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Abstract. Estimating soil moisture typically involves cali-
brating models to sparse networks of in situ sensors, which
introduces considerable error in locations where sensors are
not available. We address this issue by calibrating parame-
ters of a parsimonious soil moisture model, which requires
only antecedent precipitation information, at gauged loca-
tions and then extrapolating these values to ungauged loca-
tions via a hydroclimatic classification system. Fifteen sites
within the Soil Climate Analysis Network (SCAN) contain-
ing multiyear time series data for precipitation and soil mois-
ture are used to calibrate the model. By calibrating at 1
of these 15 sites and validating at another, we observe that
the best results are obtained where calibration and valida-
tion occur within the same hydroclimatic class. Additionally,
soil texture data are tested for their importance in improv-
ing predictions between calibration and validation sites. Re-
sults have the largest errors when calibration–validation pairs
differ hydroclimatically and edaphically, improve when one
of these two characteristics are aligned, and are strongest
when the calibration and validation sites are hydroclimati-
cally and edaphically similar. These findings indicate con-
siderable promise for improving soil moisture estimation in
ungauged locations by considering these similarities.

1 Introduction

Soil moisture estimates are needed routinely for many prac-
tical applications, such as irrigation scheduling and opera-
tion of farm machinery. They are typically produced either
through remote sensing or sparse networks of in situ sen-

sors. Although recent remote sensing studies have confirmed
that such measurements approximate in situ sensor networks
(Jackson et al., 2012), satellite-based sensors provide mea-
surements at a spatial resolution of several kilometers – too
large for daily agricultural decision making. On the other
hand, in situ sensor networks produce values that are difficult
to generalize to locations with no proximal sensors. Under
these circumstances, dynamic soil moisture evolution models
are typically used for soil moisture estimation at the desired
location, using information from the nearest available sen-
sors. This method of soil moisture estimation immediately
raises the issue regarding the type of model that is most ap-
propriate for such an application. One could think of several
different types of models that may be suitable.

The first group of soil moisture models considers only the
variability of precipitation, as it has been shown that pre-
cipitation variability is the primary mechanism for wetting–
drying (Entekhabi and Rodriguez-Iturbe, 1994). Many sub-
sequent models employed an “antecedent precipitation in-
dex” (API), defining a pre-established temporal window for
antecedent rainfall. This index is then used to estimate cur-
rent levels of soil moisture (Saxton and Lenz, 1967) and
has been implemented with recession modeling for soil wa-
ter in agriculture (Choudhury and Blanchard, 1983) and
also in weather prediction (Wetzel and Chang, 1988). Other
precipitation-focused approaches utilize stochastic models
to estimate the distributions of soil moisture values using
an initialization of daily rainfall (Farago, 1985). Both the
stochastic and API approaches require some initial condi-
tion for soil moisture at the forecast location – requiring ei-
ther professional judgment or a sensor. While these issues
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can be addressed using a soil water balance model, this type
of model must be recalibrated frequently, which most soil
moisture models are not, as its errors are cumulative (Jones,
2004).

The second group of models adopts a process-based ap-
proach, estimating soil moisture from surface radiation and
precipitation (Capehart and Carlson, 1994). These process-
based models are typically forced by evapotranspiration de-
mand and precipitation at their upper boundary and, if ap-
plicable, by groundwater at their lower boundary. More so-
phisticated models of this type, such as HYDRUS (Simunek
et al., 1998), attempt to improve predictions via detailed
knowledge of hydraulic soil parameters, information regard-
ing root structures, soil temperature readings, and detailed at-
mospheric/meteorological information, which are not widely
available, especially for routine applications envisaged here.

The third group of models is agriculturally focused, build-
ing model projections outward from existing instrumenta-
tion and additional measurements. Gamache et al. (2009) de-
veloped a soil drying model for which cone penetrometers
and soil moisture sensors are required. At most remote sites,
these data sources are not currently accessible. Another simi-
lar approach employs specific soil type information (theoret-
ically, publicly available data), but ultimately requires prox-
imal sensors to provide the needed soil moisture estimates
(Chico-Santamaria et al., 2009).

Pan et al. (2003) and Pan (2012) addressed many of the
shortcomings of the existing modeling approaches reviewed
above by developing what they called a “diagnostic soil
moisture equation” (i.e., model) in the form of a partial dif-
ferential equation representing the lumped water balance of a
vertical soil column, and representing the soil moisture at any
moment in time as a function of the sum of a temporally de-
caying sequence of observed past rainfall events. The model
has the advantage that initial soil moisture conditions are not
required (only antecedent precipitation data), nor must the
model be recalibrated periodically. However, this approach
does require a soil moisture sensor at the relevant location
for initial calibration of the model’s parameters. This method
has the disadvantage that the presence of soil heterogeneity
could necessitate a large number of sensors to account for
the spatial variation of soil moisture (Pan and Peters-Lidard,
2008). Furthermore, decision support often requires estima-
tion at locations lacking sensors.

The aim of this paper is to present and test an approach
that can help overcome the issues of calibration at ungauged
locations associated with the Pan et al. (2003) soil mois-
ture estimation model. The proposed solution involves cal-
ibrating the Pan (2012) diagnostic soil moisture equation
(model) at gauged sites and then extrapolating the calibrated
model to ungauged sites by invoking similarity. Similarity
here is defined on the basis of hydroclimatic characteristics,
using a classification system developed by Coopersmith et
al. (2012), as well as edaphic (soil) properties. The proposed
new scheme maintains the advantage of the parsimonious

soil moisture model of Pan et al. (2003) in that it does not re-
quire specification of initial soil moisture condition, and also
there is no need to recalibrate periodically. The model’s sim-
plicity also permits implementation of the model in a manner
that can easily be refit with new parameters, where necessary.
Section 2 provides more details on the approach.

