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Abstract. Global seasonal forecasts of meteorologicall Introduction
drought using the standardized precipitation index (SPI) are

produced using two data sets as initial conditions: the Global L .
Precipitation Climatology Centre (GPCC) and the EuropeanSeasonal foreca_stlng is an essential component of an early
Centre for Medium-Range Weather Forecasts (ECMWF)fjrought forec_astmg system that can proy|de advance warn-
ERA-Interim reanalysis (ERAI); and two seasonal forecasts"9 and alleviate drought Impacts (Pozzi et _aI., 2913)' The
of precipitation, the most recent ECMWF seasonal forecast'>® of seasonal forecqsts 'O.SUCh a system is .”?a'”'y dgpen—
system and climatologically based ensemble forecasts. Thgent_ on the actual predictability OfdrOUth. condltlons, .Wh.'Ch
forecast evaluation focuses on the periods where precipitagr? In tu_rn dependent on the _pred|ctab|I|ty of preupltatlon
tion deficits are likely to have higher drought impacts, and the(G'anom ?t é.ll." 2013).' Dynamical seasonal forecasting has
results were summarized over different regions in the World.fBVOI\/e.d sgmﬂga_mtly in the last 20 years, from early stud-
The verification of the forecasts with lead time indicated that'®S YSI"9 simplified models (e.g. Cane et al,, 1986). to mod-
generally for all regions the least reduction on skill was found em multl-mOQeI systems (e.g. Palmer etal., 2004; Kirtman et
for (i) long lead times using ERAI or GPCC for monitor- al._, 2013)_ which rely on coupled atmosphere—ocean model_s.
ing and (ii) short lead times using ECMWF or climatological With the increased skill of these dynamical forecasts, their

seasonal forecasts. The memory effect of initial conditions"S€ has increased, in particular in sectorial applipations eg.
was found to be 1 month of lead time for the SPI-3, 4 mothPappenberger etal., 2013), such as meteorological droughts

for the SPI-6 and 6 (or more) months for the SPI-12. Re-(Yuan and Wood, 2013; Yoon et al,, 2012; Mo et al., 2012;

sults show that dynamical forecasts of precipitation provideDu'[ra et al., 2013). Seasonal forecasting is not limited to

added value with skills at least equal to and often above thag?/nagmca: mogeIBs; severaldséatls(';lcal ;%Cohghl(ﬂ/lﬁeﬁ have dbgen
of climatological forecasts. Furthermore, it is very difficult to also developed (Barros and Bowden, » Mishra and De-

improve on the use of climatological forecasts for long lead sal, ZOOVE\’/); |nhth|sttudy, the I‘EE(l:JIr\;\?\/eI?nI Centrg for Medl|um—
times. Our results also support recent questions of Whethelieange eather Forecasts ( ) latest dynamical sea-

seasonal forecasting of global drought onset was essentialgonal forecast system is used. Different monitoring data sets

a stochastic forecasting problem. Results are presented r re combined with the forecasted fields to generate global

gionally and globally, and our results point to several regionsprobablhstlc meteorological drought seasonal forecasts.

in the world where drought onset forecasting is feasible and Monitoring of the. aCF“‘?‘! Cond't"?F‘S IS an essgntlal part of
skilful the system, providing initial condition information (Shukla

et al., 2013), and this forecasting system is initialized with
the drought monitoring products which have been widely
explained in the companion Part 1 paper. By extending the
global scale that was initially done by Dutra et al. (2013) in
four African basins, this work tries to answer three general
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2670 E. Dutra et al.: Global meteorological drought — Part 2

questions: (i) how sensitive are drought forecasts to the mona concatenation of the monitoring with the seasonal forecast
itoring data set used? (ii) What is the added value of usingof precipitation. This study follows the same methodology
dynamical seasonal forecasts in comparison with climatologthat Dutra et al. (2013) applied to several basins in Africa,
ical forecasts? (iii) What is the skill of these forecasts to pre-but in this case the SPI calculations are performed glob-
dict drought onset (in aggregated, global terms)? The datally for each 2 x 1° grid cell. Similar methodologies have
sets used in this study and the skill metrics are presented imalso been used recently by Yoon et al. (2012) and Yuan and
Sect. 2 followed by the results and discussion in Sect. 3 andVood (2013) (denoted YW13) using different monitoring
the main conclusions in Sect. 4. and seasonal forecast data sets. The SPI is a measure of in-

coming precipitation deficiency, and many additional factors

determine the severity of drought that ensue, if any (Lloyd-
2 Methods Hughes, 2013).

