
Hydrol. Earth Syst. Sci., 18, 2657–2667, 2014
www.hydrol-earth-syst-sci.net/18/2657/2014/
doi:10.5194/hess-18-2657-2014
© Author(s) 2014. CC Attribution 3.0 License.

Global meteorological drought – Part 1: Probabilistic monitoring

E. Dutra1, F. Wetterhall1, F. Di Giuseppe1, G. Naumann2, P. Barbosa2, J. Vogt2, W. Pozzi3, and F. Pappenberger1

1European Centre for Medium-Range Weather Forecasts, Reading, UK
2European Commission, Joint Research Centre, Institute for Environment and Sustainability, Ispra, Italy
3Group on Earth Observations, Geneva, Switzerland

Correspondence to:E. Dutra (emanuel.dutra@ecmwf.int)

Received: 11 December 2013 – Published in Hydrol. Earth Syst. Sci. Discuss.: 17 January 2014
Revised: – Accepted: 15 June 2014 – Published: 24 July 2014

Abstract. Near-real-time drought monitoring can provide
decision-makers with valuable information for use in se-
veral areas, such as water resources management, or inter-
national aid. One of the main constrains of assessing the
current drought situation is associated with the lack of re-
liable sources of observed precipitation on a global scale
available in near-real time. Furthermore, monitoring sys-
tems also need a long record of past observations to pro-
vide mean climatological conditions. To address these prob-
lems, a novel probabilistic drought monitoring methodology
based on ECMWF probabilistic forecasts is presented, where
probabilistic monthly means of precipitation were derived
from short-range forecasts and merged with the long-term
climatology of the Global Precipitation Climatology Centre
(GPCC) data set. From the merged data set, the standard-
ised precipitation index (SPI) was estimated. This methodo-
logy was compared with the GPCC first guess precipitation
product as well as SPI calculations using the ECMWF ERA-
Interim reanalysis and Tropical Rainfall Measuring Mission
(TRMM) precipitation data sets. ECMWF probabilistic fore-
casts for near-real-time monitoring are similar to GPCC and
TRMM in terms of correlation and root mean square errors,
with the added value of including an estimate of the uncer-
tainty given by the ensemble spread. The real-time availabil-
ity of this product and its stability (i.e. that it does not directly
depend on local rain gauges or single satellite products) are
also beneficial in the light of an operational implementation.

1 Introduction

Droughts constitute a costly natural hazard that impacts dif-
ferent sectors of society and different countries according

to their vulnerability (EM-DAT, 2013). Regional- to large-
scale droughts are driven by a prolonged precipitation deficit
which mainly impact agriculture and hydrology. Depending
on the demand on water resources, this can then lead to wa-
ter scarcity (Van Loon and Van Lanen, 2013). Near-real-
time drought monitoring can be used as an important tool
to water resources management, and could be further com-
plemented by drought forecasting (Pozzi et al., 2013). In-
tegrating already-existing drought monitoring and forecast-
ing systems could be possible by a synergic effort among
weather forecast centres through international partnerships.
This would certainly benefit developing countries which,
while more vulnerable to rain deficits, often do not have the
needed infrastructures to set up environmental monitoring on
an operational basis (Webster, 2013).

The accuracy of operational drought monitoring on a
global scale crucially depends on the availability of rain-
fall estimation, and therefore on the spatial coverage and
temporal frequency of in situ observations. The number of
quality-controlled observations is not constant over time and
is not globally homogeneous. For example, the Global Pre-
cipitation Climatology Centre (GPCC,http://gpcc.dwd.de),
one of the most used global precipitation data sets, shows
that Europe, North America and Australia have dense net-
works, while regions like North Asia, Tibet, and West and
East Africa have significantly fewer stations (Fig. 1). In some
cases the differences in the network density can be as big
as a factor of 10. There is a general decrease in the num-
ber of available stations throughout the globe, in particu-
lar in the last decade. A quantitative assessment of the im-
pact of this reduction in in situ observations on the quality
of the drought monitoring is not straightforward. For exam-
ple, Gebremichael et al. (2003) proposed an error uncertainty
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Figure 1. Monthly temporal evolution of the mean number of stations per 1◦
× 1◦ grid box in the different regions (see Table 2) present in

the GPCC reanalysis (until 2010) and monitoring product (2010 onwards) (black line) and GPCC first guess product (red line).

analysis applied to a global data set of precipitation, and
found that at a 2.5◦ scale, 8–10 gauges are required to allow
a good error uncertainty estimate.

Indeed several studies (e.g. Belo-Pereira et al., 2011;
Dinku et al., 2007; Dutra et al., 2013b; Liebmann et al.,
2012) have already documented the large observation error
affecting regions with low station coverage, even after off-
line post-processing and quality control has taken place. Es-
pecially in Africa, a continent with notoriously low obser-
vational coverage, Naumann et al. (2014) confirms that the
main source of error in drought monitoring arises from in-
accuracies in the observed precipitation rather than from the
estimation of the distribution parameters used to define the
drought indicator.

The decreasing availability of local measurements is also
likely to affect model products such as re-analysis whose ac-
curacy is still constrained by the observation network qual-
ity. Both for observation and re-analysis products it is not
straightforward to define a methodology for uncertainty esti-
mation. This is the main motivation for proposing a new ap-
proach for drought monitoring which, by making use of prob-
abilistic forecast systems, has the built-in advantage of pro-
viding a range of possible values. The new product is tested
using the ECMWF ensemble forecasting system and makes
use of precipitation fields generated during the first 0–48 h of
model integration of all the 51 ensemble members (Buizza
et al., 2007). The system is used to produce a distribution
of rainfall monthly means from which drought indices are
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derived. The idea behind it is that model outputs at very short
lead times are likely not to be strongly affected by model er-
rors and therefore could provide comparable quality of re-
analysis outputs. On the other hand, short-range forecast is
less sensitive to changes in observations and, when compared
to re-analysis outputs or observational data sets, has the ad-
ditional benefit of providing an estimate of uncertainty given
by their ensemble systems.

