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Abstract. Multiple-point geostatistical simulation (MPS) tistical methods have been developed, including variogram-
has recently become popular in stochastic hydrogeology, pribased techniques (Delhomme, 1979; Deutsch and Journel,
marily because of its capability to derive multivariate distri- 1992; Wingle and Poeter, 1993; Johnson, 1995; Klise et al.,
butions from a training image (TI). However, its application 2009), the transition probability-based method (Carle and
in three-dimensional (3-D) simulations has been constrainedrogg, 1996), object-based modelling (Deutsch and Wang,
by the difficulty of constructing a 3-D TI. The object-based 1996) and the multiple-point geostatistical approach (MPS)
unconditional simulation program TiGenerator may be a use{Journel, 1993; Guardiano and Srivastava, 1993; Strebelle,
ful tool in this regard; yet the applicability of such parametric 2002). Most of these methods require observations to draw
training images has not been documented in detail. Anothecorrelation, and some even have the ability to integrate mul-
issue in MPS is the integration of multiple geophysical data.tiple sources of observations. With the development in geo-
The proper way to retrieve and incorporate information from physical technology, high-resolution geophysical mapping
high-resolution geophysical data is still under discussion. Intechniques are now available, such as magnetic resonance
this study, MPS simulation was applied to different scenar-sounding (MRS) (Lubczynski and Roy, 2003), airborne elec-
ios regarding the Tl and soft conditioning. By comparing tromagnetic system SkyTEM (Sgrensen and Auken, 2004),
their output from simulations of groundwater flow and prob- satellite remote sensing (Hoffmann, 2005), and ground pen-
abilistic capture zone, Tl from both sources (directly con- etrating radar (GPR) (Clement and Ward, 2008). Bourges et
verted from high-resolution geophysical data and generatedl. (2012) illustrated different ways of applying gravity data,
by TiGenerator) yields comparable results, even for the probrefraction seismic data and borehole data with geostatistical
abilistic capture zones, which are highly sensitive to the ge-methods. However, the proper method to incorporate these
ological architecture. This study also suggests that soft conelata into a geostatistical simulation is still a subject of active
ditioning in MPS is a convenient and efficient way of inte- research.
grating secondary data such as 3-D airborne electromagnetic The theory of multiple-point geostatistics has been devel-
data (SkyTEM), but over-conditioning has to be avoided.  oped over the last two decades. An important development
was the pixel-based single normal equation simulation al-
gorithm (SNESIM) proposed by Strebelle (2002), which al-
lowed for simulations with reasonable computational power.
1 Introduction The primary advantage of MPS is its capability to cap-
ture multiple-point-based structure information instead of us-
Aquifer heterogeneity is one of the severe challenges inng two-point-based statistics (variogram) (Journel, 2005).
groundwater flow simulation and with limited number of The database from which the structural information is re-
observations it is always difficult to depict the complete trieved is referred to as a training image (T1). Comunian et

subsurface geology. Hence, statistical methods are ofteg) (2011) pointed out that a 3-D (three-dimensional) Tl is
used to estimate geological heterogeneity. Various geosta-
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necessary for 3-D MPS simulation, but it is not trivial to
generate a 3-D TI since geological observations generally
only provide 2-D information. Hence, 3-D applications are
one of the most important challenges for MPS (Huysmans
and Dassargures, 2009). Okabe and Blunt (2005) as well as
Okabe and Blunt (2007) generated 3-D Tl realizations by ap-
plying information from lateral 2-D images on orthogonal
directions. Coz et al. (2011) built a 3-D TI by successively
replicating a single 2-D TI. These “copy and paste” methods
are simple but certain assumptions need to be invoked. Othe
methods include complicated statistical simulations such as
Comunian et al. (2011) and Comunian et al. (2012). They ;.
used probability aggregation approaches to retrieve statistica |
information from 2-D TIs which subsequently were applied Building area

to simulate a 3-D TI. Maharaja (2008) proposed a simple BKiiomelers | T
object-based algorithm, TiGenerator, to generate parametric

images. However, an image purely generated by stochastiBigure 1. Location and land use of the study area. Black points
methods lacks evidence from geological observations, and it§enote the 525 boreholes whose logs were used as hard data in the
application in MPS can be questioned. Huysmans and Dasdeostatistical simulations.

sargures (2009) concluded that the sensitivity of the model

predictions to the training image is an interesting topic for

further research. ern part. The climate is characterized by mean temperatures

Another advantage of MPS is the ability to incorporate ranging from 1.4C in January to 16.5C in August with
multiple sources of data (Liu et al., 2005; Strebelle, 2006; Huan annual average around 8@ Precipitation is highest in
and Chugunova, 2008). With the flourishing of new measure-autumn and winter while spring is relatively dry, the aver-
ment techniques, geological observations with relatively highage annual precipitation is approximately 1050 mm yéar
resolution and accuracy are available, and integrating theniStisen et al., 2011). According to the National Water Re-
into stochastic simulations is appealing. Liu et al. (2004) sources Model (DK-model; Henriksen et al., 2003), the an-
demonstrated how the integration of seismic data reduces theual average groundwater recharge is 611 mmyeana-
uncertainty in geofacies simulation. Other studies (Strebellger consumption primarily relies on groundwater abstraction.
et al., 2002; Huysmans and Dassargues, 2012) also appliedh the Danish national geological JUPITER databdsép(
soft data conditioning in MPS, but the specific effect of soft //www.geus.dk/jupiter/index-dk.htmthere are 165 pump-
data conditioning on the groundwater flow regime has rarelying wells in this area with a total mean abstraction of
been studied. 3.2x 18 miyear ! in the period from 2000 to 2010.