Having two seasonal forecast data sets (S4 and CLM) and
two monitoring data sets (GPCC and ERAI), we generated
seasonal reforecasts of the SPI-3, 6, and 12 using four con-
figurations:

2.1 Seasonal forecasts
2.1.1 Precipitation data sets

In this study we use the ECMWF seasonal forecast system — GPCC monitoring and S4 forecasts (GPCC S4)

(System 4, hereafter S4; Molteni et al., 2011). This is a dy- o ] )

namical forecast system based on an atmospheric—ocean cou-— GPCC monitoring and climatological forecasts

pled model, which has been operational at ECMWF since (GPCC CLM)

2011. The horizontal resolution of the atmospheric model is _ ERA| monitoring and S4 forecasts (ERAI S4)

about 80 km with 91 vertical levels in the atmosphere. S4

generates 51 ensemble members in real time, with 30 years — ERAI monitoring and climatological forecast

(1981-2010) of back integrations (hindcasts) with 15 ensem-  (ERAI CLM).

ble members and 6 months of lead time. Molteni etal. (2011)a) four configurations provide a 30-year hindcast period

provide a detailed overview of S4 performance. In addition 1981-2010) with 15 ensemble members including forecasts

to the dynamical seasonal forecasts, climatological forecastgsyed every month with 6 months of lead time. The GPCC

(CLM) were also generated by randomly sampling past yearg| M and ERAI CLM configurations constitute counterparts

from the reference data set to match the number of ensemblg, the ensemble streamflow prediction (ESP) method used

members in the hindcast. by YW13. To investigate the role of the monitoring, we gen-
The reference precipitation data set is the Global Precipigrated an extra set of reforecasts using GPCC mean cli-

tation Climatology Centre (GPCC) full reanalysis version 6 matological precipitation for monitoring and S4 forecasts

(Schneider et al., 2011), which has been available since 1904spcc_CLM S4). This configuration will not be presented

to 2010 globally on ax 1° regular grid. In this study GPCC i detail in the forecast verification, but it will be compared

is used both as a reference data set (for the forecast verifiyith GPCC S4 configuration as a proxy to quantify the im-

cation) and as a monitoring data set (providing initial con- portance of initial conditions in the forecast skill.
ditions). Additionally, the ECMWF ERA-Interim reanalysis

(ERAI, Dee et al., 2011), which has been available since2.2 \Verification

1979 up to the present with the same resolution as S4, was

also tested as monitoring for the drought indicator. A detailed2.2.1  Regions and seasons
comparison of GPCC and ERAI for drought monitoring is

presented in the companion Part 1 paper (Dutra et al., 2014f-0onsidering the large size of the hindcast data sets (4 con-
figurations, 3 SPI timescales, 12 initial forecast dates and

2.1.2 Drought indicator 30 years), the verification was targeted to the specific drought
application. Therefore, the evaluation of the forecasts is
As in Part 1, we selected the standardized precipitation in-mainly focused on large regions adapted from Giorgi and
dex (SPI, Mckee et al., 1993) as a meteorological droughtrancisco (2000) — see Table 1, and Fig. S1 in the Supple-
indicator. SPI is a transformation of the accumulated pre-ment. Setting up these regions pools the grid cells together,
cipitation amount over a specific time period (typically the increases sample size and improves the robustness of the ve-
previous 3, 6, and 12 months, denoted as SPI-3, SPI-6, andfication statistics. A second point is that the seasonal fore-
SPI-12, respectively) into a normal distribution of mean zerocast relevance and skill is dependent on the different seasons
and standard deviation 1. The extension of the SPI from thdor each location. Rainfall in many regions can be limited to
monitoring period, i.e. past (can also be interpreted as initialparticular seasons, so drought forecasts must be targeted to
conditions) to the seasonal forecast range, is performed byhose seasons. In a global analysis, the wide variety of preci-
merging the seasonal forecasts of precipitation with the monypitation regimes makes it difficult to present the results syn-
itoring product. The merging of the two products is basically thetically for all the different initial forecast calendar months.
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Table 1. List of regions used in this study. Adapted from Giorgi calculated for the temporal mean assuming a normal distri-
and Francisco (2000) (Fig. S1 in the Supplement and also Part 1)pution. The time mean of the rms error of the ensemble mean
For each region, the calendar month with maximum accumulatedshould equal the time mean of the ensemble spread about the
precipitation in the previous 3 and 6 months (inclusive) is presentedansemble-mean forecasts in a perfect forecast (Palmer et al.,
and was calculated from the mean annual cycles of GPCC. 2006). The time-mean ensemble spread about the ensemble
mean forecast is calculated as

