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Abstract. The purpose of this work is to evaluate the perfor-
mance of a dual Kalman filter procedure in retrieving states
and parameters of a one-dimensional soil water budget model
based on the Richards equation, by assimilating near-surface
soil water content values during evaporation experiments car-
ried out under laboratory conditions. The experimental data
set consists of simultaneously measured evaporation rates,
soil water content and matric potential profiles. The param-
eters identified by assimilating the data measured at 1 and
2 cm soil depths are in very good agreement with those ob-
tained by exploiting the observations carried out in the en-
tire soil profiles. A reasonably good correspondence has been
found between the parameter values obtained from the pro-
posed assimilation technique and those identified by apply-
ing a non-sequential parameter estimation method. The dual
Kalman filter also performs well in retrieving the water state
in the porous system. Bias and accuracy of the predicted state
profiles are affected by observation depth changes, partic-
ularly for the experiments involving low state vertical gra-
dients. The assimilation procedure proved flexible and very
stable in both experimental cases, independently from the
selected initial conditions and the involved uncertainty.

1 Introduction

With the unprecedented availability of soil moisture infor-
mation, new opportunities emerge to improve the accuracy
in hydrologic predictions. Nonetheless, the effective use of
this information entails the implementation of techniques

adequately addressing the different sources of uncertainties
embedded in the simulation process (Hoeben and Troch,
2000; Vrugt et al., 2005; McLaughlin, 2002; Vereecken et
al., 2008), in particular those arising from the parameter-
ization of the soil hydraulic properties, i.e. the soil water
retention and hydraulic conductivity functions, which are
fundamental for reliably modelling soil water dynamics in
the vadose zone.

Several studies have pointed out the potential of data as-
similation (DA) techniques, in particular those based on se-
quential algorithms as the Kalman filter (Kalman, 1960), to
improve the forecast offered by a hydrological model by us-
ing near-surface soil water content observations derived from
remote sensing or ground-based networks. As defined by Liu
and Gupta (2007), DA aims at providing consistent estimates
of the dynamical behaviour of a system by merging the in-
formation available in imperfect models and uncertain data
in an optimal way. Nonetheless, the majority of soil hydrol-
ogy studies deal with the use of near-surface soil moisture in-
formation to retrieve soil moisture profiles in the unsaturated
zone while assuming the soil hydraulic properties as known
attributes (e.g. Entekhabi et al., 1994; Walker et al., 2001,
2004; Dunne and Entekhabi, 2005). Poorly identified param-
eters usually generate error and bias, which should be faced
using bias-correction strategies (De Lannoy et al., 2007a, b)
or, more generally, a model calibration.

Classical algorithms for model calibration, either the tra-
ditional approaches accounting for deterministic methods,
or those based on the standard Bayes’ law, calibrate model
parameters by implementing an optimization procedure that
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minimizes long-term prediction errors for a given historical
data set. This type of algorithms assumes time-invariant pa-
rameters and thus does not make any attempt to include in-
formation from new observations (Moradkhani et al, 2005a;
Liu and Gupta, 2007; Vrugt et al., 2013), thus hindering the
identification of time-varying errors associated with the sev-
eral components of the uncertainty. In addition, the applica-
bility of such algorithms is limited in those regions where the
lack of historical data makes the optimization procedure less
practicable (Thiemann et al., 2001).

Therefore an increasing number of hydrological DA ap-
plications has being aimed at exploring the capabilities of
DA methods to improve the accuracy of modelled physi-
cal phenomena and processes by recursively retrieving both
states and parameters. An interesting discussion about pros
and cons of the common approaches dealing with simulta-
neous state and parameter estimation in hydrological appli-
cations was provided by Liu and Gupta (2007). Todini et
al. (1978) provided significant insights about the simulta-
neous state–parameter estimation in pioneering hydrological
applications. Other important studies have been carried out
by Vrugt et al. (2005), who combined the ensemble Kalman
filter (EnKF) to update model states recursively with an opti-
mization technique for parameter estimation. Moradkhani et
al. (2005a, b) provided a framework for dual state–parameter
estimation using the EnKF and particle filtering (PF).

One controvertible issue is which of the two approaches,
namely the dual or the joint Kalman filtering, performs bet-
ter for the simultaneous retrieval of states and parameters.
In the dual filter approach, two separate filters – one for the
state space and the other for the parameter space – are imple-
mented. Instead, the joint filter methods predict the evolution
of the joint probability distribution of states and parameters,
which are combined in an augmented state vector. Theoret-
ically, the joint approach is more robust because it accounts
for the cross-covariance between the states and parameter
estimates (van der Merwe, 2004). However, several studies
highlighted the instability and intractability of this approach
as a result of the complex interactions between states and pa-
rameters in a nonlinear dynamic system (Moradkhani et al.,
2005; Liu and Gupta, 2007). Medina et al. (2014) have shown
that the decoupled state-space representation in the dual KF
provides higher flexibility since different Kalman filters can
be selected for the states and parameters, respectively, ac-
cording to the specific characteristics of both the observation
and system equations.

A few studies have explored the possibility of simultane-
ously retrieving soil moisture profiles and soil hydraulic pa-
rameters, by assimilating surface soil moisture observations
(e.g. Qin et al., 2009; Yang et al., 2009). Lü et al. (2011) ap-
plied a direct insertion method for assimilating surface soil
moisture within the Richards equation, coupled with a parti-
cle swarm optimization algorithm, for identifying the optimal
saturated hydraulic conductivity. Monztka et al. (2011) and
Plaza et al. (2012) performed recursive state and parameter

retrieval for the soil moisture estimation, but using a particle
filter algorithm, which is another sequential method widely
applied in the most recent studies (Vrugt et al., 2013).

Medina et al. (2014) performed a synthetic numerical
study to evaluate a dual Kalman filter (named DSUKF)
for real-time simultaneous prediction of soil water content
or matric pressure head profiles and soil hydraulic param-
eters, by assimilating near-surface information in a one-
dimensional Richards equation. In this approach, a standard
Kalman filter is implemented with a Crank–Nicolson numer-
ical scheme to retrieve soil state profiles, while an unscented
Kalman filter (UKF) (Julier and Uhlman, 1997, 2004; van
der Merwe 2004) is implemented for retrieving soil hydraulic
parameters. The UKF is based on a statistical linearization of
the nonlinear operators (unscented transformation), without
the need of performing any analytic differentiation.

One distinguishing issue of this approach concerns the
adopted linearized forward state model. The noniterative in-
tegration arising from the linearized Crank–Nicolson for-
mulation represents a simplification of the solution of the
Richards equation. However, the time stepping adopted
within the numerical scheme can be adjusted to reduce the
numerical error to negligible values (e.g. Haverkamp et al.,
1977). Paniconi et al. (1991) show that the linearization of
the Richards equation, when applied to second-order time
steeping formulations as the Crank–Nicolson, reduces the ac-
curacy to first order. Nevertheless, further improvements can
be easily incorporated, as for instance reported by Kavetski
et al. (2002), who demonstrated that the reliability and the
efficiency of these noniterative linearized schemes can be in-
creased by adaptive truncation error control, and can be even
more efficient than analogous time stepping schemes with
iterative solvers.