To calibrate and validate the model, data from the US
Department of Agriculture’s (USDA) Soil Climate Analysis
Network (SCAN) were used (Schaefer et al., 2007). This na-
tional array of soil moisture sensors (with co-located precipi-
tation sensors) delivers hourly data at a variety of publicly ac-
cessible sites throughout the United States. Fifteen sensor lo-
cations with numerous years of high-quality, minimally inter-
rupted data were selected for further analysis. These sites dis-
play considerable hydrologic diversity, which aids in demon-
strating that the nationwide application of the proposed soil
moisture model using precipitation data represents a feasi-
ble goal. With respect to agricultural decision support, for
energy-limited sites, the value of hourly soil moisture es-
timates is found in the determination of whether or not a
field is trafficable – whether heavy equipment will damage
fields or become mired. With respect to water-limited sites,
the value of soil moisture estimates is found in devising op-
timal irrigation strategies that utilize limited water resources
most efficiently. Of the 15 SCAN sites examined, the 3 sites
in New Mexico, the site in Colorado, the site in Nebraska, the
site in Wyoming, and the 2 in Iowa are all water-limited (8 in
total). The remaining sites (7 in total) – located in Pennsylva-
nia (2), Arkansas, Georgia, South Carolina, North Carolina,
and Virginia – are all energy-limited. Results of the analysis
are given in Sect. 3, followed by discussion in Sect. 4 to sug-
gest further improvements, and conclusions are presented in
Sect. 5.

2 Methodology

The proposed modeling approach involves four steps, sum-
marized in Fig. 1 and described in more detail in the sections
below. First, the diagnostic soil moisture model of Pan (2012)
is calibrated at locations with ample data. Given that the fo-
cus of this study is on soil moisture estimation for agricul-
ture, we only consider prediction during the growing season,
which is appropriate given that the model does not address
snowmelt processes. Second, the predictions at these loca-
tions are improved using machine learning techniques for er-
ror correction. Third, the classification system proposed by
Coopersmith et al. (2012) is used to generalize the param-
eters calibrated at each location, enabling its application at
other sites characterized by the same hydroclimatic class.
Fourth, sites are examined for edaphic (soil property) sim-
ilarity in addition to hydroclimates. The results of these four
steps are then examined to identify which approach to re-
gionalization performs best.
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Figure 1. Methodological flow chart.

2.1 Step 1: calibration using a two-layer genetic
algorithm

Unlike the original diagnostic soil moisture calibrations, the
ultimate objective of this work is to enable agricultural deci-
sion support in near-real time. To this end, the daily model
from Pan (2012) is first modified to yield an hourly model
within the same framework. Genetic algorithms (GAs) are
then deployed to calibrate the model, enabling more effi-
cient exploration of the parameter search space than the tra-
ditional Monte Carlo search, which was the approach taken
by Pan (2012).

GAs, a subset of evolutionary algorithms, were originally
developed by Barricelli (1963) and have become increas-
ingly common in environmental and water resources appli-
cations, including the calibration of hydrologic model pa-
rameters (e.g., Cheng et al., 2006; Singh and Minsker, 2008;
Zhang et al., 2009).

In this work, a simple genetic algorithm uses the oper-
ations of selection, crossover, and mutation (for reference,
see Goldberg, 1989) to search for parameters that minimize
prediction errors from the diagnostic soil moisture equation
(Pan, 2012):

θest= θre+ (φe− θre)
(
1− e−c4β

)
. (1)

Here θest represents the best estimate of soil moisture dur-
ing a given hour.θre denotes residual soil moisture, the min-
imum quantity of moisture that is present regardless of the
length of time without precipitation.φe, the soil’s porosity,
signifies the maximum possible soil moisture value, at which
point the soil becomes saturated. Finally,c4 is a parameter
related to conductivity and drainage properties, essentially
defining the rate at which soil can dry. Ifc4 assumes a value
of zero, the soil is permanently at its residual soil moisture
value,θre – a soil that dries infinitely rapidly. Conversely, as
c4 becomes large, the soil will permanently assume the value
of its porosity,φe – a soil that dries infinitely slowly. Theβ

term in Eq. (1) is calculated in Eq. (2) below:
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Here,Pi denotes the quantity of rainfall during houri (day in
the original presentation in Pan et al., 2003). The soil depth
at which an estimation occurs is given byz. This convolution
summation has a temporal window ofn hours for consider-
ing past precipitation. For instance, today’s soil moisture is
strongly influenced by yesterday’s rainfall, influenced to a
lesser degree by last week’s rainfall, and not influenced at all
by rainfall from 10 years prior. Given the general limitation
of our data sets and the fact that shallow-depth soil moisture
is most relevant to decision support, all of our analyses occur
with measurements of 2 in. (∼ 5 cm) depth.

To choose the appropriate value forn, the value ofβ is
calculated at each hour throughout the data set – settingn

to a very large value (2000 h, denoted byM) initially. Next
this “beta series” (wheren = M) is correlated with a separate
beta series, calculated wheren � M. If the correlation coef-
ficient between these two time series approaches unity, then
the smaller value ofn is selected. Otherwise,n is increased
incrementally until the correlation between then � M beta
series and then = M beta series approaches unity.

