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Abstract. We present a global water cycle reanalysis that
merges water balance estimates derived from the Gravity Re-
covery And Climate Experiment (GRACE) satellite mission,
satellite water level altimetry and off-line estimates from sev-
eral hydrological models. Error estimates for the sequential
data assimilation scheme were derived from available uncer-
tainty information and the triple collocation technique. Er-
rors in four GRACE storage products were estimated to be
11–12 mm over land areas, while errors in monthly storage
changes derived from five global hydrological models were
estimated to be 17–28 mm. Prior and posterior water storage
estimates were evaluated against independent observations
of river water level and discharge, snow water storage and
glacier mass loss. Data assimilation improved or maintained
agreement overall, although results varied regionally. Un-
certainties were greatest in regions where glacier mass loss
and subsurface storage decline are both plausible but poorly
constrained. We calculated a global water budget for 2003–
2012. The main changes were a net loss of polar ice caps
(−342 Gt yr−1) and mountain glaciers (−230 Gt yr−1), with
an additional decrease in seasonal snowpack (−18 Gt yr−1).
Storage increased due to new impoundments (+16 Gt yr−1),
but this was compensated by decreases in other surface wa-
ter bodies (−10 Gt yr−1). If the effect of groundwater de-
pletion (−92 Gt yr−1) is considered separately, subsurface
water storage increased by+202 Gt yr−1 due particularly
to increased wetness in northern temperate regions and in
the seasonally wet tropics of South America and south-
ern Africa. The reanalysis results are publicly available via
www.wenfo.org/wald/.

1 Introduction

More accurate global water balance estimates are needed,
to better understand interactions between the global climate
system and water cycle (Sheffield et al., 2012), the causes
of observed sea level rise (Boening et al., 2012; Fasullo et
al., 2013; Cazenave et al., 2009; Leuliette and Miller, 2009)
and human impacts on water resources (Wada et al., 2010,
2013), and to improve hydrological models (van Dijk et al.,
2011) and initialise water resources forecasts (Van Dijk et al.,
2013). The current generation of global hydrological models
have large uncertainties arising from a combination of data
deficiencies (e.g. precipitation in sparsely gauged regions;
poorly known soil, aquifer and vegetation properties) and
overly simplistic descriptions of important water cycle pro-
cesses (e.g. groundwater dynamics, human water resources
extraction and use, wetland hydrology and glacier dynam-
ics). Data assimilation is used routinely to overcome data
and model limitations in atmospheric reconstructions or “re-
analysis”. In hydrological applications, there has been an
(over-)emphasis on parameter calibration (Van Dijk, 2011),
with data assimilation approaches largely limited to flood
forecasting. New applications are being developed, however
(Liu et al., 2012a), including promising developments to-
wards large-scale water balance reanalyses, alternatively re-
ferred to as monitoring, assessment or estimation (van Dijk
and Renzullo, 2011).

Here, we undertake a global water cycle reanalysis for
the period 2003–2012. Specifically, we attempt to merge
global water balance estimates from different model sources

Published by Copernicus Publications on behalf of the European Geosciences Union.

www.wenfo.org/wald/


2956 A. I. J. M. van Dijk et al.: A global water cycle reanalysis (2003–2012)

with an ensemble of total water storage (TWS) estimates de-
rived from the Gravity Recovery And Climate Experiment
(GRACE) satellite mission (Tapley et al., 2004). Various al-
ternative approaches can be conceptualised to achieve this
integration, and the most appropriate among these is not ob-
vious. Our approach was to use water balance estimates gen-
erated by five global hydrological models along with sev-
eral ancillary data sources to generate an ensemble of prior
estimates of monthly water storage changes. Errors in the
different model estimates and GRACE products were esti-
mated spatially through triple collocation (Stoffelen, 1998).
Subsequently, a data assimilation scheme was designed to
sequentially merge the model ensemble and GRACE obser-
vations. The reanalysis results were evaluated with indepen-
dent global streamflow records, remote sensing of river wa-
ter level and snow water equivalent (SWE), and independent
glacier mass balance estimates.

2 Methods and data sources

2.1 Overall approach

We conceptualise TWS (S, in mm) as the sum of five differ-
ent water stores (s in mm), i.e. water stored in snow and ice
(ssnow), below the surface in soil and groundwater (ssub) and
in rivers (sriv), lakes (slake) and seas and oceans (ssea). We ig-
nore atmospheric water storage changes, which are removed
from the signal during the GRACE TWS retrieval process
(e.g. Wahr et al., 2006), and vegetation mass changes, which
are assumed negligible. The GRACE TWS estimates are de-
noted byy and have the same units asS but are distinct in
their much smoother spatial character.

To date, data assimilation schemes developed for large-
scale water cycle analysis typically use Kalman filter ap-
proaches (Liu et al., 2012a). This requires calculation of co-
variance matrices and, presumably because of complexity
and computational burden, has only been applied for single
models and limited regions (e.g. Zaitchik et al., 2008). We
aimed to develop a data assimilation scheme that made it pos-
sible to use water balance estimates derived “off-line” (i.e. in
the absence of data assimilation) so we could use an ensem-
ble of already available model outputs. In the data assimila-
tion terminology of Bouttier and Courtier (1999), our scheme
could be described as sequential and near-continuous with a
spatially variable but temporally stable gain factor. The char-
acteristics of the data assimilation problem to be addressed
in this application were as follows:

1. alternative GRACE TWS estimates (yo) were available
from different processing centres and error estimates
were required for each;

2. alternative estimates for some of the stores,s, were
available from different hydrological models, with
higher definition thanyo;

3. error estimates were required for each store and data
source;

4. a method was required to spatially transform betweens

andy as part of the assimilation.

2.2 Data sources

The data used include those needed to derive prior estimates
for each of the water cycle stores, the GRACE retrievals to
be assimilated and independent observations to evaluate the
quality of the reanalysis. All are listed in Table 1 and de-
scribed below.

Monthly water balance components from four global land
surface model estimates at 1◦ resolution were obtained from
NASA’s Global Data Assimilation System (GLDAS) (Rodell
et al., 2004). The four models include CLM (Community
Land Model), Mosaic, NOAH and VIC (Variable Infiltra-
tion Capacity) which, for 2003–2012, were forced with “a
combination of NOAA/GDAS atmospheric analysis fields,
spatially and temporally disaggregated NOAA Climate Pre-
diction Center Merged Analysis of Precipitation (CMAP)
fields, and observation-based radiation fields derived using
the method of the Air Force Weather Agency’s AGRicultural
METeorological modelling system” (Rui, 2011). The models
are described in Rodell et al. (2004). From the model out-
puts we used (i) SWE depth, (ii) total soil moisture storage
over a soil depth that varies between models and (iii) gener-
ated streamflow, calculated as the sum of surface runoff and
subsurface drainage. In addition to GLDAS, we used global
water balance estimates generated by the W3RA (World-
Wide Water Resources Assessment) model (Van Dijk et
al., 2013) in the configuration used in the Asia-Pacific Wa-
ter Monitor (http://www.wenfo.org/apwm/). For 2003–2008,
the model was forced with the “Princeton” merged precip-
itation, down-welling short-wave radiation, minimum and
maximum daily temperature and air pressure data produced
by Sheffield et al. (2006). From 2009 onwards, the model
primarily uses “ERA-Interim” weather forecast model re-
analysis data from the European Centre for Medium-Range
Weather Forecasts. For low latitudes, these are combined
with near-real-time TRMM Multi-sensor Precipitation Anal-
ysis data (TMPA code 3B42 RT) (Huffman et al., 2007) to
improve estimates of convective rainfall (Peña-Arancibia et
al., 2013). Both were bias-corrected with reference to the
Princeton data to ensure homogeneity. W3RA model esti-
mates were conceptually similar to those from GLDAS, ex-
cept that the model includes deep soil and groundwater stores
and sub-grid surface and groundwater routing.

The five hydrological models do not provide estimates
of groundwater depletion and storage in rivers, lakes and
impoundments; these were therefore derived separately.
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Table 1.Description and sources of data used in this analysis. Acronyms are explained in the text.