The objective of this study is to evaluate the sensitivity of  Figure 2 shows the regional geology of the study area as
different training images and soft data in MPS and to exploredescribed by Scharling et al. (2009) based on hydrostrati-
the extent to which this sensitivity propagates in groundwa-graphic modelling. This regional-scale model was primar-
ter flow simulations. Four scenarios of MPS simulations areily intended to establish the Miocene successions in west-
designed with different combination of Tl and soft data to ern Denmark, while less effort was devoted to the modelling
provide suggestions regarding the applicability of MPS. Theof the Quaternary sediments. This model indicates that be-
simulated geological models are incorporated into a steadyow elevations of—~70 ma.s.l., the geology in the study area
state groundwater model and each model is calibrated againgt dominated by Miocene sediments. Intensive geological
field observations. The results are analysed based on estinapping in the study area including borehole logs, seismic
mated hydraulic conductivity, simulated hydraulic head andsurveys and airborne transient electromagnetic (SkyTEM)
stochastic capture zone. investigations show that the geology at elevations above

—70ma.s.l. is dominated by highly heterogeneous Quater-

nary sediments with variable thickness (Hgyer et al., 2011).
2 Study area and data Below, Miocene deposits are located with a thickness of up

to about 150 m followed by a Palaeogene clay at the bot-
The study area covers a 14.5km by 13.9 km region locatedom (Rasmussen et al., 2010). Accordingly, the geological
near the town of @lgod in western Denmark (Fig. 1). This settings have been conceptualized into five units: Quater-
region is dominated by arable land with inland marsh aroundnary sand, Quaternary clay, Miocene sand, Miocene clay and
seven streams. The land surface elevation in this area reach@alaeogene clay.
to about 64 m above mean sea level (a.s.l.) in the northwest- The JUPITER database holds lithology logs of 525 bore-
ern part, and decreases to around 17 ma.s.l. in the southeasteles in the study area (Fig. 1), but most of the boreholes are

@ 02532
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Figure 2. Regional geological structure, model area in this study is marked with a blue frame. The location is marked by the purple polygon
in Fig. 1, and the horizontal plane is taken at 10 m a.s.l. (modified after Scharling et al., 2009).

The critical information of sequential simulation is the con-

ditional probability distribution function (cpdf), and in the

SNESIM algorithm the cpdf of a random variat8&U) is

solved by the following equation:

P(SW)=Sldy =y 1k 1)

c(dy)

. " " o - . . WhereU den(_)tes an arbit_rary location, ahdalen_ote_s a cer-
No. Borehale tain class of lithology, which can havé categories in total.

d, denotes the data event withdata points included and is

obtained by scanning the Tl with a search template consisting

¥ n + 1 nodes centred at locatidh. ¢ (d,) denotes the num-

ber of replicates of a certain conditioning data ewéntand

¢k (d,) denotes the number of replicatescd,) where the

relatively shallow and only 22 boreholes reach deeper thaff€ntral nodeU” has the random variablg(U) = S. There-
—70ma.s.l. (Fig. 3). Therefore, the geological analysis and©'®: Ed- &) implies that the probability of stat to occur

modelling were performed on Quaternary sediments from thedt ocationU with conditioning data event, equals to the
surface down te-70 ma.s.l. proportioncy (d,,)/c (d,) from a training image. The solution
Another important source of information is SkyTEM data 1S @chieved by scanning a training image. A training image
(Hayer et al., 2011). The subsurface electrical resistivity datdS & conceptual 2-D or 3-D map which depicts the expected
were collected with line spacing from 125 to 270 m, and theStructure and pattern of facies (Strebelle, 2002).
soundings penetrated more than 200 m down. The resistivity N the practice of stochastic simulation, the cpdf is inte-

data have been filtered and inverted using a 19-layer “smoot/grated with the sequential simulation paradigm (Goovaerts,
model”, resulting in a 3-D resistivity data set with cell size 1997, P- 376). The hard data is first assigned to the closest

of 100 mx 100mx 5m (Hayer et al., 2011). With its high grid nodes, and all the unsampled nodes are visited once and

resolution, SkyTEM data are ideal as soft probability data or®"lYy Once in a random path. At each unsampled rigdehe
training image for MPS simulation. recorded cpdf corresponding to an actually present hard con-

ditioning data event is retrieved and used to draw the simu-
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Figure 3. Bottom elevation of boreholes in the model area. In to-
tal there are 525 boreholes, but only 22 boreholes are deeper th
—70ma.s.l.