The possibility of using short-range forecast for global
drought monitoring is investigated by comparing its perfor-
mance with more established approaches based on observa-
tions (Sects. 2 and 3) and reanalysis products. The added ben-
efits of generating drought indices in a probabilistic frame-
work are discussed in the last section.

2 Data and methods

2.1 Precipitation data sets

To show how different precipitation sources can lead to dif-
ferent drought estimations, in this study we have selected a
mixture of observation and modelling data sets as input to
the drought monitoring system (Table 1).

The first is an observational data set that includes three
products from the Global Precipitation Climatology Cen-
tre (GPCC,http://gpcc.dwd.de): the full reanalysis version 6
(GPCC_FD; Schneider et al., 2011b) available from 1901 to
2010; the monitoring product version 4 (GPCC_MP; Schnei-
der et al., 2011a) available from 2007 to 2 months prior to
present1; and the first guess product (GPCC_FG; Ziese et
al., 2011b) available from August 2004 to present expired
month

1
. The GPCC monthly precipitation data sets are avail-

able globally on a 1◦ × 1◦ regular grid.
The second data set is a satellite-based one, the Tropical

Rainfall Measuring Mission (TRMM, Huffman et al., 2007),
and is available between 50◦ N and 50◦ S, with a regular
0.25◦ resolution from 1998 to two months prior to present.
Finally, the third data set is a model-based one. The ECMWF
ERA-Interim reanalysis (ERAI; Dee et al., 2011) is available
from 1979 to present expired month with an approximate res-
olution of 0.7◦. Even if these three precipitation data sets are
generated from different sources – rain gauges only in the
case of GPCC, satellite and rain gauges for TRMM and nu-
merical weather forecasts in the case of ERAI – they are pro-
vided as a “proxy” for the real-state and are in this sense a
deterministicestimate which does not account for uncertain-
ties.

Following the new idea that this paper tries to explore, a
new data set based on the ECMWF short-range ensemble
forecast system (known as ENS; Buizza et al., 2007) is cre-
ated. From March 2008 until January 2010 forecasts are gen-

1The precipitation data sets have been continuously updated
every month, last checked in July 2014, and that is expected to con-
tinue in the future.

erated with a resolution of about 0.45◦ and after that with a
resolution of 0.28◦. An amalgamation of forecasts with lead
times of 0–48 h is used to generate monthly means. Since
ENS consists of 51 members, this results in an ensemble
of 51 monthly means. ECMWF has been producing ensem-
ble forecasts prior to 2008, but only recent forecasts were
used, since they have a set of associated re-forecasts (or hind-
casts) which are needed to compute forecasts anomalies. The
availability of a historical forecast is of primary importance
for the scope of bias correction (Di Giuseppe et al., 2013a).
The ENS data set is composed therefore of very short-range
forecasts and they provide aprobabilisticestimate of rainfall
amount.

2.2 Drought indices

There are several examples of operational drought monitor-
ing systems on the global (e.g. Ziese et al., 2011a) and con-
tinental scale (e.g. Svoboda et al., 2002; Ziese et al., 2011a).
On regional to local scales, there are also several examples of
studies evaluating different drought indices and/or multivari-
ate indexes (Hao and AghaKouchak, 2013; Sepulcre-Canto
et al., 2012; Shukla et al., 2011; Tadesse et al., 2004). The
standardised precipitation index from Mckee et al. (1993) is
selected in this study as a generic drought index, since it is
widely used and recommended by the World Meteorological
Organization (WMO). As an independent drought indicator
we also consider the fraction of absorbed photosynthetically
active radiation (fAPAR) anomalies which are a measure of
the fraction of the solar energy absorbed by the vegetation.
fAPAR anomalies are known to be strongly related to water
stress and are considered a good indicator to detect and as-
sess drought impacts on vegetation canopies (Sepulcre-Canto
et al., 2012).

All products are interpolated to a common grid of 1◦
×1◦,

the same grid as the GPCC products, with global coverage.
The comparison of the drought conditions focuses on large
regions adapted from Giorgi and Francisco (2000) (Table 2,
Fig. 2). These regions were identified in terms of homo-
geneous climatic regions and are wide enough to contain
enough grid points for robust statistics calculated in the next
sections.

2.2.1 The standardised precipitation index (SPI)

The SPI is a transformation of the accumulated precipita-
tion in a specific time period (typically the previous 3, 6,
and 12 months, denoted as SPI-3, SPI-6, and SPI-12, respec-
tively) into a normal distribution of mean zero and standard
deviation 1.

The precipitation normalisation for the SPI calculations at
different timescales was based on the 30-year period 1981–
2010 for the GPCC reanalysis and ERAI data sets by fitting
a gamma distribution (following the method described by
Dutra et al., 2013a) and for the period 1998–2012 for TRMM
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Table 1.Precipitation products description.

Product Type Acronym Details References

D
et

er
m

in
is

tic

GPCC full Rain gauges GPCC_FD 1901–2010, Schneider et al. (2011b)
reanalysis Monthly Global,
version 6 1◦ × 1◦ lat/lon

GPCC monitoring GPCC_MP Jan 2007–two months prior to present
1
, Schneider et al. (2011a)

product version 4 Monthly Global, 1◦ × 1◦ lat/lon
1◦

× 1◦ lat/lon

GPCC first GPCC_FG Aug 2004–present expired month
1
, M Ziese et al. (2011b)

guess product Monthly Global,
1◦

× 1◦ lat/lon

Tropical Rainfall Satellite TRMM Jan 1998–two months prior to present
1
, Huffman et al. (2010, 2007)

Measuring Mission Monthly 50◦ S–50◦ N,
3B43 V7 0.25◦

× 0.25◦ lat/lon

ECMWF ERA-Interim Re-analysis ERAI 1979–present expired month
1
, Dee et al. (2011)

reanalysis Daily,
≈ 0.7◦

× 0.7◦ lat/lon

P
ro

ba
bi

lis
tic

ECMWF short-range Short-range forecast ENS Mar 2008–present
1
, Buizza et al. (2007)

ensemble forecasts Daily Global≈ 0.45◦
× 0.45◦ (until Jan 2010)

Global≈ 0.28◦
× 0.28◦ (to present

1
)

Table 2.List of regions used in this study. Adapted from Giorgi and
Francisco (2000) using only land points (see also Fig. 2).

