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Abstract. This study presents a dual Kalman filter (DSUKF
– dual standard-unscented Kalman filter) for retrieving states
and parameters controlling the soil water dynamics in a ho-
mogeneous soil column, by assimilating near-surface state
observations. The DSUKF couples a standard Kalman fil-
ter for retrieving the states of a linear solver of the Richards
equation, and an unscented Kalman filter for retrieving the
parameters of the soil hydraulic functions, which are de-
fined according to the van Genuchten–Mualem closed-form
model. The accuracy and the computational expense of the
DSUKF are compared with those of the dual ensemble
Kalman filter (DEnKF) implemented with a nonlinear solver
of the Richards equation. Both the DSUKF and the DEnKF
are applied with two alternative state-space formulations of
the Richards equation, respectively differentiated by the type
of variable employed for representing the states: either the
soil water content (θ ) or the soil water matric pressure head
(h). The comparison analyses are conducted with reference
to synthetic time series of the true states, noise corrupted ob-
servations, and synthetic time series of the meteorological
forcing. The performance of the retrieval algorithms are ex-
amined accounting for the effects exerted on the output by the
input parameters, the observation depth and assimilation fre-
quency, as well as by the relationship between retrieved states
and assimilated variables. The uncertainty of the states re-
trieved with DSUKF is considerably reduced, for any initial
wrong parameterization, with similar accuracy but less com-
putational effort than the DEnKF, when this is implemented
with ensembles of 25 members. For ensemble sizes of the
same order of those involved in the DSUKF, the DEnKF fails

to provide reliable posterior estimates of states and parame-
ters. The retrieval performance of the soil hydraulic param-
eters is strongly affected by several factors, such as the ini-
tial guess of the unknown parameters, the wet or dry range
of the retrieved states, the boundary conditions, as well as
the form (h-based orθ -based) of the state-space formulation.
Several analyses are reported to show that the identifiabil-
ity of the saturated hydraulic conductivity is hindered by the
strong correlation with other parameters of the soil hydraulic
functions defined according to the van Genuchten–Mualem
closed-form model.

1 Introduction

Accurate determination of the water dynamics in the vadose
zone is crucial for the success of many hydrological, cli-
matic and environmental studies. The significant increase in
the availability of hydrologic data sets can definitely provide
extensive opportunities for reducing the uncertainty associ-
ated to the detection of the spatial and temporal variability
of soil moisture. However, it also calls for more robust meth-
ods to merge new available observations and uncertain model
predictions appropriately.

A crucial aspect in the application of these methods is the
proper specification of the model parameters, as a function
of the variables characterizing the state of the water in the
soil (e.g. Heathman et al., 2003; de Lannoy et al., 2007;
Vereecken et al., 2008). Parameterization of soil hydraulic
properties is considered one of the main challenges in the
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current land surface modelling efforts (Zhu and Mohanty,
2004), particularly because hydraulic properties exhibit large
spatial variability at all scales of interest, making it extremely
difficult to capture hydrological behaviour at one particular
scale (Pringle et al., 2007; Chirico et al., 2010).

A prerequisite to properly handle the marked variability
of soil hydraulic properties in large-scale applications is the
use of efficient calibration methods in terms of time and stor-
age. Traditional methods for parameter identification gener-
ally optimize an objective function from a historical batch of
data, and hence require a set of historical data to be kept in
storage and processed all together, with limited flexibility to
account for new available measurements (Moradkhani et al.,
2005). In addition, a common problem with most of these tra-
ditional inverse methods is stability and convergence (Yeh,
1986; Abbaspour et al., 1997). Therefore, several attempts
have been made to develop and apply calibration methods
that circumvent these drawbacks.

Considerable progress has been achieved in the develop-
ment and application of sequential data assimilation (DA)
techniques. As recursive data-processing algorithms, DA
methods do not require all past information to be stored;
they continuously update the variables under scrutiny in the
model, when new measurements become available, to im-
prove the model forecast and evaluate the forecast accuracy
(McLaughlin, 2002; Vrugt et al., 2005; Reichle, 2008). Al-
though sequential estimation is typically applied only to the
state variables, some algorithms, belonging to the family of
the dual estimation methods, have been designed to simulta-
neously estimate model states and parameters as part of the
assimilation process. This family of algorithms includes joint
and dual filtering as well as expectation maximization (EM)
approaches (e.g. Moradkhani et al., 2005; Liu and Gupta,
2007). EM methods have been commonly designed for off-
line applications, but sequential EM methods have also been
proposed (Wan and Nelson, 2001).

In the dual filtering approach, a separate state-space repre-
sentation is used for the states and the parameters, while in
the joint approach the unknown system states and parameters
are concatenated into a single higher-dimensional joint state
vector. In principle, the joint approach should provide better
estimates than the dual approach, because it explicitly ac-
counts for the cross-covariance between state and parameter
estimates. However, the estimation process can lead to un-
stable results because of complex interactions between states
and parameters in nonlinear dynamic systems (Moradkhani
et al., 2005; Liu and Gupta, 2007).

Some modern approaches extend the traditional parameter
estimation paradigm toward a more explicit incorporation of
structural data errors. Since the performance in hydrological
modelling is also affected by errors in model structure and in-
put data, model adjustment through time variation of param-
eters together with state variables can result in a limited un-
derstanding about the overall uncertainty (Clark and Vrugt,
2006). Nevertheless, the diagnostic analysis of a model can

be a difficult task and it is only possible after the model has
been parameterized (Spaaks and Bouten, 2013). According
to Renard et al. (2010), none of the current approaches ap-
pears entirely satisfactory and the optimal methodology for
handling structural errors is still to be established.

Common sequential DA methods are based on stan-
dard Kalman filtering (SKF), from the innovative work of
Kalman (1960). SKF became a widely used technique to
merge information optimally from different sources and
model predictions in linear systems (e.g. McLaughlin, 2002;
Vereecken et al., 2008). Variations of the SKF algorithm have
been developed to make it applicable to the sequential prob-
abilistic inference problem within nonlinear dynamic sys-
tems, such as the extended Kalman filter (EKF) (Jazwinski,
1970), the commonly used ensemble Kalman filter (EnKF)
(Evensen, 1994, 2003), and the unscented Kalman filter
(UKF) (Julier et al., 1995; van de Merwe, 2004).

A fundamental difference between the Kalman filter and
variational methods is that the former explicitly evolves
the covariance matrix without interruption, while variational
methods do not propagate error covariance information from
one assimilation interval to the next (Reichle, 2008). In ad-
dition, the Kalman filter provides an analytical solution of
the a posteriori state mean, while variational methods rely on
numerical methods, which are considered more feasible for
applications where the dimension of the state vector is very
large, as with weather forecasting models (Reichle, 2008).

Kalman filter applications in hydrology (Reichle et al.,
2002; Reichle and Koster, 2003; Reichle, 2008; Camporese
et al., 2009) favour the use of EnKF, relying on the propa-
gation of a random ensemble of the retrieving variable. The
EnKF is an advantageous approach for highly dimensional
applications, mainly because, by means of a comparably
small ensemble of model trajectories, it captures the relevant
parts of the error structure (Reichle, 2008). This method also
facilitates the treatment of errors in model dynamics and pa-
rameters (Reichle and Koster, 2003; Moradkhani et al., 2005)
and it is easily scalable. Nevertheless, the EnKF estimation
based on small ensemble sizes, can be affected by spurious
modes and large biases even if the ensemble mean and co-
variance are correct (Luo and Moroz, 2009; Lei and Baehr,
2013). Moreover, the optimal ensemble size for the EnKF is
uncertain and is generally chosen on the basis of a heuristic
evaluation.