lated values (U).
3 Methodology The software package SGeMS (Stanford Geostatistical
Modelling Software) (Remy et al., 2009) was applied in this
3.1 Multiple-point geostatistics study. The MPS simulation was carried out using the simu-

lation package snesim_std provided by SGeMS. The simu-
MPS was first presented as a direct algorithm in stochastidation included two categories, Quaternary sand and Quater-
simulation by Guardiano and Srivastava (1993). Later, Strenary clay, with target proportions set to 0.67 and 0.33, re-
belle (2002) introduced the SNESIM algorithm which com- spectively, as indicated by borehole data. As suggested by
bines the flexibility of the pixel-based algorithm and the abil- Liu (2006), the dimension parameter of the search template
ity to reproduce crisp shapes of the object-based algorithmwas based on the primary understanding of the geological
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structure, which can be indicated by TI1 (Table 1). The ellip- -
soid search template has 240 nodes, and the geometry was s os G ey :
to 2000, 2000 and 60 m for maximum, mean and minimum ,, AR SRR N |
separately, without any rotation or affinity. LR

07

o
=Y

3.2 Soft data conditioning

Probability

o
o
T

Soft data or secondary data provide indirect information on §,. ./ i
the distribution of geological facies. Typical soft data include .
geophysical data such as seismic data, spaceborne geodet
observations, and airborne electromagnetic data. To be inte:
grated in SNESIM, soft data first have to be converted into
facies prObabIlIty data (Strebe"e, 2006) The def based on % o 20 30 40 50 60 70 80 0 100;;3515&1(30?1;“::‘))150 160 170 180 190 200 210 220 230 240 250

both hard and soft dat® (A|B, C), where “B” indicates the

hard data set and “C” indicates the soft data set, is solved b¥igure 4. Non-linear regression of sand occurrence against
deriving a Bayesian-based model of integratih@A|B) and ~ SkyTEM data. Blue points are sand occurrence from borehole data
P (A|C) (Journel, 2002). In Bayesian statistical terrRgA) compared to resistivity. The green line is the regression function
is the facies global proportion or prior probability. And in this (Ed.6), coefficient of determination is 0.80 and RMSE is 0.08.
case, the notatioR (S (U) = Si|d,) in Eq. (1) can be simpli-
fied asP (A|B). P (A|C) denotes the cpdf derived from soft

. g : ue to data noise, this least-squares curve fitting was only
data. The cpdf integrating both hard and soft data is updategerformed for resistivities between 10 and T4an. The co-

03

01— —

as efficient of determination is 0.80 and the root mean square
. a’ error (RMSE) is 0.08, which indicates that the function rep-
P(AB.C) = at +bhxc’ €[0.1] (2) resents the correspondence between resistivity (10Q14h)
1- P(A) and sand probability satisfactorily. Therefore the polynomial
~TPA) (3)  regression model was used to convert the 3-D SkyTEM data
1— P(A|B) (10-1402 - m) into a 3-D sand probability map. For resistiv-
=" FAB) (4) ities lower than 1@ - m there are only two data points both
1- P(AIC) with sand occurrences of 0, thus sand occurrence was set to

) (5) 0 below this value. For resistivities higher than X30m,

P (A|C) 80 % of data points show sand occurrence at 1, thus the cor-
The parameter is used to adjust the contribution from responding sand occurrence was set to 1. The membership
soft information “C”.t = 1 indicates that the two data sets function is therefore expressed as

“B” and “C” are independent. Fotr =0 soft information 1 if R>140Q-m

is ignored, while forr > 1 the influence of soft data “C” 0.0863 x (InR)®—0.958x (InR)2 +3.759

is increased, and it is decreased fok 1 (Journel, 2002). Po= « (INR) — 4.596 ®)
The sensitivity of parametar in SNESIM was analysed by

if 10Q2-m R 14022 - m
Liu (2006), and the choice of parameter values#adn this 0 if R < 1OQ<§m <

study is based on their results.
_. whereR is the resistivity. Figure 5 shows Quaternary sand
3.3 SkyTEM data to soft probability probability distributions as derived from Ecp)(for lateral

. . . ) and vertical cross sections.
A supervised technique (Liu et al.,, 2005) was applied to

retrieve probabilistic information from SkyTEM data. The 3.4 Training image

resistivity data was converted to facies probability data by

correlating the facies occurrence in the borehole lithologi- Construction of 3-D Tl is challenging since geological pat-

cal logs with SkyTEM data. The borehole logs were sub-terns are usually described in 1-D or 2-D. In this study two

divided into 5m intervals in correspondence with the dis- kinds of 3-D training images were generated, denoted as TI1
cretization of the SkyTEM data. The lithological logs were and TI2, respectively.

categorized as sand or clay and the corresponding resistiv- TI1 was directly converted from SkyTEM data. Based on

ity value was recorded. Subsequently, for each resistivity birthe resistivity the subsurface was divided into Quaternary
(size 1©2-m) the sand probability based on borehole data wassand and Quaternary clay by using a critical resistivity value.
computed and plotted against the corresponding resistivityAccording to the 525 borehole logs, the proportion of Qua-

(Fig. 4). The data points were fitted to a truncated polyno-ternary clay is 0.33. This proportion is assumed to be rep-
mial non-linear regression function of resistivity (green line). resentative of the study area, although it could be slightly
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Table 1. The mean length distribution iK, Y, andZ directions and proportion of Quaternary clay in TI1 and TI2.