Description Source Data access

Prior estimates

Model estimates
(CLM, MOS, NOAH, VIC)

GLDAS ftp://hydro1.sci.gsfc.nasa.gov/data/s4pa/GLDAS_V1/(last access: 17 April 2013)

Model estimates (W3RA) Available from author Van Dijk

Groundwater depletion Available from author Wada

River flow direction TRIP http://hydro.iis.u-tokyo.ac.jp/~taikan/TRIPDATA/Data/trip05.asc(downloaded: 10 May 2013)

Discharge from small
catchments

Available from author Van Dijk

Discharge from large basins http://www.cgd.ucar.edu/cas/catalog/surface/dai-runoff/index.html

Surface water extraction Available from author Wada

Lake water level Crop Explorer http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir/(downloaded: 9 May 2013)

New dam impoundments GranD http://atlas.gwsp.org/(last access: 14 May 2014)

New dam impoundments ICOLD http://www.icold-cigb.org/(last access: 14 May 2014)

Sea level AVISO http://www.aviso.oceanobs.com/en/data/products/sea-surface-height-products/global/
(downloaded: 7 November 2013)

Glacier extent GGHYDRO http://people.trentu.ca/~gcogley/glaciology/(downloaded: 12 June 2013)

Assimilated data

TWS: CSR, GFZ, JPL Tellus ftp://podaac-ftp.jpl.nasa.gov/allData/tellus/L3/land_mass/RL05/netcdf/(downloaded: 16 April 2013)

TWS: GRGS CNES http://grgs.obs-mip.fr/grace/variable-models-grace-lageos/grace-solutions-release-02
(downloaded: 16 April 2013)

Glacial isostatic adjustment Tellus ftp://podaac-ftp.jpl.nasa.gov/allData/tellus/L3/land_mass/RL05/netcdf/(downloaded: 16 April 2013)

Evaluation data

Water level in large rivers LEGOS HYDROWEB http://www.legos.obs-mip.fr/en/soa/hydrologie/hydroweb/(downloaded: 13 October 2013)

Idem ESA River&Lake http://tethys.eaprs.cse.dmu.ac.uk/RiverLake/shared/main(downloaded: 25 October 2012)

Snow water equivalent GlobSnow http://www.globsnow.info/swe/archive_v1.3/(downloaded: 9 October 2013)

Groundwater depletion estimates were derived for 1960–
2010 by Wada et al. (2012). The time series were calcu-
lated as the net difference between estimated groundwa-
ter extraction and recharge. National groundwater extrac-
tion data compiled by the International Groundwater Re-
sources Assessment Centre (IGRAC) were disaggregated us-
ing estimates of water use intensity and surface water avail-
ability at 0.5◦ resolution from a hydrological model (PCR-
GLOBWB; see Wada et al., 2012, for details). The model
also estimated recharge including return flow from irriga-
tion. Groundwater depletion uncertainty estimates were gen-
erated through 10 000 Monte Carlo simulations, with 100
realisations of both extraction and recharge (Wada et al.,
2010). This method tends to overestimate reported deple-
tion in non-arid regions, where groundwater pumping can en-
hance recharge from surface water. Wada et al. (2012) used a
universal multiplicative correction of 0.75 to account for this.
Here, the correction was calculated per climate region rather
than worldwide, reflecting the dependency of uncertainty on
recharge estimates and their errors, and resulting in values of
0.6 to 0.9. Depletion estimates for 2011–2012 were not avail-
able; these were estimated using monthly average depletion

and uncertainty values for the preceding 2003–2010 period.
Given the regular pattern of depletion in the preceding years
this by itself is unlikely to have affected the analysis notice-
ably.

River water storage was estimated by propagating runoff
fields from each of the five models through a global routing
scheme. In a previous study, we compared these runoff fields
with streamflow records from 6192 small (<10 000 km2)

catchments worldwide and found that observed runoff was
1.28 to 1.77 times greater than predicted by the different
models (Van Dijk et al., 2013). The respective ratios were
used to uniformly bias-correct the runoff fields. Next, we
used a global 0.5◦ resolution flow direction grid (Oki et al.,
1999; Oki and Sud, 1998) to parameterise a cell-to-cell river
routing scheme. We used a linear reservoir kinematic wave
approximation (Vörösmarty and Moore, 1991), similar to
that used in several large-scale hydrology models (see recent
review by Gong et al., 2011). The monthly 1◦ runoff fields
from each of the five models were oversampled to 0.5◦ and
daily time step before routing, and the river water storage
estimates (in mm) were aggregated back to monthly 1◦ grid
cell averages before use in assimilation. The routing function
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was an inverse linear function of the distance between net-
work nodes and a transfer (or routing) coefficient. For each
model, a globally uniform optimal transfer coefficient was
found by testing values of 0.3 to 0.9 day−1 in 0.1 day−1 in-
crements and finding the value that produced best overall
agreement with seasonal flow patterns observed in 586 large
rivers worldwide. These 586 were a subset of 925 ocean-
reaching rivers for which streamflow records were compiled
by Dai et al. (2009) from various sources. We excluded loca-
tions where streamflow records were available for less than
10 years since 1980 or less than 6 months of the year.

The resulting river flow estimates do not account for the
impact of river water use (i.e. the evaporation of water ex-
tracted from rivers, mainly for irrigation). We addressed this
using global monthly surface water use estimates that were
derived in a way similar to that used for groundwater deple-
tion estimates (full details in Wada et al., 2013). For each grid
cell, mean water use rates for 2002–2010 were subtracted
from mean runoff estimates for the same period, and the re-
maining runoff was routed downstream. The resulting mean
net river flow estimates were divided by the original esti-
mates to derive a scaling factor, which was subsequently ap-
plied at each time step. Lack of additional global information
on river hydrology meant that three simplifications needed to
be made: (i) our approach implies that for a particular grid
cell, monthly river water use is assumed proportional to river
flow for that month; (ii) the influence of lakes, wetlands and
water storages on downstream flows (e.g. through dam oper-
ation) is not accounted for, even though their actual storage
changes are (see further on); and (iii) our approach does not
account for losses associated with permanent or ephemeral
wetlands, channel leakage and net evaporation from the river
channel. At least in theory, data assimilation may correct
mass errors resulting from these assumptions.

Variations in lake water storage were not modelled, but
water level data for 62 lakes worldwide were obtained from
the Crop Explorer website (Table 1) and include most of the
world’s largest lakes and reservoirs, including the Caspian
Sea. The water level data for these lakes were derived from
satellite altimetry and converted to mm water storage. Mea-
surements were typically available every 10 days. The mean
and standard deviation (SD) of measurements in each month
were used as respectively best estimate and estimation er-
ror for that month. Storage in water bodies without altimetry
data was necessarily assumed negligible. This includes many
small lakes and dams, but also some larger lakes affected by
snow and ice cover (e.g. the Great Bear and Great Slave lakes
in Canada) and ephemeral, distributed or otherwise complex
water bodies (e.g. the Okavango Delta in Botswana and Lake
Eyre in Australia, each of which contains> 10 km3 of water
when full).

New river impoundments lead to persistent water storage
increases. A list of dams was collated by Lehner et al. (2011)
and was updated with large dams constructed in more re-
cent years with the ICOLD data base (Table 1). For the pe-

riod 1998–2012, a total 198 georeferenced dams with a com-
bined storage capacity of 418 km3 were identified. For the
Three Gorges Dam (39 km3), reservoir water level time se-
ries (http://www.ctg.com.cn/inc/sqsk.php) were converted to
storage volume following Wang et al. (2011). For the remain-
ing dams, we assumed a gradual increase to storage capacity
over the first 5 years after construction and assumed a rela-
tive estimation error of 20 %. The combined annual storage
increase amounted to 21 km3 yr−1 on average.

Global merged mean sea level anomalies were obtained
from the Aviso website (Table 1). The monthly data were re-
projected from the native 1/3◦ Mercator grid to regular 1◦

grids. An estimate of uncertainty was derived by calculat-
ing the spatial standard deviation in sea level values within
a 4◦ by 4◦ region around each grid cell during re-projection.
When sea level data were missing because of sea ice, we as-
sumed sea level did not change and assigned an uncertainty
of 5 mm. Following the recent global sea level budget study
by Chen et al. (2013), we assumed that 75 % of the observed
sea level change was due to mass increase, and multiplied
altimetry sea level anomalies with this factor.

We did not have spatial global time series of glacier mass
changes. The five hydrological models have poor represen-
tation of ice dynamics, and therefore large uncertainties and
errors can be expected for glaciated regions. To account for
this, we used the “GGHYDRO” global glacier extent map-
ping by Cogley (2003) to calculate the percentage glacier
area for each grid cell, and assumed a proportional error
in monthly glacier mass change estimates corresponding to
300 mm per unit glacier area. This value was chosen some-
what arbitrarily but ensures that a substantial fraction of the
regional analysis increment is assigned to glaciers.

