
Supplementary material 

1. Dronkers’ approach 

The Chebyshev polynomials approach of Dronkers (1964) also provides a way to account for river 

discharge. It leads to a friction term expressed as: 
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where pi (i=0, 1, 2, 3) are the Chebyschev coefficients according to Dronkers (1964, p. 301), 
which depend on  through α in Eq. (19). The subscript D stands for Dronkers. They can be 

expressed as: 
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The coefficients p1, p2 and p3 determine the magnitude of linear, quadratic and cubic frictional 

interaction, respectively. It appears that the values of p0 are small with respect to the values of the 

other coefficients; thus this term can usually be neglected. The coefficients p1 and p3 decrease with 
increasing  until they converge to 0 for 1  . For 1  , p0=p1=p3=0 and p2=-π, so that the 

friction term becomes  4 / 32 2/DF U K h . If 1  , p0=p2=0, p1=16/15 and p3=32/15, so that 

equation (S1.1) reduces to 
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Using Dronkers’ friction term Eq. (S1.1) in the envelope method described in the Appendix A, we 

are able to derive the following expression: 
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Also in this case, the periodic variation of the depth in the friction term can be accounted for by 

setting κ=1 in the expression provided in Table 3. 

 

2.  Godin’s approach 

For tidal river applications (e.g., the upper Saint Lawrence river), Godin (1991, 1999) showed that 

an accurate approximation of the friction term can be obtained by using only the first and third 

order terms of the dimensionless velocity. Adopting this approximation yields: 
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where subscript G stands for Godin, and U’ is defined as 
 ' rU U .   (S2.2) 

Equation (S2.1) is very similar to Eq. (S1.6), the difference being that in Dronkers’ approach U is 

made dimensionless by the tidal velocity amplitude υ, while Godin does this with the maximum 

possible velocity U’.  

Applying equation (S2.1) in the same procedure as described in Appendix A for the Lorentz’s case, 

we readily obtain the following expression: 
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If Ur=0 (implying that U’=υ) G0=16/(15π) and G1=32/(15π), and the method is identical to 

Dronkers’ expression Eq. (S1.7). 

The expression accounting for the periodic variation of the depth in the denominator of the friction 

term is reported in Table 3, where 
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3. More detailed comparison between analytical solutions against numerical results 

The tidally averaged friction can be estimated by: 
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With regard to hybrid model, the friction at HW is given by: 
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where the first term on the right-hand side has a positive value if υ sin ε>Ur and a negative value if 

υ sin ε<Ur. 

Similarly, the friction at LW reads: 
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To illustrate the capability of the proposed analytical model when considering the effect of river 

discharge, Figs. S1—S8 present some comparisons between analytical solutions and numerical 

results for different sets of parameters (with K=40 and 70 m1/3s-1, b=352 and 141 km, ζ0=0.2 and 

0.5). 
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Figure S1. Comparison between different analytical models and numerical results for given values 

of K=40 m1/3s-1, b=352 km, ζ0=0.2, h =10 m, 0B =5000 m, minB =300 m. The label “nodiv” 

indicates the models without considering the residual water level slope, while “div” denotes the 

models accounting for it using the approach described in Sect. 5. 
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Figure S2. Comparison between different analytical models and numerical results for given values 

of K=70 m1/3s-1, b=352 km, ζ0=0.2, h =10 m, 0B =5000 m, minB =300 m. Notation as in Figure 

S1. 
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Figure S3. . Comparison between different analytical models and numerical results for given 

values of K=40 m1/3s-1, b=352 km, ζ0=0.5, h =10 m, 0B =5000 m, minB =300 m. Notation as in 

Figure S1. 
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Figure S4. . Comparison between different analytical models and numerical results for given 

values of K=70 m1/3s-1, b=352 km, ζ0=0.5, h =10 m, 0B =5000 m, minB =300 m. Notation as in 

Figure S1. 
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Figure S5. Comparison between different analytical models and numerical results for given values 

of K=40 m1/3s-1, b=141 km, ζ0=0.2, h =10 m, 0B =5000 m, minB =300 m. Notation as in Figure 

S1. 
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Figure S6. Comparison between different analytical models and numerical results for given values 

of K=70 m1/3s-1, b=141 km, ζ0=0.2, h =10 m, 0B =5000 m, minB =300 m. Notation as in Figure 

S1. 
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Figure S7. Comparison between different analytical models and numerical results for given values 

of K=40 m1/3s-1, b=141 km, ζ0=0.5, h =10 m, 0B =5000 m, minB =300 m. Notation as in Figure 

S1. 
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Figure S8. Comparison between different analytical models and numerical results for given values 

of K=70 m1/3s-1, b=141 km, ζ0=0.5, h =10 m, 0B =5000 m, minB =300 m. Notation as in Figure 

S1. 
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