Medina et al. (2014) provided valuable insights about
the identifiability of the parameters featuring in the van
Genuchten–Mualem soil hydraulic analytical relations (van
Genuchten, 1980) by means of dual Kalman filters. This
study also discussed the impact exerted by parameter ini-
tialization, observation depth, and assimilation frequency
on the overall DSUKF retrieval performance, as well as
the influence of the formulation of the Richards differen-
tial equation (eitherh-based orθ -based form). The perfor-
mance of the adopted approach is compared with that us-
ing the dual ensemble KF with ensemble sizes equal to
12 (DEnKF(12)) and 50 (DEnKF(50)), respectively. Reichle
and Koster (2003) found that 12 ensembles consistently re-
duced the uncertainty of the soil moisture estimates during
a one-dimensional EnKF state retrieval application. Cam-
porese et al. (2009) suggest a minimum of about 50 realiza-
tions for ensuring a suitable level of accuracy in analogous
applications. The results show that the root mean square er-
ror (RMSE) using DEnKF(50) is about 1.5 times lower, but
at cost of seven times more computational central processing
unit (CPU) time. However, DEnKF(12) is outperformed in
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terms of both uncertainty reduction and computational effi-
ciency.

The advantage of referring to synthetic values instead of
using measured values of the variables is that the former are
known a priori, and thus the assessment of the algorithm per-
formance is facilitated. On the other hand, synthetic studies
greatly simplify the inherent complexity of real-world appli-
cations, where uncertainties arise from several complexities
of the system at hand, such as the soil heterogeneity and mea-
suring errors. Nevertheless, one important question concern-
ing the validity of the approach is whether it is able to cope
with real data suitably.

This paper aims at evaluating the DSUKF performance
by exploiting data measured during evaporation experiments
carried out on undisturbed soil cores under laboratory condi-
tions. The strength of the evaporation experiment is that the
data are gathered during a transient flow that is very close
to natural processes occurring in real soils, thereby provid-
ing a highly representative hydraulic response of the soil un-
der study. The evaporation tests selected for this study are
two of those employed by Romano and Santini (1999) for
evaluating a parameter optimization method developed to de-
termine the unsaturated hydraulic properties of different soil
types. The method consists of a non-sequential inversion pro-
cedure, also implemented with a Crank–Nicolson numerical
scheme, but using matric pressure head data instead of soil
water content data. The evaporation experiments carried out
by Romano and Santini (1999) have been selected mainly
because soil water content values were also measured with a
relatively high vertical resolution using the gamma ray at-
tenuation method, thus providing a valuable experimental
data set to test the DSUKF approach developed by Medina
et al. (2014).

The performance of the DSUKF approach is herein exam-
ined, accounting for the effects of the observation depth, the
assimilation frequency, and the parameter initialization, on
both state and parameter retrieval processes.

2 The dual Kalman filter formulation

A detailed description of the algorithm employed for the sep-
arate state-space representation used to retrieve states and pa-
rameters is in the paper by Medina et al. (2014). At each
time step, the current estimate of the parameters is used in
the state filter, and the current estimate of the states is used
in the parameter filter. For the sake of effectiveness, the state
and parameter filter equations employed in the assimilation
algorithm are herein summarized. In the most general case,
the set of system equations can be written as

xk = Fk−1,k

(
xk−1,uk, ŵk−1

)
+ νk−1 (1)

yk = Hk

(
xk, ŵk−1

)
+ ηk (2)

for the state vectorx at instantk, and

wk = wk−1 + ξ k−1 (3)

yk = Hk

(
Fk−1,k

(
x̂k−1, uk, wk

)
, wk

)
+ ςk (4)

for the parameter vectorw. In the equation above,F is the
state transition function,H the observation function,νk−1
the zero mean Gaussian process noise with covarianceQk−1,
ηk the zero mean observation or measurement noise with co-
varianceRk, anduk represents an exogenous input to the sys-
tem. The parameter update is artificially set up by means of
a stationary process with an identity state transition matrix.
ξ k−1 ∈ N

(
0,Qw,k−1

)
is the noise driving the parameter up-

dating, andςk ∈ N
(
0,Rw,k

)
is the noise corrupting the ob-

servation equation relative to the parameters, both artificially
settled. The caret symbol (“ˆ”) denotes the density mean of
the variable.

2.1 The standard Kalman filter formulation for linear
state retrieval

The linear algorithm for the state retrieval is summarized in
the following three phases.

I. Initialization:

x̂0 = E [x0] (5)

P0 = E
[(

x0 − x̂0
)(

x0 − x̂0
)T ] (6)

Q0 = E
[
(ν0 − ν̄0)(ν0 − ν̄0)

T
]

(7)

R0=E
[
(η0 − η̄0)(η0 − η̄0)

T
]

(8)

Subscript “0” indicates initial values.
II. Prediction phase is carried out by computing the state

mean and covariances respectively as follows:

x̂−

k = Fk−1,k

(
ŵk−1

)
x̂k−1 + gk−1,k

(
uk, ŵk−1

)
(9)

P−

k = Fk−1,k Pk−1, FT
k−1,k + Qk, (10)

where subscriptk indicates the time step;̂x−

k andP−

k repre-
sent the a priori predictions of the state mean and covariance,
respectively;Fk−1,k is the linear state transition matrix of op-
eratorF in Eq. (1), which depends nonlinearly on the param-
eterswk−1; gk−1,k is a vector accounting for the effect of the
exogenous inputuk, and it is also nonlinearly dependent on
the parameterswk−1.
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III. Correction phase is carried out for updating estimates
with the last observation:

K k = P−

k HT
k

(
Hk,P−

k HT
k + Rk

)−1
, (11)

x̂k =
(
x̂

−

k

)
+K k

(
yk − Hk

(
x̂

−

k

))
, (12)

Pk = P−

k K kHkP−

k , (13)

whereK k is the Kalman gain, expressing the ratio of the ex-
pected cross-covariance matrix of the process prediction er-
ror and the observation prediction error,yk represents the
actual measurements, andx̂k andPk represent the states pos-
terior density mean and covariance, respectively.Hk stands
for the linear observation operator (Eq. 2) in matrix form.

2.2 The unscented Kalman filter (UKF) formulation for
parameter estimation

In the UKF formulation, the distribution of the parameters is
represented by a Gaussian random variable, being specified
using a minimal set of sample points, so-called sigma points,
which are deterministically selected to capture the true mean
and covariance of the variable completely and, when propa-
gated through the true nonlinear system, to capture the pos-
terior mean and covariance accurately up to the second order
for any nonlinearity (van Der Merwe, 2004; Chirico et al.,
2014; Medina et al., 2014).

The algorithm for the dynamic retrieval of the unknown
parameters can be summarized in the following four phases.

