst. Sci., 18, 3207–3223, 2014

http://dx.doi.org/10.1029/2007WR006239
http://dx.doi.org/10.1109/TAES.1986.310815
http://dx.doi.org/10.1029/2011WR010616
http://dx.doi.org/10.1111/j.1745-6584.2012.00914.x
http://dx.doi.org/10.1111/j.1745-6584.2010.00757.x
http://dx.doi.org/10.1111/j.1745-6584.2010.00757.x
http://dx.doi.org/10.1029/2006WR004932
http://dx.doi.org/10.1029/1999WR900231
http://dx.doi.org/10.1029/2010WR010367
http://dx.doi.org/10.1029/2011WR011704
http://dx.doi.org/10.1029/2008WR007078


3222 A. H. Alzraiee et al.: Hydraulic tomography data fusion

Cressie, N.: Statistics for Spatial Data, in: Wiley Series in Proba-
bility and Statistics, Wiley-Interscience, Hoboken, New Jersey,
USA, 1993.

de Marsily, G.: Quantitative Hydrogeology: Groundwater Hydrol-
ogy for Engineers, 1st Edn., Academic Press, Waltham, Mas-
sachusetts, USA, 1986.

Deutsch, C. V. and Journel, A. G.: GSLIB, Oxford University Press,
Oxford, UK, 1997.

Diggle, P. J. and Ribeiro, P. J.: Model-based Geostatistics, in:
Springer Series in Statistics, Springer, New York, USA, 2007.

Evensen, G.: Sequential data assimilation with a nonlinear
quasi-geostrophic model using Monte Carlo methods to fore-
cast error statistics, J. Geophys. Res., 99, 10143–10162,
doi:10.1029/94JC00572, 1994.

Evensen, G.: Data Assimilation: The Ensemble Kalman Filter,
Springer, New York, USA, 2009.

Franssen, H. H. and Kinzelbach, W.: Ensemble Kalman filtering
versus sequential self-calibration for inverse modelling of dy-
namic groundwater flow systems, J. Hydrol., 365, 261–274,
doi:10.1016/j.jhydrol.2008.11.033, 2009.

Gottlieb, J. and Dietrich, P.: Identification of the permeability distri-
bution in soil by hydraulic tomography, Inverse Probl., 11, 353–
360, doi:10.1088/0266-5611/11/2/005, 1995.

Harbaugh, A. W., Banta, E. R., Hill, M. C., and McDonald, M. G.:
MODFLOW-2000, The US Geological Survey Modular Ground-
Water Model-User Guide to Modularization Concepts and the
Ground-Water Flow Process, Tech. rep., United States Geologi-
cal Survey, Reston, Virginia, USA, 2000.

Harvey, C. F. and Gorelick, S. M.: Temporal moment-generating
equations: modeling transport and mass transfer in het-
erogeneous aquifers, Water Resour. Res., 31, 1895–1911,
doi:10.1029/95WR01231, 1995.

Illman, W. A., Liu, X., Takeuchi, S., Yeh, T. J., Ando, K., and
Saegusa, H.: Hydraulic tomography in fractured granite: Mizu-
nami Underground Research site, Japan, Water Resour. Res., 45,
W01406,doi:10.1029/2007WR006715, 2009.

Illman, W. A., Zhu, J., Craig, A. J., and Yin, D.: Comparison of
aquifer characterization approaches through steady state ground-
water model validation: a controlled laboratory sandbox study,
Water Resour. Res., 46, W04502, doi:10.1029/2009WR007745,
2010.

Illman, W. A., Berg, S. J., and Yeh, T.-C. J.: Comparison
of Approaches for Predicting Solute Transport: Sandbox Ex-
periments, Ground Water, 50, 421–431, doi:10.1111/j.1745-
6584.2011.00859.x, 2012

Isaaks, E. H. and Srivastava, R. M.: An Introduction to Applied
Geostatistics, Oxford University Press, USA, 1990.