The sampling strategy of the EnKF could be a drawback
in large-scale applications where a small variation of the en-
semble size has an important impact on the computational
demand (e.g. Kumar et al., 2008). The implementation of
these large-scale assimilation systems is often described as
a collection of independent low dimensional assimilation
problems (Crow and Wood, 2003; Reichle and Koster, 2003;
Kumar et al., 2008).

Chirico et al. (2014) show that the SKF, coupled with
a Crank–Nicolson numerical scheme, can be an efficient
choice for low dimensional applications, because it provides
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retrieval performances similar to those obtained with non-
linear schemes, but with less computational effort, also cir-
cumventing some issues which may arise with the sampling
strategies used by the UKF and the EnKF. However, the UKF
can be more flexible and computationally efficient than the
EnKF in problems with low degrees of freedom, because it
relies on ensemble sizes equal to twice the number of degrees
of freedom plus one.

Few attempts have been made to retrieve soil water state
profiles and soil hydraulic parameters simultaneously by as-
similating near-surface observations with Kalman filters (e.g.
Qin et al., 2009; Yang et al., 2009; Montzka et al., 2011). Tian
et al. (2008) used a dual UKF for reproducing the temporal
evolution of daily soil moisture under freezing conditions by
assimilating satellite observations. Lü et al. (2011) developed
a dual Kalman filter for estimating the root zone soil moisture
using a model based on the Richards equation, by combining
the EKF to update the state variables, with an optimization al-
gorithm for retrieving parameters of soil hydraulic functions
defined according to the van Genuchten–Mualem (VGM) re-
lations (van Genuchten, 1980). Monztka et al. (2011) per-
formed a joint approach retrieving soil moisture and VGM
parameters, but using a particle filter algorithm.

Moving from the result of Chirico et al. (2014), we hy-
pothesize that the combination of SKF applied to a linearized
numerical representation of the Richards equation, and UKF
applied to handle the intrinsic nonlinearities between hy-
draulic parameters and soil water states, could provide a
suitable strategy for optimizing the prediction of the state
dynamics.

The first objective of this study is to illustrate the feasibil-
ity of using a deterministic dual filter approach to perform
simultaneous retrieval of soil moisture profiles and VGM pa-
rameters, with similar accuracy but reduced computational
expense, as compared with ensemble Kalman filters, based
on the assimilation of near-surface observations in a one-
dimensional Richards’ equation. The analysis is based on
a synthetic test assuming uncertain observations and a poor
guess of the initial states. A small structural error is also in-
volved by implementing a different numerical solver of the
Richards equation in the assimilation algorithm from that
employed for generating the reference synthetic data.

The dual Kalman filter (hereafter referred to as DSUKF –
dual standard-unscented Kalman filter) is designed by cou-
pling the SKF approach for retrieving the states with the
UKF for retrieving soil hydraulic parameters. For compara-
tive purposes, the simultaneous retrieval of states and param-
eters is also performed using the dual ensemble Kalman fil-
ter (DEnKF), following the framework described by Morad-
khani et al. (2005). Interested readers are referred to this
work, widely cited by the hydrological data assimilation
community.

A second objective is to compare the potential advan-
tages and limitations of anh-based or aθ -based form of the
Richards equation in the retrieval algorithm, also account-

ing for different initial guesses of the parameters, observa-
tion depths, assimilation frequencies as well as the type of
near-surface observations (h or θ ).

2 Model and methods

2.1 Governing equation

As in the vast majority of applications in this realm, we de-
scribe the vertical movement of water under isothermal con-
ditions in a rigid, homogeneous, variably saturated porous
medium using the Richards equation (Jury et al., 1991). The
following two equations represent the Richards equation in
theh-based and inθ-based forms, respectively:

∂θ

∂t
= C (h)

∂h

∂t
=

∂
[
K (h)

(
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− 1
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∂z
, (1)
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, (2)

wheret is time andz is soil depth taken as positive downward
with z = 0 at the top of the profile,C (h) = dθ /dh [1/L] is the
specific water capacity of the soil at matric pressure head,
h, obtained by differentiating the functionθ(h), andD(θ) =
K (θ)/C (θ) [L2/T] represents the unsaturated diffusivity.

For an efficient numerical solution of the model, it is con-
venient to describe the soil hydraulic properties using closed-
form analytical relationships. The following non-hysteretic
VGM equations (van Genuchten, 1980) are widely used in
soil hydrology:
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, (3)
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whereθs is the saturated soil water content,θr is the resid-
ual soil water content,Se = (θ − θr)/(θs− θr) is the effective
saturation,Ks is the saturated hydraulic conductivity, andα

[L−1], n (-), m(-) andλ(-) are empirical scale and shape pa-
rameters. A common assumption, also adopted in this work,
is to setλ = 0.5 and posem = 1− 1/n.

2.2 Numerical formulation of the model

Chirico et al. (2014) showed that the implementation of the
filtering approach upon a linearized Crank–Nicolson finite
difference scheme (CN) can be an efficient algorithm for one-
dimensional problems. The differentiation of Eq. (1) for in-
termediate nodes according to the CN scheme, leads to the
expression−K
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where superscripti is the node number (increasing down-
ward), subscriptk is the time level, and1tk = tk+1 − tk. The
soil column is divided into compartments of thickness1zi .
All nodes, including the top and bottom node, are in the
centre of the soil compartments, with1zu

= zi
− zi−1 and

1zl
= zi+1

− zi . The spatial averages ofK are calculated as
arithmetic means.
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whereqtop andqbot are the fluxes at the top and bottom of the
soil profile, respectively.

The analogous differential expressions of the Richards
equation in theθ form (Eq. 2) can be obtained from Eqs. (5)–
(7) by simply removing the soil water capacity (C) and by
substitutingh with θ , the hydraulic conductivity (K) of the
dependent terms with the diffusivity (D), while keeping the
independent terms on the right-hand side unchanged.

In the numerical scheme, the explicit linearization ofK

andC (orD) is implemented by taking their values at the pre-
vious time stepk − 1. A linear state-space representation of
the dynamic system can then be easily derived by combining

the set of Eqs. (5)–(7) written for each node and accounting
for the boundary conditions:

Bk−1xk = Ak−1xk−1 + f k−1, (8)

wherex represents the state vector (i.e. either soil water con-
tents or matric heads in the soil profile), whileAk−1 andBk−1
are tridiagonal matrices obtained by assembling the terms
in the first parenthesis on the right- and left-hand side of
Eqs. (5)–(7), respectively. The termf k−1 is a vector obtained
by assembling the terms on the right-hand side of the state
variable at time stepk −1. More explicitly, Eq. (8) becomes

xk = Fk−1 xk−1 + gk−1, (9)

whereF =B−1 A andg = B−1 f .

2.3 The dual standard-unscented Kalman filter
(DSUKF) formulation

The dual filter approach has been implemented with most
of the variants of the Kalman filter, applied to both linear
and nonlinear problems, i.e. the SKF (Todini et al., 1976),
the EKF (Nelson, 2000; Wan and Nelson, 2001), the EnKF
(Moradkhani et al., 2005) and the UKF (Wan and van der
Merwe, 2001; van der Merwe, 2004).