I. Initialization of the parameter vector,̂w0, and covari-
ance,Pw,0:

ŵ0 = E [w] (14)

Pw,0 = E
[(

w − ŵ0
)(

w − ŵ0
)T ] (15)

II. Time update phase, in order to get the corresponding a
priori predictions:

ŵ−

k = ŵk−1 (16)

P−

w,k = Pw,k−1 + Qw,k−1, (17)

whereQw,k =

(
λ−1

RLS− 1
)

Pw,k, beingλRLS ∈ (0,1] a forget-

ting factor as defined in the recursive least-squares (RLS) al-
gorithm. This relationship forQw,k is chosen on the basis of
the results illustrated in Medina et al. (2014), where alterna-
tive expressions have been compared.

III. Computation of the sigma pointsWk,i for the measur-
ing update:

Wk,i =

[
ŵ−

k , i = 0 ŵ−

k +

(√
γ P−

w,k

)
i

, i = 1, . . .

Npar ŵ−

k −

(√
γ P−

w,k

)
i

, i = Npar+ 1, . . .2Npar

]
, (18)

whereNpar is equal to the number of parameters to be re-
trieved, whileγ is a coefficient scaling the sampled parame-
ter distribution around the mean parameter vector.

IV. Measuring update equations:

Yk = Hk

(
Fk−1,k

(
x̂k−1,uk,Wk

))
(19)

Then mean,̂y−

w,k, cross-covariance,Pwy,k, and covariance,
Pw

yy,k, of the transformed sigma pointsYk are respectively
calculated as follows:

ŷ−

w,k =

2Npar∑
i=0

µ
(m)
i Yk,i, (20)

Pwy,k =

2Npar∑
i=0

µ
(c)
i

(
Wk,i − ŵ−

k

)(
Yk,i − ŷ−

w,k

)T

, (21)

Pw
yy,k =

2Npar∑
i=0

µ
(c)
i

(
Yk,i − ŷ−

w,k

)(
Yk,i − ŷ−

w,k

)T

, (22)

whereµi are the weights related to the sigma pointi, con-

ditioned to
∑2Npar

i=0 µi = 1. Weight values for calculating the
mean and the covariance are indicated by the superscriptsm

andc, respectively.
The Kalman gain,Kw,k, and the posterior parameter mean,

ŵk, and covariance,Pw,k, are calculated respectively as fol-
lows:

Kw,k = Pwy,k

(
Pw

yy,k + Rw,k

)−1
= Pwy,k

(
Pw

υυ,k

)−1
, (23)

ŵk = ŵ−

k + Kw,k

(
yk − ŷ−

w,k

)
, (24)

Pw,k = P−

w,k − Kw,kPw
υυ,k

(
Kw,k

)T
, (25)

wherePw
υυ,k represents the covariance ofyk−ŷ−

w,k. More de-
tails about the UKF implementation can be found in Medina
et al. (2014).

3 Materials and methods

3.1 Soil water flow governing equation

Water movement in a vertical soil column, modelled as a ho-
mogeneous, variably saturated porous medium under isother-
mal conditions, is simulated using theθ -based form of the
Richards equation:

∂θ

∂t
=

∂

∂z

[(
D(θ)

∂θ

∂z
− K (θ)

)]
, (26)
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wheret is time,z soil depth taken positive downward, with
z = 0 at the top of the profile,θ the soil water content [L3

L−3], D(θ) = K (θ) dh
dθ

[L2/T] is the unsaturated diffusivity,
with K [L/T] being the unsaturated hydraulic conductivity
andh the soil water matric pressure head [L].

The constitutive relationships characterizing the soil hy-
draulic properties are the van Genuchten–Mualem (VGM)
parametric relations (van Genuchten, 1980):

θ (h) = θr + θs− θr
[
1+ |αh|

n
]−m

, (27)

K (θ) = KSSλ
e

[
1−

(
1− S

1/m
e

)m]2
, (28)

whereθs is the saturated soil water content,θr the residual
soil water content,Se = (θ − θr)

/
(θs− θr) the effective satu-

ration, andKs the saturated hydraulic conductivity, whereas
α [L−1], n (-), m (-) andλ (-) are empirical parameters. A
common assumption, also adopted in this work, is to con-
siderλ = 0.5 andm = 1− 1

/
n.

3.2 Crank–Nicolson finite difference scheme

The numerical solution of theθ -based form of the Richards
equation (Eq. 26) is implemented according to the Crank–
Nicolson finite difference scheme, with an explicit lineariza-
tion of both the soil hydraulic conductivityK and the diffu-
sivity D, which takes on the following form for the interme-
diate nodes of the soil column:−

D
i−1/2
k

21zi1zu
;

1

1tk
+

D
i−1/2
k

1zu +
D

i+1/2
k

1zl

21zi
;−

D
i+1/2
k

21zi1zl


 θ i−1

k+1
θ i
k+1

θ i+1
k+1



=

 D
i−1/2
k

21zi1zu
;

1

1tk
−

D
i−1/2
k

1zu +
D

i+1/2
k

1zl

21zi
;

D
i+1/2
k

21zi1zl


 θ i−1

k

θ i
k

θ i+1
k

+
K i−1

k − K i+1
k

21zi
, (29)

where subscripti is the node number (increasing downward),
superscriptk the time step, and1tk = tk+1

− tk. All the
nodes, including the top and bottom nodes, are located in the
centre of each soil compartment in which the soil column is
discretized, with1zu

= zi
− zi−1, 1zl

= zi+1
− zi and1zi

the compartment thickness (cm). The spatial averages ofK

are calculated as arithmetic means.
Flux conditions imposed at the upper and lower bound-

aries are expressed, respectively, by the following equations:(
1

1tk
+

D
1+1/2
k

21z11zl
;−

D
1+1/2
k

21z11zl

)(
θ1
k+1

θ2
k+1

)
(30)

=

(
1

1tk
−

Dk
1+1/2

21z11zl
;

Dk
1+1/2

21z11zl

)(
θ1
k

θ2
k

)
+

qtop− K
1+1/2
k

1z1
,

(
−

D
n−1/2
k

21zn1zu
;

1

1tk
+

D
n−1/2
k

21zn1zu

)(
θn−1
k+1

θn
k+1

)
(31)

=

(
D

n−1/2
k

21zn1zu
;

1

1tk
−

D
n−1/2
k

21zn1zu

)(
θn−1
k

θn
k

)
+

K
n−1/2
k − qbot

1zn
,

beingqtop andqbot the fluxes at the top and the bottom of the
soil profile, respectively.

In the numerical scheme, an explicit linearization ofK and
D is implemented by taking their values at the previous time
stepk-1. Then, a linear state-space representation of the dy-
namic system can be easily derived by combining the set of
Eqs. (29)–(31) written for each node and accounting for the
boundary conditions:

Bk−1θk = Ak−1θk−1 + f k−1, (32)

whereAk−1 andBk−1 are tri-diagonal matrices obtained by
assembling the terms in the first pair of parentheses on the
right- and left-hand side of Eqs. (29)–(31), respectively. The
term f k−1 is a vector obtained by assembling the terms on
the right-hand side of the state variable at time stepk-1. More
explicitly, Eq. (32) becomes

θk = Fk−1 θk−1 + gk−1 (33)

by makingFB−1 A andg = B−1 f , which correspond to the
analogous terms in Eqs. (9)–(10).