Cla
X (m) Y (m) Z (m) proportio)rg
Min. Mean Max. Min. Mean Max. Min. Mean Max.
TI1 50 400 2950 50 400 3200 25 23 60 0.33
TI2 50 525 2850 50 454 3300 2.5 21 65 0.33
1 ——
- . - |
6186250 %4
0.8~ -
6184250 0tk |
B 7 /
5 6182250 — - / 1
2 ; o /
T 6180250 5
8 E 04— -
o © 0.33 /
Z 6178250 03~ 1
[7p] /
02 /
6176250
0.1~ -
/
i174250 ‘ ‘ I ‘ ‘ ‘ ‘ 00 - 41.65‘0 1(‘)0 W%RO stiviy (oh 26)0 250 3(‘70 350
oS = 50 e - Sand esistivity (ohm-m:
® ® 10 ﬁ T " Probability
% E -70 T T T T “F.;—r 1.0 Figure 6. The CDF of SkyTEM data. Resistivity of 41¢B- m cor-
2 8 3 8 8 8 8 3 [82 responds to a proportion of 0.33, which is the proportion of Quater-
5 5§ 5 5§ 5§ 8 g8 3 i nary clay according to borehole data.
W-E coordinate (m) —0.6
S = 5 -05
25 507-..-._-1 .'—.'I..,r_':v | 04 i i .
5 C ;g | TR o geobody is drawn by following a random path until the fa-
= 8 3 8 8 83 8 8 02 cies proportion is fulfilled in the simulated grid. The sinusoid
g § g § % % § 0.1 shape corresponds to features such as meandering or curvi-
S-N coordinate (m) 00 linear channels, while the cuboid is rectangular. According

to the patterns in TI1, the clay lenses are neither channel-
Figure 5. Cross sections of the 3-D map showing the probability jzed nor strongly rectangular, therefore the ellipsoid shape
of Quaternary sand converted from SkyTEM data. The horizontalygs chosen for the simulation. In TiGenerator the Quater-
plane is taken at10ma.s.|. nary sand was used as background facies and the Quaternary

clay bodies were simulated with ellipsoid lenses. The target

] o ) roportion of clay was set to 0.33 as in TI1, and the geomet-

biased due to the uneven distribution of boreholes. Figure E?ic parameters were determined through the inversion aiming
shows the cumulative distribution function (CDF) of resistiv- 4t minimizing the difference between simulated structure and
ity data. The Quaternary clay proportion of 0.33 correspondspe strycture in TI1. The target could also be the information
to 41.62-m on the CDF curve. Thus, for resistivities be- apjeved from borehole data, butin this study the 3-D TI1 de-
low this value the sediment is categorized as Quaternary Clayyicts the structure in better detail. Therefore, the information
while for resistivities above this value the sediment is cate-g, mean length from T11 was used in the objective function:
gorized as Quaternary sand. Figure 7 (left) illustrates cross
sections of TI1.

TI2 was generated by the TiGenerator (Maharaja, 2008),R _
which is a utility package in SGeMS. The TiGenerator (Ma- =~
haraja, 2008) provides a method for generating 3-D train-
ing images with parametric shapes using non-iterative, unwhere E represents the mean length (minimum, mean and
conditional Boolean simulation. The user-defined geometrymaximum) of clay bodies iX, Y andZ directions from the
and orientation of simulated objects can be deterministicallyrealizations, andE represents the corresponding item from
or statistically described. With the TiGenerator in SGeMS TI1. j is the total number of items being included and equals
version 2.1, geobodies with sinusoid, ellipsoid, half-ellipsoid 9 in this case. The optimization was based on 20 realizations
and cuboid shapes can be defined by given geometric paranand the best realization was selected as TI2. The distribu-
eters such as maximum, median, and minimum radius. Theion of clay body mean length in TI1 and TI2 is shown in

j B 2
LE) @)
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Figure 8. Estimated hydraulic conductivity of Quaternary sand and

Quaternary clay using PEST. The realizations are ranked according

] ] ] to the hydraulic conductivity of the Quaternary sand.
Figure 7. Cross sections of TI1 and TI2. TI1 is converted from

SkyTEM data while TI2 is generated by TiGenerator. The horizon-

tal plane is taken at 10ma.s.|. Mary, 2000) was used. The groundwater model was dis-

cretized into 63 layers with cells of 200,100 m horizon-

tally, resulting in a total of 792603 active cells. A constant
Table 1. It shows that both TlIs have the same clay proportionayer thickness of 5m is used from layer 6 to 63, and to
and minimum mean length of clay bodies in all directions. ayoid dry cells the top layer is 13 m thick on average (in-
While it is difficult and time consuming to match the mean cjuding the unsaturated zone), while the thickness of layer
and the maximum Iength in all three directions, the optimized2 to 5is 4m on average. Groundwater recharge from the
TI2 has a mean length of 525, 454 and 21 nXinY andZ  DK-model (Henriksen et al., 2003) was applied, resulting
directions, and the Corresponding values from TI1 are 400jn an average recharge rate of 611 mm yéan the model
400 and 23 m. For the maximum mean length, the differencearea. Groundwater discharges to river, drain and abstraction
between TI12 and Tl1 is 3% iX andY directions, and 8 % in wells, according|y the RIV (River), DRT (Drain Return) and
the Z direction, which indicates that the simulated CIay bOdy WEL (We||) packages were enabled in GMS. The nearest
is in the same size range as that from TI1. stream discharge station is Q25.32, located to the northeast