Three alternative GRACE TWS retrieval products were
downloaded from the Tellus website. The three products
(coded CSR, JPL and GFZ; release 05) each had a nomi-
nal 1◦ and monthly resolution. The land and ocean mass re-
trievals (Chambers and Bonin, 2012) were combined. The
land retrievals had been “de-striped” and smoothed with
a 200 km half-width spherical Gaussian filter (Swenson et
al., 2008; Swenson and Wahr, 2006), whereas the ocean re-
trievals had been smoothed with a 500 km filter (Chambers
and Bonin, 2012). The data assimilation method we em-
ployed is designed to deal with the signal “leakage” caused
by the smoothing process, and therefore we did not use the
scaling factors provided by the algorithm developers. In addi-
tion, gravity fields produced by the Centre National d’Etudes
Spatiales (CNES) Groupe de Recherches de Géodésie Spa-
tiale (GRGS) (Bruinsma et al., 2010) at 1◦ resolution for
10-day periods were used. The three Tellus data sources had
been corrected for glacial isostatic adjustment (GIA); we cor-
rected the GRGS data using the same GIA estimates of Geruo
et al. (2013). Initial data assimilation experiments produced
unexpectedly strong mass trends around the Gulf of Thai-
land. Inspection demonstrated that all products, to different
degrees, contained a mass redistribution signal associated
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Figure 1. Illustration of the data assimilation approach followed us-
ing data along a transect through the USA for August 2003. Shown
are(a) monthly satellite-derived TWS,y0

t , and the equivalent prior
estimate,yb

t ; (b) location of the west–east transect on a map of the
gain matrix,k; (c)profile ofk along the transect (cf. Fig. 2c);(d) cal-
culation of the TWS analysis increment,δyt , fromk and the innova-
tion, (y0

t −yb
t ); (e) the prior error in the change of each of the stores,

σt (i); (f) the prior and posterior estimate of change in each store,
1sb

t (i) and1sb
t (i) + δst (i), respectively; and(g) visual illustration

of the disaggregation of the TWS analysis increments to the differ-
ent stores. All units are in millimetres unless indicated otherwise;
see text for full explanation of symbols. Stores shown include the
subsurface (green), rivers (blue) and sea (dark red; remaining stores
not shown for clarity).

with the December 2004 Sumatra–Andaman earthquake. To
account for this, we first calculated a time series of seasonally
adjusted monthly anomalies (i.e. the average seasonal cycle
was removed) for the region [5◦ N–15◦, 80–110◦ E]. Next,
we adjusted values after December 2004 by the difference in
the mean adjusted anomalies for the year before and after the
earthquake.

2.3 Data assimilation scheme

For each update cycle, the data assimilation scheme proceeds
through the steps illustrated in Fig. 1 and described below.

1. Deriving the prior estimate for each store. The way
to calculate the prior (or background) estimate of stor-
agesb

t varied between stores. A systematic and accu-
mulating bias (or “drift”) was considered plausible for
the deep soil and groundwater components of model-
derived subsurface storage due to slow groundwater dy-
namics (including extraction) and ice storage in perma-
nent glaciers and ice sheets, which may be progressively
melting or accumulating. In these cases, the model-
estimatedchangein storage was assumed more reli-
able than the model-estimated storage itself, and esti-
mates from the five models were used to calculate stor-

age change,1sb
t , for storei (i = 1, . . . ,N) as

1sb
t (i) =

L∑
l=1

wlx
l
t (i), (1)

wherexl
t is the estimate of storage change from model

l (l = 1, . . . , L) between timet − 1 andt , andwl the
relative weight of modell in the ensemble, computed as

wl =
σ−2

l∑
l σ

−2
l

, (2)

whereσl is the estimated local error for modell based
on triple collocation (see Sect. 2.4). Subsequently,sb

t

was calculated as

sb
t (i) = sa∗

t−1 (i) + 1sb
t (i) , (3)

wheresa∗
t−1 is the posterior (or analysis) estimate from

the previous time step. This approach was not suitable
for model-estimated seasonal snowpack and river stor-
age, where the ephemeral nature of the storage means
that long-term drift is not an issue and Eq. (2) could in
fact lead to unrealistic negative storage values. For these
cases,sb

t was computed as

sb
t (i) =

L∑
l=1

wls
l
t (i), (4)

where sl
t is the storage estimate from modell. The

glacier extent map was used to identify whether Eqs. (3)
or (4) should be used forssnow. Similarly, no drift was
expected in the ocean and lake storage data, and these
were used directly as estimates ofsb

t .

2. Deriving the prior estimate of GRACE-like TWS (yb).

This estimate was derived by summing all storessb
t as

Sb
t =

N∑
i=1

sb
t (i), (5)

and subsequently applying a convolution operator0 to
transformSb

t to a “GRACE-like” TWSyb. The operator
0 was a Gaussian smoother (cf. Jekeli, 1981), written
here as

yb
t (j1) =

∑
j1

0(j1,j2)S
b
t (j1,j2) , (6)

wherej1 andj2 in principle should encompass all ex-
isting grid cell coordinates. In practice,0 was applied
as a moving Gaussian kernel with a size of 6◦

× 6◦ and
a half-width of 300 km (see further on).
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2960 A. I. J. M. van Dijk et al.: A global water cycle reanalysis (2003–2012)

3. Updating the GRACE-like TWS.The updated GRACE-
like TWS,ya

t , was calculated from the prior (Eq. 6) and
GRACE observationsyo

t for time t as (cf. Fig. 1a–d):

ya
t = yb

t + δyt = yb
t + k(yo

t − yb
t ) (7)

whereδyt is the analysis increment andk a temporally
static gain factor derived by combining the error vari-
ances of modelled and observedy as follows:

k =

∑
l wy,lσ

2
y,l∑

l wy,lσ
2
y,l +

∑
m wy,mσ 2

y,m

, (8)

wherewy,l andwy,m are the weights applied to each of
the five GRACE-like TWS estimates and four GRACE
data sources, respectively, calculated from their respec-
tive error variancesσ 2

y,l andσ 2
y,m analogous to Eq. (2).

4. Spatially disaggregating the analysis increment to the
different stores.The observation model was inverted and
combined with the store error estimates in order to spa-
tially redistribute the analysis incrementδyt , as follows
(cf. Fig. 1e–g):

δst
(
i,j1

)
=

∑
j2

�(j1,j2)δyt (j2), (9)

where the redistribution operator� can be written as
(cf. Fig. 1g)

�(j1,j2) =
0(j1,j2)σ

−2 (i,j2)∑
i

∑
j1

0(j1,j2)σ−2 (i,j2)
. (10)

To implement this, spatial error estimates are required
for each store. For lakes and seas, the errors were es-
timated from the observations (see Sect. 2.2). For the
model-based estimates, the error was calculated for each
time step and store as

σ 2
t (i) =

∑
l
wl

[
xl
t (i) − 1sb

t (i)
]2

. (11)

The resulting error estimates are spatially and tempo-
rally dynamic and respond to the magnitude of the
differences between the different model estimates. For
ssub andssnow we combined the error estimates derived
by Eq. (11) with the estimated errors in groundwater
depletion and glacier mass change, respectively (see
Sect. 2.2), calculating total error as the quadratic sum
of the composite errors.

5. Updating the stores.In the final step, the state of each
store is updated:

sa
t (i) = sb

t (i) + δst (i) . (12)

Subsequently, the procedure is repeated for the next
time step.