Name Acronym  Max Max

3months 6 months 1
Australia AUS March April rms (spreacs- n; ;
Amazon Basin AMZ March May = 05
Southern South America SSA August October 131 Ze 2 ’
Central America CAM  September October |:— { — Z (X (J,i,k)—X({, k)) }] ) 2
Western North America WNA January March pi=1 |21
Central North America CNA July September
Eastern North America ENA  August October where ne is the number of ensemble members (15) and
Mediterranean Basin MED  January March X (j,i,k) is the forecast ensemble membg) {n year ¢)
Northern Europe NEU  September November  and grid point §). As in Eq. (1)X (i, k) represents the fore-
Western Africa WAF  September October cast ensemble mean of all ensemble members.
East Africa EAF May August . .
Southern Africa SAF February  Agpril The anqmaly correlat|0n.coeff|0|er_1t (ACC) of the ensem-
Southeast Asia SEA December December Dle mean is calculated as in Molteni et al. (2011). First the
East Asia EAS August September  grid-point Pearson correlatiom{ is calculated in the fol-
South Asia SAS August October lowing form:
Central Asia CAS April May
Tibet TIB August September i TR
North Asia NAS August October > (Y (i, k) X (i, k) )

- i=1
T .2 05T __2]* )

o ey [E (xaw)]
Since this paper is focused on drought events, the verification i=1 i=1
of the forecasts is performed for a specific calendar month , ,
where precipitation anomalies (in that month and previousWhere denotes the tempora_l ar_lomaly (after removing the
months) are likely to have a higher impact. Using the me(:mtemf:)Oral mee}n). The grid Po'm IS thgn a"efa‘-?led over the
annual cycle of GPCC precipitation in each region, we CaI_part|cular region with the fisher and inverse-fisher transfor-

culated the calendar month (for each region) with maximum™Mation:

accumulated precipitation in the previous 3 and 6 months, in- 1w
cluding the selected month (see Table 1). The calendar montACC = tanh|:— Z arctam (rk)i| . 4)
with the maximum 3-month accumulated precipitation was "p i1

used to verify SPI-3, while the calendar month with the MaX°rhe confidence interval of the anomaly correlation was cal-

imum 6-month accumulated precipitation was used to verify .
SPI-6 and SPI-12. Consequently, the spatial maps of score%mated by a 1000-bootstrap temporal resampling and recal

. - . L Culating Egs. (3) and (4) with random temporal sampling re-
for different lead times refer to different verification calendar g Egs. (3) 4) . poral piing
. . o e . placement. The ACC varies betweerl and 1 with 1 being
months. While this stratification on verification date is some- . .
) . ; . a perfect forecast, and below 0 there is no skil-tb where
what arbitrary, it allows focusing on the season of interest

and aives more emphasis on the forecast lead time the forecasts are in antiphase with the observations.
9 P ' The relative operating characteristic (ROC) measures the

222 Metrics skill of probabilistic categorical forecasts, while the previous
two metrics only evaluate the ensemble mean. The ROC di-

The root mean square (rms) error of the ensemble mean for agram displays the false alarm rat€)(as a function of hit

specific region, initial forecast calendar month and lead timerate (HR) for different fractions of ensemble members de-

is calculated as tecting an event. The area under the ROC curve is a sum-
05 mary statistics representing the skill of the forecast system.

181, . 2 The area is standardized against the total area of the figure,

rms= n, - n_p kX‘; (X(l’ k) -YG, k)) ’ (1) such that a perfect forecast has an area of 1 and a curve lying