In this section we illustrate the (DSUKF) formulation,
where the SKF is implemented for retrieving the states of a
linear system, while the UKF is applied to handle the marked
nonlinearities between states and parameters.

At every time stepk, the posterior parameter estimate at
timek−1 is used in the state filter, while the current estimate
of the states is used in the parameter filter. In the most general
case, the set of system equations for the states can be written
as follows:

xk = Fk−1,k

(
xk−1,uk, ŵk−1

)
+ νk−1, (10)

yk = Hk

(
xk, ŵk−1

)
+ ηk. (11)

In a Bayesian framework, they represent a prior distribution
over the states. Equation (10) allows inferring the transition
probability density of the states, while Eq. (11) determines
the probability density of the observations given the prior
states. The set of system equations for the parameters can
be written as

wk = wk−1 + ξ k−1, (12)

yk = Hk

(
Fk−1,k

(
x̂k−1,uk,wk

)
,wk

)
+ ςk, (13)

representing a prior distribution over an artificial time-
dependent random variable that emulates model parameters.

In the equations above,uk is the exogenous input assumed
to be known at instanttk; νk−1 accounts for a simplified
representation of the model errors, assumed to be a zero-
mean Gaussian process noise with covarianceQk−1, while
ηk is the zero mean and temporally uncorrelated observa-
tion or measurement noise with covarianceRk, corrupting
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the observation of the states. The state transition density
p(xk |xk−1,uk,wk−1 ) is fully specified byFk−1,k and the
process noise distributionp(νk−1), whereasHk and the ob-
servation noise distributionp(ηk) fully specify the observa-
tion likelihoodp (yk |xk, wk).

Fk−1,k andHkare parameterized via the parameter vector
wk, whose evolution is artificially set up in a way similar
to that employed for the state variables (Moradkhani et al.,
2005) by means of a stationary process with identity state
transition matrix.ξ k−1 ∈ N

(
0,Qw,k−1

)
is the noise driving

parameter updating, andςk = ηk + ξ k is the noise corrupting
the observation equation relative to the parameters, with zero
mean and covarianceRw,k. The upper symbol “ˆ” denotes
the density mean of the variable.

2.3.1 UKF algorithm for parameter retrieval

The UKF, like the EnKF, is based on a strategy for the selec-
tion of the sample points, which aims to capture the poste-
rior true mean and covariance of the retrieved variable, after
the sample points are propagated through the true nonlinear
system. States or parameters are still represented by a Gaus-
sian random variable. However, in the UKF this is not spec-
ified by an ensemble of randomly chosen points, like in the
EnKF, rather by using a minimal set of deterministically cho-
sen sample points.

Consideringŵ andPw, respectively, as mean and covari-
ance of the parameter vectorw to be retrieved, having the di-
mension equal toNpar, the UKF selects a set of sigma points
Si =

{
µi,W i, i = 0. . .2Npar

}
, consisting of 2Npar+ 1 vec-

torsW i and their associated weightsµi , completely captur-
ing the actual mean and covariance of the random variable
w. A selection of sigma points fulfilling this requirement is
defined as follows:

W0 = ŵ;W i = ŵ +

(√
γ Pw

)
i
, i = 1, . . .,Npar;W i

= ŵ −

(√
γ Pw

)
i
, i = Npar+ 1, . . .,2Npar, (14)

µ
(m)
0 =

γ − Npar

γ
;µ

(c)
0 =

γ − Npar

γ
+

(
1− ρ2

+ β
)
;µ

(m)
i

= µ
(c)
i =

1

2(γ )
, i = 1, . . .,2Npar. (15)

Weight values for calculating the mean and the covariance
are distinguished by the upper indexesm and c, respec-
tively. The other parameters are defined as follows:γ =

ρ2
(
Npar+ κ

)
, whereρ is a factor employed to expand or to

shrink the sample state distribution around the mean;κ is a
scaling parameter;β affects the weights of the points when
calculating the covariance. Details about the proper choice of
ρ, β andκ can be found in the work of van der Merwe (2004).
The term

(√
γ Pw

)
i

is the ith column (or row) of the root
square matrixγ Pw, calculated by Cholesky decomposition
(Press et al., 1992).

The evolution of the parameter mean and covariance dur-
ing each time step is computed as follows

ŵ−

k = ŵk−1 (16)

P−

w,k = Pw,k−1 + Qw,k−1. (17)

The artificial noise covarianceQw is computed as follows
(Wan and Nelson, 1997; Nelson, 2000; van der Merwe,
2004):

Qw,k =

(
λ−1

RLS− 1
)

Pw,k. (18)

The parameterλRLS ∈ (0,1] is considered a forgetting fac-
tor, as defined in the recursive least-squares (RLS) algorithm.
Nelson (2000) showed that settingλRLS < 1 (i.e. the prior co-
variance is larger than the posterior covariance) provides an
approximate exponentially decaying weight on past data. By
settingλRLS = 1 (i.e. no process noise for the parameters is
considered) all past data are equally weighted to obtain the
current dynamics.

Whenever measurements are available, new sample states
are created by substituting the a priori parameter mean,ŵ−

k ,
and covariance,P−

w,k, in Eq. (14). In principle the weights,
µi , do not change during the simulation.

The set of 2Npar+ 1 parameter vectorsWk is propagated
across the model, and the observation equation, using as
states the a posteriori mean atk − 1, x̂k−1, is expressed as
follows:

Yk = Hk

(
Fk−1,k

(
x̂k−1,uk,vk−1,Wk

))
. (19)

Yk also represents a set of 2Npar+ 1 vectors, each having
Nobs elements.

The Kalman gain employed for modifying the parameter
trajectories is obtained as follows:

Kw,k = Pwy,k

(
Pw

yy,k + Rw,k

)−1
= Pwy,k

(
Pw

υυ,k

)−1
. (20)

Pwy,k is computed by the following weighted outer product:

Pwy,k =

2Npar∑
i=0

µ
(c)
i

(
Wk,i − ŵ−

k

)(
Yk,i − ŷ−

w,k

)T

. (21)

ŷ−

w,k is a weighted average of the predicted measurements
Yk,i :

ŷ−

w,k =

2Npar∑
i=0

µ
(m)
i Yk,i . (22)

Pw
yy,k is given by

Pw
yy,k =

2Npar∑
i=0

µ
(c)
i

(
Y i,k − ŷ−

w,k

)(
Y i,k − ŷ−

w,k

)T

. (23)

www.hydrol-earth-syst-sci.net/18/2521/2014/ Hydrol. Earth Syst. Sci., 18, 2521–2541, 2014



2526 H. Medina et al.: Part 2: A dual filter approach for simultaneous retrieval of states and parameters

The measurement noise covarianceRw,k is assumed to be a
constant diagonal matrix following the basic implementation
of the dual UKF proposed by van der Merwe (2004), previ-
ously applied by Wan and Nelson (1997), Nelson (2000) and
Wan and Nelson (2001) in the context of a dual EKF. This as-
sumption leads to a recursive prediction error algorithm that
minimizes a simplified cost function with respect to the pa-
rameters. This prediction error algorithm, while questionable
from a theoretical perspective, has been shown to be quite
useful (Wan and Nelson, 2001). As part of a dual UKF ap-
plication, Gove and Hollinger (2006) showed that by setting
the measurement noise covariance equal to the identity ma-
trix, the overall trajectory of the retrieved parameter was very
similar to that obtained considering the actual measurement
errors, and attributed this behaviour to the robustness of the
filter with respect to changes in parameter measurement vari-
ance components.