2.4 Error estimation

Spatial error fields are required for all data sets to calculate
the gain factork. Where necessary these were estimated us-
ing the triple collocation technique (Stoffelen, 1998). This
technique infers errors in three independent time series by
analysing the covariance structure. The approach has been
applied widely to estimate errors in, among others, satellite-
derived surface soil moisture (Dorigo et al., 2010; Scipal et
al., 2009), evapotranspiration (Miralles et al., 2011) and veg-
etation leaf area (Fang et al., 2012). A useful description of
the technique, the assumptions underlying it and an extension
of the theory to more than three time series is provided by
Zwieback et al. (2012). Application requires three (or more)
estimates of the same quantity. This was achieved by con-
volving the model-derived storage estimates into large-scale,
smoothed TWS estimates equivalent to those derived from
GRACE measurements using Eqs. (5) and (6). Inspection
of the original Tellus data made clear that the 200 km fil-
ter that was already applied as part of the land retrieval had
only removed part of the spurious aliasing in the data sets,
and propagated these artefacts into the error estimates and
reanalysis. Therefore a smoother, 300 km filter was applied
to the Tellus TWS data sets. Because conceptual consistency
is required for triple collocation, the same filter was applied
to the GRGS and model-derived TWS estimates. Several al-
ternative Tellus and model time series were available, and
therefore the triple collocation technique could be used to
produce alternative error estimates from multiple triplet com-
binations (i.e. five for Tellus TWS, three for model TWS and
5× 3= 15 for GRGS TWS). The agreement between these
alternative estimates was calculated as a measure of uncer-
tainty in the estimated errors.

Important assumptions of the collocation technique are
that (1) all data sets are free of bias relative to each other,
(2) errors do not vary over time, (3) there is no temporal au-
tocorrelation in the errors and (4) there is no correlation be-
tween the errors in the respective time series (Zwieback et
al., 2012). Each of these assumptions is difficult to ascertain,
but some interpretative points can be made. First, errors in
the GRACE products vary somewhat from month to month
depending on data availability, and overall decreased after
June 2003. Therefore assumption (2) is a simplification.

Assumption (3) is also unlikely to hold fully for the TWS
estimates themselves: there will almost certainly be system-
atic errors and biases that cause temporal correlation in the
errors in the modelled TWS (e.g. due to poorly represented
processes causing secular trends such as groundwater extrac-
tion or glacier melt). We were able to avoid this assumption
by applying the triple collocation to monthly storage changes
rather than the actual value of storage, although temporal cor-
relation in storage change errors remains a possibility. Tem-
poral correlation in the GRACE errors is unlikely, however.
Therefore, the error in individual monthly mass estimates
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was calculated following conventional error propagation the-
ory by dividing the estimated error in mass changes by

√
2.

Assumption (4) will not be fully met where estimates are
partially based on the same principle or measurement. In this
study, arguably the most uncertain assumption is that the
GRGS and Tellus errors are to a large extent uncorrelated.
The basis for this assumption is that most of the error is likely
to derive from the TWS retrieval method rather than the
primary measurements (Sakumura et al., 2014). The GRGS
time series was selected as the third triple collocation mem-
ber because the four Tellus products are retrieved by methods
that are comparatively more similar than the GRGS method,
which uses ancillary observations from the Laser Geody-
namics Satellites (Tregoning et al., 2012). Correspondingly,
global average temporal correlation among the Tellus TWS
time series was stronger (0.61–0.73) than between GRGS
and any of the Tellus time series (0.49–0.58). Nonetheless,
there may well have been a residual covariance between er-
rors in the GRGS and Tellus products. In triple collocation
and subsequent data assimilation, this would cause some part
of the differences to be wrongly attributed to the prior es-
timates rather than the observation products. Therefore, we
conservatively inflated the calculated value by including an
additional error of 5 mm through quadratic summation be-
fore calculating the gain factor (Eq. 8).

Uncertainty in the derived error estimates also arises from
sample size, i.e. the number of collocated observations (N =

111). Previous studies have suggested that 100 samples are
sufficient to produce a reasonable estimate (Dorigo et al.,
2010), although Zwieback et al. (2012) calculate that the rel-
ative uncertainty in the estimated errors forN = 111 can be
expected to be of the order of 20 %. An uncertainty of this
magnitude will not have a strong impact on the reanalysis
results.

2.5 Evaluation against observations

Evaluation of the reanalysis results for subsurface storage
was a challenge: ground observations are not widely avail-
able at the global scale, are not conceptually equivalent to
the reanalysis terms, require tenuous scaling assumptions for
comparison at 1◦ grid cell resolution, and many existing data
sets contain few or no records during 2003–2012. For ex-
ample, comparison with in situ soil moisture measurements
or groundwater bore data is beset by such problems (Trego-
ning et al., 2012). Similarly, an initial comparison with near-
surface (< 5 cm depth) soil moisture estimates from pas-
sive and active microwave remote sensing (Liu et al., 2012b,
2011) showed that the conceptual difference between the two
quantities was too great for any meaningful comparison.

We were able to evaluate the reanalysis for storage in
rivers, seasonal snowpack and glaciers, however. Firstly,
a total of 1264 water level time series for several large
rivers worldwide were obtained from the Laboratoire
d’Etudes en Geodésie et Océanographie Spatiales (LEGOS)

HYDROWEB website (Table 1). The river levels were re-
trieved from ENVISAT and Jason-2 satellite altimetry (Cré-
taux et al., 2011) and included uncertainty information for
each data period. From each time series, we removed data
points with an estimated error of more than 25 % of the tem-
poral SD. Another 165 altimetry time series were obtained
from the European Space Agency (ESA) River&Lake web-
site (Berry, 2009). These were selected to increase measure-
ment period and sample size for the available locations, as
well as extending coverage to additional rivers. The ESA
time series did not include error estimates; instead data plots
were judged visually to assess the likelihood of measurement
noise; seemingly affected time series and outlier data points
(> 3SD) were excluded. The total 1429 time series were
merged for individual 1◦ grid cells. In each case, the longest
time series was chosen as a reference. Overlapping time peri-
ods were used to remove (typically small) systematic biases
in water surface elevation between time series; where there
was no overlap the time series were normalised by the me-
dian water level. The ESA data were used where or when
HYDROWEB data were not available, and merged time se-
ries with fewer than 24 data points in total were excluded.
The resulting data set contained time series for 442 grid
cells with an average 61 (maximum 115) data points dur-
ing 2003–2012. The relationship between river water level
and river discharge (i.e. the discharge rating curve) was un-
known, and therefore a direct comparison could not be made.
The relationship is typically non-linear, and therefore we cal-
culated Spearman’s rank correlation coefficient (ρ) between
estimated discharge and observed water level.

Secondly, we used the already mentioned discharge data
for 586 ocean-reaching rivers worldwide (Dai et al., 2009).
From these, we selected 430 basins for which the reported
drainage area was within 20 % of the area derived from the
0.5◦ routing network. The ratio between reported and model-
derived drainage area was used to adjust the reanalysis esti-
mates, and these were compared with recorded mean stream-
flow. The recorded mean annual discharge values are not for
2003–2012, but we assume that the differences are not sys-
tematic and, therefore, that any large change in agreement
may still be a useful indicator of reanalysis quality.

Third, snow storage estimates were evaluated with the
ESA GlobSnow product (Luojus et al., 2010). This data set
contains monthly 0.25◦ resolution estimates of SWE (in mm)
for low-relief regions with seasonal snow cover north of
55◦ N during 2003–2011. The SWE estimates are derived
through a combination of AMSR-E (Advanced Microwave
Scanning Radiometer–Earth Observing Satellite) passive mi-
crowave remote sensing and weather station data (Pulliainen,
2006; Takala et al., 2009). The GlobSnow data were aggre-
gated to 1◦ resolution. The root mean square error (RMSE)
and the coefficient of correlation (r2) were calculated as mea-
sures of agreement.

Finally, we compared the estimated trends in storage in
different glacier regions to trends for mountain glaciers
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Table 2.Spatial mean values (non-glaciated land areas only) of the
error in monthly mass change estimates for different GRACE and
model sources as derived through triple collocation. Also listed is
the number of triple collocation estimates derived (N ) and the spa-
tial mean of the coefficient of variation (C.V.) in these N estimates.

Mean error Mean C.V. N

mm %

GRACE

GRG 14.3 15 15
CSR 12.8 15 5
GFZ 15.5 11 5
JPL 15.2 12 5

Merged 13.5 – –

Models

CLM 26.7 6 3
MOS 21.9 7 3

NOAH 16.6 9 3
VIC 27.7 6 3

W3RA 17.9 7 3
Merged 18.1 – –

compiled by Gardner et al. (2013) for 2003–2010 and for
Greenland and Antarctica by Jacob et al. (2012) for 2003–
2009. In several cases these mass balance estimates were
based on independent glaciological or ICESat (Ice, Cloud
and land Elevation Satellite) observations, and these were
the focus of comparison. Other estimates were partially or
wholly based on GRACE data, making comparison less in-
sightful.