3.3 Experimental data set

We used data published on an earlier study since it was
judged to be helpful to explore advanced methods about a
common problem already mentioned in the literature. We
used the data reported in the paper by Romano and San-
tini (1999) and collected during evaporation tests on the two
undisturbed soil core named as GA3 and GB1. Each of these
two soil cores had an inner diameter of 8.0 cm and a length
of 12.0 cm. In order to provide a clear view of the soil water
dynamic process, against which the performance of DSUKF
has been evaluated, a brief description of the evaporation
tests is herein provided, while further details can be found
in Romano and Santini (1999).

The undisturbed soil core, after being completely saturated
from the bottom, is induced to a state of hydrostatic equilib-
rium with the matric pressure head value at the bottom end
almost at zero. The sample cylinder is then completely sealed
at the bottom and positioned on a plate, supported by a strain-
gauge load cell measuring the soil sample weight, while a
small fan is positioned near the top. Tensiometers connected
to pressure transducers are inserted at various depths to mon-
itor the soil water pressure head. The evaporation experi-
ment is carried out until the formation of air bubbles causes
the breakdown of the hydraulic connection between the last
working tensiometer and the corresponding pressure trans-
ducer. Tensiometers were inserted at the following three soil
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Figure 1. Evaporation flux at the soil surface calculated from the
water balance of each soil sample between consecutive measure-
ments of the soil profiles.

depths: 3, 6, and 9 cm. Additionally, soil water content pro-
files during the experiment were measured with a gamma ray
attenuation device, with a vertical resolution of 1.0 cm.

Table 1 lists the basic physical properties of the two soil
samples together with the VGM model parametersα, n

and Ks, which have been estimated by Romano and San-
tini (1999) by applying a non-sequential parameter esti-
mation method and are employed as reference values in
this study.

Soil water content profiles, with a time update of 600 s,
have been built by polynomial interpolation of the gamma
ray measurements at all soil depths and taken as “true”
state values.

The assimilation algorithm samples the observation values
from the interpolated soil water content profiles. The evap-
oration rate at the soil surface is estimated by applying a
water balance equation between two consecutive measure-
ments of the soil water content profiles, under the assump-
tion of a constant evaporation flux during the measurement
interval. This approach provides an approximate temporal
pattern of the upper boundary fluxes, with step changes, as
depicted in Fig. 1.

The duration of the assimilated evaporation process is
170 h for GA3 and 131 h for GA1, which approximately cor-
respond to 7 and 5.5 days, respectively.

4 DSUKF implementation

Similarly to the synthetic study of Medina et al. (2014), the
saturated (θs) and the residual (θr) soil water contents are
assumed to be known, as these parameters can be easily de-
termined by direct or indirect methods (e.g. Pringle et al.,
2007; Chirico et al., 2010). As reported in the paper by Ro-
mano and Santini (1999), the values of parameterθs are fixed
to 0.31 cm3 cm−3 for GA3 and 0.35 cm3 cm−3 for GB1, re-

spectively. The values of parameterθr are instead defined ac-
cording to the values suggested by Carsel and Parrish (1988)
for soils of the same textural class:θr = 0.067 cm3 cm−3 for
a silt loam soil as GA3, andθr = 0.08 cm3 cm−3 for a loam
soil as GB1, which are both slightly smaller than the air-dried
values assumed by Romano and Santini (1999) (see Table 1).

The unscented Kalman filter is thus implemented to re-
trieve the remaining parametersKS, α andn. As shown in
Medina et al. (2014), a variable transformation is applied to
constrain the retrieved parameter values to a certain phys-
ically meaningful range and thus to guarantee operational
stability. Considering thatwi is the true value of theith pa-
rameter, the parameter estimation procedure makes use of the
following variable transformation:

wi = wimin +
(
wimax − wimin

)
s(δwi), (34)

wherewmin andwmax represent user-defined nominal values
constraining the minimum and maximum values of the pa-
rameter, respectively; the correction termsδwi are the ac-
tual variables under estimation and are expressed as inde-
pendent terms of a nonlinear sigmoidal functions(δw). The
sigmoidal function, designed to limit the absolute magnitude
of the estimated adjustment, is defined as follows:

s (δwi) =
δwi

2(1+ |δwi |)
+ 0.5. (35)

Table 2 summarizes the initial conditions employed for the
state variables and the covariance matrices, as well as the
examined observation depths and assimilation frequencies.

Uniform profiles have been assumed as initial state condi-
tion, with valuesθ0 = 0.28 cm3 cm−3 for soil core GA3 and
θ0 = 0.31 cm3 cm−3 for soil core GB1. These are approxi-
mately average values between saturation and the soil water
content measured at the soil surface at the beginning of the
experiments.

Our evaluations considered three different observation
depths (OD): 1, 2, and 12 cm. Escorihuela et al. (2010)
found that an OD of 2 cm is the most effective soil moisture
sampling depth for L-band radiometry, even in comparison
with smaller depths. The observation depth of OD= 12 cm,
which means the assimilation of the entire soil core, has
been included as benchmark performance for OD= 1 cm and
OD= 2 cm in the parameter identification. Two assimilation
frequencies have been used: a finer frequency with assimila-
tions every 2 h (AF= 1/2 h−1), and a coarser one with assim-
ilations every 12 h (AF= 1/12 h−1).

The initial covariance matrices are all diagonals and are
defined similarly to Medina et al. (2014): the initial state co-
variance matrix is set to a value of 1000 % of the mean state
profile on the diagonal elements; the initial matrix of the nor-
malized correction terms associated with the soil hydraulic
parameters is assigned to a value of 0.01 on the diagonal ele-
ments; the diagonal of the observation noise autocovariance
matrix is updated using the 2 % of the observed state vector,
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Table 1.Physical and soil hydraulic properties of the two soil samples employed for the evaporation experiments.

Soil Sample Texture ρb, g cm−3 θs θr
∗ α∗∗ (10−2 cm−1) n∗∗ Ks

∗∗ (10−4 cm s−1)

GA3 Silty loam 1.592 0.310 0.080 1.75 2.27 0.222
GB1 Loam 1.572 0.348 0.120 1.67 2.70 1.56 5

∗ Air-dried value.∗∗ Estimated by inversion method (Romano and Santini, 1999).

Table 2.Values adopted for the initialization and implementation of the retrieval algorithm.

Input variable Soil sample

GA3 GB1

Initial state variable 0.28 cm3 cm−3 0.31 cm3 cm−3

Observation depths (ODs) 1, 2 and 12 cm
Assimilation frequency (AF) 2 and 12 h

State covariance matrices

Initial state covariance matrixP i,i
0 ; i = 1. . .Nnod 0.8 cm6 cm−6

Process noise updatingQi,i
0 ; i = 1. . .Nnod 0.05 xi cm6 cm−6

Observation noise updatingRi,i
0 ; i = 1. . .Nobs 0.02 yi cm6 cm−6

Parameter covariance matrices

Initial normalized correction terms matrixP i,i
w,0; i = 1. . .Npar 0.01

Forgetting factorλRLS (linked toQw, Eq. 17) 0.9999

Artificial noise covariance Ri,iw ; i = 1. . .Nobs 1.0× 10−5

Nnod is the number of nodes (states);Npar is the number of parameters under scrutiny;Nobs is the number of observations;x andy

represent the state and the observation vectors, respectively.

while the system noise covariance is updated assuming the
5 % of the profile state vector.