Name Acronym Latitude Longitude

Australia AUS 45–11◦ S 110–155◦ E
Amazon Basin AMZ 20◦ S–12◦ N 82–34◦ W
Southern South America SSA 56–20◦ S 76–40◦ W
Central America CAM 10–30◦ N 116–83◦ W
Western North America WNA 30–60◦ N 130–103◦ W
Central North America CAN 30–50◦ N 103–85◦ W
Eastern North America ENA 25–50◦ N 85–60◦ W
Mediterranean Basin MED 30–48◦ N 10◦ W–40◦ E
Northern Europe NEU 48–75◦ N 10◦ W–40◦ E
Western Africa WAF 12◦ S–18◦ N 20◦ W–22◦ E
East Africa EAF 12◦ S–18◦ N 22–52◦ E
Southern Africa SAF 35–12◦ S 10◦ W–52◦ E
Southeast Asia SEA 11◦ S–20◦ N 95–155◦ E
East Asia EAS 20–50◦ N 100–145◦ E
South Asia SAS 5–30◦ N 65–100◦ E
Central Asia CAS 30–50◦ N 40–75◦ E
Tibet TIB 30–50◦ N 75–100◦ E
North Asia NAS 50–70◦ N 40–180◦ E

using the methodology described by Naumann et al. (2012).
The SPI calculations for ERAI after 2010 use the gamma pa-
rameters fitted for the period 1981–2010 using ERAI.

For ENS, a slightly different approach is used. The ENS
forecast anomalies (F ′) for each month are derived byF ′

=

F/FC, whereF is the original ensemble with 51 monthly
means and FC is the model climate. The model climate
(FC) is derived by binning all the hindcasts over the past
18years (20 since July 2012), each with 5 ensemble members
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Figure 2. Regions used in the analysis adapted from Giorgi and
Francisco (2000). See also Table 2.

for all calendar months, resulting in 5(weeks)× 18(years)×

5(ensemble members) = 450 samples. The ENS probabilis-
tic monthly forecast anomalies were then multiplied by the
long-term climatology of the GPCC reanalysis.

Since SPI is calculated using precipitation accumulated
over a period of time, the main issue in an operational system
is the delay compared to the real-time which affects all data
sets, especially if based on observation or reanalysis prod-
ucts. Depending on the providers these delays can be as long
as few months. As an example Fig. 3 exemplifies the calcula-
tion of SPI-6 under the hypothesis that there is a 2-month de-
lay in the release of the official GPCC monitoring product. In
this case the previous 2 months can be taken from the GPCC
first guess or ENS and the initial 4 months are taken from
the GPCC monitoring product. The SPI using the GPCC first
guess or ENS only differs from the calculation regarding the
the precipitation data in the previous 2 months. The added
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Figure 3. Schematic of the SPI 6 calculation in near-real time using
GPCC monitoring and first guess products (top) and GPCC moni-
toring and ENS (bottom).

benefit of ENS is that it also provides an ensemble of pos-
sible forecasts. Both SPI data sets share the same 1, 4, and
10 months of GPCC monitoring for the SPI 3, 6, and 12, re-
spectively. The transformation to SPI is then done by fitting
parameters of the Gamma distribution for the period 1981–
2010 using the GPCC reanalysis. The decision to calculate
the SPI from the different data sets using the base period
1981–2010 (except TRMM) was motivated by the opportu-
nity to mimic an operational system that would use a fixed
base period for the SPI calculations. If the base period was
updated every month, the past SPI evolution would change.
A detailed evaluation of the impact of the base period fre-
quency update in an operational system is out of the scope
of the current manuscript, but it is expected to mainly affect
extreme SPI values following extremely wet or dry seasons.

2.2.2 The photosynthetically active radiation (fAPAR)

The fraction of absorbed photosynthetically active radiation
(fAPAR) represents the fraction of the solar energy which
is absorbed by vegetation. fAPAR is a biophysical variable
directly correlated with the primary productivity of the veg-
etation, since the intercepted PAR is the energy (carried by
photons) underlying the biochemical productivity processes
of plants. Due to its sensitivity to vegetation stress, fAPAR
has been proposed as a drought indicator (e.g. Gobron et al.,
2007). Indeed droughts can cause a reduction in the vegeta-
tion growth rate, which is affected by changes either in the
solar interception of the plant or in the light use efficiency.

Similarly to what was done for precipitation, fAPAR is de-
rived from the multispectral images acquired by the VEGE-
TATION sensor onboard the SPOT satellite, and the values
are estimated using the algorithm developed by Gobron et
al. (2004). These images are produced by the Flemish in-
stitute for technological research (VITO). fAPAR anomalies
are produced for every 10-day period and the aggregated to
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Figure 4.SPI-3 time series of the spread around the ensemble mean
in ENS1 (dashed magenta) and ENS4 (dashed red), and root mean
square (RMS) error of ENS4 ensemble mean (red); TRMM (blue),
GPCC_FG (black) and ERAI (grey) for six different regions. The
RMS errors are calculated in respect to GPCC.

monthly values as follows:

fAPAR anomalyt =
xt − x

σ
, (1)

wherext is the fAPAR of the 10-day periodt of the current
year and,x is the long-term average fAPAR andσ is the stan-
dard deviation, both calculated for the same 10-day periodt

using the available time series from 1989 to present. fAPAR
anomalies are produced only for pixels that have at least 5
years of data for the given 10-day period.