3 Results

3.1 Error estimation

The mean errors derived by the triple collocation technique
were of similar magnitude for the GRACE and model esti-
mates (Table 2; note that the numbers listed are for storage
change rather than storage per se and were not yet adjusted
for GRACE error covariance; cf. Sect. 2.4). The relatively
low values for the coefficient of variation suggest that the er-
ror estimates are reasonably robust.

The spatial error in merged GRACE and model storage
change estimates were calculated analogous to Eq. (8). The
resulting GRACE error surface was relatively homogeneous
with an estimated error of around 5–20 mm for most regions,
but increasing to 20–40 mm over parts of the Amazon and
the Arctic (Fig. 2a). The combined model error surface sug-
gest that errors are smaller than those in the GRACE data for
arid regions (<10 mm) but higher elsewhere, increasing be-
yond 80 mm in the Amazon region (Fig. 2b). The mean errors
over non-glaciated land areas were similar, at 18.1 mm for

a) Error in GRACE 

b) Error in prior 

error (mm) 

c) Gain 

gain 

Figure 2. Triple collocation estimated error in storage change from
the merged(a) GRACE and(b) prior estimates, and(c) resulting
gain matrix.

the combined model and 13.5 mm for the combined GRACE
data. Assuming no temporal correlation and allowing for er-
ror covariance among GRACE products reduces the GRACE

error estimates to 10.8 mm (i.e.
√

13.52/2+ 52).

3.2 Analysis increments

Inspection of the analysis increments and the overall differ-
ence between prior and posterior estimates provides insights
into the functioning of the assimilation scheme (Fig. 3).
The spatial pattern in root mean squared (rms) TWS incre-

ments (

√
δS2) emphasises the important role of the world’s

largest rivers in explaining mismatches between expected
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a)   
 
 
 
 
 
 
 
 
 
 
 
 
 
b) 

Figure 3. The impact of GRACE data assimilation on total water
storage expressed as(a) the root mean square (rms) analysis incre-
ment and(b) the rms difference between prior and posterior storage
time series.

and observed mass changes, particularly in tropical humid re-
gions (Fig. 3a). Large increments also occurred over Green-
land (mainly due to updated ice storage changes) and the sea-
sonally wet regions of Brazil, Angola and south Asia (subsur-
face storage). When considering the root mean square differ-
ence between prior and posterior estimates of actual TWS
(as opposed to monthly changes; Fig. 3b) a similar pattern
emerges, but with more emphasis on the smaller but accumu-
lating difference in estimated storage over Greenland, Alaska
and part of Antarctica (due to updated ice mass changes) and
northwest India (groundwater depletion).

3.3 Mass balance and trends

At the global scale, the trend and monthly fluctuations
(expressed in SD) in mean total water mass should
be close to zero, allowing for small changes in atmo-
spheric water content. This provides a test of internal
consistency. Among the original GRACE TWS data, the
GRGS data showed the smallest temporal SD (0.04 mm)
and linear trend (0.007± 0.001 SD mm yr−1) in global
water mass. The three Tellus retrievals showed larger
temporal SD (4.7–6.4 mm) and trends (−0.37± 0.21 to
−0.23± 0.20 mm yr−1). The merged GRACE TWS data had

b) GRACE 

c) posterior 

a) prior 

Figure 4. Trends in GRACE total water storage as derived from(a)
prior storage estimates,(b) merged satellite retrievals and(c) poste-
rior estimates.

intermediate SD (3.97 mm) and trend (−0.32 mm yr−1). As-
similation reduced SD (to 3.1 mm) and removed the residual
trend (−0.01± 0.10 mm yr−1). The discrepancies in global
water mass trends in the merged GRACE data and in the
analysis were mostly located over the oceans, and therefore
the achieved mass balance closure can be attributed to the in-
fluence of the prior sea mass change estimates, specifically,
the assumed conversion factor between sea level and mass
change (cf. Chen et al., 2013).

3.4 Regional storage trends

The spatial pattern in linear trends in the merged GRACE
TWS (y0) and the reanalysis signal (yb) agree well (Fig. 4bc),

www.hydrol-earth-syst-sci.net/18/2955/2014/ Hydrol. Earth Syst. Sci., 18, 2955–2973, 2014



2964 A. I. J. M. van Dijk et al.: A global water cycle reanalysis (2003–2012)

a) sub-surface                              b) 

c) snow                                                        d) 

posterior prior 

e) surface              f) 

Figure 5. Trends in seasonal anomalies of prior (left column) and posterior (right column) estimates of(a–b) subsurface,(c–d) snow and
(e–f)surface (i.e. lake and river) water storage.

suggesting that the assimilation scheme is able to merge the
prior estimates of storage changes and observed storage as
intended. Seasonally adjusted anomalies were calculated for
the prior and posterior estimates of the different water cycle
components by subtracting the mean seasonal pattern. The
2003–2012 linear trends in these adjusted anomalies (Fig. 5)
show that the analysis has (i) increased spatial variability in
subsurface water storage trends, with amplified increasing
and decreasing trends (Fig. 5a, b); (ii) drastically changed
trends in snow and ice storage and typically made them more
negative (Fig. 5c, d); and (iii) reversed river water storage
trends in the lower Amazon and Congo rivers (Fig. 5e, f).
The reanalysis shows a complex pattern of strongly decreas-
ing and increasing subsurface water storage trends in north-
west India (Fig. 5b). This may be an artefact from incor-
rectly specified errors in the groundwater depletion estimates
(see Sect. 4.2). Less visible is that the analysis often re-
duced negative storage trends in other regions with ground-
water depletion, that is, decreased the magnitude of estimated
depletion. Because all subsurface storage terms were com-

bined, an alternative estimate of groundwater depletion can-
not calculated directly, but it can be estimated: for all grid
cells with significant prior groundwater depletion estimates
(> 0.5 mm yr−1, representing 99 % of total global ground-
water depletion) the 2003–2012 trend in subsurface storage
change was estimated a priori at−168± 3 (SD) km3 yr−1,
of which 157 km3 (94 %) was due to groundwater deple-
tion and the remaining−11 km3 due to climate variabil-
ity. Analysis reduced the total trend for these grid cells to
−103± 3 km3 yr−1, from which an alternative groundwater
extraction estimate of ca. 92 km3 can be derived.

From the seasonally adjusted anomalies, time series and
trends of global storage in different water cycle components
were calculated. We calculated snow and ice mass change
separately for regions with seasonal snow cover, high-
latitude (> 55◦) glaciers and remaining glaciers (Fig. 6).
The mean 2003–2012 trends are listed in Table 3 – for the
posterior estimates also as equivalent sea level rise (SLR,
by dividing by the fraction of Earth’s surface occupied by
oceans, i.e. 0.7116) and volume (km3 yr−1, equivalent to
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Table 3.Calculated linear trends in global mean seasonally adjusted anomalies associated with different water cycle components for 2003–
2012. The posterior trend estimates are also expressed in equivalent sea level rise (SLR) and volume. Second number is standard deviation.

Prior global Posterior global Volume
Store mean mm yr−1 mean mm yr−1 SLR mm yr−1 km3 yr−1

Subsurface −0.572± 0.029 0.017± 0.023 0.024± 0.032 9± 12
Rivers 0.012± 0.009 0.003± 0.01 0.004± 0.014 1± 5
Lakes −0.012± 0.005 −0.021± 0.005 −0.029± 0.006 −11± 2
New dams 0.043± 0.001 0.032± 0.002 0.045± 0.003 16± 1
Seasonal snow −0.022± 0.007 −0.035± 0.007 −0.049± 0.01 −18± 4
Arctic glaciers (> 55◦ N) 0.265± 0.004 −0.604± 0.009 −0.849± 0.013 −308± 5
Antarctic glaciers (> 55◦ S) – −0.301± 0.007 −0.423± 0.01 −154± 4
Remaining glaciers −0.029± 0.004 −0.061± 0.003 −0.086± 0.004 −31± 2

Total terrestrial – −0.97± 0.035 −1.364± 0.049 −495± 18
Oceans 1.309± 0.044 1.029± 0.039 1.446± 0.054 525± 20

Gt yr−1). Some of the effects of the assimilation were to
(i) remove the decreasing trend in prior global terrestrial sub-
surface water storage estimates (Fig. 6a), (ii) change the poor
prior estimates of polar ice cap mass considerably (Fig. 6f,
g), (iii) reduce the estimated rate of ocean mass increase
from 1.84± 0.06 (SD) mm to 1.45± 0.05 mm (Table 3) and
(iv) achieve mass balance closure between net terrestrial and
ocean storage changes (cf. Sect. 3.3).