The limiting and initialization values of parametersKs,
α andn are also identical to those employed by Medina et
al. (2014). Table 3 summarizes the minimum value (wmin)

and the prescribed range (wmax-wmin) of each parameter, as
well the resulting values of the sets of initial parameters. The
six sets of initial parameters are employed for evaluating the
influence of the initial condition on the performance of the
parameter retrieval algorithm.

For quantitatively evaluating the performance of the in-
volved schemes, the mean error (ME) and the root mean
square error (RMSE) between retrieved and true state pro-
files are computed as follows:

MEj =
1

N

N∑
i=1

(
x

guess
i,j − xtrue

i,j

)
, (36)

RMSEj =

[
1

N − 1

N∑
i=1

(
x

guess
i,j − xtrue

i,j

)2
]1/2

, (37)

wherex
guess
i,j andxtrue

i,j represent the guess and true state value
at nodei and timej , respectively.
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Figure 2. Retrieved VGM parametersKs, α and n for GA3 soil
sample with assimilation frequency AF= 1/2 h−1, and observation
depth(a) OD= 1 cm,(b) OD= 2 cm and(c) OD= 12 cm. Compar-
isons account for the six pondered sets of initial parameters S1(©),
S2(�), S3(∗), S4(1), S5(+) and S6(♦). The dotted line indicates
the value of the parameter found by Romano and Santini (1999).
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Table 3. Values ofwmin andwmax–wmin used to constrain the distribution of the parametersKs, α andn, and the resulting six sets of
parameter values employed for initializing the assimilation algorithm.

Parameter wmin wmax–wmin S1 S2 S3 S4 S5 S6

Ks (cm s−1) 1× 10−5 6× 10−4 4.6× 10−4 4.6× 10−4 3.1× 10−4 3.1× 10−4 1.6× 10−4 1.6× 10−4

α (cm−1) 1× 10−3 5× 10−2 2.6× 10−2 1.35× 10−2 3.85× 10−2 1.35× 10−2 2.6× 10−2 3.85× 10−2

n (-) 1.1 2.0 1.6 2.1 1.6 2.6 2.6 2.1
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Figure 3. Retrieved VGM parametersKs, α and n for GB1 soil
sample with assimilation frequency AF= 1/2 h−1, and observation
depth(a) OD= 1 cm,(b) OD= 2 cm and(c) OD= 12 cm. Compar-
isons account for the six pondered sets of initial parameters S1(©),
S2(�), S3(∗), S4(1), S5(+) and S6(♦). The dotted line indicates
the value of the parameter found by Romano and Santini (1999).

5 Results

5.1 Parameter retrieval

Figures 2 and 3 show the temporal patterns of the retrieved
VGM parameters for GA3 and GB1, respectively, obtained
by assimilating the observed soil water content every 2 h
within the three different observation depths (ODs): 1, 2, and
12 cm. For soil core GA3 (Fig. 2), there is a very good agree-
ment between parameter values retrieved using OD= 2 cm
(Fig. 2b) and OD= 12 cm (Fig. 2c). It is particularly in-
teresting to note the consistency in the convergence ofKs,
which in general is the less identifiable parameter (Medina
et al., 2014). The final retrievedKs value is approximately
1× 10−4 cm s−1, higher than both the value estimated by
Romano and Santini (1999) for the VGM hydraulic model
(0.222× 10−4 cm s−1) and the value directly estimated with
the falling head method (0.345× 10−4 cm s−1). However,
the final retrievedKs is in the range of values obtained by
Romano and Santini (1999) with analytical models of the
soil hydraulic properties other than the VGM. When us-

ing OD= 1 cm, parametern converges to two main values:
one approximately 2.5 and the other one approximately 1.7
(Fig. 2a). For OD= 2 cm and OD= 12 cm, the convergence
patterns are less dependent on the initial set of parameter val-
ues. For OD= 2 cm,n converges to a value approximately of
2.5, while for OD= 12 cm it converges to 2.7, thus in both
cases higher than the reference value of 2.27.

For soil core GB1 (Fig. 3), the retrieval process provides
values ofKs andn that converge toward those identified by
Romano and Santini (1999) (Ks = 1.565× 10−4 cm s−1 and
n = 2.7, respectively). Using OD= 2 cm, the means ofKs
andn are found practically equal to those reported by Ro-
mano and Santini (1999). The parameters retrieved by as-
similating the entire profile (OD= 12 cm, Fig. 3c) follow two
distinct patterns. The parameter values retrieved with the ini-
tial sets S2, S3, and S6 follow patterns fairly close to the
values found by Romano and Santini (1999), with meanKs,
α, and n of approximately 1.5× 10−4 cm s−1, 0.028 cm−1

and 2.8, respectively. The parameter values retrieved with the
initial sets S1, S4, and S5 follow patterns with average val-
uesKS = 2.4× 10−4 cm s−1, α = 0.043 cm−1 andn = 1.8,
which are relatively close to the values reported by Carsel
and Parrish (1988) for loam soils:Ks = 5.0× 10−4 cm s−1,
α = 0.036 cm−1 andn = 1.56. The convergence patterns ob-
tained with OD= 1 cm and 2 cm (Fig. 3a and b, respec-
tively) reflect rather well these two alternative parameter
space solutions.

Compared withKs andn, parameterα is much less af-
fected by the observation depth and the initial parameteriza-
tion. Preliminary sensitivity analyses (not presented here for
the sake of brevity) have highlighted that higher initial soil
water content values favour the parameter identifiability and
the increase of the convergence rate ofα, as a result of a rel-
atively higher amount of information ofα retrievable for soil
water states close to the air entry value (Vrugt et al., 2001,
2002; Medina et al., 2014). In both experiments GA3 and
GB1, parameterα converges predominantly toward a value
of approximately 0.04 cm−1, which is notably higher than
those estimated by Romano and Santini (1999).