Finally, the estimated soil water loss at houri, e.g., due
to evapotranspiration or deep drainage, is expressed by the
term ηi . As this algorithm does not presume any more de-
tailed knowledge of potential evaporation/drainage behav-
iors, this “eta series”, representing losses due to evapotran-
spiration and deep drainage, is modeled as a sinusoid (Pan,
2012) with period 8760 (the number of hours in a year).
The eta (η) series is required to calculate the beta (β) series
(Eq. 2), which is required to use the diagnostic soil moisture
equation (Eq. 1). Thus, before any other parameters are cho-
sen, a generalized sinusoidal form ofη is estimated as given
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in Eq. (3):

η = α sin(i − δ) + γ. (3)

Here,α represents the sinusoid’s amplitude,γ denotes the
vertical shift, andδ signifies the necessary phase shift. These
three parameters are fitted via the genetic algorithm such that
the correlation between the beta series (using the eta series
implied byα, γ , andδ) and the observed soil moisture series
(θobs) is maximized. Once values for the eta series are es-
tablished, the remaining three parameters of Eq. (1) (θre, φe,
andc4) are then fitted by a second application of the genetic
algorithm, this time minimizing the sum of squared errors
between the estimated soil moisture series(θest) and the ob-
served values(θobs).

2.2 Step 2: error correction using thek-nearest-
neighbor machine learning algorithm

After the parameters of the diagnostic soil moisture equation
(Eq. 1) have been calibrated, the hourly precipitation time se-
ries is used to generate a soil moisture time series during the
growing season months of interest. Discrepancies between
the observed soil moisture values(θobs) and the estimated
values(θest) are computed as shown in Eq. (4):

θobs= θest+ ε, (4)

whereε represents the error associated with any hour’s soil
moisture estimate.

To correct biases in these errors, thek-nearest-neighbor
algorithm (KNN; Fix and Hodges, 1951) is employed to
predict ε using the characteristics from the training data.
More specifically, the data are searched for the most simi-
lar matches in terms of time of day, day of year,θest, β(n),
andβ (M) − β(n). For example, if the model returns a pre-
diction of θest= 0.35 at 14:00 LT during July when rainfall
has been heavy recently but drier over a longer period, KNN
will search the training set for other estimates near 0.35 made
on mid-summer afternoons where a similar recent rainfall
pattern has been observed. Next, the algorithm averages the
value of the error,ε, associated with those types of condi-
tions, producing an estimated error,εest. Each validation es-
timate is then adjusted to beθest+εest. This technique allows
consistent model biases, such as underestimating wetter days
and overestimating drier days, to be corrected.

This error correction model also accounts for diurnal soil
moisture variations that were not considered in developing
the diagnostic soil equation, which was designed to deliver
daily soil moisture estimates. Consider a soil moisture esti-
mate at 16:00, after soil has had a full day of sunlight (the-
oretically) to dry. As the diagnostic soil moisture equation
only considers drainage and evapotranspiration losses on a
daily basis,θest will be larger thanθobs. Yet, because this
type of mistake presumably occurred frequently throughout
the training data, the algorithm will locate other 16:00 esti-
mates, each of which will be biased in the same direction,

and our final soil moisture estimates will take this bias into
account, improving the results as shown subsequently.

To assess the performance of the soil moisture models
with and without machine learning, anR2 value as defined
in Eq. (5) is used, as this value represents the proportion of
variance in soil moisture explained by the developed model:

R2
= 1−

SSR

SST
, (5)

where SSR denotes the sum of squared residuals and the SST
term signifies the total sum of squares, i.e., the sample’s vari-
ance.

2.3 Step 3: estimation by hydroclimatic similarity

This step tests the hypothesis that the classification system by
Coopersmith et al. (2012) can be used to generalize the cal-
ibrated parameters for the diagnostic soil moisture equation
using hydroclimatic similarity. If two locations are assigned
the same hydroclimatic classification, then the calibrated pa-
rameters from one SCAN sensor within that class will be as-
sumed to perform well at another.

This hypothesis was tested at 15 SCAN sensors for which
soil moisture and precipitation data are available hourly
for a period of several years. These sensors are located in
diverse geographic locations and hydroclimatic classes in
Iowa, North Carolina, Pennsylvania, New Mexico, Arkansas,
Georgia, Virginia, South Carolina, Nebraska, Colorado, and
Wyoming. The data at each of these locations were divided
into training/validation sets, and parameters were calibrated
using training data only. Next, these parameters were em-
ployed on the validation sets at the locations for which they
were calibrated. The subsequentR2 values (proportion of
variance in soil moisture explained by the machine-learning-
enhanced diagnostic soil moisture equation; see Steel and
Torrie, 1960, for reference) defined a baseline level of per-
formance for that site.

The process of cross-validation is detailed below:

1. Consider two sites,x andy, chosen from the 15 avail-
able calibrated locations.

2. Estimate the soil moisture values in the validation data
set of sitey, using the parameters calibrated from the
training data set at sitex.

3. Record the difference between theR2 baseline value at
site y (obtained using parameters calibrated at sitey)

and the performance obtained at sitey using parameters
calibrated at sitex.

4. Repeat steps 1–3 for all 210 possible(x,y) pairs where
x 6= y.

Note that(x,y) and(y,x) are not equivalent. One signifies
the performance of parameters calibrated at sitex making
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Figure 2. Improvements from machine learning (KNN) models of
residuals.

predictions at sitey; the other signifies the performance of
parameters calibrated at sitey making predictions at sitex.