Kalman, R.: A New Approach to Linear Filtering and Predic-
tion Problems, Transactions of the J. Basic Eng.-T. ASME, 35–
45, available at:http://www.cs.unc.edu/~welch/kalman/media/
pdf/Kalman1960.pdf(last access: 4 March 2014), 1960.

Kitanidis, P. K.: Quasi-linear geostatistical theory for inversing, Wa-
ter Resour. Res., 31, 2411, doi:10.1029/95WR01945, 1995.

Li, W., Nowak, W., and Cirpka, O. A.: Geostatistical in-
verse modeling of transient pumping tests using temporal
moments of drawdown, Water Resour. Res., 41, W08403,
doi:10.1029/2004WR003874, 2005.

Liu, S.: Effectiveness of hydraulic tomography: sand-
box experiments, Water Resour. Res., 38, 1034,
doi:10.1029/2001WR000338, 2002.

Liu, X. and Kitanidis, P. K.: Large-scale inverse modeling with
an application in hydraulic tomography, Water Resour. Res., 47,
W02501, doi:10.1029/2010WR009144, 2011.

Liu, X., Illman, W. A., Craig, A. J., Zhu, J., and Yeh, T.-C. J.: Lab-
oratory sandbox validation of transient hydraulic tomography,
Water Resour. Res., 43, W05404, doi:10.1029/2006WR005144,
2007.

Mao, D., Yeh, T.-C. J., Wan, L., Wen, J.-C., Lu, W., Lee, C.-
H., and Hsu, K.-C.: Joint interpretation of sequential pumping
tests in unconfined aquifers, Water Resour. Res., 49, 1782–1796,
doi:10.1002/wrcr.20129, 2013.

Matheron, G.: Traité de géostatistique appliquée, Mém. Bur. Rech.
Géol. Miniéres, Paris, France, 333 pp., 1962.

Moore, C. and Doherty, J.: The cost of uniqueness in ground-
water model calibration, Adv. Water Resour., 29, 605–623,
doi:10.1016/j.advwatres.2005.07.003, 2006.

Olsthoorn, T. N.: Do a bit more with convolution, Ground Water,
46, 13–22, doi:10.1111/j.1745-6584.2007.00342.x, 2008.

Schöniger, A., Nowak, W., and Hendricks Franssen, H.-J.: Parame-
ter estimation by ensemble Kalman filters with transformed data:
approach and application to hydraulic tomography, Water Re-
sour. Res., 48, W04502, doi:10.1029/2011WR010462, 2012.

Shin, V., Lee, Y., and Choi, T.-S.: Generalized Millman’s formula
and its application for estimation problems, Signal Process., 86,
257–266, doi:10.1016/j.sigpro.2005.05.015, 2006.

Straface, S., Yeh, T.-C. J., Zhu, J., Troisi, S., and Lee, C. H.: Se-
quential aquifer tests at a well field, Montalto Uffugo Scalo, Italy,
Water Resour. Res., 43, W07432, doi:10.1029/2006WR005287,
2007.

Sun, N.-Z.: Inverse Problems in Groundwater Modeling, in: Theory
and Applications of Transport in Porous Media, Springer, New
York, USA, 1994.

Tarantola, A.: Inverse Problem Theory and Methods for Model Pa-
rameter Estimation, SIAM: Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA 2004.

Theis, C. V.: The Relation Between the Lowering of the Piezometric
Surface and the Rate and Duration of Discharge of a Well Using
Ground Water Storage, US Department of the Interior, Geolog-
ical Survey, Water Resources Division, Ground Water Branch,
Washington, D.C., USA, 1935.

Von Asmuth, J. and Maas, K.: The method of impulse response
moments: a new method integrating time series-, groundwater-
and eco-hydrological modelling, in: Impact of Human Activity
on Groundwater Dynamics. Proceedings of a Symposium Held
During the Sixth IAHS Scientific Assembly, 18–27 July 2001,
Maastricht, Netherlands, 51–58, 2001.

Von Asmuth, J. R., Bierkens, M. F. P., and Maas, K.: Trans-
fer function-noise modeling in continuous time using prede-
fined impulse response functions, Water Resour. Res., 38, 1287,
doi:10.1029/2001WR001136, 2002.