This relative inconsistency can be justified considering
that the assimilation algorithm is implemented by exploit-
ing the soil water content as an observation variable, whilst
Romano and Santini (1999) employed pressure head values
measured at three depths (3.0, 6.0, and 9.0 cm) to estimate
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 Figure 4. Comparison of the 18 (corresponding to 3 observation
depths times 6 initial parameter sets) soil water retention curves
θ(h), and hydraulic conductivity functions,K(θ), using the con-
verging parameters for GA3 (grey solid lines). The solid lines with
markers indicate the corresponding functions defined with the pa-
rameters found by Romano and Santini (1999). Note that in this
studyθr = 0.067 cm3 cm−3, while Romano and Santini (1999) as-
sumedθr = 0.08 cm3 cm−3.

the soil hydraulic parameters with a non-sequential inverse
method. Indeed, parameterα acts as a scaling factor of the
pressure head values with respect to the soil moistures in
the VGM model, and its identifiability through an inverse
method can be highly affected by the type of information
employed (e.g. Šimůnek and van Genuchten, 1996; Ritter et
al., 2004; Wöhling and Vrugt, 2011). As discussed later, the
observed discrepancies can also be partly attributed to some
inaccuracy in the identification of the final solution due to
the high correlation between the van Genuchten parameters.
The narrow range covered by the state variables in the con-
sidered experiment can have a negative impact on the final
results. Several authors have emphasized some difficulties in
the identification of the VGM parameters as a consequence
of the narrow variability of naturally occurring boundary
conditions (Scharnagl et al., 2011; Vrugt et al., 2001, 2002).

With reference to soil core GA3, Fig. 4 shows the com-
parisons between the soil water retention and hydraulic con-
ductivity functions obtained using the 18 retrieved parameter
vectors, and those functions described by the optimized pa-
rameter values of Romano and Santini (1999). These vectors
are obtained through 18 combinations of 3 different observa-
tion depths and 6 initial parameter sets. The denser groups
of water retention and hydraulic conductivity curves, corre-
sponding to the solutions using OD= 2 cm and 12 cm, have
a slope similar to the corresponding reference curves of Ro-
mano and Santini (1999), but are shifted toward higher values
of h andK. The groups of curves obtained using OD= 1 cm
have a different slope, and they match fairly well the refer-
ence curves only in the dry range.

Similarly to Fig. 4, Fig. 5 compares the soil hydraulic
functions obtained in this study for soil core GB1 and those
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Figure 5. Comparison of the 18 (corresponding to 3 observation
depths times 6 initial parameter sets) soil water retention curves
θ (h), and hydraulic conductivity functions, K(θ), using the con-
verging parameters for GB1 (grey solid lines). The solid lines with
markers indicate the corresponding functions defined with the pa-
rameters found by Romano and Santini (1999). Note that in this
studyθs = 0.35 cm3 cm−3 andθr = 0.08 cm3 cm−3, while Romano
and Santini (1999) assumedθs = 0.348 cm3 cm−3 andθr = 0.12 cm3

cm−3.
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Figure 6. Evolving variances of the correction terms(a) δ (Ks),
(b) δ (α) and (c) δ (n) associated with the VGM parameters and
correlations(d–e)between these terms during the first 4 days using
the GA3 data series, with assimilation frequency AF= 1/2 h−1 and
observation depth OD= 12 cm.

optimized by Romano and Santini (1999). Again, our esti-
mated soil water retention curves are shifted with respect to
the reference curve, except in the dry range of the graph be-
cause of the difference between the residual soil moisture of
the cited study (0.12 cm3 cm−3) and the value assumed in
this study (0.078 cm3 cm−3). The estimated hydraulic con-
ductivities match very well the reference curve in the wet
range, but depart in the dry one, also as result of the differ-
ence in the residual soil water contents.

Some difficulty in correctly identifying the solution is def-
initely related to the multivariate correlation structure in-
duced in the parametric distribution. This question is evident
from Fig. 6, which illustrates the behaviour of the evolving
variance and correlation of the correction terms associated
with the estimated parameters for GA3 (see also Eqs. 34 and
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35) assuming OD= 12 cm. This is roughly the pattern ob-
served for both experiments, independently from the adopted
observation depths. The temporal reduction ofδ(Ks) vari-
ance (Fig. 6a) is small compared with that ofδ(α) andδ(n)

(Fig. 6b and c). Moreover,δ(Ks) predominantly exhibits a
positive correlation withδ(α) and a negative correlation with
δ(n) (Fig. 6d and e), while the correlation is always nega-
tive betweenδ(α) and δ(n). The signs of these correlation
values are consistent with those found by Romano and San-
tini (1999), although they examined the actual parameter val-
ues rather than a nonlinear transformation of them, as done
in this study. It is also important to point out that the correla-
tion structure influences the retrieved parameters in different
ways, depending on the initial conditions and on the type of
retrieval algorithm employed, which can be either sequen-
tial, such as in the present study, or non-sequential such as
that employed by Romano and Santini (1999).

Finally, a closer inspection of the performance of the
assimilation algorithm with relatively low assimilation fre-
quencies is obtained from Fig. 7, which depicts the temporal
patterns of the retrieved parameters using AF= 1/12 h−1 and
OD= 1 cm, thus involving only 15 assimilation events for
GA3 and 11 for GB1. Nevertheless, there is a good agree-
ment between these patterns and the analogous patterns us-
ing AF= 1/2 h−1 (Figs. 2a and 3a). Also the covariance and
correlation structure follow the general trends previously de-
scribed and the effect of the negative correlation betweenα

andn can be visually perceived. For example, it is worth not-
ing that the lowest convergent value ofn in Fig. 7b, obtained
with the parameter initializations S1 and S3, corresponds to
the highest convergent value ofα.

In summary, all these outcomes illustrate the performance
of the proposed approach in terms of parameter retrieval,
in a real scenario, characterized by a limited amount of as-
similated observations and by observation errors embedded
as part of the experimental data. In general, by using both
OD= 1 cm and OD= 2 cm, it is possible to identify effi-
ciently the sets of parameters similar to those obtained by
assimilating the entire soil moisture profile. Although, the
performance using OD= 2 cm was found markedly better.
The retrieval for GB1 was clearly affected by the initial pa-
rameterization; instead the response of GB3 was practically
insensitive to this factor, except for OD= 1 cm.

It is important to note that the physically constrained na-
ture of soil water content, in this study chosen as state vari-
able, precludes the simulation of saturated conditions and en-
tails mathematical shortcomings for the UKF sampling strat-
egy. In fact, the retrieval algorithm can in principle sample
parametric solutions involving a “wrong” saturation (i.e. giv-
ing place to state values being higher thanθs) or “wrong”
dry conditions (i.e. giving place to state values being smaller
thanθr). Notice that these limitations are also attributable to
the ensemble Kalman filter, which also involves parameter
sampling around a mean state vector. When these meaning-
less values are sampled, the algorithm simply changes them
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Figure 7. Retrieved VGM parametersKs, α and n using (a)
GA3 and(b) GB1 experimental data, with assimilation frequency
AF = 1/12 h−1 and observation depth OD= 1 cm. Comparisons ac-
count for the six pondered sets of initial parameters S1(©), S2(�),
S3(∗), S4(1), S5(+) and S6(♦). The dotted line indicates the value
of the parameter found by Romano and Santini (1999).

to keep the state vector solutions within the valid range.
Aimed to provide a general solution circumventing this is-
sue, several alternative strategies have been unsuccessfully
pondered. One of them was to use adaptive coefficients, scal-
ing the sigma point distribution in the unscented approach
(see Eq. 17), in order to shrink the deterministic sampling
of the parameter around the mean. However, this demands a
high computational cost, and provides temporarily biased re-
trieved parameters, affecting also tracking and convergence.
It was also pondered the use of a “temporarily adaptive”θs
(or in principleθr), i.e. makingθs as the maximum soil water
content value whenever at least one state value exceeds the
adopted actual value. However, this gives place to an irre-
versible state biasing. Even includingθs as an additional un-
known parameter to be retrieved would not avoid this issue,
but would rather make it more evident.