3 Results

3.1 Ensemble inflation

One of the advantages of using ENS for precipitation mon-
itoring is the probabilistic nature of the product that allows,
to some extent, an estimation of the uncertainty, and could
be potentially useful in a decision-making environment. Fur-
thermore, ENS enables a comparison of the ensemble spread
(defined as the root mean square, RMS, of the individual en-
semble members in relation to the ensemble mean) with the
RMSE of the ensemble mean which in a perfect ensemble
should be equal (Palmer et al., 2006). Our initial results in-
dicate that the monthly means of ENS had a reduced spread
in comparison with the RMSE of the ensemble mean. As a
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first approach, a simple inflation was applied to increase the
ensemble spread by a factora:

F̂ = aF + F(1− a), (2)

whereF is the original ensemble andF is the ensemble
mean. Note that the factora does not affect the ensemble
mean, it merely enhances the spread. Factors ranging from
1 to 4 were used, and are henceforth referred to as ENS1–
ENS4 (solid versus dashed red lines in Fig. 4, and first and
last bar for each region in Fig. 5).

An inflation factor of 4 provided a reasonable match be-
tween the spread of the ensemble and the RMSE of the
ensemble mean in most regions considering the confidence
intervals, except the Amazon, and West and East Africa
(Fig. 5). The spatial maps of the spread and RMSE of the
ensemble mean show that the RMSE of ENS is higher over
the tropical regions, while the ensemble spread is smaller
(Fig. S4 in the Supplement). In the extra-tropics there is a
reasonable agreement between the ensemble spread and the
RMSE of the ensemble mean. It would be possible to opti-
mise the inflation factor for each region (or even grid point),
but such optimisation is beyond the scope of this work. Such
optimisation would also need to consider different forecast
windows (e.g. 12–36 h, or 24–48 h, instead of 0–48 h) and
should include the observations’ uncertainty. The high val-
ues of the RMSE over tropics are also present in both ERAI
and TRMM (Fig. S4 in the Supplement). This suggests that
in those areas there is a large uncertainty, which could also
be due to observation errors in GPCC. These errors should

be taken into account when comparing the spread and the
RMSE.

3.2 Drought monitoring

To evaluate the performance of the different precipitation in
terms of SPI, the root mean square errors (RMSE) were com-
puted for each region. The GPCC full reanalysis data set is
taken as a benchmark. ERAI shows the highest RMSE, fol-
lowed by ENS and TRMM (Fig. 4 for a subset of six regions,
and Fig. S1 in the Supplement for the remaining regions).
The temporal evolution of GPCC first guess RMSE displays
a negative trend in most of the regions. As already discussed,
between 2009 and 2010 the GPCC first guess and reanal-
ysis products differ in the number of stations, while from
2010 onwards the monitoring product uses a similar num-
ber of stations as the first guess (Fig. 1). The apparent neg-
ative trend in the RMSE can be due to the verification data
set, which from 2010 onwards is based on the GPCC moni-
toring product. These results show that the relation between
GPCC’s first guess and the reanalysis (or monitoring) has
changed in the last years mainly due to the decrease in the
number of stations used in the production of the data sets.
The GPCC final and first release (first guess) products have
had a similar number of stations since 2010 onwards. Before
2010 the GPCC final release had more stations then the first
guess, showing an effort of GPCC to collect station data that
is not easily available in near-real time. Changes in the num-
ber of rain gauges included in the GPCC product are likely
to impact the temporal homogeneity of the data set regarding
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drought monitoring where past climate is used to estimate
anomalies.

The temporal mean of the RMSE of the SPI-3 from the
different products also highlights the larger uncertainty of
the first guess product that tends to have larger error bars in
most regions (Fig. 5). In most regions the RMSE of TRMM
and ENS are similar, giving a first indication that ENS can
be used with some confidence for drought monitoring. For
longer lead times (see Figs. S2 and S3 in the Supplement)
the RMSE of ENS and first guess tend to be very similar and
lower than ERAI or TRMM. The reason for this is that ENS
and first guess share most of the precipitation with GPCC for
the longer lead times.

The temporal grid-point correlation of the different SPI
products versus GPCC (Fig. 6 for the SPI-3 and Fig. S6 in the
Supplement for the SPI-12) shows a good agreement in the
extra-tropics and a reduced agreement in the tropical regions.
This is further supported by the spatial means and associated
confidence intervals in Figs. S7 and S8 in the Supplement.
The poor agreement of ERAI with GPCC in West and East
Africa had already been identified by Dutra et al. (2013a)
and Di Giuseppe et al. (2013b). However, the correlations of
GPCC with the other data sets (TRMM, GPCC first guess
and ENS) are also lower in the tropics. These results fur-
ther support our discussion of the RMSE spatial distribu-
tion (Figs. S4 and S5 in the Supplement), suggesting that
the GPCC errors/uncertainty in these regions is higher. This
is likely to be associated with the high spatial variability of
rainfall resulting from deep convection and land–atmosphere
feedbacks that can only be captured with very dense observ-
ing networks. Considering these limitations of the observ-
ing system, and the comparison of the different precipitation
products, the use of the ENS precipitation for near-real-time
monitoring provides results as plausible as those obtained
with GPCC and TRMM.

The large uncertainties in the data sets limit the interpre-
tation and attribution of the main differences between SPI
estimations, in particular in tropical regions. To further ad-
dress this point we would require an independent data set that
could be considered as “observed droughts”. While such data
set does not exist on a global scale, the definition of drought
conditions will depend on the impact on several hydrological,
agricultural and ecological variables (e.g. Vicente-Serrano et
al., 2012). In this study the fAPAR was used as a proxy for
drought conditions resulting from the vegetation response to
anomalies in water supply. The temporal anomaly correlation
of SPI and fAPAR for 1999–2012 is shown in Fig. 7 for SPI-
12 and Fig. S9 in the Supplement for SPI-3 (ENS and GPCC
first guess were not included since they are only available
since 2009). The correlations are generally higher for SPI-
12 in comparison with SPI-3, but the main spatial patterns
are similar. It is possible to identify several regions where
the fAPAR anomalies have a positive and significant correla-
tion with the SPI. The spatial mean of the grid-point corre-
lations (Fig. S10 in the Supplement for SPI-3 and Fig. S11

in the Supplement for SPI-12) shows that the correlation co-
efficients between the different SPI estimations and fAPAR
anomalies tend to be within the same confidence interval for
each region. Therefore, this comparison does not provide a
conclusive ranking between the GPCC, TRMM and ERAI.
These results also highlight the current difficulty of glob-
ally validating meteorological drought. Furthermore, the op-
erational methodology developed for the use of GPCC first
guess and ENS also restricts the time period available for the
verification.