The parameter mean is updated according to the standard
Kalman filter equation:

ŵk = ŵ−

k−1 + Kw,k

(
yk − ŷ−

w,k

)
. (24)

The parameter covariance is updated as follows:

Pw,k = P−

w,k − Kw,kPw
υυ,k

(
Kw,k

)T
. (25)

Pw
υυ,k (see also Eq. 19) represents the covariance ofyk−ŷ−

w,k.
Here we opt for the expression also employed by Julier
and Uhlmann (2004), van der Merwe (2004) and Tian et
al. (2008), given the nonlinearity between parameters and ob-
servations.

2.4 Algorithm for parameter sampling

Given the marked differences in the range of variation of
the VGM parameters, a variable transformation is required
to guarantee operational stability. Bounding parameters by
means of a function of reference values and a variable cor-
rection term ensures that the model behaves reliably. Morad-
khani et al. (2005) and Montzka et al. (2011) also applied
some strategies to limit the overdispersion of parameter
sampling.

Given thatwi is the true value of theith parameter, the pa-
rameter estimation system makes use of the following vari-
able transformation:

wi = wimin +
(
wimax − wimin

)
g(δwi), (26)

wherewmin andwmax represent user-defined nominal values,
indicating the minimum and maximum values of the param-
eter, respectively, while the correction term,δw, which is
the actual variable under estimation, is expressed as an inde-
pendent term of a nonlinear sigmoidal functiong(δw). This
function g(δw), termed a “squashing function” by van der
Merwe (2004), limits the absolute magnitude of iterative pa-
rameter adjustment, further preventing the divergence of the

parameter estimations. Therefore, the parameters are not es-
timated directly, rather “correction terms” are estimated.

A preliminary analysis has shown that the approach is not
very sensitive to the type of sigmoidal function and that the
following relationship performed well for all of the circum-
stances examined:

g (δwi) =
δwi

2(1+ |δwi |)
+ 0.5. (27)

Note that lim
δwi→−∞

g (δwi) = 0 and lim
δwi→∞

g (δwi) = 1, in

which caseswi = wimin andwi = wimax, respectively.

3 Synthetic experimental framework

We explore the performance of the proposed dual Kalman fil-
ter with a synthetic study. The main advantage of testing the
algorithm with a synthetic study is that, by knowing the true
system, the results are not overshadowed by other sources of
uncertainty: a fundamental aspect that should be addressed
prior to evaluating algorithm performance with real data, as
in the study presented by Medina et al. (2014).

3.1 Model implementation and synthetic data
generation

We simulate the vertical movement of water in a homoge-
neous and variably saturated soil column of 100 cm. The hy-
draulic properties of the homogeneous soil column are iden-
tified by using the VGM parameters reported in the papers
by Entekhabi et al. (1994) and Walker et al. (2001):θsT =

0.54; θrT = 0.2; KsT = 0.00029 cm s−1, αT = 0.008 cm−1

andnT = 1.8, where the subscript “T” indicates the “true”
values, i.e. those employed to produce the reference syn-
thetic simulations. However, different boundary conditions
have been set so as to make the synthetic study more repre-
sentative from a practical perspective:

– the top boundary condition is the result of a combination
of a stochastically generated daily series of rainfall plus
a constant evaporation rate of 2.35 mm d−1;

– the bottom boundary condition is set by a zero gradient
of the matric head, also known as “free drainage” con-
dition, which also implies that this condition is affected
by uncertainty in the identification of the unsaturated
hydraulic conductivities.

The inclusion of a rainfall pattern allows evaluating of the
dual filter performance during continuous wetting and dry-
ing processes taking place in the soil profile. In mathematical
terms, the higher variability in the flux at the soil surface en-
tails a higher temporal variability of the correlations between
adjacent states, thus affecting the potential ability of the fil-
ter to adjust the soil profile. This makes the synthetic study a
more representative stress test of the overall retrieval process
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Figure 1. Rainfall pattern (bar plot) and synthetically generated
“true” matric pressure head values at 5 cm depth (solid line).

than the case with a constant top boundary condition, which
is the one applied by Entekhabi et al. (1994) and Walker et
al. (2001).

Daily rainfall is obtained by stochastically sampling a
Poisson probability distribution of the occurrence of daily
events with an exponential distribution of the rainfall depth.
The bar plot in Fig. 1 illustrates the synthetic daily rainfall
time series for a period of 150 days.

The soil column is discretized by 27 nodes with variable
node spacing; this according to van Dam’s (2000) sugges-
tion that accurate computation of soil water fluxes at the top
boundary requires that the distance between the nodes close
to the soil surface has to be in the order of a few centimetres.
A similar criterion is followed for the bottom compartments,
given the flux condition adopted for the bottom boundary.

Subsequently, time series of synthetic “true” matric head
and soil moisture profiles are generated for 150 days, by
setting the initial profile matric head uniformly equal to
−50 cm, and by employing the nonlinear numerical scheme
illustrated by Chirico et al. (2014). Figure 1 also shows the
time series of the generated matric pressure head values at
5 cm depth.

3.2 Retrieval modes

The synthetic study involves the retrieval of states and
parameters by assimilating near-surface observations into
the Richards equation, according to three different retrieval
modes:

– the h-h retrieval mode, indicating that matric head is
used as both observed and state variable, with theh-
based form of the Richards equation;

– theθ -θ retrieval mode, indicating that soil water content
is used as both the observed and state variable, with the
θ -based form of the Richards equation;

– theθ-h retrieval mode, indicating that soil water content
is used as the observed variable, while matric head is
used as the state variable, with theh-based form of the
Richards equation.

Preliminary analyses showed that theh-h mode is prone
to volatility in the parameter solution, for relatively abrupt
changes in the original state variable, generating either very

large or very small values. When the solution is very close
to the extreme values, the parameter estimation filter some-
times loses its tracking ability, and the algorithm becomes
unstable.

A successful strategy is to work with log transformed ma-
tric heads only for the parameter filter, without the need to
make any change in state relationships. This alternative can
be implemented straightforwardly in a nonlinear KF as UKF
or EnKF, where the covariance matrices are not propagated
analytically. Hence, in theh-h mode the parameter equations
are not directly applied with log transformed predicted mea-
surements and observations.

As illustrated below, the retrieval algorithm using soil
moisture as a state variable is permanently stable, albeit at the
expense of a slightly slower convergence speed, as compared
with the case ofh as a state variable. As stated by Walker et
al. (2001), the soil moisture transformation not only reduces
the differences between model predictions and observations,
but also the numerical values of the gradients along the soil
profile.

3.3 Reference scenarios

The performance of the proposed dual Kalman filter ap-
proach is evaluated with respect to reference scenarios, given
by implementing the three retrieval modes introduced in the
previous section, with different assimilation depths, assimi-
lation frequencies and initial guessed parameter sets.

We simulate the assimilation of observed variables at three
alternative observation depths (OD): 2, 5 and 10 cm. Escori-
huela et al. (2010) found 2 cm to be the most effective soil
moisture sampling depth by L-band radiometry. Neverthe-
less, L-band sensors receive their signal from approximately
the top 5 cm, on average (Kerr, 2007). A depth of 10 cm rep-
resents the maximum observation depth that can probably
be explored with the current remote sensing technology (e.g.
Nichols et al., 2011).