At this point, three types of(x,y) pairs emerge. If the
hypothesis is correct, then the first type, whenx andy fall
within the same hydroclimatic class, should display limited
losses in predictive power. The second type, whenx andy

fall within a “similar” hydroclimatic class (two classes dif-
fering by a single division of the classification tree developed
in Coopersmith et al., 2012), should display greater losses of
predictive power. Finally, the third type, whenx andy fall
in two unrelated classes, should display the largest loss of
predictive power.

2.4 Step 4: estimation by hydroclimatic and edaphic
similarity

The final step extends the hypothesis proposed in step 3 by
evaluating the impacts of soil texture and type on soil mois-
ture predictive power. The 15 sites from SCAN are examined
based upon the soil textural information available from the
pedon soil reports that SCAN provides, as well as data from
the Natural Resources Conservation Service’s (NRCS) soil
survey database1.

This information allows sites already deemed hydrocli-
matically similar to be further subdivided into sites that are
and are not edaphically similar. Analogous to the previous
section, we consider pairs of sites,x andy, where parame-
ters are calibrated at sitex and validated at sitey. In this case,
four groups can be defined – the first, wherex andy and hy-
droclimatically similar; the second, wherex andy are hydro-
climatically similar but differ edaphically; the third, wherex
and y are edaphically similar but differ hydroclimatically;
and, finally, wherex andy are hydroclimatically and edaph-
ically dissimilar.

1http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.
aspx.

3 Results

This section begins by presenting the results of the machine
learning approach used in error correction during the ini-
tial calibration step (Sect. 3.1). Next, Sect. 3.2 presents re-
sults for the hydroclimatic similarity analysis, illustrating the
performance of calibration–validation pairs within the same
class and without. Finally, Sect. 3.3 shows how the predic-
tive power improves when both hydroclimatic and edaphic
similarity are considered.

3.1 Testing the value of machine learning error correc-
tion for soil moisture prediction using the diagnostic
soil moisture equation

Figure 2 shows the performance of the calibrated parame-
ters for the 15 SCAN sites using only the diagnostic soil
moisture equation (step 1 of the methodology) along with
the subsequent improvement in performance following ma-
chine learning error correction (step 2). In each case, the six
parameters required for the implementation of the diagnos-
tic soil moisture equation are calibrated using training data
from before 2010. Sensors with hourly precipitation and soil
moisture time series data between 2004 and 2009 (inclusive)
provide 4 to 6 years of training data (some sites are missing
1 or 2 years of data). Only days of the year where snow cover
is unlikely are used to train the algorithm (from the 100th to
300th day of the year in all locations, for consistency). Vali-
dation data consist of days 100–300 for 2010 and 2011.

The results illustrate that, in all 15 test cases, performance
within the validation sample is improved by machine learn-
ing modeling of residuals from the training set; in some
cases, as much as 26.9 % of the unexplained variance (site
2091) in soil moisture is corrected from by this technique.
The average results (far right column, Fig. 2) illustrate that
the diagnostic soil moisture equation explains just 69.2 %
of the variance in soil moisture (ρ = 0.83) before machine
learning corrections occur, but explains 77.5 % of the vari-
ance in soil moisture (ρ = 0.88) thereafter.

To explore these findings in more detail, 3 of the
15 SCAN sites, chosen to represent different hydrocli-
matic locations – New Mexico (site 2015, hydroclimate
IAQ/southwestern desert, loamy sand), Iowa (site 2068, hy-
droclimate ISCJ/northern Midwest plains, silty clay loam),
and Georgia (site 2013, hydroclimate LWC/southeastern for-
est, sandy loam) – are examined to illustrate how improve-
ments from adding machine learning error models to the di-
agnostic soil moisture equation differ across sites. The three
hydroclimatic classes (IAQ, ISCJ, and LWC) are taken from
Coopersmith et al. (2012). IAQ denotesIntermediate sea-
sonality,Arid climates, and (Q), max runoff occurring be-
tween June and August. ISCJ signifiesIntermediate season-
ality, Semi-arid climates,Cold runoff (maximum runoff in
February or March), and maximum rainfall inJune/July.
LWC representsLow seasonality,Winter rainfall (maximum
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Figure 3. Soil moisture time series, SCAN site 2015, New Mex-
ico (USA), actual soil moisture (blue line), diagnostic soil moisture
equation estimate (red line), and diagnostic soil moisture equation
with machine learning error correction (green line). Hydroclimate:
IAQ (intermediate seasonality, arid, summer peak runoff). Soil tex-
ture: loamy sand.

Figure 4. Soil moisture time series, SCAN site 2068, Iowa (USA),
line colors from Fig. 3. Hydroclimate: ISCJ (intermediate seasonal-
ity, semi-arid, winter peak runoff, summer peak precipitation). Soil
texture: silty clay loam.

precipitation during February or March), andCold runoff.
Using error correction models for prediction at these sites in-
creasedR2 values by an average of 8.2 %, which is similar
to the 8.3 % improvement inR2 averaged across all 15 sites.
Thus, these three locations are representative in terms of both
hydroclimatic and edaphic diversity and their responsiveness
to machine learning.

The base soil moisture model results from applying step
1 at the three sites are displayed in Figs. 3–5. These predic-
tions are shown with the results produced by deploying the
machine learning algorithm (KNN) in step 2 to remove bias
and correct errors. In each image, the blue line represents the
observed soil moisture readings, the red line represents the
estimates generated by the diagnostic soil moisture equation,
and the green line represents those predictions after the ma-
chine learning algorithm has removed biases and corrected
errors. Soil moisture values (y axis) are presented as volu-
metric percentage (0–100).