3.5 Evaluation against river level remote sensing

The rank correlation (ρ) between river water level and es-
timated discharge for the 445 grid cells with altimetry time
series are shown in Fig. 7. Overall there was no significant
change in agreement between the prior (ρ = 0.63± 0.27 SD)
and posterior (ρ = 0.63± 0.26) estimates, with an aver-
age change of+0.01± 0.12. However,ρ did improve for
more locations than it deteriorated (286 vs. 159). There
are some spatial patterns in the influence of assimilation
(Fig. 7c): strong improvements in the northern Amazon and
Orinoco basins and most African rivers, except for some sta-
tions along the Congo and middle Nile rivers, and reduced
agreement for rivers in China (where prior estimates agreed
well) and most stations in the Paraná and Uruguay basins
(where they did not). In most remaining rivers, agreement
did not change much – in some cases because it was already
very good (e.g. the Ganges–Brahmaputra and remainder of
the Amazon Basin). Altimetry and estimated discharge time
series are shown in Fig. 8 for grid cells with the most data
points in three large river systems. In these cases, there is
reasonably clear improvement in agreement.

3.6 Evaluation against historic river discharge
observations

The prior estimate of discharge (i.e. the error-weighted av-
erage of the four bias-corrected models) provided estimates
that were already considerably better than any of the indi-

vidual members (Table 4, Fig. 9). Assimilation led to small
improvements in RMSE, from 47 to 44 km3 yr−1, and a slight
deterioration in the median absolute percentage difference
from 40 to 41 %. Combined recorded discharge from the 430
selected basins was 20 909 km3 yr−1, representing 90 % of
estimated total discharge to the world’s oceans according to
Dai et al. (2009). Assimilation improved the agreement with
this number from−11 to−4 %, of which about half (5 %) is
due to a closer estimate of Amazon River discharge. How-
ever, modelled and observed discharge values relate to dif-
ferent time periods, and so it is not clear whether this should
be considered evidence for improvement or merely reflects
multi-annual variability.

3.7 Evaluation against snow water equivalent remote
sensing

The spatial RMSE and correlation between the prior and
posterior SWE estimates and the GlobSnow retrievals are
shown in Fig. 10. Although RMSE deteriorated in the major-
ity (57 %) of grid cells, correlation remained unchanged at
R2

= 0.79 and average RMSE improved slightly from 23.2
to 22.3 mm. Assimilation appeared most successful for grid
cells with large prior RMSE in northern Canada (Fig. 10a–c).

3.8 Evaluation against glacier mass balance estimates

Glacier mass changes reported in the literature (Gardner et
al., 2013; Jacob et al., 2012) are listed in Table 5 and com-
pared to regional mass trends associated with glaciers and
other components of the terrestrial water derived from the
analysis. In the polar regions (e.g. Antarctica, Greenland,
Iceland, Svalbard and the Russian Arctic) a large part of
the gravity signal is necessarily from glacier mass change.
Published trends for most of these regions also heavily rely
on GRACE data, and hence our estimates are generally in
good agreement. Remaining differences can be attributed to
the products, product versions and post-processing methods

www.hydrol-earth-syst-sci.net/18/2955/2014/ Hydrol. Earth Syst. Sci., 18, 2955–2973, 2014



2966 A. I. J. M. van Dijk et al.: A global water cycle reanalysis (2003–2012)

-2

-1

0

1

2

2
0

03

2
0

04

2
0

05

2
0

06

2
0

07

2
0

08

2
0

09

2
0

10

2
0

11

2
0

12

Eq
u

iv
al

en
t 

TW
 a

n
o

m
al

y 
(m

m
)

d) seasonal snow

-1

0

1

2
0

03

2
0

04

2
0

05

2
0

06

2
0

07

2
0

08

2
0

09

2
0

10

2
0

11

2
0

12

Eq
u

iv
al

en
t 

TW
 a

n
o

m
al

y 
(m

m
)

c) lakes

-2

-1

0

1

2

2
0

03

2
0

04

2
0

05

2
0

06

2
0

07

2
0

08

2
0

09

2
0

10

2
0

11

2
0

12

Eq
u

iv
al

en
t 

TW
 a

n
o

m
al

y 
(m

m
)

b) rivers

-5

-4

-3

-2

-1

0

1

2

3

4

5

SA
G

EW
H

A
 m

m
)

a) sub-surface

-10

-8

-6

-4

-2

0

2

4

6

8

10

2
0

03

2
0

04

2
0

05

2
0

06

2
0

07

2
0

08

2
0

09

2
0

10

2
0

11

2
0

12

Eq
u

iv
al

en
t 

TW
 a

n
o

m
al

y 
(m

m
)

h) total terrestrial

oceans

-3

-2

-1

0

1

2

3

2
0

03

2
0

04

2
0

05

2
0

06

2
0

07

2
0

08

2
0

09

2
0

10

2
0

11

2
0

12

Eq
u

iv
al

en
t 

TW
 a

n
o

m
al

y 
(m

m
)

g) Antarctic ice

-4

-3

-2

-1

0

1

2

3

4

2
0

03

2
0

04

2
0

05

2
0

06

2
0

07

2
0

08

2
0

09

2
0

10

2
0

11

2
0

12

Eq
u

iv
al

en
t 

TW
 a

n
o

m
al

y 
(m

m
)

f) Arctic ice

-1

0

1

SA
G

EW
H

A
 (

m
m

)

e) mountain glaciers

Figure 6. Time series of the prior (grey lines) and posterior (black lines) estimates of seasonally adjusted global equivalent water height
anomalies (SAGEWHA) in different water cycle components. Dashed lines show linear trends for 2003–2012 as listed in Table 3.

Table 4.Evaluation of alternative estimates of mean basin discharge using observations collated by Dai et al. (2009). Listed is the agreement
for the ensemble models (without bias correction), the merged prior estimate and the posterior estimates resulting from reanalysis.

CLM MOS NOAH VIC W3RA Prior Posterior

Combined discharge (km3 yr−1) 21 874 9003 11 474 13 666 16 518 18 663 20 149
Diff. total (%) 5 −57 −45 −35 −21 −11 −4
RMSE (km3 yr−1) 114 184 126 147 63 47 44
Median |%| diff. 60 63 57 48 61 40 41

used, without providing insight into the accuracy of our anal-
ysis estimates. In the other regions, the glaciated areas are
smaller and surrounded by ice-free terrain, which strongly
increases the potential for incorrect distribution of analysis
increments, as evidenced by the high trend ratios (> 47 %,
last column Table 5). As a consequence, glacier mass trends
are not well constrained by GRACE data alone and an-
cillary observations are required. The agreement with in-
dependently derived trend estimates varies. For the Cana-
dian Arctic Archipelago, Alaska and adjoining North Amer-
ica, the assimilation scheme assigns only 55 % (68 Gt yr−1)

of the total regional negative mass trend (−124 Gt yr−1) to
glacier mass changes, with most of the remainder (40 % or
50 Gt yr−1) assigned to subsurface water storage changes.
Excluding regions for which independent storage change es-
timates are not available (Greenland, Antarctica and Patag-
onia), our estimate of total storage change in the world’s
glaciers (−114 km3 yr−1) was 101 km3 yr−1 less than the es-
timate of Gardner et al. (2013) (−215 km3 yr−1).

4 Discussion

4.1 Estimated errors

The triple collocation method produced estimates of errors in
month-to-month changes in GRACE TWS estimates of 12.8–
14.3 mm over non-glaciated land areas. From these, GRACE
TWS errors of 10.4–12.0 mm can be estimated (cf. Sect. 3.1).
By comparison, reported uncertainty estimates based on for-
mal error propagation are larger, usually of the order of 20–
25 mm (e.g. Landerer and Swenson, 2012; Tregoning et al.,
2012; Wahr et al., 2006). One possible explanation is that the
5 mm we assumed to correct for potential covariance in errors
between the GRACE products is too low; another is that the
formal uncertainty estimates are conservative. Inflating the
GRACE error estimates by 10 mm instead of 5 mm reduced
the gain by 18 % on average. The resulting uncertainty in the
analysis is modest (see next section). Formal error analyses
predict that the retrieval errors decrease towards the poles
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Table 5. Published trends in glacier water storage (Gardner et al., 2013; Jacob et al., 2012) compared to estimates from reanalysis. Uncer-
tainties are given at the 95 % (2 standard deviation) interval. Also listed are regional trends attributed to other parts of the hydrological cycle,
and the ratio of the relative magnitude of those residual trends over estimated glacier mass change.