We also examine three alternative assimilation frequencies
(AF): 1, 1/3 and 1/5 d−1. Daily assimilation frequency ac-
counts for future L-band missions or a combination of differ-
ent remote sensors, whilst 3 days is the minimum time inter-
val of SMOS spaceborne platforms (Kerr et al., 2010). One
observation every 5 days represents a more common remote
sensing time frequency.

The assimilation scenarios with theh-based form of the
Richards equation are initialized with an initial matric pres-
sure head profile assumed to be uniformly equal to−100 cm.
The assimilation scenarios with theθ -based form of the
Richards equation are initialized with an initial soil water
content profile uniformly equal to−0.47 cm3 cm−3, which
corresponds to the soil water content ath =−100 cm, accord-
ing to the true water retention function.

The retrieved parameters areKs, α andn of the VGM ana-
lytical model. We assume parametersθs andθr to be known,
as they can be easily measured or estimated by indirect
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methods, i.e. with pedotransfer functions (e.g. Chirico et al.,
2007).

We considered six very dissimilar sets of initial values for
the parametersKs, α, andn, to evaluate the role exerted by
different initial guesses on the performance of the retrieval
process. These initial values were identified by employing
the six possible permutations of the values−1, 0 and 1 as cor-
rection termsδwi in Eq. (27), and subsequently in Eq. (26).
The initial matrix of the normalized correction terms associ-
ated with the soil hydraulic parameters is set to be diagonal,
with non-zero entries equal to 0.01, following Nelson (2000).

Table 1 shows the resulting initial values of the parameters
and the correspondingwmin andwmax–wmin. Notice that the
limit values of our parameters,wmin andwmax, cover prac-
tically the whole spectrum of values reported by Carsel and
Parrish (1988) for the 12 major soil textural groups, except
for some sandy soils.

On the whole, 162 reference scenarios are examined, made
by three retrieval modes, three observation depths, three as-
similation frequencies and six initial parameter sets.

3.4 Comparative performance analyses

The DSUKF performance in retrieving the state profiles is
analysed by comparing it with the DEnKF, the SKF and the
“open loop” solution.

The DEnKF is implemented following the framework
described by Moradkhani et al. (2005), coupled with the
fully implicit numerical representation of the Richards equa-
tion described by Chirico et al. (2014). The DEnKF is
run with ensembles of 12 members (hereafter referred to
as DEnKF(12)) and 50 members (hereafter referred to as
DEnKF(50)). Reichle and Koster (2003) found that the un-
certainty in soil moisture retrieved with an EnKF applied to
a one-dimensional problem, is consistently reduced with an
ensemble of 12 members. Camporese et al. (2009) suggest
a minimum of about 50 realizations for ensuring a suitable
level of accuracy in analogous applications.

The SKF is implemented with a linearized Crank–
Nicolson finite difference scheme of the Richards equation
(Chirico et al., 2014), with time-independent initial guessed
parameters.

The “open loop” solution is obtained without assimilat-
ing any near-surface observations, i.e. the system is simply
propagated from the initial uniform conditions and the time-
independent initial guessed parameters, using the known
boundary conditions.

For quantitatively evaluating the performance of the re-
trieval algorithms, the normalized root mean square error
(RMSE) between predicted and synthetic data (SD) state pro-
files is calculated as follows:

RMSEj =
1

σSD

√√√√Nnod∑
i=1

(
x

p
i,j − xSD

i,j

)2
/(Nnod− 1), (28)

wherexp
i,j andxSD

i,j represent the predicted and SD state value
at nodei and timej , respectively, andσSD is the standard de-
viation of the SD state series, withNnod = 27. Normalization
is carried out to enable the comparison betweenθ -based and
h-based retrieval processes.

The average RMSE of the last 15 days of simulation (here-
after simply referred to as RMSE) is taken as accuracy index
of the retrieved state profiles, since RMSE values in the last
15 days are not affected by the poor guess of the initial con-
dition. Under the assumption of “free drainage” at the bottom
boundary, the dynamic evolution of the system’s states, con-
ditional upon a specific set of parameters, rapidly loses its
dependence on the initial state values, and the effect of the
poor guess of the initial state disappears after a few weeks.

The performance in state retrieval is thus analysed by com-
paring the RMSE of 648 experiments, resulting from the ap-
plication of four retrieval algorithms (DSUKF, DEnKF(50),
DEnKF(12) and SKF) to the 162 reference scenarios out-
lined in the previous section. In addition, another 12 experi-
ments are undertaken for the “open loop” solutions, resulting
from the application of theh-based andθ -based forms of the
Richards equation with the six sets of parameters.

The reference scenarios, but only in theh-h andθ -θ re-
trieval modes, are also employed for assessing the capability
of DSUKF to identify the unknown parameters. The effect
of dealing with a nonlinear observation operator in theθ -h
mode is examined by comparing the parameters retrieved in
theh-h and in theθ -h retrieval modes, but using an hourly
assimilation frequency.

Further insights into parameter identifiability are gained
by comparing the performances of the retrieval algorithms in
estimating the states when only one or two parameters are
uncertain.

The effect of parameter uncertainty in retrieving states and
parameters is also assessed by applying the DSUKF and the
DEnKF with a large number of initial parameter combina-
tions in theh-h and theθ -θ modes. Similarly to Morad-
khani et al. (2005), 500 random sets of initial parameters
are chosen by sampling them from uniform distributions
within the respective limit values listed in Table 1. These
500 sets are mapped into the space of the correction terms
(Eq. 25), prior to running the assimilation algorithms. The
DEnKF is implemented with ensembles of 12, 25, 35 and
50 members, in order to obtain a comprehensive survey of
the tradeoff between computational expense and accuracy of
the two retrieval algorithms. This complementary bootstrap-
ping analysis provides us with the posterior parameter uncer-
tainty and the associated probability distribution of the errors
of the estimated states. It involves 5000 additional experi-
ments, resulting from the combination of five retrieval algo-
rithms (DSUKF, DEnKF(50), DEnKF(35), DEnKF(25) and
DEnKF(12)), 500 random sets of initial parameters, and two
retrieval modes (h-h andθ -θ), while accounting for just one
assimilation resolution (i.e. AF= 1d−1 and OD= 10 cm).
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Table 1.Values of the true parametersKs, α andn, the minimum,wmin, and the range,wmax–wmin, used to constrain their distribution, and
the resulting six sets of input values considered during the assimilation process.

Parameter True wmin wmax–wmin S1 S2 S3 S4 S5 S6

Ks (× 10−4 cm s−1) 2.9 0.1 6.0 4.6 4.6 3.1 3.1 1.6 1.6
α (× 10−2 cm−1) 0.8 0.1 5.0 2.6 1.35 3.85 1.35 2.6 3.85
n (–) 1.8 1.1 2.0 1.6 2.1 1.6 2.6 2.6 2.1

Table 2 provides an overview of the numerical experiments
undertaken for assessing the relative performance of DUSKF.

3.5 Setting system and noise covariances

The covariance matrices of the added process and measure-
ment noises (Q, Qw, R andRw) and the initial system co-
variance matrices (P0 and Pw,0) are set to be diagonal for
all cases. The initial state covariance matrix accounts for a
standard deviation of 32 % of the initial state value, denot-
ing a sufficiently high, yet realistic, error, with no correlation
between nodes. This corresponds to an initial covariance of
103 cm2 using theh-based form of the Richards equation and
0.023 using theθ -based form. The response to a variation of
the initial system covariance in a dual Kalman filter frame-
work is less predictable than in a state Kalman filter appli-
cation, where an increase in the error covariance regularly
drives the system to converge faster to the true regime, pro-
vided that the variance of the observation error is lower.