Figure 7 (right) shows the cross sections of TI2. Comparedof the model area (Fig. 1). Based on 16-year data (1990—

to TI1 (Fig. 7, left), the shapes of the clay bodies are more2005), the average discharge which is scaled to the model
homogeneous and ellipsoidal than the TI1 clay lenses whergrea is 59900 fd~1. A drain was specified for the entire
the size and shape of clay bodies are more heterogeneougodel area with drain level set to 1 m below terrain, and
However, the distribution of clay lenses given by TI2 cap- the drain time constant (157 102s™1) was taken from the
ture the general trends displayed by TI1 fairly well. Both in pK-model (Henriksen et al., 2003). There are 165 abstrac-
the horizontal and vertical direction TI2 shows a tendency oftion wells in the model area with a total pumping rate of
clustering, which is also found in TI1. 8900 n¥d~! (JUPITER). The groundwater model was cal-
ibrated against 219 observations of hydraulic head and the
river discharge to station Q25.32 using the inversion code
PEST (Doherty, 2005).
The Groundwater Modelling System (GMS) with the  Based on the calibrated flow model, the particle track-
groundwater modelling code MODFLOW-2000 (Harbaugh ing post-processing code MODPATH (Pollock, 1994) was
et al., 2000) was used to assess the effect of the geogsed to simulate the probabilistic groundwater capture zones.
logical structures on the groundwater flow regime, explic- Three wells with screens in Quaternary sediments are in-
itty on simulated hydraulic head. The model area is char-cluded in this simulation (Figs. 9-11). Well 1 is located to
acterized by high elevations in the central part with sev-the south east and filtered at a depth-c.2ma.s.l., Well
eral streams flowing towards the model border, and thus n@ and Well 3 are both located in the central part where
natural hydraulic boundaries could be identified. Instead, ahigher land surface elevations are found, Well 2 is filtered at
fixed hydraulic head boundary interpolated from observa-_47.5ma.s.l. and Well 3 is filtered at52.5ma.s.|. A total
tions was employed. The model bottom is Palaeogene clayf 100 particles were assigned to each well and the backward
which serves as no flow boundary. In order to resemble theyarticle tracking was employed.
finely discretized geological model (1001100 mx 5m),
the Hydrogeologic-Unit Flow (HUF) package (Evan and

3.5 Groundwater model
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Table 2. Four scenarios of geological realizations used for the
multiple-point geostatistical simulations.

Training Soft
Scenario image conditioning
S1 TI1 No
Capture zone 82 T | l Yes
promiy S3 TI2 No
! S4 TI2 Yes

0.10

0.08

Table 3. RMSE of simulated hydraulic head against observations.
The table lists meanyrmsg, and standard deviatioagusg, over

50 realizations (where each RMSE value is based on 219 observa-
tion wells).

Scenario  urmse(m)  ormse (M)

. s1 2.6 2.2
5 S2 2.6 2.1
8 S3 2.6 2.2

sS4 2.6 2.2

0 4km 0 1km
—_ [ S—

M Quaternary Sand [[]Quaternary Clay [[]Miocene Sand MMiocene Clay MPaleogene Clay

sis was carried out to identify the parameters to include in the
Figure 9. The probabilistic capture zone of Well 1 from each sce- caibration. Based on this analysis the hydraulic conductivi-
nario. The well location is illustrated in relation to the geological ties of Quaternary sand, Quaternary clay and Miocene sand
structure of the Ti1. were selected as calibration parameters.