In Fig. 3, the diagnostic soil moisture equation is able
to trace the general trend of the soil moisture time series
(ρ = 0.860). However, during the middle of the time series,
in which the observed soil moisture values fall below 5 %, the

Figure 5. Soil moisture time series, SCAN site 2013, Georgia
(USA), line colors from Fig. 3. Actual soil moisture (blue line),
diagnostic soil moisture equation estimate (red line), and diagnostic
soil moisture equation with ML error correction (green line). Hy-
droclimate: LWC (low seasonality, winter peak precipitation, winter
peak runoff). Soil texture: sandy loam.

benefits of machine learning error correction are most note-
worthy. There are other hours scattered throughout the data
set where the green line (prediction with machine learning)
follows the blue line (observed values) much more closely
than the red line (diagnostic soil moisture equation). The
green line (ρ = 0.917) not only improves upon the correla-
tion value of Pearson’s Rho (the square root of theR2 value
in Eq. 5), but also displays marked improvement for those
cases in which the diagnostic soil moisture equation produces
significant errors.

During the validation period, specifically 2010, wetter
conditions were observed than were present during calibra-
tion. At this SCAN site, before 2010, the average soil mois-
ture value observed was 28.55 %, with only 25 % of val-
ues exceeding 35 % volumetric soil moisture. However, in
2010, the average soil moisture value measured was 33.16 %
with 45 % of values exceeding 35 %. The machine-learning-
driven error correction improves the diagnostic soil moisture
equation (ρ = 0.846) significantly (ρ = 0.915), but fails to
raise its forecasts to reach some of the wetter conditions ex-
perienced in validation. Underestimations of this nature, al-
though detrimental in terms of numerical errors, are not nec-
essarily a problem for decision support of agricultural or con-
struction activities, for example. If a model warns that a site
is very wet and in reality it is even wetter than predicted,
the user has still been given adequate warning not to attempt
activity at that site. It is important to note that small errors
are more significant in terms of decision support (specifically
when and where to irrigate) during dry conditions. Generally,
the model’s errors are smaller, in absolute terms, during drier
conditions. This analysis’s approach to error correction, as
it relies on previous errors to predict future errors, will not
address long-term trends within the soil moisture record.

In Fig. 5, a soil moisture series from Georgia is mod-
eled by the diagnostic soil moisture equation. Even before
adding any error correction, the equation performs well (ρ =

0.936) and the machine learning approach yields a smaller
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Figure 6. Soil moisture time series, SCAN Site 2015, New Mex-
ico (USA), actual soil moisture (blue line), diagnostic soil moisture
equation estimate (red line), and diagnostic soil moisture equation
with machine learning error correction (green line).

improvement (ρ = 0.941). It is worth noting that machine
learning does not damage an already excellent performance,
offering slight improvements when possible and essentially
no correction when training data suggest the model has al-
ready performed adequately.

Table 1 presents all 15 sites for which the diagnostic soil
moisture equation has been calibrated, including informa-
tion regarding their hydroclimatic class from Coopersmith et
al. (2012), their soil textural characteristics, and their perfor-
mance before and after the KNN bias correction process.

3.2 Bias correction – more detailed results

In addition to generalizing the parameters calibrated in the
diagnostic soil moisture equation, the error correction ap-
proach allows for systematic biases to be removed by search-
ing training data for similar conditions and then predicting
the types of mistakes most likely to occur. Figure 6, by zoom-
ing in upon a 30-day period from Fig. 2, illustrates how ma-
chine learning reduces errors by introducing a diurnal cycle
into a model that previously lacked one. The remaining bias
is likely explained by a slightly wetter training data set as
compared with the validation data. It is possible that the di-
urnal cycle at some locations reflects a soil moisture probe’s
dependency on electromagnetic properties driven by temper-
ature change (apparent permittivity) rather than hydrologic
processes (Rosenbaum et al., 2011). However, the model’s
ability to respond to these nuances would not compromise
its performance were these nuances subsequently removed.

Any corrective algorithm will, over thousands of valida-
tion points, push the estimate away from the observed value
in some cases. However, the results from Table 1 demon-
strate that its overall performance represents an improvement
at all sites, and thereby justifies its use. Regarding the issue
of “measurement artifacts”, whether the diurnal cycle is gen-
uine or an idiosyncratic sensor output, the model is tasked
with calibrating itself and correcting biases as defined by
the empirically reported data. Figure 6 illustrates its ability
to do so. Were the sensors to no longer report such a di-

Figure 7. Bias correction analysis, SCAN site 2015 (IAQ, desert,
loamy sand).

Figure 8. Bias correction analysis, SCAN site 2068 (ISCJ, plains,
silty clay loam).

urnal pattern (i.e., it is merely a measurement artifact, and
subsequently corrected), the machine learning step would no
longer observe those biases and, consequently, no longer in-
troduce such a pattern. The accuracy of SCAN is a relevant
inquiry, but unfortunately not within the scope of this paper.

By addressing such systematic biases, machine learning
enables model performance to improve with each succes-
sive growing season as the training data set expands. For
instance, although the fields in Iowa endured flooding dur-
ing the validation period and subsequently made errors, such
errors would eventually populate the training data. The next
time such flooding occurs, the model is likely to recognize
the occurrence of those same conditions and adjust the di-
agnostic soil moisture equation’s predictions accordingly. In
this vein, model performance is likely to improve over time,
especially with the models already showing reasonable accu-
racy using only a few years of training data.