Similarly to Camporese et al. (2009), a standard deviation
of 1.4 % of the observed value was given to the observation
noise, while a standard deviation of 2.24 % was given to the
system noise. These values respectively correspond to a co-
variance of 2 and 5 % of the initial state value in theh-based
form, as also adopted by Walker et al. (2001).

The system noise covariance was added every hour as a
means of normalizing the incorporated error with respect to
the time step, i.e. to make the incorporated error independent
of the adopted time step.

We setb = 2.0 andk = 0 for the deterministic sampling
within the UKF (see Eq. 14), as suggested by van der
Merwe (2004). The ensemble size is equal to seven, i.e. twice
the number of retrieved parameters (Npar) plus one. Through
sensitivity experiments, we choseρ = 0.3 using theh-h and
θ -h modes, andρ = 0.8 using theθ -θ mode.

The forgetting factor coefficientλRLS, affecting the artifi-
cial parameter noise covarianceQw (Eq. 17), was set equal to
0.995 in theh-based form and to 0.9999 in theθ-based form,
while the diagonal entries of the artificial observation noise
covarianceRw were set equal to 0.5 and 10−5, respectively.
Given that these coefficients are subjectively chosen and have
a major effect on parameter updates, we also examined some
scenarios accounting for different combinations ofλRLSand
Rw values, as listed in Table 3 for both retrieval modes.

Figure 2. The colour scale indicates the logarithm of the ratio be-
tween the RMSE of SKF, DSUKF, DEnKF(50) and DEnKF(12),
and the corresponding RMSE of the open loop solution, for three
retrieval modes (h-h, θ -θ andθ -h), three assimilation frequencies
(AF = 1, 1/3 and 1/5 d−1) and three observation depths (OD= 2, 5
and 10 cm). RMSE values have been averaged among the six initial
guessed parameters sets (S1–S6).

4 Results

4.1 State retrieval

The coloured grid depicted in Fig. 2 provides a compre-
hensive representation of the relative performances of the
Kalman-based retrieval algorithms with respect to the ref-
erence scenarios. The colour scale indicates the logarithmic
of the ratio between the RMSE of the examined assimila-
tion algorithm and the RMSE of the open loop solution, both
averaged among the six parameter sets. The average RMSE
values retrieved in theh-h and in theθ -h modes are divided
by the average RMSE open loop value obtained with theh-
based form. The average RMSE values retrieved in theθ -
θ mode are divided by the value obtained with theθ -based
form. Thus, looking at the different retrieval modes, only the
cells of the grid referring to theh-h and theθ-h modes can
be directly compared.

The SKF method, involving only state retrieval, gives es-
timations that can be considerably poorer than the open loop
solutions. Instead, both the proposed and the established dual
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Table 2.Summary of numerical experiments involved in the performance analyses.

Algorithms Mode/form Sets AF (d−1) OD (cm) No. of Experiments

Reference
scenarios
analysis

DSUKF,
DEnKF(50),
DEnKF(12),
SKF

h-h θ -θ θ -h S1-S6 [1 1/3 1/5] [2 5 10] 4× 3× 6× 3× 3= 648

Open loop h-, θ -based S1-S6 − − 2× 6= 12

Bootstrapping
analysis

DSUKF,
DEnKF(50),
DEnKF(35),
DEnKF(25),
DEnKF(12)

h-h θ -θ 500 random sets 1 10 5× 2× 500= 5000

Table 3.Scenarios for assessing the effect of the artificial noise vari-
ance in parameter state space equations.

h-h retrieval mode θ -θ retrieval mode

Scenario λRLS Rw Scenario λRLS Rw

1 0.975 10−4 6 0.975 10−5

2 0.95 10−3 7 0.995 10−5

3 0.975 10−3 8 0.9999 10−5

4 0.999 10−3 9 0.9999 10−3

5 0.975 10−2 10 0.9999 10−4

methods improve the open loop estimations independently
on the adopted scenario.

The RMSE values of the DSUKF estimations are in all
cases higher than those obtained using DEnKF(50), but gen-
erally lower than the ones of the DEnKF(12). The observa-
tion depth and the assimilation frequency affect the retrieval
performance of the dual filters more in theθ -θ and in theθ -h
modes than in theh-h mode.

Figure 2 clearly shows that the retrieval performance with
theθ -h mode is much poorer than that one obtained with the
h-h mode. This occurrence confirms that a nonlinear obser-
vation operator in theθ -h mode has a relevant detrimental
effect on the state-retrieving performance. Therefore, later in
this section we specifically focus on the comparison of the
h-h and theθ -θ retrievals, by showing additional results.

Figure 3 depicts the absolute RMSE values, in theh-h
mode and theθ -θ mode, for two extreme assimilation sce-
narios: one with OD= 10 cm and AF= 1 d−1, the other with
OD= 2 cm and AF= 1/5 d−1. The RMSE of the open loop
simulations obtained withθ -θ mode is lower than those rele-
vant to theh-h mode, showing the lower impact that param-
eter uncertainty exerts on the soil water content uncertainty
with respect to the matric head uncertainty. Although the ini-
tial conditions in terms ofh or θ are consistent between them
according to the “true” soil water retention function, they ac-
tually have a different impact on the corresponding open loop

Figure 3. Logarithm of RMSE of the state profiles computed for
open loop simulations, SKF, DSUKF, DEnKF(50) and DEnKF(12),
in theh-h (left column) and in theθ -θ (right column) modes.

simulation errors because of the poor guess in the parame-
ters. In addition, these results may also be biased somehow
because the soil moisture space is constrained, whereas the
matric head space is not and it is theoretically infinite.

As mentioned above, the SKF algorithm not only fails to
considerably reduce the state uncertainty, but it could even
provide worse results than the open loop solution. That is the
case of sets S1 and S2 using matric heads and S1, S3, and
S6 using soil moisture, all of them withn < 2.6. In general,
larger RMSE values of the open loop simulation correspond
to smaller RMSEs of the SKF approach. This behaviour is
more pronounced using matric heads, partly because larger
errors inh are predominantly associated with poor guessing
of α, which produces a shift of the entire matric head profile
that can be more easily corrected by state retrieval with SKF.

The DSUKF considerably reduces the state uncertainty in
all cases. For OD= 10 cm and AF= 1 d−1, the error statis-
tics with theh-h and theθ -θ modes are about 40 and 13 times
lower than those with the open loop simulations, respectively.
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For OD= 2 cm and AF= 1/5 d−1, the RMSE is about 18 and
9 times lower than with the corresponding open loop solu-
tions. The RMSE with theh-h mode is always lower than
that with theθ -θ mode, except for the case with the initial
parameter set S4.

The RMSEs of DSUKF are about 2.5 and 1.65 larger than
using DEnKF(50), respectively for theh-h mode and theθ -θ
modes, almost irrespective of the time and space resolutions
of the assimilated observation. DEnKF(50) also appears to
be less vulnerable to the anomalies affecting the DSUKF al-
gorithm implemented with the matric heads, but its compu-
tational time is almost seven times larger than that required
for DSUKF. However, with OD= 10 cm and AF= 1 d−1, the
DSUKF errors are approximately 1.6 and 1.4 times lower,
respectively, than those of DEnKF(12) .