5.2 State retrieval

Figures 8 and 9 depict the retrieved states after 1, 4 and 7 days
for GA3 and 1, 3 and 5 days for GB1, by assimilating obser-
vations every 2 h, within the three observation depths exam-
ined (1, 2 and 12 cm). The results show that the dual filter
algorithm is generally able to retrieve the true state profiles
with a relatively low dependence from the identified paramet-
ric array. For soil core GA3 and using OD= 1 cm, the dif-
ferences between retrieved and measured soil moistures are
still large after 7 days (Fig. 8c). Nevertheless, the variabil-
ity between the six involved simulations is barely noticeable,
indicating that the initial parameterization has a low weight
at this stage of the assimilation process. Using OD= 2 cm, a
very good match between retrieved and measured profiles is
found already at the fourth day (Fig. 8e).

In the case of the GB1 experiment, the retrieval process
is forced to deal with a relatively larger soil heterogeneity,
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Figure 8. Retrieved soil moisture profiles (solid lines) using the
GA3 data series after 1 day(a, d, g), 4 days(b, e, h) and 7 days
(c, f, i), with assimilation frequency AF= 1/2 h−1 and observation
depths:(a–c)OD= 1 cm,(d–f) OD= 2 cm, and(g–i) OD= 12 cm.
Comparisons account for the six pondered sets of initial parameters
S1(©), S2(�), S3(∗), S4(1), S5(+) and S6(♦). The dotted line
with solid circles represents the measured profile.

as shown by the irregular scatter of the soil water content
data points along the vertical direction (Fig. 9). This verti-
cal variability makes the retrieval process more sensitive to
the parameter initialization, allowing for a wider spectrum
of probable soil moisture profiles. However, this spectrum of
probable soil moisture profiles well represents the soil mois-
ture “anomalies” and the differences between the retrieved
soil moisture profiles on the fifth day is very small.

The comparison between the retrieval performances
achieved with the observation depths OD= 1 cm and
OD= 2 cm provides contrasting results for the two exper-
iments. For soil core GA3, the differences between the
soil water content profiles retrieved with OD= 1 cm and
OD= 2 cm are still significant on the fourth and seventh day,
whereas for soil core GB1 the profiles are similar at both the
third and the fifth day. This feature can be more clearly appre-
ciated by visual inspection of Fig. 10 showing the temporal
evolution of the ME and RMSE indices for both these exper-
iments. As the initial soil water content is close to the profile
mean value, the errors at the beginning of the simulation are
relatively small. Nonetheless, it is important to point out that
the evolving pattern of these statistics, as the overall perfor-
mance of the retrieval algorithm, is scarcely affected by the
initial soil water content.
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Figure 9. Retrieved soil moisture profiles (solid lines) using the
GB1 data series after 1 day(a, d, g), 4 days(b, e, h) and 7 days
(c, f, i), with assimilation frequency AF= 1/2 h−1 and observation
depths:(a–c)OD= 1 cm,(d–f) OD= 2 cm, and(g–i) OD= 12 cm.
Comparisons account for the six pondered sets of initial parameters
S1(©), S2(�), S3(∗), S4(1), S5(+) and S6(♦). The dotted line
with solid circles represents the measured profile.
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Figure 10. Evolving mean errors (MEs) and root mean square er-
rors (RMSEs) between predicted and measured profiles using GA3
(a–c)and GB1(d–f) experimental data series, with assimilation fre-
quency A F= 1/2 h−1, and observation depths:(a, d) OD= 1 cm,
(b, e)OD= 2 cm, and(c, f) OD= 12 cm. The analysis accounts for
the six pondered sets of initial parameters S1(©), S2(�), S3(∗),
S4(1), S5(+) and S6(♦).

Figure 10a shows that relatively high errors occur for GA3
with OD= 1 cm, with increasing RMSE and ME (in absolute
terms) values up to the second day and after the fourth day.
A main cause of this relatively poor performance of the ap-
proach using GA3 with OD= 1 cm is that water fluxes during
the last stage of this experiment are very small (see Fig. 1),
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Figure 11.Evolving Kalman gain coefficientsK12,1, K12,2 and the
sumK12,1 +K12,2 for GA3 and GB1 using observation depths of
1cm and the parameter initialization S6.K12,1 andK12,2 describe
the influence of the first and second observation nodes, respectively,
on node 12 (the bottom one).

which implies that the soil water content gradients are very
small at the surface and, in turn, poor information is provided
by the very top observation nodes to the lower nodes, about
the ongoing process. For the same reasons, a small increase
of RMSE and ME is also noticeable after the fourth day with
OD= 2 cm.

To see how these physical constraints impact on the
dynamics of the states retrieval process, Fig. 11 shows
the evolving Kalman gain coefficientsK12,1, K12,2 and
K12,1 +K12,2 for both data series using OD= 1 cm and pa-
rameter initialization S6 (the parameter initialization has a
limited impact on this aspect). Provided that the Kalman gain
for OD= 1 cm is a matrix of 12 rows (equal to the nodes
of the soil profile) and 2 columns (equal to the observed
nodes),K12,1 andK12,2 describe how the value retrieved at
the twelfth node is influenced by the observations assimilated
from the first and second nodes, respectively.

Usually, a value ofKi,j close to one indicates a high ef-
fect of the assimilated nodej on the retrieved nodei, whilst
a value close to zero indicates a neglecting effect. Given
the correspondence between states and observations, then in-
volving an observation operatorH with ones in the diago-
nal elements and zero in the off-diagonal elements, a neg-
ative value ofKi,j manifests the negative cross-covariance
between the statesi andj . The sumK12,1 +K12,2 gives an
idea of the combined effect of the two observation nodes,
provided that the differences between model predictions and
observations are similar.

K12,1 for GA3 is almost zero after approximately 4 days.
The sumK12,1 + K12,2 after this moment is constant and es-
sentially equal toK12,2. In other words, the assimilation al-
gorithm is still acting on the bottom node, but just using
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Figure 12. Evolving mean errors (MEs) and root mean square er-
rors (RMSEs) between predicted and measured profiles using GA3
(a–c)and GB1(d–f) experimental data series, with assimilation fre-
quency AF= 1/12 h−1, and observation depths:(a, d) OD= 1 cm,
(b, e)OD= 2 cm, and(c, f) OD= 12 cm. The analysis accounts for
the six pondered sets of initial parameters S1(©), S2 (�), S3 (∗),
S4 (1), S5 (+) and S6 (♦).

the information provided by the second node, while the top
node is barely contributing to the retrieved value. The term
K12,1 +K12,2 obtained for GB1 is higher than that obtained
for GA1 practically during the entire assimilation period. In
the case of GB1, the assimilation of the top node, by means
of theK12,1 coefficient, slightly influences the retrieval value
of the bottom node, almost till the end of the experiment.