The RMSE of simulated hydraulic heads of the calibrated

3.6 Ensemble analysis models were used as indicators of model performance. In Ta-

ble 3 the meany.rmse, and the standard deviatiotigmse,
To test the effect of the training image and soft condition- of the RMSE of the 50 models in each scenario are listed.
ing on geostatistical realizations, multiple-point geostatisti- The urmse is 2.6 m in all four scenarios while thermse
cal simulations were carried out by applying four different is 2.2min S1, S3 and S4 and is 2.1 in S2. This implies that
combinations of TIs and soft conditioning (Table 2). The models of each scenario are equally well calibrated.
first two scenarios (S1 and S2) were simulated with TI1. Soft The estimated hydraulic conductivity values of the Qua-
conditioning was applied in S2 but not in S1. The other twoternary units are shown for each scenario in Fig. 8, while
scenarios (S3 and S4) were simulated with TI2. Soft condi-the mean and standard deviation of the estimated values are
tioning was applied in S4 but not in S3. According to He listed in Table 4. The estimated hydraulic conductivities for
et al. (2013) the standard deviation on simulated hydraulicQuaternary sand fall in the interval 0.2—4.5 mtdThese are
head, based on multiple realizations of the geology, con-+elatively small values for a sandy aquifer material, espe-
verges to a fixed value as more models are accumulated. A&ially when the lower range of this interval is considered.
stable value is approached after 30 realizations and in thisglowever, values in the high range of the interval may be
study 50 realizations were therefore generated in each scewithin a realistic range for this area (Harrar et al., 2003). A
nario and subsequently anchored to the steady state groundiore critical issue is the relative magnitude of Quaternary
water model. sand and clay. The hydraulic conductivity of sandy materials
should be higher than the corresponding clay material and
if this is not the case, it could be an indication of errors in
the model structure. In S1 there are nine cases (Fig. 8) where
the estimated hydraulic conductivity of clay is higher than
the hydraulic conductivity of sand, and there are three such
cases in S3. However, this problem appears only once in S2
With 50 realizations in each scenario, the four scenariosand is not found in S4. Hence, around 18 and 6 % of the real-

amount to 200 groundwater models. Each model was Ca"_izations of S1 and S3, respectively, show indications of errors

brated against hydraulic head measurements using the inveFJOthe geological model, while this is only observed in 2 and
sion code PEST (Doherty, 2005). Initially, a sensitivity analy- 0 70 ©f the cases in S2 and S4.

4 Result and discussion

4.1 Model calibration and groundwater head
simulations
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Figure 11. The probabilistic capture zone of Well 3 from each sce-
nario. The well location is illustrated in relation to the geological
Figure 10. The probabilistic capture zone of Well 2 from each sce- structure of the TI1.

nario. The well location is illustrated in relation to the geological

structure of the TI1.

M Quaternary Sand [MQuaternary Clay [[IMiocene Sand M Miocene Clay WPaleogene Clay

Fig. 8. Scenarios on the first row use TI1 while the scenarios
Table 4. Estimated hydraulic conductivity qf Quaternary sand and g the second row use the TiGenerator-based TI12. No ap-
Quaternary clay using PEST. The values listed are mean and stans, .ot statistical discrepancy can be spotted between these
ggﬁ:ﬁg'ﬂﬁ:? ;fl)estlmated values over 50 realizations of each two rows, which means that even though TI2 is not directly
' ' derived from field data but from a statistical simulation, the
TI2-based realizations yield acceptable results. Both with re-

Scenario _ Quaternary sand Quaternary clay spect to the calibrated groundwater model and the estimated
Mean o Mean o hydraulic parameter values, the choice of training image has
s1 17 08 08 11 a relatively small effect. However, it should be emphasized
S92 27 0.7 0.4 0.3 that T12 was selected to maximize the similarity between the
S3 1.8 0.4 0.3 0.6 simulated training image and the field-based training image
S4 2.9 0.5 0.2 0.2 (TI11), see Table 1.

4.2 Capture zones

In addition, the ratio of hydraulic conductivity between
sand and clay material is also an indication of the quality Probabilistic capture zones were simulated for three abstrac-
of the estimated geological structure where a high contrastion wells screened in both shallow and deep layers. Fig-
would be expected to be the most reasonable result. Thares 9-11 show the probabilistic capture zone for these three
mean horizontal hydraulic conductivities of Quaternary sandwells. In each figure the first row illustrates the simulated
and clay are listed in Table 4, and it shows that the largestapture zones based on TI1 (S1 and S2), while the second
ratio is found for S4 (ratio of 14.5; 2.9-0.2m%), and the  row represents the corresponding simulations based on TI2
second largest ratio is estimated for S2 (ratio of 6.8; 2.7(S3 and S4). As mentioned previously, the thickness of the
0.4md1), while the lowest ratio is found for S1 (ratio of 2.1; top numerical layer is 13m on average, which is incoher-
1.7-0.8 md?1). The difference between the hydraulic con- ent with the rest of the layers (5m thickness on average).
ductivity of the two units is also visualized in Fig. 8. These The thicker top layer was designed to avoid dry cells, but
results also clearly show the effect of soft data in the simula-this could also diminish the variability of simulated capture
tion of geological architecture as the most sound results areones, as the geological heterogeneity has been averaged out.
obtained for scenarios S2 and S4. Well 1 (located in layer 4) is more sensitive to this effect