along the diagonal (no information, HRE) has an area of
wheren; is the number of years (30}, the number of 0.5. The results presented in the paper refer to each region.
points in the particular regiong(i, k) the observations for This was achieved by using all the grid points in a region
a specific yearif and grid point ), and X (i, k) the fore-  when calculatingF’ and HR. The forecasts and verification
cast ensemble mean. The rms error confidence intervals angere transformed into an event (or no event) by determining
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if SPI is below—0.8 as suggested by YW13 and Svoboda In all regions there is a clear difference of the rms error of
et al. (2002). The spatial integration has the advantage of inthe ensemble mean for lead times 0 and 1 months between
creasing the sample size used to build the contingency tabléhe forecasts using GPCC, in comparison with using ERAI
while no spatial information is retained. To estimate the un-for the monitoring, for example; ERAI has higher rms errors.
certainty of the ROC scores and curves in the ROC diagram, &rom lead time 2 (5) months and onwards SPI-3 (SPI-6), the
1000-bootstrap resampling with replacement procedure waforecasts using GPCC or ERAI as monitoring have the same
applied. The contingency tables and the ROC scores werems error since for these lead times only forecast precipi-
calculated 1000 times: in each calculation the original fore-tation is used. The forecasts using ERAI for monitoring are
cast and verification grid-point time series were randomly re-penalized when compared with the forecasts using GPCC for
placed (allowing repetition), and a new set of scores was calmonitoring, since GPCC is used as a reference data set (for
culated. The resampling was performed only on the time sethe forecast verification). These results do not consider the
ries, keeping all the grid points, since the temporal samplinguncertainties in GPCC that are discussed in more detail in the
size (in our case 30 values) is the largest source of uncereompanion Part 1 paper, in particular the changes in the num-
tainty in the score estimation. The 95 % confidence intervalsher of rain gauges used in the data set. In East Africa (Fig. S7
are estimated from the percentiles 2.5 and 97.5 of the 100@n the Supplement) and West Africa (Fig. S18 in the Supple-
bootstrap values. ment) the rms error for ERAI merged with S4 decreases with
The skill scores measure the difference between the scorforecast lead time, which might be counter-intuitive, and is
of the forecast and the score of a benchmark forecast, norassociated with the problems of ERAI’s inter-annual precipi-
malized by the potential improvement and calculated as  tation over those regions (Dutra et al., 2013). These results
are the first indication of the importance of the monitoring
ROC skill score= (s — so) / (s1 — s0) , (5)  quality (i.e. whether GPCC or ERAI was merged with the
. forecast information) and subsequently the first indication of
wheres is the ROC score of the forecasg, the ROC score  he importance of initial conditions on the SPI forecast skill.

of a benchmark forecast ang the ROC score of a perfect o, the other hand, in other regions like South Africa (Fig. 1)
forecast. The ROC skill score, with respect to a forecast Withega| s4 rms errors increase with lead time. This is in line

no skill, can be calculated by setting= 0.5 ands1 =1, 0r  yjith previous findings of the quality of ERAI precipitation
settingso to the ROC score of another benchmark forecast.qer South Africa when compared with East or West Africa
The skill score varies betweenco and 1 with values be- (Dutra et al., 2013).

low 0 indicating that the forecast is worse than the reference |, general the forecasts are slightly under-dispersive

forecast, and 1 a perfect forecast. which can be seen from the dashed lines in Fig. 1. How-
ever, we do not consider the observation uncertainty (in this
case the GPCC precipitation), which should be added to the

To compare the ECMWF model results with the US National ensemble spread when comparing with the rms error of the
ensemble mean. This might be also associated with the de-

Multi-Model Ensemble results, presented by YW13, we have o Lo . .
used their definition of drought onset: a drought event is deterministic nature of the initial conditions, and the extension
fined when the SPI-6 is below0.8 for at least 3 months of the probabilistic monitoring presented in the companion

and the drought onset month is the first month that the gpiPart 1 paper could be of potential benefit to increast_a _the
6 falls below the threshold. In the last section of the results,Spread of the forecasts.. The anomaly correlaﬂo_n cpefﬂment
we present an evaluation of the drought onset forecast skil Tt::l? ﬁPI Lor(_acasts, usmng;PQC or EIR'g: monltorln?, alsp
of the different configurations with a global perspective (not ghlights the Importance of having a reliable source of preci-

following the regions definitions). Some of our verification pitation for monitoring (|IIu_strat_ed by comparing GPCC gnd
metrics also overlap with YW13. ERAI). The same conclusion will be shown in the analysis of

the ROC scores.

There is a clear difference in the decay of the ROC
scores with lead time, particularly for GPCC S4, as shown
3.1 Regional evaluation in Fig. 1g-i: the decay rate is much more rapid for SPI-

3 than for SPI-12. SPI-3 only contains 3 months of infor-
For each of the regions in Table 1, a summary figure was promation, whether this is forecast precipitation or GPCC (or
duced displaying the evolution of the rms, ACC and the areaERAI) “observed” precipitation. SPI-12, on the other hand,
under the ROC curve with lead time for the specific verifica- may contain many more months of monitored precipitation in
tion date (also in Table 1) and for the SPI-3, 6 and 12 (Fig. 1the merged monitored-forecast product, which is then tested
for South Africa, and Figs. S2—S19 in the Supplement for theagainst the monitored precipitation. This is intrinsic to the
remaining regions). This study will not exhaustively examine SPI forecasting method that uses more information from the
forecast skill within each individual region, although results monitoring data set for longer SPI lead times. Additionally,
are available in the Supplement for scrutiny. the ROC scores of GPCC using the S4 forecasts (GPCC S4)