Figures 7, 8, and 9 present these results in more detail for
each of the three SCAN sites presented in Figs. 3, 4, and 5.
In each figure, the upper-left image presents the average bias
correction (change in percent soil moisture) for each hour of
the day (0–23). At all three sites, bias corrections display a
clear diurnal pattern – that is to say the removal of a diurnal
cycle is a substantial role of machine learning under a variety
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Table 1.The 15 SCAN sites: class and soil information and performance.

Hydro- RMSE R2

Site ID climate Soil information RMSE w/ KNN R2 w/ KNN

2008 LJ Sandy loam 8.38 7.69 0.590 0.726
2013 LWC Sandy loam 2.16 2.06 0.876 0.885
2015 IAQ Loamy sand 3.29 2.37 0.740 0.841
2017 ISQJ Sandy loam 3.62 3.27 0.637 0.701
2018 IAQ Loamy sand* 2.23 2.16 0.803 0.828
2028 LPC Loam 4.89 4.71 0.707 0.738
2031 ISQJ Silty clay loam 5.46 6.00 0.687 0.750
2036 LPC Silt loam 4.61 3.95 0.635 0.726
2038 LJ Sandy loam 4.81 4.51 0.546 0.584
2068 ISCJ Silty clay loam 5.28 4.03 0.716 0.837
2089 LJ Sandy loam 6.7 6.31 0.682 0.697
2091 LPC Silt 8.12 6.89 0.539 0.808
2107 IAQ Loamy sand 1.98 1.85 0.790 0.843
2108 IAQ Loamy sand/sand 1.26 1.12 0.828 0.863
2111 ISQJ Silty clay loam 5.38 5.01 0.607 0.796

* Not similar to other sandy soils; see Fig. 12.

Figure 9. Bias correction analysis, SCAN site 2013 (LWC, woods,
sandy loam).

of hydroclimatic and edaphic conditions. The upper-right im-
age of each figure presents the bias correction as a function of
the unadjusted soil moisture estimate – essentially, whether
there exists a systemic over- or underestimation when values
are high or low.

The first two sites (Figs. 7 and 8) do not present a clear
pattern, but Fig. 9 displays a trend suggesting that the high-
est estimates of soil moisture tend to be overestimates and
the lowest estimates of soil moisture tend to be underesti-
mates – but these biases are removed via machine learning.
The lower-left image presents bias correct as a function of the
day of the year (from 100 to 300, the days of the year when
the model is applied). At all three sites, the seasonal cycle
does appear in terms of the patterns of bias correction, but
the pattern is noisier than the diurnal cycle. The magnitudes
of the adjustments are largest in the monsoon-affected desert
of New Mexico, a bit smaller in the Midwestern plains char-

acterized by less extreme seasonal behavior, and smallest in
the southeast where seasonal variations are low.

Finally, the lower-right image relates bias correction to
the beta series from the diagnostic soil moisture equation
(Pan, 2012), a convolution of a decaying precipitation time
series working backwards temporally from the current time.
Stated differently, these charts relate bias correction to the
amount of antecedent precipitation (with more recent pre-
cipitation weighted more heavily). In Fig. 7 (plains, silty
clay loam), the model tends to underestimate moisture when
large quantities of antecedent rainfall are present, where in
Fig. 9 (woods, sandy loam), once antecedent precipitation
becomes non-trivial, the opposite pattern is displayed. This
is consistent with the finer Midwestern soils’ proclivity for
ponding/flooding due to larger proportions of clay. In these
cases, larger amounts of rain will soak soils from above, and
capillary rise might further soak sensors from below, leading
to underestimation from the diagnostic soil moisture equa-
tion and subsequent machine learning correction. By con-
trast, with sandier soils, drainage occurs easily, leading to
higher rates of loss than the eta series (Pan, 2012) would pre-
dict (there is more available water to lose), leading to over-
estimation with large amounts of antecedent rainfall.

3.3 Cross-validation results for hydroclimatic
similarity: qualitative findings and significance
testing

To test the hypothesis that models calibrated in one location
can be used in a hydroclimatically similar location, cross-
validation was used as described in step 3 of Sect. 2. The 15
SCAN sites yield 152 = 225 possible(x,y) pairs. Fifteen of
these 225 pairs occur whenx = y, establishing the baseline
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Figure 10. Loss of predictive power (R2) (y axis) between base-
line predictions (model calibrated in the same watershed) and cross-
validation predictions (model calibrated in other watersheds).

level of performance for a given site (validation performed
using the parameters calibrated at that same location). Of
the 210 remaining(x,y) pairs, 120 of them consist of paired
catchments in whichx andy are located in unrelated classes,
60 consist of paired catchments in whichx andy are located
in a similar class (different by a single split within the clas-
sification tree), and 30 consist of paired catchments in which
x andy fall within the same hydroclimatic class (butx and
y do not represent the same catchment). Figure 10 presents
box plots illustrating the change inR2 values for these three
sets of pairs in a manner analogous to the differences shown

Table 2.Cross-validation results.