The impact of the training images is seen by comparingthan the other two wells, since Well 2 and Well 3 are located
the first row (S1 and S2) to the second row (S3 and S4) inin layer 13 and layer 14, respectively, and the geological
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heterogeneity in all the other layers still has a significant con-
tribution to the variability of simulated capture zones. o166z
Generally, there is no distinct trend between the first and &%
second row (Figs. 9—11), which again implies that the simu-
lation is not sensitive to the differences between TI1 and TI2.
For all three wells, the area of the capture zone is smaller for
S2 and higher probabilities are found compared to S1. How-
ever, this is not the case when comparing S4 to S3. In fact, S
has a more concentrated probabilistic capture zone than tha
of S4 for Well 2 and Well 3. In the study of He et al. (2013),
the simulation of particle travel time was applied on 100
groundwater models with different geological architecture,
in combination with a parameter uncertainty analysis of each g4
model. One discovery was that the geological architecture is
the most critical factor regarding particle travel time, because
it affects the particle travel path. Therefore, the more con-
strained the probabilistic capture zone is, the less dispersec
the path lines are, which is a result of less variation between §
the structures of the geological realizations. The results illus- &
trated in Figs. 9-11 suggest that there is much less variatior
among the realizations of S2 than those of S1. This is also in-
dicated by the standard deviation of estimated hydraulic con-
ductivity (Table 4), where the uncertainty of S2 is smaller
than that of S1, especially for the hydraulic conductivity of
sand. However, such tendency is not seen in simulations us:
ing T12 (S3 and S4). Apparently the soft conditioning results
in less variation between the realizations, and it decreasesS3
more in the Tl1-based simulations than in TI2-based simula-
tions. This is also supported by Fig. 12, where the standardFigure 12. Map of standard deviation over the 50 realizations of
deviation of the 50 realizations of each scenario is illustrated ach scenario. The computation of standard deviation is based on
The standard deviation is computed from the binary geolog-b'nary geological units (Q fpr Quaternary sand and 1 for Quaternary
ical units (O for Quaternary sand and 1 for Quaternary cIay).Clay)' The standgrd dewatlons_ are 0 at cells where the boreholes are
- . . . ...~ “located. The horizontal plane is taken at 10 ma.s.l.
Red colour indicates regions with higher standard deviation,
corresponding to higher variability between the 50 realiza-
tions. It is obvious that by conditioning on soft data (S2 and
S4), the area with higher variability decreases dramaticallytogether with a Q—Q plot of the E-type map from each sce-
S2 is the scenario with the smallest area of high standard deaario. In the Q—-Q plot the axis shows the sand probability
viations (red colours) among the four scenarios. The explafrom the soft data, while the axis shows the corresponding
nation for this is data redundancy. Realizations from S2 haveprobability from the E-type map. The black line is the CDF
been over conditioned and therefore the uncertainty on thef sand probability based on soft data. The closer the Q-Q
probabilistic capture zone has been constrained much morplot is to the black line, the more similar the sand probability
than any of the other scenarios. distribution of the realizations is to the soft data. While the
The effect of data redundancy is illustrated in Figs. 13 andplot for S1 (yellow symbols) is far from the black line, the
14. Figure 13 shows the E-type map (cell-wise arithmetic av-plot for S2 (blue symbols) is much closer. The red plot (S4)
erage) of each scenario. The “E” stands for “expected value'is also closer to the black line than the purple plot (S3). Both
or precisely “conditional expectation” (Remy et al., 2009, scenarios with soft conditioning (blue and red symbols) are
p. 37). On the E-type map the cells are more likely to be sandnuch lower than the black line on the low sand probability
as the colour turns red, and more likely to become clay as thgart, while higher than the black line on the high sand prob-
colour turns blue. The cells with dark red or dark blue coloursability part. But for the other scenarios, the plots are always
are cells where hard data (borehole data) are located. The efewer than the black line. This shows the effect of soft condi-
fect of soft data can be seen by comparing Fig. 13 to the softioning. In addition, the curve representing S2 (blue symbols)
data (sand probability) in Fig. 5. The E-type of S1 and S3is higher than for S4 (red symbols), and this can be explained
shows almost no similarity to the soft data in Fig. 5, while by data dependency. Both TI1 and soft data are derived from
the E-type of S2 and S4 show patterns that are very similaSkyTEM data, and although they were processed in differ-
to the soft data. Figure 14 illustrates the CDF of soft dataent ways, they are not totally independent. In ER), (he
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e This study is one of the first to evaluate the effect of high-