3.3 Precipitation monitoring

The previous results compared the different data sets af-
ter the SPI transformation, which includes temporal aggre-
gation and normalisation. Therefore, the results are not di-
rectly related to the performance of the original precipitation
data sets. The monthly grid-point precipitation anomaly cor-
relation between the different data sets and GPCC for the
2009–2012 (Fig. 8 and Fig. S12 in the Supplement) is sim-
ilar to those of the SPI-3 (Fig. 6) in the case of TRMM,
ERAI and GPCC first guess, while ENS4 generally has lower
values. While the SPI-3 ENS4 had a better agreement with
GPCC than ERAI, when we evaluate the monthly precip-
itation ENS4, it has a similar performance as ERAI. This
is mainly due to the construction of the SPI using ENS4
that only included the forecast anomalies and was merged
with GPCC monitoring (see Fig. 3), while ERAI SPI is com-
pletely defined from ERAI past climate. These results show
the added value of constructing the SPI using only the previ-
ous 2 months of ENS and the remaining data from GPCC.

The temporal correlation only reflects the agreement of the
data sets in terms of variability, which is the most important
factor in the SPI calculation. On the other hand, the spatial
maps of the root mean square error of monthly precipita-
tion anomalies for 2009–2012 show the average magnitude
of the error between data sets and are displayed in Fig. S13
in the Supplement and the spatial mean in Fig. S14 in the
Supplement. GPCC first guess stands out with higher errors
in the tropical regions in terms of precipitation values, while
that was not evident in the correlations of precipitation or
SPI. ENS4 tends to have similar or lower RMSE than ERAI,
while TRMM has the lowest RMSE. These results indicate
that the interpretation of the SPI relation between two data
sets is not directly translated into the original precipitation,
or vice-versa.

As an example of the temporal evolution of the different
precipitation data sets and the SPI at different timescales, two
recent drought events were selected: the 2010–2011 drought
in the Horn of Africa (Fig. 9) and the 2012 drought in the
US Great Plains (Fig. S14 in the Supplement). These exam-
ples exemplify graphically the evolution of the SPI, in par-
ticular the ENS product, and are not meant to evaluate the
drought events in detail. The 2010–2011 drought in the Horn
of Africa was characterised by two consecutive anomalous
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Figure 6. Temporal grid-point correlations of the GPCC SPI-3 (2009-2012) versus(a) TRMM, (b) ERAI, (c) GPCC_FG, and(d) ENS4.
Correlations below 0.3 or not statistically significant different from zero are displayed as grey.

a)FAPAR vs TRMM SPI12 b)FAPAR vs ERAI SPI12

c)FAPAR vs GPCC SPI12

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 7. Temporal correlation of fAPAR (1999–2012) versus SPI-12 from(a) TRMM, (b) ERAI, and(c) GPCC. Correlations below 0.3 or
not statistically significant different from zero (at 95 %) are displayed as grey.

dry rainy seasons: October–December 2010 and March–May
2011 (see Dutra et al., 2013b for more details). There is a
close agreement between the temporal evolution of GPCC
and TRMM and to some extent also ERAI, while the GPCC
first guess product presents notable differences (Fig. 9). The
time series of ENS precipitation show the impact of the in-
flation factor from the original spread (ENS1 – dark shad-
ing) to the selected four-spread inflation (ENS4 – grey shad-
ing). The ensemble spread provided by ENS4 in general cov-
ers the range of precipitation estimates from GPCC, TRMM
and ERAI. As expected, the ENS4 spread is reduced with in-
creased SPI timescale, as we only use the previous 2 months
of precipitation from ENS4 and the remaining from GPCC.
The recent 2012 drought in the US Great Plains had a rapid
onset during May–July 2012 and Kumar et al. (2013) sug-
gests that the drought could plausibly have arisen from at-
mospheric noise alone. The precipitation and SPI time series
averaged for the Great Plains regions (Fig. S15 in the Sup-
plement) show the dry anomaly from May 2012 onwards that

was captured by all products. SPI-3 recovered to normal val-
ues in February 2013, SPI-6 in May 2013, while SPI-12 was
still below−1 (between−1 and−2 in ENS4) in June 2013.

4 Discussion and conclusions

The paper presents a novel probabilistic methodology for
near-real-time meteorological drought monitoring. The large
reduction of rain gauges employed in global precipitation
data sets over the last decade make evident the need for new
research on drought monitoring. While the density of rain
gauges differs significantly among different regions of the
globe, all regions suffer from this desertification of observa-
tions. On the other hand, several precipitation products de-
rived from remote sensing post-processing techniques have
emerged in recent years. These products can in part mitigate
the reduction of in situ observations, but also have limitations
associated with short time series, calibration (that also relies
on in situ data) and lifetime of the satellites, among others.
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Figure 8. Temporal grid-point correlations of the GPCC monthly precipitation versus(a) TRMM, (b) ERAI, (c) GPCC_FG, and(d) ENS4.
The correlations were calculated for the overlap period 2009–2012 and the mean annual cycle of the period was removed from each data set
prior to the correlations calculation.
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Figure 9. Spatial averages over the Horn of Africa region (3◦ S–12◦ N, 40–52◦ E) of (a) total precipitation,(b) SPI-3,(c) SPI-6 and(d) SPI-
12 for the different monitoring products: GPCC_FD (red), TRMM (blue), ERAI (dark grey), GPCC_FGE (cyan). The probabilistic ENS data
in shading ranges from the minimum to the maximum (light grey for original ENS and black for the ENS with 4 times spread inflation). In
panel(a) the GPCC mean annual cycle is represented by the dashed red curve.