Unrelated Similar Same
class class class

Median −10.5 % −7.3 % −0.8 %
Mean −13.7 % −7.7 % −3.4 %
Standard deviation 1.0 % 1.1 % 1.4 %

Figure 11.428 MOPEX catchments colored by hydroclimatic class
(Coopersmith et al., 2012). Fifteen SCAN sensors (for which the
diagnostic soil moisture equation is calibrated) are shown as colored
circles. Circle colors correspond to the hydroclimatic class of the
point in question. Circles with dotted borders are unique (no other
sensor for calibration is available within that class).

in Fig. 2. Table 2 presents the quantitative results, again av-
eraging the deterioration of performance in terms of change
in R2.

These findings show that calibrating the model at one lo-
cation and applying those parameters elsewhere within the
same class (green) is preferable to applying those parameters
in a similar, but not identical, class (yellow) and vastly supe-
rior to applying those parameters in an unrelated class (red).
The differences between any two clusters (same class, sim-
ilar class, unrelated class) are all significant at theα = 0.01
level (p < .001 in all cases) as calculated by a two-sample,
heteroscedastict test (Welch, 1947).

3.4 Impact of soils: cross-validation results for edaphic
and hydroclimatic similarity

To isolate the impacts of soil types (edaphic similarity) on
soil moisture prediction, groups of sensor locations among
the 15 SCAN sites that are hydroclimatically similar were
analyzed, shown in Fig. 11. The soil textural data for each
of these 15 sensors are plotted on a soil texture pyramid dia-
gram in Fig. 12. These data were obtained from either pedon
soil reports available through SCAN (which provide precise
percentages of clay, silt, and sand) or, where this information

www.hydrol-earth-syst-sci.net/18/3095/2014/ Hydrol. Earth Syst. Sci., 18, 3095–3107, 2014



3104 E. J. Coopersmith et al.: Using similarity of soil texture and hydroclimate to enhance soil moisture estimation

Figure 12. The 15 SCAN sensors, color-coded to match their hy-
droclimatic class, with similar soil textures shaded.

was unavailable, from soil information in the national soil
Web database2.

Of the 13 sensors from the 4 hydroclimatic classes with
multiple SCAN sensors (light green, blue, dark green, and
brown in Figs. 11 and 12), 30 (x,y) pairs exist where the
model can be calibrated at sitex and its parameters applied
at sitey. Note that (x,y) is not equivalent to (y,x) as the
sites for calibration and validation are reversed. Of these 30
pairs, 20 pairs are edaphically similar as well. However, 10 of
them include a pair of points where the soil types or terrain
types are notably misaligned (for example, light green dots
in Fig. 12 where two of the three sensors are in silty clay
loam and the third is in sandy loam – notably different soil).
A similar analysis to the one presented in Fig. 10 and Table 2
has been reproduced, comparing the loss in predictive power
(R2) for the 20 pairs with similar hydroclimates and soils
against the loss for the 10 pairs in which either the soil texture
(Fig. 12) or type does not align. The average loss of 1.0 % for
the 20 very similar pairs is a much smaller decline than the
8.0 % average decline observed for the 10 pairs for which
soil/terrain information suggests dissimilarity. These results
are significant, with ap value of approximately 0.02. Addi-
tionally, the uppermost two green dots in Fig. 10, where cal-
ibrated parameters at one location perform poorly at another
of similar hydroclimatic class, fall within these 10 cases.

These observations show the importance of soil infor-
mation, or edaphic similarity. While pairs of calibration–
validation locations with similar hydroclimates, but dissim-
ilar soils, show a decline in performance as compared with
pairs of locations where both are similar, so too do loca-

2http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx

Figure 13. Venn diagram of modeling errors with similar and dif-
ferent soils and hydroclimates.

tions with similar soils but dissimilar hydroclimates. The
shaded circles in Fig. 12 illustrate groups of sensors that are
quite similar in terms of soil textures. However, despite their
soil similarities, differences in hydroclimates hinder cross-
application, showing a decline in performance of 10.9 % for
all (x,y) pairs within the shaded regions of Fig. 12 for which
x andy are not from the same hydroclimatic class.

As summarized in Fig. 13, these results suggest that, in
cases where both soil type and hydroclimate align, very little
performance is lost when parameters are re-applied (1.0 %),
moderate declines in performance are observed when one of
these two factors is aligned (8.0 % if hydroclimates align and
soil types do not; 10.9 % if soil types align but hydroclimates
do not), and large declines in performance appear when nei-
ther align (20.5 %). Clearly both types of attributes are im-
portant and should be considered in future modeling work
in which the relative importance of hydroclimates and soil
textures can be examined in greater detail.

4 Discussion: future work to improve predictions

This section discusses other approaches that could be used
in the future to improve and broaden the applicability of
the methods developed in this work. First, we will consider
micro-topographic effects on soil moisture, as local peaks
and valleys can cause soils to dry more or less rapidly. Sec-
ond, we will discuss a conceptual omission within the diag-
nostic soil moisture equation – infiltration excess. Finally, we
will discuss the role of future satellite data on soil moisture
modeling.

4.1 Estimates enhanced by topographic classification

Ultimately, the combination of a hydroclimatic classification
system and the diagnostic soil moisture equation demon-
strates a generalization of calibrations, facilitating predic-
tions at any location where a viable sensor exists within
a similar hydroclimatic class and soil type. However, the
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lumped, bucket model is not ideally suited for landscapes
with complex topography. Conveniently, the majority of
SCAN sites are placed on relatively flat surfaces. Integra-
tion of topographic insights is a fertile area for future re-
search. One possible approach to further improving predic-
tive accuracy is to disaggregate the soil moisture estimates as
a function of local topography. While SCAN sites used for
soil moisture data are generally located on flat surfaces, pre-
dictions may be needed at locations located on ridges or in
valleys where the soils are likely to be wetter or drier than
their surroundings. This requires the notion of regional topo-
logical classification. In this manner, the notion of similarity
is extended to include hydroclimatology, soil characteristics,
and topographic designation (ridge, slope, valley, etc.). Pre-
liminary analyses suggest that small-scale topography does
play a meaningful role in the wetting–drying process. Future
research with more extensive data sets in locations with more
complex topological contours could improve soil moisture
predictions by enabling the models developed in this work to
be adjusted as a function of local topographic classification.