Region Reported This study

Trend Glacier trend Other components ratio

(Gt yr−1) (Gt yr−1) (Gt yr−1) (%)

Greenland Ice Sheet+ PGICs −222± 9g
−203± 10 −5± 1 3

Canadian Arctic Archipelago −60± 6i,g
−48± 3 −19± 2 39

Alaska −50± 17i,g
−23± 6 −23± 6 101

Northwest America excl. Alaska −14± 3i 3± 3 −8± 9 275
Iceland −10± 2i,g

−6± 1 −0.6± 0.2 10
Svalbard −5± 2i,g

−2± 1 0.1± 0.1 3
Scandinavia −2± 0i 0.4± 1.0 5± 2 > 500
Russian Arctic −11± 4i,g

−4± 1 2± 2 47
High-mountain Asia −26± 12i,g

−29± 4 −15± 11 51
South America excl. Patagonia −4± 1i

−2± 1 −21± 33 > 500
Patagonia −29± 10g

−15± 1 1± 2 4
Antarctica Ice Sheet+ PGICs −165± 72g

−139± 8 0 0
Rest of world −4± 0 −3± 1 82± 107 > 500

Total −602± 77 −471± 25

Superscripts refer to estimates derived from GRACE (g) or independent methods (i )

due to the closer spacing of satellite overpasses (Wahr et al.,
2006), but we did not find such a latitudinal pattern.

The mean errors in monthly changes in prior TWS for
the different models were 16.5–27.9 mm. We do not have in-
dependent estimates of errors in modelled large-scale TWS
with which to compare, but the estimates would seem plau-
sible and perhaps less than anticipated. From a theoretical
perspective, violation of the assumptions underpinning triple
collocation is likely to have produced overestimates of model
error, if anything. The calculated error in the prior estimates
over oceans and very stable regions such as Mongolia and
the Sahara are around 5 mm (Fig. 2). This provides some fur-
ther evidence to suggest that the 5 mm GRACE error infla-
tion we applied may have been reasonable. The largest errors
in the merged model estimates (> 40 mm) were found for
humid tropical regions and high latitudes. The former may
be attributed to the combination of large storage variations
and often uncertain rainfall estimates. Precipitation measure-
ments are also fewer at high latitudes, while poor prediction
of snow and ice dynamics and melt water river hydrology are
also likely factors.

4.2 Assimilation scheme performance

The spatial pattern in analysis increments emphasises the im-
portance of water stores other than the soil in explaining
discrepancies between model and GRACE TWS estimates
(Fig. 3). Adjustments to storage changes in large rivers,
groundwater depletion, mass changes in high-latitude ice

caps and glaciers (e.g. Greenland, Alaska and Antarctica)
and lake water levels (e.g. the Caspian Sea and the North
American Great Lakes) were all considerable within their
region, absorbing monthly analysis increments, long-term
trend discrepancies or both.

Uncertainty in error estimates for the different data sources
affects the analysis in different ways. Incorrect estimation of
GRACE and model-derived TWS errors by the triple colloca-
tion method primarily affect (i) the weighting of the ensem-
ble members and (ii) the gain matrix. Appropriate weighting
only requires that the relative magnitude of errors among en-
semble members is estimated correctly (cf. Eq. 2). The aver-
age errors for the different GRACE TWS estimates were all
within 14 % of the ensemble average (Table 2) and did not
have strong spatial patterns, and therefore the analysis would
likely have been very similar if equal weighting had been
applied (cf. Sakumura et al., 2014). Estimated model errors
showed greater differences (up to 52 % greater than the en-
semble mean, Table 2) as well as regional patterns. However,
the relative rankings and their spatial pattern were robust to
the choice of GRACE TWS members in triple collocation,
as evidenced by a low coefficient of variation in error esti-
mates (Table 2). This suggests that the errors were correctly
specified in a relative sense. For the gain matrix, the rela-
tive magnitude of errors in GRACE versus model TWS en-
semble means needed to be estimated correctly (cf. Eq. 8).
The estimated GRACE TWS ensemble errors are reasonably
homogeneous in space (Fig. 1a), which increases our confi-
dence in their validity. The uncertainty due to the correction
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Figure 7. Effect of assimilation agreement with satellite altimetry
river water levels: Spearman’s rank correlation coefficient (ρ) for
(a) prior and(b) posterior estimates and(c) difference between the
two.

for assumed correlation between the GRGS and Tellus TWS
(see previous section) is further mitigated by the design of
the data assimilation scheme: the gain factor determines how
rapidly the analysis converges towards the GRACE obser-
vations and therefore is important for month-to-month vari-
ations, but long-term trends in TWS will always approach
those in the GRACE observations (cf. Fig. 4b and c).

The main sources of uncertainty in long-term trends in the
individual water balance terms are (i) the removal of non-
hydrological mass trends in the GRACE TWS time series and
(ii) accurate specification of relative errors in the individual
water balance terms, which is needed for correct redistribu-
tion of the integrated TWS analysis increments. For example,
the analysis results illustrate the insufficiently constrained
problem of separating gravity signals due to mass changes
in mountain glaciers from nearby subsurface water storage
changes. This was particularly evident around the Gulf of
Alaska and northwest India, where decreases can be expected
not only in glacier mass but also in subsurface storage due
to, respectively, a regional drying trend and high ground-
water extraction rates (Fig. 5a). We suspect that unexpect-
edly strong increasing storage trends in parts of northwest
India may be because the prior groundwater depletion esti-
mates were too high and the assigned errors too low, causing
the analysis update to distribute increments incorrectly. We

could have addressed this by inflating the local groundwater
depletion estimation errors, but more research is needed to
understand the underlying causes. Plausible causes are that
groundwater extraction is overestimated, or that extraction
is compensated by induced groundwater recharge (e.g. from
connected rivers) (see Wada et al., 2010, for further discus-
sion).

Mass balance closure was not enforced and hence pro-
vides a useful diagnostic of reanalysis quality. The GRGS
product achieved approximate global mass balance closure
at all timescales, but the three Tellus products showed a
seasonal cycle and long-term negative trend in global wa-
ter mass. Accounting for atmospheric water vapour mass
changes (from ERA-Interim reanalysis and the NVAP-M
satellite product, data not shown) could not explain the trends
and in fact slightly increased the seasonal cycle in global
water mass. Data assimilation reduced the seasonal cycle
and entirely removed the trend in total water mass, thanks
to the prior estimates of sea mass increase. For compari-
son, we calculated average ocean mass increases by an al-
ternative, more conventional method, which involved avoid-
ing areas likely to be affected by nearby land water storage
changes. Excluding a 1000 km buffer zone produced a 2003–
2012 mass trend of+0.58 to+0.72 mm yr−1 for the three
Tellus retrievals,+1.12 mm yr−1 for the GRGS retrieval and
+0.75 mm yr−1 for the merged GRACE data. Data assimi-
lation produced a stronger trend of+1.22 mm yr−1 due to
the influence of the prior estimate of+1.67 mm yr−1. Our
prior estimate followed Chen et al. (2013), who used an it-
erative modelling approach to attribute 75 % of altimetry-
observed SLR to mass increase. Chen et al. (2013) argue
that the conventional method produces underestimates of
ocean mass increase. Indeed, the trends we calculated for
the “buffered” ocean regions are lower than for the en-
tire oceans (+1.22 vs. +1.45 mm yr−1 for the reanalysis
and +1.67 vs.+1.84 mm yr−1 for the prior estimates; Ta-
ble 3). Nonetheless, the reduction in sea mass change of
0.39 mm yr−1 from prior to analysis does appear to reopen
the problem of reconciling mass and temperature obser-
vations with the altimetry derived mean sea level rise of
+2.45± 0.08 mm yr−1 (cf. Chen et al., 2013).