A probabilistic drought monitoring system could be based
on different products, and could potentially consider the
current uncertainty of near-real-time precipitation observa-
tions. In this study the ECMWF ensemble forecasts were
used to derive probabilistic estimates of monthly precipi-
tation anomalies. This is possible thanks to the long data

set of re-forecasts that are produced operationally (the past
20 years with 5 ensemble members once a week) and which
provide the model climate. The probabilistic monthly fore-
cast anomalies were then added to the GPCC reanalysis long-
term climatology and a near-real-time SPI is calculated. Our
initial results showed that the probabilistic SPI derived with
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this technique is under-dispersive, when compared with the
root mean square error of the ensemble mean. By applying
an inflation factor of 4 to the ensemble standard deviation,
the result is an improved agreement between the ensemble
spread around the ensemble mean and the RMSE of the en-
semble mean. The selection of the inflation factor can be re-
fined to include the spatial variability of the errors and spread
of the ECMWF forecasts.

An independent evaluation of the SPI products was per-
formed by comparing their temporal evolution with the fA-
PAR anomalies as a proxy to drought conditions associated
with soil moisture deficits and its impact on vegetation. Se-
veral regions around the globe have a positive correlation be-
tween the SPI and the fAPAR. When considering the spatial
mean of the grid-point correlations and their associated error
bars, it was possible to identify the regions where the veg-
etation responds directly to meteorological droughts, but it
was not possible to identify the best- or worst-performing
SPI data set. Therefore, this comparison does not provide a
conclusive ranking between GPCC, TRMM and ERAI; in-
stead it highlights the current difficulty of globally validating
meteorological drought. A comparison between the original
precipitation data sets prior to the SPI transformation show
similar results as for SPI-3 for the temporal correlation. On
the other hand, when evaluating the RMSE of monthly pre-
cipitation the GPCC first guess products have higher errors
in some tropical regions, a feature that was not evident in the
SPI comparison. The results point to the effect of the SPI pro-
cedure in normalising the precipitation time series and sug-
gest that the interpretation of the SPI relation between two
data sets is not directly translated into the original precipita-
tion, or vice-versa.

In this study only a single index was considered, and not
a multivariate index approach (e.g. Hao and AghaKouchak,
2013; Shukla et al., 2011; Ziese et al., 2011a). The pro-
posed methodology of using the ECMWF probabilistic fore-
casts to generate monthly (or daily) means of another index
is also feasible but would require further evaluation. A po-
tential candidate to include would be the standardised pre-
cipitation evapotranspiration index (SPEI, Vicente-Serrano
et al., 2010), that in addition to precipitation also consid-
ers potential evapotranspiration (that could be simply derived
from temperature forecasts). Evapotranspiration can amplify
drought events (Teuling et al., 2013), but care should be
taken when using simple calculations of potential evapotran-
spiration (Sheffield et al., 2012). Another option could be
soil moisture that is also available in the ECMWF proba-
bilistic forecasts, or a combination of different indices (e.g.
Sepulcre-Canto et al., 2012). Future work could include the
evaluation of different indexes, and also to increase the up-
date frequency from monthly to weekly.

Considering the limitations of the precipitation near-real-
time monitoring and the comparison of the different precipi-
tation products in terms of correlation and RMSE the use of
the ENS precipitation for near-real-time monitoring provides

products comparably to GPCC and TRMM with the added
value of including an estimate of the uncertainty given by
the ensemble. The real-time availability of ENS and its sta-
bility (i.e. does not directly depend on local rain gauges or
single satellite products) are also beneficial for a near-real-
time implementation of an operational product.

The Supplement related to this article is available online
at doi:10.5194/hess-18-2657-2014-supplement.

Acknowledgements.This work was funded by the European
Commission Seventh Framework Programme (EU FP7) in the
framework of the Improved Drought Early Warning and Forecast-
ing to Strengthen Preparedness and Adaptation to Droughts in
Africa (DEWFORA) project under Grant Agreement 265454.

Edited by: M. Werner

References

Belo-Pereira, M., Dutra, E., and Viterbo, P.: Evaluation of global
precipitation data sets over the Iberian Peninsula, J. Geophys.
Res., 116, D20101, doi:10.1029/2010jd015481, 2011.

Buizza, R., Bidlot, J.-R., Wedi, N., Fuentes, M., Hamrud, M., Holt,
G., and Vitart, F.: The new ECMWF VAREPS (Variable Resolu-
tion Ensemble Prediction System), Q. J. Roy. Meteor. Soc., 133,
681–695, doi:10.1002/qj.75, 2007.

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli,
P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G.,
Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bid-
lot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer,
A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V.,
Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally,
A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey,
C., de Rosnay, P., Tavolato, C., Thépaut, J. N., and Vitart, F.: The
ERA-Interim reanalysis: configuration and performance of the
data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,
doi:10.1002/qj.828, 2011.

Di Giuseppe, F., Molteni, F., and Tompkins, A. M.: A rain-
fall calibration methodology for impacts modelling based on
spatial mapping, Q. J. Roy. Meteor. Soc., 139, 1389–1401,
doi:10.1002/qj.2019, 2013a.

Di Giuseppe, F., Molteni, F., and Dutra, E.: Real-time correction of
ERA-Interim monthly rainfall, Geophys. Res. Lett., 40, 3750–
3755, doi:10.1002/grl.50670, 2013b.

Dinku, T., Ceccato, P., Grover-Kopec, E., Lemma, M., Connor, S. J.,
and Ropelewski, C. F.: Validation of satellite rainfall products
over East Africa’s complex topography, Int. J. Remote Sens., 28,
1503–1526, doi:10.1080/01431160600954688, 2007.

Dutra, E., Di Giuseppe, F., Wetterhall, F., and Pappenberger, F.:
Seasonal forecasts of droughts in African basins using the Stan-
dardized Precipitation Index, Hydrol. Earth Syst. Sci., 17, 2359–
2373, doi:10.5194/hess-17-2359-2013, 2013a.