The negative values ofK12,1 seem to be favoured by the
adopted experimental settings. At the beginning of the exper-
iment, the guess states transits from a constant matric poten-
tial profile to a distribution similar to a constant head pro-
file; hence, the bottom node moves to a wetter range, while
the evaporative process drives an opposite trend on the top
node. The zero flux condition at the bottom profile favours
the relatively large duration of this phase of the process. Dur-
ing these stages the correlation between the first and the bot-
tom nodes use to be markedly negative. According to Fig. 11
this phase lasts approximately 1 and 2 days for GA3 and
GB1, respectively. When this trend changes, with the bot-
tom nodes also moving to a drier range (although much more
slowly than the top node), the estimatedK12,1 increases (i.e.
it gets less negative values).

Notice that GB1 Kalman gain coefficients tend to converge
toward those of the GA3 experiment after the fourth day. In
fact, as it occurs for GA3, the ME and RMSE values for GB1
using OD= 1 cm also slightly increase at the end of the ex-
periment (Fig. 10d). More precisely, the GB1 flux at its last
stage is about 1 mm day−1, and it is similar to that found for
GA3 from about the fourth day (see Fig. 1).

Thus, the dual filter approach performs well in all cases,
except for GA3 using OD= 1 cm, where the state retrieval
process is relatively slow mainly due to the characteristics
of the experiment, beside other factors such as the diminish-
ing state covariance as the experiment advances, the narrow
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Table 4.Mean error (ME) and root mean square error (RMSE) between predicted and measured soil moisture profiles for GA3 and GB1 data
series at the end of the evaporation tests. Values account for the six sets of initial parameters (S1–S6), two observation depths, (OD= 1 and
OD= 2 cm) and two assimilation frequencies (AF= 1/2 h−1 and AF= 1/12 h−1).

GA3 GB1

Initial set
OD= 1 cm OD= 2 cm OD= 1 cm OD= 2 cm

AF ME RMSE ME RMSE ME RMSE ME RMSE

1/2 h−1

S1 −0.0334 0.0393 −0.0137 0.0193 −0.0129 0.0145 0.0061 0.0080
S2 −0.0344 0.0405 −0.0151 0.0209 −0.0126 0.0144 0.0032 0.0046
S3 −0.0310 0.0366 −0.0123 0.0176 −0.0106 0.0118 0.0074 0.0096
S4 −0.0319 0.0376 −0.0132 0.0188 −0.0083 0.0096 0.0076 0.0099
S5 −0.0307 0.0362 −0.0107 0.0157 −0.0041 0.0063 0.0101 0.0132
S6 −0.0311 0.0367 −0.0118 0.0170 −0.0042 0.0064 0.0100 0.0131

1/12 h−1

S1 −0.0427 0.0491 −0.0213 0.0275 −0.0096 0.0118 −0.0028 0.0073
S2 −0.0402 0.0461 −0.0219 0.0281 −0.0211 0.0278 −0.0079 0.0201
S3 −0.0334 0.0382 −0.0158 0.0210 −0.0101 0.0124 −0.0009 0.0056
S4 −0.0504 0.0588 −0.0250 0.0342 −0.0155 0.0201 −0.0017 0.0112
S5 −0.0501 0.0589 −0.0259 0.0360 −0.0046 0.0088 0.0056 0.0090
S6 −0.0283 0.0325 −0.0148 0.0200 −0.0053 0.0095 0.0053 0.0089

range of the soil moisture content values covered by the top
node, which also implies small differences between model
predictions and observations. As a demonstration of the rela-
tive efficiency of the proposed approach, ME and MAE val-
ues decrease when the analysis of the errors obtained for
GA3 using OD= 1 cm is limited to the top five nodes.

Analogously to Fig. 10, Fig. 12 depicts the temporal evo-
lution of the ME and RMSE values, but using AF= 1/12 h−1.
The reduced assimilation frequency gives mainly place to an
increase of the ME and RMSE for GA3, while a higher de-
pendence of these statistics from the initial parameter sets for
GB1. The error temporal patterns evidence that the profile
retrieval process follows trends similar to those observed for
the higher resolution, but with a slower convergence rate. It is
interesting to observe that when assimilating the entire pro-
file for GA3, the algorithm predicts the correct average soil
water content (as the ME is almost null), but the retrieved
profiles present deviations from the observed values along
the soil column, as testified by the increasing RMSE. Unfor-
tunately, the analysis is limited in time by the short duration
of the experimental data series.

Table 4 summarizes the ME and RMSE values computed
for OD= 1 cm and 2 cm and AF= 1/2 h−1 and 1/12 h−1 at
the end of the each simulation. The approach is able to pro-
vide good results within the limited time conceded by the du-
ration of the experiments. The average ME with OD= 1 cm
is larger than that obtained with OD= 2 cm, by 2.25 times
for GA3 and by 1.3 times for GB1. Similar results occur for
the average RMSE values. Instead, AF= 1/12 h−1 produces
higher errors than AF= 1/2 h−1 by 1.45 times for GA3, while
by 1.4 times for GB1 with OD=1 cm and 0.34 times for GB1
with OD= 2 cm. The results are generally more sensible to

the observation depths than to the assimilation frequency, due
to the small state vertical gradients, particularly for GA3.

6 Conclusions

This study has shown the potential of the dual Kalman filter
approach in retrieving both parameters and states simultane-
ously. The performances of the proposed approach have been
evaluated with data obtained from evaporation experiments
carried out in the laboratory on two different soil cores.

The dual Kalman filter approach is based on a standard
Kalman filter for retrieving state values and an unscented
Kalman filter for retrieving the parameters of the soil hy-
draulic property functions. The approach adopts a linearized
numerical scheme of theθ-based form of the Richards
equation, based on the Crank–Nicolson finite differences,
granting the linearity of both the state and the observation
equations and thus enabling a direct optimal retrieval of
the first and second moment of the states with a standard
Kalman filter.

By assimilating soil moisture observations up to soil
depths of 1 and 2 cm, the approach allows properly identi-
fying a set of parameters that is in a very good agreement
with that one obtained by assimilating the entire observed
profiles. The retrieved parameters are also in a reasonably
good agreement with the parameters found by Romano and
Santini (1999), particularly forKs andn in the case of the
GB1 experiment. The retrieved parameterα is larger than
that estimated by Romano and Santini (1999), as result of
the different type of information employed for estimating the
parameters.
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The method also shows a good performance in terms of
state retrieval and proved to be able to deal even with the
somewhat larger heterogeneities of soil core GB1. The pre-
diction performance proved to be more sensitive to the ob-
servation depths than to the assimilation frequency, when
changing the observation depths from 1 to 2 cm, while the
assimilation frequency from 1/2 h−1 to 1/12 h−1.

It is important to note the marked flexibility and stabil-
ity of the approach, independently from the errors associ-
ated with the initial states and parameter sets. Further work
is needed to investigate whether this approach is also able to
cope with two- or three-dimensional problems of soil water
flux efficiently, by undertaking more complex assimilation
processes.
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