4.3 Evaluation against observations

The reanalysis generally did not have much impact on the
agreement with river and snow storage observations, with
small improvements for some locations and small degrada-
tions for others. While a robust increase in the agreement
would have been desirable, the fact that agreement was not
degraded overall is encouraging. The data assimilation pro-
cedure applied has the important benefit of bringing the es-
timates into agreement with GRACE observations. More-
over, performance improvements with respect to river dis-
charge and level data did occur in the Amazon, where they
make an important contribution to TWS changes. Similarly,
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Figure 8. Effect of assimilation on agreement with satellite altimetry river water levels (line with error bars) for selected grid cells, including
the (a) Amazon River (∼ 2.5◦ S, 65.5◦ W; ρ changed from 0.71 for prior (dashed) to 0.80 for posterior (solid line) estimates),(b) Congo
River (∼ 2.5∼ N, 21.5◦ E; ρ from 0.28 to 0.47) and(b) Mississippi River (35.5◦, 90.5◦ W; ρ from 0.37 to 0.56).
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Figure 9. Comparison of mean basin discharge resulting from the
analysis (Qa) and values based on observations (Dai et al., 2009)
(darker areas indicate overlapping data points).

snow water equivalent estimates were improved in the North-
American Arctic, where errors in the prior estimates were
largest. This demonstrates that GRACE data can indeed be
successfully used to constrain water balance estimates, al-
though further development may be needed to avoid some
of the undesired performance degradation for water balance
components that do not contribute much to the TWS signal.

The models used for our prior estimates provided poorly
constrained estimates of ice mass balance changes, and our
reanalysis ice mass loss estimates should not be assumed
more accurate than estimates based on more direct methods
(Table 5). Our analysis is unique when compared to previous
estimates based on GRACE, in that data assimilation allowed
some of the observed mass changes to be attributed to other
water balance components within the same region, depend-
ing on relative uncertainties in the prior estimates. Compar-
ison against independent estimates of glacier mass balance
changes also demonstrated the challenge of correct attribu-
tion, however. Glacier mass balance estimates were in good
agreement for several regions, but estimates for North Amer-

a) b) c) 

d) e) f) 

Figure 10. Effect of assimilation on agreement with GlobSnow
snow water equivalent estimates, showing(a–c) root mean square
error (RMSE) and(d–f) the coefficient of correlation (R2). From
left to right, agreement for(a, d) prior and(b, e)posterior estimates
as well as(c, f) the change in agreement.

ican glaciers in particular were questionable: their combined
mass loss (−68 Gt yr−1) was much lower than the estimates
derived by independent means (−124 Gt yr−1; Table 5). This
can be explained by incorrect specification of errors. Two
caveats are made: (i) the GIA signal is relatively large for
these three regions (+50 Gt yr−1), and hence GIA estima-
tion errors may have had an impact, and (ii) a significant
change in subsurface water storage is plausible in principle;
for example, higher summer temperatures could be expected
to enhance permafrost melting and runoff, as well as enhance
evaporation. More accurate spatiotemporal observation and
modelling of glacier dynamics are needed to reduce this un-
certainty.
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Figure 11. Linear 2003–2012 trends in subsurface water storage
by 10◦ latitude band, showing prior (blue) and posterior (red) esti-
mates.

4.4 Contributions to sea level rise

The reanalysis estimate of net terrestrial water storage
change of−495 Gt yr−1 (Table 3) appears a plausible esti-
mate of ocean mass change, equivalent to ca.+1.4 mm yr−1

sea level rise. Our results confirmed that mass loss from the
polar ice caps is the greatest contributor to net terrestrial wa-
ter loss, with Antarctica and Greenland together contribut-
ing −342 Gt yr−1. The next largest contribution was from
the remaining glaciers. We combine the reanalysis estimate
of −129 Gt yr−1 with another−101 Gt yr−1 estimated to be
misattributed (cf. Sect. 3.8) and obtain an alternative esti-
mate of−230 Gt yr−1. A small but significant contribution
of −18 Gt yr−1 (Table 3) was estimated to originate from re-
ductions in seasonal snow cover (particularly in Quebec and
Siberia; Fig. 5cd). Interannual changes in river water stor-
age were not significant. Small contributions of−10 and
+16 Gt yr−1 were attributed to storage changes in existing
lakes and large new dams, respectively, and compensated
each other. The largest change in an individual water body
was in the Caspian Sea (−27 Gt yr−1; cf. Fig. 5), which expe-
riences strong multi-annual water storage variations depend-
ing on Volga River inflows.

Finally, the analysis suggested a statistically insignifi-
cant change of+9 Gt yr−1 in subsurface storage globally.
Adding back the suspected misattribution of 101 Gt yr−1

associated with glaciers produces an alternative estimate
of +110 Gt yr−1 (cf. Fig. 6a). Combining this with the
−92 Gt yr−1 attributed to groundwater depletion suggests
that storage over the remaining land areas increased by
202 Gt yr−1. Calculating subsurface storage trends by lati-
tude band suggests that most of this terrestrial water “sink”
can be found north of 40◦ N and between 0 and 30◦ S, and
is in fact opposite to the prior estimates (Fig. 11). The main
tropical regions experiencing increases are in the Okavango
and upper Zambezi basins in southern Africa and the Ama-
zon and Orinoco basins in northern South America (Fig. 5b).
Storage increases for these regions are also evident from the

original GRACE data (Fig. 4a) and cannot be attributed to
storage changes in rivers or large lakes. The affected re-
gions contain low-relief, poorly drained areas with (season-
ally) high rainfall. In such environments, the storage changes
could occur in the soil, groundwater, wetlands or a combina-
tion of these. Further attribution is impossible without addi-
tional constraining observations (Tregoning et al., 2012; van
Dijk et al., 2011). The 10-year analysis period is short, and
this cautions against over-interpreting this apparent “tropical
water sink”. However it is of interest to note that a gradual
strengthening of global monsoon rainfall extent and intensity
has been observed, and is predicted to continue (Hsu et al.,
2012). In any event, the difference between prior and pos-
terior trends in Fig. 11 illustrates that the current generation
of hydrological models, even as an ensemble, are probably
not a reliable surrogate observation of long-term subsurface
groundwater storage changes. GRACE observations proved
valuable in improving these estimates.

5 Conclusions

We presented a global water cycle reanalysis that merges four
total water storage retrieval products derived from GRACE
observations with water balance estimates derived from an
ensemble of five global hydrological models, water level
measurements from satellite altimetry and ancillary data. We
summarise our main findings as follows:

1. The data assimilation scheme generally behaves as de-
sired, but in hydrologically complex regions the anal-
ysis can be affected by poorly constrained prior esti-
mates and error specification. The greatest uncertainties
occur in regions where glacier mass loss and subsur-
face storage declines (may) both occur but are poorly
known (e.g. northern India and around North American
glaciers).

2. The error in original GRACE TWS data was estimated
to be around 11–12 mm over non-glaciated land areas.
Errors in the prior estimates of TWS changes are esti-
mated to be 17–28 mm for the five models.

3. Water storage changes in other water cycle components
(seasonal snow, ice, lakes and rivers) are often at least as
important and uncertain as changes as subsurface water
storage in reconciling the various information sources.

4. The analysis results were compared to independent river
water level measurements by satellite altimetry, river
discharge records, remotely sensed snow water stor-
age and independent estimates of glacier mass loss. In
all cases the agreement improved or remained stable
compared to the prior estimates, although results varied
regionally. Better estimates and error specification of
groundwater depletion and mountain glacier mass loss
are required.
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5. Data assimilation achieved mass balance closure over
the 2003–2012 period and suggested an ocean mass
increase of ca. 1.45 mm yr−1. This reopens some
questions about the reasons for an apparently unex-
plained 0.39 mm yr−1 (16 %) of 2.45 mm yr−1 satellite-
observed sea level rise for the analysis period (Chen et
al., 2013).

6. For the period 2003–2012, we estimate glaciers and
polar ice caps to have lost around 572 Gt yr−1, with
an additional small contribution from seasonal snow
(−18 Gt yr−1). The net change in surface water storage
in large lakes and rivers was insignificant, with com-
pensating effects from new reservoir impoundments
(+16 Gt yr−1), lowering water level in the Caspian Sea
(−27 Gt yr−1) and increases in the other lakes com-
bined (+16 Gt yr−1). The net change in subsurface stor-
age was significant when considering a likely misat-
tribution of glacier mass loss, and may be as high as
+202 Gt yr−1 when excluding groundwater depletion
(−92 Gt yr−1). Increases were mainly in northern tem-
perate regions and in the seasonally wet tropics of South
America and southern Africa (+87 Gt yr−1). Continued
observation will help determine if these trends are due
to transient climate variability or likely to persist.
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