2.2.3 Drought onset

3 Results
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SAF SPI3 valid for FEB i i
1.2 |a) : ”VB l” OFJ _ 1.4 Ib)SAIT SPI6| vallcli for |APR : o122 |c)SAI—: SPI1|2 vallld foiAPR
L1y T T T T H 1.2} - 7
1.0 L /T & jL;_E_—EE 1.0} = F=4
0.9 1 ;f—'ﬂ;“' T = =
%) I e 0.8 1
= 0.8 7 7 - -
~4 4 0.6 ]
07\ M : i
0.6 (] 1 0.4 1
0.5 / 4 0.2F ] _
0.4 | | | | | | | 0.0 | | | | | | | 0.0 | | | | | | |
0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6
1.0 |d)SA||: SPI?: valulﬁ for II=EB : - 1.0 e)SAII= SPI6| vallcli for éPR : - 1.0 f)SAF| SPI1|2 vallld forlAPR : :

ACC

0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6

g)SAF SPI3 valid for FEB h)SAF SPI6 valid for APR i)SAF SPI12 valid for APR
1'0 T T T T T T T 1'0 T T T T T T 1'0 T T T T T T

T
1

ROC

N T T T
0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6

Forecast lead time (months) Forecast lead time (months) Forecast lead time (months)

|I—I GPCCS4 [ GPCCCLM Fq ERAIS4 [ ERAI CLM|

Figure 1. Seasonal forecast evaluation resume for the South Africa region (SAF) for the @Pt3g), SPI-6(b, e, h), and SPI-12c,

f, i). For each SPI timescale the evaluation consist of three panels displaying a specific score as a function of lead time (horizontal axis)
for a specific verification date (in the title) for the GPCC S4 forecasts (red), GPCC CLM (black), ERAI S4 (blue) and ERAI CLM (grey).
(a—c)rms error of the ensemble mean and ensemble spread about the ensemble mean iffidddshadmaly correlation coefficienfg—i)

area under the ROC curve for SPI forecasts beld8. The error bars in all panels denote the 95 % confidence intervals computed from
1000-sample bootstrapping with resampling.

are higher than the same S4 forecasts used with ERAI (ERAEelected. This approach is useful for highlighting and reveal-
S4) during the first few months of lead times, after which ing those regions where the selection of ERAI for monitoring
the GPCC's higher rate decays to a rate of decay with leadhas a stronger detrimental effect on skill (relative to GPCC)
time nearly identical to ERAI. This is again due to the use of of the seasonal forecasts. To quantify the lead time mem-
GPCC as a reference data set that penalized the scores of tbhey of the initial conditions, GPCC S4 was compared with
forecasts using ERAI for monitoring. GPCC_CLM S4 (Fig. 3), and it was 1 and 6 or more months
A test of the importance of the monitoring data set uponfor SPI-3 and SPI-12 respectively. For the SPI-6 the mem-
forecast skill is provided by identifying the last forecast lead ory of the initial conditions varied between 3 and 4 months.
time where the ROC skill score of GPCC S4 (using ERAI S4The main difference of ranking GPCC S4 with ERAI S4
as a reference forecast) is higher than 0.05 with 95% coner GPCC_CLM S4 is for the SPI-6 within the tropics. This
fidence (Fig. 2). Skill scores above 0 indicate that GPCCshows that a higher disagreement is found among precipita-
merged with S4 has a higher skill than ERAI S4. However, tion data sets within the tropics due to the low density of the
due to the sampling associated with the bootstrapping and theumber of observations.
confidence interval estimation, a higher threshold of 0.05 was

www.hydrol-earth-syst-sci.net/18/2669/2014/ Hydrol. Earth Syst. Sci., 18, 2668678 2014
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a)SPI3 i i a)SPI3

b)SPI6 b)SPI6

A

c)SPI12 i i C)SPI12

- -

e T 1 1 —— g e T 1 1 —— g
0 1 2 ) 3 4 5 6 0 1 2 3 4 5 6
Last Lead time (Months): ROC skill score GPCC S4 vs ERAI S4 > 0.05 (99%) Last Lead time (Months): ROC skill score GPCC S4 vs GPCC_CLM S4 > 0.05 (99%)