resolution airborne electromagnetic data in multiple-point
geostatistical simulations. It demonstrates how the 3-D high-
resolution airborne electromagnetic data can be used as the
Tl as well as secondary data for soft conditioning. The sen-
sitivity of model predictions to the Tl and soft conditioning
has also been analysed. The SkyTEM-derived training image
S ceoniiek (1) S Eooiate (o which resembles the actual geological structure of the site is
Figure 13. E-type estimation maps generated from 50 realizations€valuated against the parametric training image generated by
of the geology of each scenario. The cells where the boreholes arte object-based TiGenerator. The Tl from the TiGenerator is
located have the deepest colours. The horizontal plane is taken &N abstract depiction of the geological structure with param-
10ma.s.l eterized geometry. Although it is not derived directly from
field data, it is found to be a reasonable input to MPS. The
) ) comparison of simulations of groundwater head and capture
parameter is used to adjust the dependence between the twgone ingicates that in cases where knowledge of the overall
data setsB andC (representing the training image and the geqlogical structure is available, an object-based training im-
soft data in the (_:urrent _c_ase). To m_ake S2and S4 c_omparablgge may be just as good as a training image based on geolog-
the parameter is specified to 1.0 in both cases. Liu (2006) jcq) interpretations of the actual site. Although this conclu-
pointed out that using a value of 1.0 generates the most rogjoy was based on groundwater heads and capture zones, it
bust results. In Fig. 14 the plot for S2 (blue) is lower than js expected that similar conclusions would be obtained from
the black line in the low probability part, while it is located gjmulations of groundwater age or solute transport as these
above the black line in the high probability part, indicating yariaples are, similar to capture zones, very much dependent
that the S2 realizations are over conditioned. In contrast, ag, path lines and velocities, which are sensitive to geological
TI2 is remotely related to the soft data, the soft condition- heterogeneity (He et al., 2013). This study was based on a
ing on S4 improves the simulations, but the effect of dataighly heterogeneous two-facie geological system where the
redundancy is weaker than that in S2. Therefore, integrationyy ¢t shape and location of the clay lenses may not affect the
of the training image constructed using the TiGenerator (TI2)resyts from the groundwater model significantly. However,
with the SkyTEM-based soft data is more sound than com+t gystems with curvilinear structures such as buried valleys
bining TI1 and soft data that both are based on SkyTEM datagre considered, the geological architecture may have a larger
Journel (2002) found that when< 1 the influence of addi-  jmpact on groundwater flow and the choice of training image
tional data is decreased. Therefore, another scenario (S5) Wa$)1d therefore be more important. However, more testing is
added where TI1 and soft data were used, but the parametegqyired to assess if the conclusions from the current study
T is set o 0.5. S5 corresponds to the green plot in Fig. 14¢ap pe transferred to other types of geological environments.
and it is located righ_t between S1 and S2, which illustrates By further conditioning on secondary data, the simulated
the effect of decreasing geological structure is improved. This is revealed through the
results from the parameter calibration where the likelihood of

Elevation
(masl)
Lo

S3
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obtaining a realistic parameter set is much higher if soft dataCoz, M. L., Genthon, P., and Adler, P. M.: Multiple-point statis-
is used for conditioning. However, when applying soft condi-  tics for modeling facies heterogeneities in a porous medium: the
tioning, the dependence of different data sets has to be taken Komadugu-Yobe Alluvium, Lake Chad Basin, Math. Geosci., 43,
into account. If the training image and the soft conditioning  861-878,2011. o

data are based on the same source of information, the resu@elhomme, J. P.: Spatial varla_bll_lty and uncertainty in groundwater
ing geological realizations may be over-conditioned. Over- fllngggrazrggtelrg;g geostatistical approach, Water Resour. Res.,
conditionin.g may not decrea§e _the accuracy of the.indiyid_Deutéch, C. V. :':md Jc;urnel, A. G.: GSLIB Geostatistical Software
ual geological model, and th,'S is proved by the Ca“brat'on. Library and User’s Guide, Oxford University Press, New York,
where each model from S2 yields reasonable parameter esti- 1ggo.

mates. However, over-conditioning decreases the uncertaintpeutsch, C. V. and Wang, L.: Hierarchical object-based stochastic
among simulated geological models, which results in under- modeling of fluvial reservoirs, Math. Geol., 28, 857-880, 1996.
prediction of the uncertainties in transport simulations. ThisDoherty, J.: PEST: Model Independent Parameter Estimation, 5th
is demonstrated for the examined case where high-resolution Edn. of user manual, Watermark Numerical Computing, Bris-
SkyTEM data is used as both training image and soft con- bane, Australia, 2005.

ditioning which results in a higher reduction in capture zone Evan, R. A. and Mary, C. H.: Documentation of the hydrogeologic-

uncertainty than if SKyTEM was only used for soft condi-  unit flow (HUF) package, US Geological Survey Open File Rep
tioning 00-342, US Geological Survey, Denver, CO, USA, 2000.

Therefore. it is recommended to use independent dataGoovaerts, P.: Geostatistics for Natural Resources Evaluation, Ox-
! P ford University Press, New York, 483 pp., 1997.

sources for generating the training image and _the SOf_t data_Guardiano, F. B. and Srivastava, R. M.: Multivariate Geostatistics:
Based on the present study, the best result is obtained if geyond Bivariate Moments, in: Geostatistics Tréia '92, Quanti-
the TiGenerator is used for defining the training image and tative Geology and Geostatistics, edited by: Soares, A., Kluwer
the geophysical data for soft conditioning. The information  Academic Publishers, Dordrecht, Netherlands, 133-144, 1993.
required by the TiGenerator may be derived from expertHarbaugh, A. W., Banta, E. R., Hill, M. C., and McDonald, M. G.:
knowledge of the geological structure of the site or derived MODFLOW-2000, the US Geological Survey modular ground-
from analysis of mapped geology at a site with comparable water model — user guide to modularization concepts and the
geology. Alternatively, a Q—Q plot analysis could be carried ~Ground-Water Flow Process: US Geological Survey Open-File
out and the contribution from soft data on the realization Tgfgg 020(;?)3' US Department of Interior, Reston, VA, USA,
Shqmd be decrgased. It is, .howe"e.r' @ .prObIematIC toHarrar, W. G., Sonnenborg, T. O., and Henriksen, H. J.: Capture
estimate the optimal level of information which should be

. . . zone, travel time, and solute-transport predictions using inverse
obtained from the soft data and (2) time consuming to carry modeling and different geological models, Hydrogeol. J., 11,

out the analysis. 536-548, 2003.
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