4.2 An enhanced diagnostic soil moisture equation

The diagnostic soil moisture equation could also be improved
in future modeling efforts by considering overland and sub-
surface flows, specifically in areas characterized by more
complex topography. Currently, the model assumes that, in
the absence of saturation, all rainfall will ultimately infil-
trate, as the porosity parameter serves as an upper bound on
soil moisture levels. The diagnostic soil moisture equation
was designed originally as a daily model, and it is proba-
bly rare that on any given day a significant fraction of pre-
cipitation does not infiltrate. However, at the hourly scale
it is quite possible that the water from an intense rainfall
event will not make its way into the soil at the location of
the sensor. To address this lateral transfer phenomenon, ad-
ditional parameters can be introduced into the diagnostic soil
moisture equation that place an upper bound on the quan-
tity of rainfall that can be infiltrated during any hour (or
other interval) of the convolution calculation for any partic-
ular soil type. Agricultural decision support includes traffi-
cability when wet (Coopersmith et al., 2014) and irrigation
support when dry. While overland flow is perhaps an un-
needed component in water-limited catchments where irri-
gation schemes represent the most significant soil-moisture-
related decision, in wetter catchments, in which trafficability
is a real concern, such an addition could improve the model.
While this approach would require the fitting of additional
parameters, it is likely that predictions would be improved.
These additional parameters could also be considered in as-
sessing cross-site edaphic similarity using the methods de-
scribed above, although they may be highly correlated with
existing parameters such as porosity, residual soil moisture,
and drainage.

4.3 Water balance models and up-scaling

The diagnostic soil moisture equation used in this paper (Pan
et al., 2003; Pan, 2012) was an appropriate choice due to its
ability to generate soil moisture estimates without the need
for knowledge of antecedent soil moisture conditions. Koster
and Mahanama (2012) and Orth et al. (2013) have devel-
oped approaches to estimate soil moisture at the watershed
scale by leveraging hydroclimatic variability and long-term
streamflow measurements in a water-balance model – also
without employing previous soil moisture conditions. If the
parameters calibrated and then generalized in this work pro-
duce point estimates of soil moisture at a diversity of loca-
tions, integration with a water balance approach could help
with the up-scaling process.

5 Conclusions

This work has demonstrated the feasibility of estimating soil
moisture at locations where soil moisture sensors are unavail-
able for calibration, provided they fall within hydroclimati-
cally and edaphically similar areas to gauged locations. By
calibrating the diagnostic soil moisture equation via a two-
part genetic algorithm, improving its performance via a ma-
chine learning algorithm for error correction, then validating
that algorithm at the same location in subsequent years, a
baseline level of predictive performance is established at 15
locations. Next, these results are cross-validated – deploy-
ing parameters calibrated at a given site at sites of similar
and different hydroclimatic classes, demonstrating that pa-
rameters can be re-applied elsewhere within the same class,
but not without. Finally, by incorporating edaphic informa-
tion, we observe the strongest cross-validation results when
hydroclimatic and edaphic characteristics align. As only 24
hydroclimatic classes describe the entire nation (and only 6
describe a significant majority), it is entirely possible that a
couple dozen well-placed soil moisture sensors can enable
reasonably accurate soil moisture modeling at any location
within the contiguous United States.

It is likely that the types of errors made when parameters
are cross-applied between sites of different hydroclimates
will differ from the types of errors that appear when the sites
differ edaphically. Further research extending beyond model
performance into the specific conditions under which mod-
els perform less effectively along with the magnitude and
bias of those errors would be highly illustrative for future
researchers.

This analysis can improve agricultural decision support
by offering insight into locations that can benefit from tar-
geted irrigation in drier conditions or, conversely, by mini-
mizing risks of ruts and damaged equipment when fields are
no longer trafficable during wetter conditions. Scaling the
results of these models upward can assist with larger-scale
assessments of flood risks or as calibration–validation tools

www.hydrol-earth-syst-sci.net/18/3095/2014/ Hydrol. Earth Syst. Sci., 18, 3095–3107, 2014



3106 E. J. Coopersmith et al.: Using similarity of soil texture and hydroclimate to enhance soil moisture estimation

for satellite estimates of soil moisture. Scaling these results
downward can help maximize yields. Given the ubiquity of
precipitation data, which are the only inputs these models
require, better understanding of the transferability of mod-
eled parameters is a step towards far-wider availability of soil
moisture estimates.

Leveraging these findings, the discussion section also pre-
sented the results of preliminary analysis that illustrates how
further improvements in soil moisture predictions could be
gained by disaggregating based on local topography. This
would enable more accurate predictions at sites character-
ized by peaks and valleys that dry faster or slower than the
relatively flat locations at which soil moisture algorithms are
generally calibrated. Incorporating overland flow into the di-
agnostic soil moisture equation and integrating satellite data
into the approach could also improve predictions in the fu-
ture.
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