Dutra, E., Magnusson, L., Wetterhall, F., Cloke, H. L., Balsamo, G.,
Boussetta, S., and Pappenberger, F.: The 2010–2011 drought in
the Horn of Africa in ECMWF reanalysis and seasonal forecast

Hydrol. Earth Syst. Sci., 18, 2657–2667, 2014 www.hydrol-earth-syst-sci.net/18/2657/2014/

http://dx.doi.org/10.5194/hess-18-2657-2014-supplement
http://dx.doi.org/10.1029/2010jd015481
http://dx.doi.org/10.1002/qj.75
http://dx.doi.org/10.1002/qj.828
http://dx.doi.org/10.1002/qj.2019
http://dx.doi.org/10.1002/grl.50670
http://dx.doi.org/10.1080/01431160600954688
http://dx.doi.org/10.5194/hess-17-2359-2013


E. Dutra et al.: Global meteorological drought – Part 1 2667

products, Int. J. Climatol., 33, 1720–1729, doi:10.1002/joc.3545,
2013b.

EM-DAT: The OFDA/CRED International Disaster Database, avail-
able at:www.emdat.be, last access: December 2013.

Gebremichael, M., Krajewski, W. F., Morrissey, M., Langerud,
D., Huffman, G. J., and Adler, R.: Error Uncertainty Analy-
sis of GPCP Monthly Rainfall Products: A Data-Based Simula-
tion Study, J. Appl. Meteor., 42, 1837–1848, doi:10.1175/1520-
0450(2003)042<1837:euaogm>2.0.co;2, 2003.

Giorgi, F. and Francisco, R.: Uncertainties in regional climate
change prediction: a regional analysis of ensemble simulations
with the HADCM2 coupled AOGCM, Clim. Dynam., 16, 169–
182, doi:10.1007/pl00013733, 2000.

Gobron, N., Pinty, B., Mélin, F., Taberner, M., Verstraete,
M. M., Robustelli, M., and Widlowski, J.-L.: Evaluation of the
MERIS/ENVISAT FAPAR product, Adv. Space Res., 39, 105–
115, doi:10.1016/j.asr.2006.02.048, 2007.

GPCC Full Data Reanalysis Version 6.0 at 1.0◦:
Monthly Land-Surface Precipitation from Rain-Gauges
built on GTS-based and Historic Data, [Data set],
doi:10.5676/DWD_GPCC/FD_M_V6_100, 2011b.

Hao, Z. and AghaKouchak, A.: Multivariate Standardized Drought
Index: A parametric multi-index model, Adv. Water Resour., 57,
12–18, doi:10.1016/j.advwatres.2013.03.009, 2013.

Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler,
R. F., Gu, G., Hong, Y., Bowman, K. P., and Stocker, E. F.: The
TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-
Global, Multiyear, Combined-Sensor Precipitation Estimates at
Fine Scales, J. Hydrometeor., 8, 38–55, 2007.

Huffman, G. J., Adler, R. F., Bolvin, D. T., and Nelkin, E. J.: The
TRMM Multi-satellite Precipitation Analysis (TMPA), in: Satel-
lite Rainfall Applications for Surface Hydrology, edited by: Hos-
sain, F. and Gebremichael, M., Springer Verlag, 3–22, 2010.

Kumar, A., Chen, M., Hoerling, M., and Eischeid, J.: Do extreme
climate events require extreme forcings?, Geophys. Res. Lett.,
40, 3440—3445, doi:10.1002/grl.50657, 2013.

Liebmann, B., Bladé, I., Kiladis, G. N., Carvalho, L. M. V., Senay,
G. B., Allured, D., Leroux, S., and Funk, C.: Seasonality of
African Precipitation from 1996 to 2009, J. Climate, 25, 4304–
4322, doi:10.1175/jcli-d-11-00157.1, 2012

Mckee, T. B., Doesken, N. J., and Kleist, J.: The relationship of
drought frequency and duration to time scales, in: Eight Con-
ference on Applied Climatology, Anahaim, California, 179–184,
1993.

Naumann, G., Barbosa, P., Carrao, H., Singleton, A., and Vogt,
J.: Monitoring Drought Conditions and Their Uncertainties in
Africa Using TRMM Data, J. Appl. Meteorol. Clim., 51, 1867–
1874, doi:10.1175/jamc-d-12-0113.1, 2012.

Naumann, G., Dutra, E., Barbosa, P., Pappenberger, F., Wetterhall,
F., and Vogt, J. V.: Comparison of drought indicators derived
from multiple data sets over Africa, Hydrol. Earth Syst. Sci., 18,
1625–1640, doi:10.5194/hess-18-1625-2014, 2014.

Palmer, T., Buizza, R., Hagedorn, R., Lawrence, A., Leutbecher, M.,
and Smith, L.: Ensemble prediction: A pedagogical prespective,
ECMWF Newsletter, 106, 10–17, 2006

Pozzi, W., Sheffield, J., Stefanski, R., Cripe, D., Pulwarty, R., Vogt,
J. V., Heim, R. R., Brewer, M. J., Svoboda, M., Westerhoff,
R., van Dijk, A. I. J. M., Lloyd-Hughes, B., Pappenberger, F.,
Werner, M., Dutra, E., Wetterhall, F., Wagner, W., Schubert, S.,

Mo, K., Nicholson, M., Bettio, L., Nunez, L., van Beek, R.,
Bierkens, M., de Goncalves, L. G. G., de Mattos, J. G. Z., and
Lawford, R.: Toward Global Drought Early Warning Capability:
Expanding International Cooperation for the Development of a
Framework for Monitoring and Forecasting, B. Am. Meteorol.
Soc., 94, 776–785, doi:10.1175/bams-d-11-00176.1, 2013.

Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A.,
Rudolf, B., and Ziese, M.: GPCC Monitoring Product: Near
Real-Time Monthly Land-Surface Precipitation from Rain-
Gauges based on SYNOP and CLIMAT data, [Data set],
doi:10.5676/DWD_GPCC/MP_M_V4_100, 2011a.