Figure 2. Last forecast lead time (months) where the ROC skill Figure 3. As Fig. 2 but using GPCC_CLM S4 as reference fore-

score of GPCC S4 (using ERAI S4 as reference forecasts) is highetasts.

than 0.05 with 95 % confidence and the ROC of GPCC S4 is higher

than 0 with 95 % confidence. Seasonal forecasts ofdh&PI-3,

(b) SPI-6, andc) SPI-12. The forecasts are verified in each region yhe griginal S4 precipitation forecasts is very much reduced.

for the calendar month presented in Table 1. For the case of SPI-3, southern South America (SSA) and
East Africa have high values (4 months), like they do for the
SPI-12 case, but the values for the Mediterranean (MED),

As opposed to testing the importance of monitored pre-East Asia, Australia, Amazonia, and western North America

cipitation data quality on forecast skill, a test of the impor- (WNA) are low (1 month). Furthermore, northern Europe and

tance of forecast information (predicted precipitation) uponall three North America regions were not statistically signif-

forecast skill is provided by identifying the first lead time icant for SPI12. Even in regions where there is little more

where the ROC skill score of GPCC S4 (using GPCC CLM added value to the reduction of lead time, GPCC S4 skill is

as a reference forecast) is higher than 0.05 with 95 % confialways equal to or higher than climatology. In some cases,

dence (Fig. 4), i.e. comparing the quality of the precipitation particularly for long SPI timescales (SPI-12), the proportion

forecast (S4 or CLM) in the SPI forecast skill. These leadof monitored precipitation merged with the forecast that is

times identify the added value of using the seasonal foretested against the monitored precipitation is very high, and

casts of precipitation from S4 above the practice of simplythe monitored precipitation is being tested against itself, so

using a climatological forecast. That is, the seasonal forethat this is the same as the climatology.

cast adds value above that of pure climatology. For the case

of SPI-3, the added value of using the S4 forecast informa-3.2 Drought onset

tion varies between 1 to 2 months where northern Eurasia

regions and Australia have the lower values. For SPI-12, thén order to compare our SPI seasonal forecasts with the fore-

added value of using S4 can reach 5 months of lead timeast models using the US National Multi-Model Ensemble

as in the Mediterranean, South Africa and southern Southldrought forecastin YW13, the tests made upon each 1 degree

America, while there is significant improvement in northern grid cell are combined into global samples with global means

Europe and the North America — regions where the skill of of the probability of detection (POD), and global means of

Hydrol. Earth Syst. Sci., 18, 26692678 2014 www.hydrol-earth-syst-sci.net/18/2669/2014/
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a)SPI3 — - : : Table 2. Global mean values of probability of detection (POD),
= X j SrEEE T false alarm ratio (FAR) and equitable threat score (ETS) for drought
onset forecasts. The scores between brackets were calculated af-
ter scaling the ensemble mean. The 95 % confidence intervals, esti-
mated from 1000-sample bootstrapping with replacement, returned
similar values for all scores and models of approximate6/01.
The ESP and NMME2 model scores are included in this table for
comparison purposes only and were retrieved from Yuan and Wood
(2013, see Table 1).

b)SPI6

Model POD FAR ETS

GPCCCLM 0.17(0.27) 0.40(0.57) 0.15 (0.21)
GPCCS4  0.30(0.42) 0.47(0.57) 0.25(0.29)
ERAICLM 0.14(0.25) 0.85(0.87) 0.09 (0.12)
ERAI S4 0.22(0.31) 0.82(0.84) 0.13(0.14)
ESP 0.16 0.36 0.14
NMME2 0.32 0.42 0.24

c)SPI12

R

mean of zero, whereas the standard deviation falls below one
due to the aggregation procedure. The standard deviation de-

oL AT [ s cline below one is pronounced for long lead times as the
‘ R ensemble spread increases. Despite the change in standard
! rf . deviation, the drought onset forecast skill is based on ensem-
1 : ble mean, in the case of the POD, FAR, and ETS (Table 2,
= and YW13) statistics, with these drought onset skill metrics