For OD= 2 cm and AF= 1/5 d−1, the DEnKF(12) per-
formed similarly to the DSUKF in terms of RMSE, but it
is subjected to some numerical artifacts, in particular for S4,
due to the relatively large sampling errors associated with
the small size of the ensemble. In addition, the computational
time required for DSUKF is about 1.7 times smaller than that
required for DEnKF(12).

Figure 4 shows the states retrieved using theh-h andθ -θ
retrieval modes after 5, 10, 20, 50, 100 and 150 days, con-
sidering the minimum assimilation frequency of the near-
surface observations (AF= 1/5 d−1), together with the open
loop profiles.

The two sets of open loop profiles simply reflect the same
model predictions with two different representations of the
system states, which are reciprocally related by means of the
water retention function parameterized according to the cor-
responding guessed parameters. Compared with the corre-
sponding true profiles, the open loop matric head profiles are
biased toward larger matric heads, while the open loop wa-
ter content profiles are mainly shifted toward lower content
values.

The DSUKF, with both retrieval modes, considerably re-
duces the uncertainty of the states despite the initial wrong
parameterization. At the 50th day, a good match is observed
between the estimated and “true” profiles , almost irrespec-
tive of the initial guessed parameter set.

Figure 5 depicts the ratios of the mean RMSE within each
group of parameter sets, computed during the last 15 days for
different observation depths and assimilation frequencies. In
general, the RMSE exhibits limited sensitivity to the obser-
vation depths under the adopted range (Fig. 5a, c). In the case
of theθ-θ retrieval mode, the ratio between OD= 2 cm and
OD= 5 cm is even smaller than one both for AF= 1/3 and
AF = 1/5 d−1, which should be due to the stochastic nature
of the simulations. Increasing AF from 1/5 to 1/3 d−1 does
not appreciably improve the error statistics. Only the tran-
sition from AF= 1/3 d−1 to daily assimilations consistently
reduces the RMSE, particularly with matric heads (Fig. 5b,
d). With the DEnKF(50) (Fig. 3), the RMSE for OD= 2 cm
and AF= 1/5 d−1, compared with that assuming OD= 10 cm

and AF= 1 d−1, is about 2.1 times larger with theh-h mode
and 1.3 times larger with theθ -θ mode, consistent with the
results obtained with the DSUKF.

The ratio of the mean RMSE computed with theθ -θ re-
trieval mode to that obtained with theh-h mode is about
1.7 considering AF= 1 d−1, while it is close to one for
the other two frequencies. The values reported in Fig. 3
for DEnKF(50) show that the RMSE with theθ -θ mode is
2.4 times higher than with theh-h mode, for OD= 10 cm
and AF= 1 d−1, and 1.5 times higher for OD= 2 cm and
AF = 1/5 d−1. However, the average statistics are strongly af-
fected by the high errors obtained for S4 and S5.

Given the stochastic nature of the problem, we examine the
probabilistic distribution of the error of the estimated states
by applying the DSUKF and the DEnKF with 500 random
sets of initial parameters, as illustrated in Sect. 3.4. Figure 6
shows cumulative probability distributions of the RMSE ob-
tained with DSUKF, DEnKF(12), DEnKF(25), DEnKF(35),
DEnKF(50), assuming OD= 10 cm and AF= 1 d−1.

Using both retrieval modes, DEnKF(50) and DEnKF(35)
outperform DSUKF in terms of accuracy. The error statis-
tics using DEnKF(35) are almost half those obtained with
DSUKF when retrieving pressure heads (h-h mode). The
accuracy of the DSUKF is found to be comparable to that
of DEnKF(25), whose implementation demands a computa-
tional time 3.3 times larger than that required by the pro-
posed method. The 5th and 25th percentiles of DEnKF(25)
are lower than those of DSUKF with both retrieval modes.
The median of the RMSE distribution with DEnKF(25) is
also lower, but only for theh-h mode. However, the 75th and
95th percentiles almost redouble when the ensemble size is
reduced from 35 to 25 members, leading to an increase in the
skewness of the error distribution, and hence to an apprecia-
ble decrease in the accuracy of the DEnKF. The DEnKF(12)
exhibits RMSE percentiles higher than those of the DSUKF,
except for the 5th percentile, whose RMSE is slightly smaller
in theθ -θ mode and it is equal in theh-h mode. However, it
should be pointed out that the DEnKF, unlike the DSUKF,
is not affected by any structural error. Indeed, DEnKF is im-
plemented with the same nonlinear numerical solver of the
Richards equation used for generating the synthetic “true”
data, while DUSKF is implemented with a CN scheme, as
illustrated in Sect. 2.2. As shown by Luo and Moroz (2009),
high sampling errors, resulting from a small ensemble size,
produce high biases and spurious modes. These sampling er-
rors make DEnKF(12) unfeasible, due to their detrimental
impact on both precision and accuracy. For a considerable
number of simulations, most of them with initialn values
close to 3, DEnKF(12) fails to propagate correctly the first
and second moments of the states and parameters.

A favourable aspect of DEnKF is that the computational
time can be reduced by the use of parallel computing. Ku-
mar et al. (2008), for example, found that the execution
time of the EnKF with 12 members, decreased about three-
fold when using four processors instead of one. In contrast,
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Figure 4.State profiles (solid bold lines, non-filled symbols) retrieved with DSUKF using theh-h (a–f) andθ -θ (g–l) modes, with OD= 2 cm
and AF= 1/5 d−1, after the following days:(a, g) 5; (b, h) 10; (c, i) 20; (d, j) 50; (e, k) 100 and(f, l) 150. The corresponding open loop
simulations are also depicted (dash-dot gray lines, non-filled symbols). Comparisons account for the six sets of initial guessed parameters:
S1(©), S2(�), S3(∗), S4(1), S5(+) and S6(♦). The dotted lines with filled circles represent the true profiles.

DSUKF is not completely scalable with available computa-
tional resources.

4.2 Parameter identifiability

Figure 7 shows the retrieved parametersKs, α and n, us-
ing both theh-h andθ -θ retrieval modes. These graphs de-
pict the evolving patterns with the two alternative resolutions
(OD= 10 cm, AF= 1 d−1, and OD= 2 cm, AF= 1/5 d−1).

The “true” value ofα is rapidly identified during the re-
trieval process in both modes, but in particular using matric
heads. Parameterα is also the least affected by the initial
guess of the parameters under scrutiny. Indeed, since param-
eterα acts as a scaling factor of the state values in the soil
hydraulic property functions, its retrieval is highly sensitive
to the convergence rate of the first moment of the state vec-

tor. Vrugt et al. (2001, 2002) found that most of the infor-
mation onα is embedded in soil water content observations
just beyond the air entry value of the soil. Accordingly, in the
present study, the identifiability ofα is probably favoured by
the relatively wet states explored in the initial stage of the
synthetic experiment.

The identifiability of parameterα is seemingly also re-
lated to the relative position of the observations in the soil
profile, depending on the type of simulated process. Ritter
et al. (2004) performed a sensitivity analysis of three state
variables (soil moisture, matric head and bottom flux) to the
VGM parameters, using a soil profile with four soil horizons,
and found that the average sensitivity of parameterα was
higher than that of parametern by about a factor of 2, par-
ticularly for the uppermost horizon. For the deeper horizons,
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Figure 5.Ratios of the average RMSE, involving the last 15 days of simulations and the six initial guessed parameter sets, computed between
contiguously sampled(a, c)observation depths (OD) and(b, d) assimilation frequencies (AF), with the DSUKF algorithm.

instead, the sensitivity ton was almost three times higher
than that of parameterα. This is an interesting aspect, partic-
ularly for the issues related to near-surface observations.