Sepulcre-Canto, G., Horion, S., Singleton, A., Carrao, H., and Vogt,
J.: Development of a Combined Drought Indicator to detect agri-
cultural drought in Europe, Nat. Hazards Earth Syst. Sci., 12,
3519–3531, doi:10.5194/nhess-12-3519-2012, 2012.

Sheffield, J., Wood, E. F., and Roderick, M. L.: Little change in
global drought over the past 60 years, Nature, 491, 435–438,
doi:10.1038/nature11575, 2012.

Shukla, S., Steinemann, A. C., and Lettenmaier, D. P.: Drought
Monitoring for Washington State: Indicators and Applications, J.
Hydrometeorol., 12, 66–83, doi:10.1175/2010JHM1307.1, 2011.

Svoboda, M., LeComte, D., Hayes, M., Heim, R., Gleason,
K., Angel, J., Rippey, B., Tinker, R., Palecki, M., Stooks-
bury, D., Miskus, D., and Stephens, S.: The Drought Moni-
tor, B. Am. Meteorol. Soc., 83, 1181–1190, doi:10.1175/1520-
0477(2002)083<1181:tdm>2.3.co;2, 2002.

Tadesse, T., Wilhite, D. A., Harms, S. K., Hayes, M. J., and God-
dard, S.: Drought monitoring using data mining techniques:
A case study for Nebraska, USA, Nat. Hazards, 33, 137–159,
doi:10.1023/B:NHAZ.0000035020.76733.0b, 2004.

Teuling, A. J., Van Loon, A. F., Seneviratne, S. I., Lehner,
I., Aubinet, M., Heinesch, B., Bernhofer, C., Grünwald, T.,
Prasse, H., and Spank, U.: Evapotranspiration amplifies Eu-
ropean summer drought, Geophys. Res. Lett., 40, 2071–2075,
doi:10.1002/grl.50495, 2013.

Van Loon, A. F. and Van Lanen, H. A. J.: Making the distinc-
tion between water scarcity and drought using an observation-
modeling framework, Water Resour. Res., 49, 1483–1502,
doi:10.1002/wrcr.20147, 2013.

Vicente-Serrano, S. M., Begueria, S., and Lopez-Moreno, J. I.: A
Multiscalar Drought Index Sensitive to Global Warming: The
Standardized Precipitation Evapotranspiration Index, J. Climate,
23, 1696–1718, doi:10.1175/2009jcli2909.1, 2010.

Vicente-Serrano, S. M., Beguería, S., Lorenzo-Lacruz, J., Ca-
marero, J. J., López-Moreno, J. I., Azorin-Molina, C., Re-
vuelto, J., Morán-Tejeda, E., and Sánchez-Lorenzo, A.: Per-
formance of drought indices for ecological, agricultural
and hydrological applications, Earth Interact., 16, 1–27,
doi:10.1175/2012ei000434.1, 2012.

Webster, P. J.: Meteorology: Improve weather forecasts for the de-
veloping world, Nature, 493, 17–19, 2013.

Ziese, M., Becker, A., Peter, F., Meyer-Christoffer, A., Rudolf, B.,
and Schneider, U.: GPCC Drought Index Product (GPCC_DI) at
1.0◦, [Data set], doi:10.5676/DWD_GPCC/DI_M_100, 2011a.

Ziese, M., Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf,
B., and Schneider, U.: GPCC First Guess Product at 1.0◦:
Near Real-Time First Guess monthly Land-Surface Precipita-
tion from Rain-Gauges based on SYNOP Data, [Data set],
doi:10.5676/DWD_GPCC/FG_M_100, 2011b.

www.hydrol-earth-syst-sci.net/18/2657/2014/ Hydrol. Earth Syst. Sci., 18, 2657–2667, 2014

http://dx.doi.org/10.1002/joc.3545
www.emdat.be
http://dx.doi.org/10.1175/1520-0450(2003)042%3C1837:euaogm%3E2.0.co;2
http://dx.doi.org/10.1175/1520-0450(2003)042%3C1837:euaogm%3E2.0.co;2
http://dx.doi.org/10.1007/pl00013733
http://dx.doi.org/10.1016/j.asr.2006.02.048
http://dx.doi.org/10.5676/DWDT1	extunderscore GPCC/FDT1	extunderscore MT1	extunderscore V6T1	extunderscore 100
http://dx.doi.org/10.1016/j.advwatres.2013.03.009
http://dx.doi.org/10.1002/grl.50657
http://dx.doi.org/10.1175/jcli-d-11-00157.1
http://dx.doi.org/10.1175/jamc-d-12-0113.1
http://dx.doi.org/10.5194/hess-18-1625-2014
http://dx.doi.org/10.1175/bams-d-11-00176.1
http://dx.doi.org/10.5676/DWDT1	extunderscore GPCC/MPT1	extunderscore MT1	extunderscore V4T1	extunderscore 100
http://dx.doi.org/10.5194/nhess-12-3519-2012
http://dx.doi.org/10.1038/nature11575
http://dx.doi.org/10.1175/2010JHM1307.1
http://dx.doi.org/10.1175/1520-0477(2002)083%3C1181:tdm%3E2.3.co;2
http://dx.doi.org/10.1175/1520-0477(2002)083%3C1181:tdm%3E2.3.co;2
http://dx.doi.org/10.1023/B:NHAZ.0000035020.76733.0b
http://dx.doi.org/10.1002/grl.50495
http://dx.doi.org/10.1002/wrcr.20147
http://dx.doi.org/10.1175/2009jcli2909.1
http://dx.doi.org/10.1175/2012ei000434.1
http://dx.doi.org/10.5676/DWDT1	extunderscore GPCC/DIT1	extunderscore MT1	extunderscore 100
http://dx.doi.org/10.5676/DWDT1	extunderscore GPCC/FGT1	extunderscore MT1	extunderscore 100