(POD, FAR, and ETS) depending only the SPI falling be-
low a certain threshold. One can rescale the forecast ensem-
Figure 4. First forecast lead time (months) where the ROC skill ble mean to retain the unit standard deviation and arrest its
score of GPCC S4 (using GPCC CLM as reference forecasts) iglecline below 1, conforming to the definition of SPI. Such
higher than 0.05 with 95% confidence and the ROC of GPCC S4agn ensemble mean rescaling case is presented between the
is higher than 0 with 95% confidence. Seasonal forecasts of thgyrgckets in Table 2. This rescaling increases the probability
(@) SPI-3,(b) SPI-6, and(c) SPI-12. The forecasts are verified in ot grought detection (as it should) but, in exchange for in-
each region for the calendar month presented in Table 1. creasing the number of false alarms, the false alarm ratio,
with the overall result of conferring only a slight increase of
the equitable threat score (ETS). To retain the SPI definition,
false alarm ratio (FAR) and equitable threat score (ETS) fori.e. to ensure that the criterion for drought onset condition is
drought onset forecasts (Table 2): the climatology case omaintained (alternatively stated, for skill metrics that depend
GPCC CLM is very similar to YW13's findings, obtained on the ensemble mean and on SPI thresholds), we recom-
using ESP. This study and YW13 deployed different preci-mend the scaling of the ensemble mean standard deviation.
pitation data sets, as well as time interval of collected hind-This rescaling can be also interpreted as the SPI calculated
casts. The climatology cases of the two studies are not onlylirectly from the ensemble mean of the precipitation fore-
similar: the forecast of GPCC S4 matches that of some of theasts. Another potential use of this rescaling is the graphical
other models analysed within YW13’s multi-model ensem- display of the ensemble mean forecasts, which was explored
ble (MME). This study also overlaps with their multi-model by Mwangi et al. (2014) and provides the users with SPI fore-
skill estimates (North American Multimodel Ensemble with cast maps with units/range as the SPI during the monitoring
post-processing NMME?2). ERAI-based forecasts have lowerphase.
skill than the GPCC CLM using the equitable threat score To finalize the drought onset evaluation, the Brier skill
metric. Again, the precipitation data set chosen, and the qualscore (Wilks, 2006) was used, based upon the climatologi-
ity of the precipitation data set, has a major role in the skill cal frequency of drought events as a reference, for the dif-
of SPI forecasts. ferent experiments over each grid cell of the globe (Fig. 5).
Each ensemble member conserves the SPI characteristicEhe global spatial maps of the Brier skill scores, for both the
that of mean zero and standard deviation of one (which ariseseasonal forecast case (GPCC S4) and the climatology case
due to the definition of SPI as a standardized variable). ThGPCC CLM), exhibit similar spatial patterns to those ob-
ensemble mean (of all the ensemble members) conserves tlserved in YW13's NMME results for the seasonal forecast

.0 X 1 2 . 3 4 5 6
First Lead time (Months): ROC skill score GPCC S4 vs GPCC CLM > 0.05 (99%)
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(the counterpart to the probabilistic flood forecast case). The
time series (Figs. S21 and S23 in the Supplement) show the
GPCC S4 and GPCC CLM SPI forecast issue on different
initial dates and averaged over a region and overlaid with the
verification. The spatial maps (Fig. S22 and S24 in the Sup-
plement) compare the actual verification SPI with four differ-
ent examples of displaying a specific forecast: (i) ensemble
mean, (ii) the ensemble mean rescaled (see previous para-
graph), (i) probability of the SP+ 0.8 (wet conditions), and

(iv) probability of the SPk —0.8 (dry conditions).

4 Conclusions and outlook

This paper presents a general evaluation of meteorological
drought seasonal forecasts using the standardized precipi-
tation index constructed by merging different initial condi-
tions and seasonal forecasts of precipitation. The skill of the
forecasts is targeted to verification months where precipita-
000 005 010 015 020 025 030 035 tion deficits are likely to have higher drought impacts, as

Figure 5. Brier skill scores for the drought onset forecasts of yvell as 18 regions. Detailed analysis of drought forecast-

(a) GPCC S4 andb) GPCC CLM. The reference forecast for the "9 skill within each region is outsid.e the scope of this pa-
skill score was the climatological frequency of the verification data P€F» but all the results are made available in the Supplement.