Von Asmuth, J. R., Maas, K., Bakker, M., and Petersen, J.: Mod-
eling time series of ground water head fluctuations subjected to
multiple stresses, Ground Water, 46, 30–40, doi:10.1111/j.1745-
6584.2007.00382.x, 2008.

Hydrol. Earth Syst. Sci., 18, 3207–3223, 2014 www.hydrol-earth-syst-sci.net/18/3207/2014/

http://dx.doi.org/10.1029/94JC00572
http://dx.doi.org/10.1016/j.jhydrol.2008.11.033
http://dx.doi.org/10.1088/0266-5611/11/2/005
http://dx.doi.org/10.1029/95WR01231
http://dx.doi.org/10.1029/2007WR006715
http://dx.doi.org/10.1029/2009WR007745
http://dx.doi.org/10.1111/j.1745-6584.2011.00859.x
http://dx.doi.org/10.1111/j.1745-6584.2011.00859.x
http://www.cs.unc.edu/~welch/kalman/media/pdf/Kalman1960.pdf
http://www.cs.unc.edu/~welch/kalman/media/pdf/Kalman1960.pdf
http://dx.doi.org/10.1029/95WR01945
http://dx.doi.org/10.1029/2004WR003874
http://dx.doi.org/10.1029/2001WR000338
http://dx.doi.org/10.1029/2010WR009144
http://dx.doi.org/10.1029/2006WR005144
http://dx.doi.org/10.1002/wrcr.20129
http://dx.doi.org/10.1016/j.advwatres.2005.07.003
http://dx.doi.org/10.1111/j.1745-6584.2007.00342.x
http://dx.doi.org/10.1029/2011WR010462
http://dx.doi.org/10.1016/j.sigpro.2005.05.015
http://dx.doi.org/10.1029/2006WR005287
http://dx.doi.org/10.1029/2001WR001136
http://dx.doi.org/10.1111/j.1745-6584.2007.00382.x
http://dx.doi.org/10.1111/j.1745-6584.2007.00382.x


A. H. Alzraiee et al.: Hydraulic tomography data fusion 3223

Wu, C.-M., Yeh, T.-C. J., Zhu, J., Lee, T. H., Hsu, N.-S., Chen, C.-
H., and Sancho, A. F.: Traditional analysis of aquifer tests: com-
paring apples to oranges?, Water Resour. Res., 41, W09402,
doi:10.1029/2004WR003717, 2005.

Yeh, T.-C. J. and Liu, S.: Hydraulic tomography: development
of a new aquifer test method, Water Resour. Res., 36, 2095,
doi:10.1029/2000WR900114, 2000.

Yeh, T.-C. J. and Zhu, J.: Hydraulic/partitioning tracer to-
mography for characterization of dense nonaqueous phase
liquid source zones, Water Resour. Res., 43, W06435,
doi:10.1029/2006WR004877, 2007.

Yin, D. and Illman, W. A.: Hydraulic tomography using
temporal moments of drawdown recovery data: a labo-
ratory sandbox study, Water Resour. Res., 45, W01502,
doi:10.1029/2007WR006623, 2009.

Zhu, J. and Yeh, T.-C. J.: Characterization of aquifer heterogeneity
using transient hydraulic tomography, Water Resour. Res., 41,
W07028, doi:10.1029/2004WR003790, 2005.

Zhu, J. and Yeh, T.-C. J.: Analysis of hydraulic tomography using
temporal moments of drawdown recovery data, Water Resour.
Res., 42, W02403, doi:10.1029/2005WR004309, 2006.

www.hydrol-earth-syst-sci.net/18/3207/2014/ Hydrol. Earth Syst. Sci., 18, 3207–3223, 2014

http://dx.doi.org/10.1029/2004WR003717
http://dx.doi.org/10.1029/2000WR900114
http://dx.doi.org/10.1029/2006WR004877
http://dx.doi.org/10.1029/2007WR006623
http://dx.doi.org/10.1029/2004WR003790
http://dx.doi.org/10.1029/2005WR004309