set. The original maps afk 1° were smoothed with a8 3win- [N the course of the study, several comparisons were made
dow. between forecast skill and drought frequency on a global
scale, but none returned informative results. Further investi-
gations could be performed by following a similar approach
POD equivalent case and the ESP climatology equivalento YW13 by conditioning the analysis on EIl Nifio/La Nifia
case. Our results support the clear benefit of a seasona&vents and restricting the comparison to particular regions.
forecast over climatology, this being valid for our case of At the onset of this paper, three fundamental questions
GPCC S4 when compared with GPCC CLM. Seasonal forewere posed. The first regarded the importance of the mon-
casts were better than climatology in Australia, East Africa,itoring in the forecast skill.
northwest South America (Brazil), as well as other regions The memory effect of initial conditions in the SPI forecasts
of the globe, which also corroborates the results in YW13.has been identified, comparing the S4 seasonal forecasts ini-
Looking at the global Brier score decomposition (Fig. S20 in tialized with GPCC to the same S4 seasonal forecasts ini-
the Supplement) shows that climatology (i.e. GPCC CLM) tialized and merged with GPCC climatological precipitation.
has better reliability than GPCC S4 (per definition), while This was found to be 1 month of lead time in the case of SPI-
GPCC S4 has better resolution. The increased resolutio®, 3—4 months for the SPI-6 case, and 6 (or more) months
in GPCC S4 with a small reduction of reliability (when for the SPI-12 case. For earlier forecast lead times, the initial
compared with GPCC CLM) leads to better Brier scores inconditions of precipitation dominate the forecast skill, prov-
GPCC S4. Figure 5 highlights how noisy the individual grid ing that good quality and reliable monitoring of precipitation
cell scores are globally. Assembling the grid cells into re-is of paramount importance
gions, on the other hand, increases the sample sizes within The second question was the added value of using
those regions and permits us to investigate whether one reeCMWF seasonal forecasts of precipitation when in com-
gion, as opposed to another, has consistently high skill scoreparison with climatological sampling. Even in regions where
(e.g. East Africa vs. West Africa). the added value in terms of forecast lead time is reduced, our
Up until now, we have been looking at global and regional results show that the skill of dynamical forecasts is always
statistics of combined drought onset skill among all the hind-equal to or above to climatological forecasts. In some cases,
cast samples. Continuing with the examples in the companparticularly for long SPI timescales, it is very difficult to im-
ion paper Part 1, the system is tested by producing SPI foreprove the climatological forecasts. For long SPI timescales
casts for the 2010/11 drought in the Horn of Africa (Figs. S21 (such as SPI-12), the proportion of monitored precipitation
and S22 in the Supplement) and the 2012 drought in thevhen added to the forecast can be very high and almost the
US Great Plains (Figs. S23 and S24 in the Supplement)same as the monitored precipitation against which it is being
These examples also illustrate how the results of a probabilistested, so, in the limit, it is like testing the monitored preci-
tic drought forecast would be “packaged” for skilled users pitation against itself.
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Finally we posed the following question: what is the skill Dutra, E., Di Giuseppe, F., Wetterhall, F., and Pappenberger, F.:

of dynamical forecast in terms of drought onset? The defi-
nition of drought onset followed that of YW13 in order to

Seasonal forecasts of droughts in African basins using the Stan-
dardized Precipitation Index, Hydrol. Earth Syst. Sci., 17, 2359—

be able to compare our results against the drought forecasts 2373, doil0.5194/hess-17-2359-2012D13.

from other forecasting ensemble models within the US Na-
tional Multi-Model Ensemble in the YW13 study. Although

different data sets and periods were used, the estimates of

Dutra, E., Wetterhall, F., Di Giuseppe, F., Naumann, G., Barbosa, P.,

Vogt, J., Pozzi, W., and Pappenberger, F.: Global meteorological
drought — Part 1: Probabilistic monitoring, Hydrol. Earth Syst.
Sci., 18, 2657-2667, ddi0.5194/hess-18-2657-2012014.

drought onset skill for climatological forecast; are similar, Gianotti, D., Anderson, B. T., and Salvucci, G. D.: What Do Rain
and therefore we suggest they are reasonably independent of G5 ges Tell Us about the Limits of Precipitation Predictability?,

data and intrinsic to the SPI seasonal forecasting method-

J. Climate, 26, 5682-5688, db.1175/jcli-d-12-00718,22013.

ology. We recommend that when evaluating only the fore-Giorgi, F. and Francisco, R.: Uncertainties in regional climate
cast’s ensemble mean in terms of SPI thresholds, the ensem- change prediction: a regional analysis of ensemble simulations
ble mean should be rescaled to guarantee a standard deviationwith the HADCM2 coupled AOGCM, Clim. Dynam., 16, 169—

of one. This is further beneficial when presenting the fore-

182, doi10.1007/pl00013733000.

casts graphically. YW13 raised the question as to whetheKirtman, B. P., Min, D., Infanti, J. M., Kinter, J. L., Paolino, D. A.,

seasonal forecasting of global drought onset was largely or
solely a stochastic forecasting problem. Our results are co-
herent with their findings, but our regional analysis highlights
that within several regions in the world drought onset fore-
casting is feasible and skilful.

The Supplement related to this article is available online
at doi:10.5194/hess-18-2669-2014-supplement
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