Convergence toward the truen is more delayed as com-
pared withα. A close inspection of the time series of the
retrieved parameters reveals that the convergence ofn for
the h-based form is mainly driven by the relatively abrupt
reductions in soil moisture on about the 50th, 65th, 80th,
100th and 110th days. These gradients generally induce pro-
nounced shifts on the updatedn values for sets S4 and S5,
with an initial n = 2.6 (see Fig. 7a), while more moderate
shifts for sets S1, S3, and S6, which provide systematic un-
derestimations ofn. When parameter retrieving does not ac-
count for the logarithmic transformation of the matric heads,
the sharp decrease in the state variable, taking place on the
110th day, induces in some cases a failure in the retrieval al-
gorithm. As shown by Vrugt et al. (2001, 2002), most of the
information onn is embedded in observations whose matric
heads are located well beyond the inflection point of the soil
water retention function.

Using theh-based form of the Richards equation, we gen-
erally observe relatively large differences between the evolv-
ing patterns stably adoptingn < 2 orn > 2, after the “erratic”
first few updates. This behaviour deserves further attention in

future studies. We ascribe these differences to the change in
the shape of the soil water capacity,C(h), and of the hy-
draulic conductivity,K(h), functions, both linked to the gov-
erning equation (Eq. 1), whenn changes fromn < 2 ton > 2
near saturation, as addressed by Vogel et al. (2001).

Then values retrieved in theθ -θ mode exhibit low sensi-
tivity to the cited sharp soil moisture gradients. The reduction
of the posterior uncertainty in this mode is clearly lower than
in the h-h mode for daily assimilations (Fig. 7c), and very
small for assimilations every 5 days (Fig. 7d). The conver-
gence is more greatly affected by decreasing AF, although the
corresponding RMSE values of the retrieved state profiles ap-
pear to be rather insensitive to it. The overall performance is
affected by the slower convergence of S5. Nevertheless, even
for the low-resolution scenario, the method always provides
convergent solutions.

However, the saturated hydraulic conductivity,Ks, was not
correctly identified in the course of the 150 days of simula-
tion. According to Wöhling and Vrugt (2011), in situ mea-
surements of soil water dynamics contain insufficient infor-
mation to warrant a reliable estimation of the soil hydraulic
properties. The poor performance in terms of retrievedKs
seems to be a confirmation of their results. To solve this
problem these authors suggest considering soil moisture and
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Figure 6. Cumulative probability distribution of the RMSE of
DSUKF and DEnKF with 50, 35, 25 and 12 ensemble members
for both theh-h andθ -θ modes.

matric head data simultaneously as part of the statistical in-
ference of the soil hydraulic parameters.

One question arising is whether parameterKs is necessar-
ily more prone to problems of identifiability than parameters
α andn, given their role in the VGM relationships, or if this
is solely a result of the adopted experimental conditions. The
limited variability of the observations being assimilated is
definitely a factor that can affect a proper identification of
Ks. Several authors highlighted the limitations for a success-
ful estimation of VGM parameters, as imposed by the nar-
row variability of naturally occurring boundary conditions
(Vrugt et al., 2001, 2002, 2003; Scharnagl et al., 2011). A
wide range of soil moisture states is required to constrain the
soil hydraulic functions reliably. Moreover, the use of a sin-
gle metric also conspires against the desired identifiability, as
pointed out by Vrugt et al. (2013).

Another possible reason is the fact that the soil water re-
tention parameters also feature in the hydraulic conductivity
function, thus enhancing the occurrence of high correlations
among the model parameters. A strong correlation is found
between retrieved parametersn andKs. It is known that this
strong interdependence also affects the performance of the
VGM model. Especially for certain soil types, Romano and
Santini (1999) showed that more successful inverse mod-
elling results can be achieved by decoupling the hydraulic
conductivity function from the water retention function. As
a strategy to reduce the relative uncertainty, Scharnagl et
al. (2011) suggested that the parameterKs should be assessed
soon after rainfall events, when soil moisture redistributes
more rapidly in the entire soil profile, being essentially driven
by gravity.

Table 4 provides further insights into parameter identi-
fiability. We illustrate the performance of the adopted ap-
proach when the simulations involve only one or two uncer-
tain parameters, as compared with the original method con-
sidering three uncertain parameters. We compare the average
RMSE of the results obtained with the six sets of parameters
within the last 15 days, respectively using open loop simula-
tions, the state retrieval algorithm SKF, and the DSUKF, both

with OD= 10 cm and AF= 1 d−1, and with OD= 2 cm and
AF = 1/5 d−1.

Under the conditions adopted for this experiment, the open
loop simulations highlight that the uncertainty in the indi-
vidual parameters, in particular that ofα andn, has a very
different impact on the overall uncertainty, depending on
the adopted retrieval mode. The retrieval of matric heads is
mainly affected by the uncertainty in parameterα, with an
RMSE (1.788) more than five times higher than that with
n andKs. The soil moisture estimations are preponderantly
influenced by the uncertainty in parametern, whose RMSE
(1.059) is more than three times higher than those computed
considering the other two parameters uncertain. In both re-
trieval modes,Ks uncertainty has only a limited impact.

When considering two uncertain parameters, the influence
of those pairs involving uncertain values ofα in theh-h mode
and n in the θ -θ mode is also predominant. In both cases
the assumption of uncertainα andn parameters gives rise to
the highest RMSE. As can be seen in some cases, the un-
certainty of one of these dominant parameters could cause a
detrimental effect, similar to that provoked by the combined
uncertainty of two or even all three parameters. This result
is clear evidence of the marked correlation between them.
Again, simple state retrieving always provides poorer results.

Careful inspection of the DSUKF behaviour provides fur-
ther insights into the non-identifiability ofKs. When we con-
sider only the uncertainty ofKs, the method correctly con-
verges to the true value. This can be inferred from the con-
siderable reduction of the RMSE when using the DSUKF
for daily assimilations (0.035 for theh-h mode and 0.040
for θ -θ), as compared with the analogous statistics for the
open loop solution (0.3 and 0.334, respectively). However,
when considering two unknown parameters, we observe (not
shown here for the sake of brevity) that of the two pairs in-
cluding an unknownKs, the one with the most explanatory
parameter (θ for matric heads andn for soil moisture) still
fails to reach the convergence ofKs. For example, when us-
ing matric heads and we considerKs andα uncertain, the
method still fails to find the correctKs, while when consid-
eringKs andn uncertain, all parameter sets tend to converge
to the same solution.

We have verified that the states exhibit a cross-covariance
with Ks two or three orders of magnitude lower than that
formed with the other two dominant parameters. Thus, the
Kalman gain scarcely affects the priorKs values consis-
tently. We have also verified that both the DEnKF(12) and
the DEnKF(50) come across the same problem. However, the
DEnKF with 500 ensemble members converges to the true
value. Nevertheless, even in this case, minimal deviations of
αwith respect to the true value cause some shifts of the evolv-
ing Ks around the true value. The problem of the identifiabil-
ity of Ks appears principally related to the unavailability of
an effective cross-covariance between states andKs, which
can suitably reflect the effect of the uncertainty ofKs (at least
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Figure 7. VGM parametersKs, α andn retrieved with the DSUKF algorithm, using theh-h (a–b) and theθ -θ (c–d) retrieval modes, with
the following assimilation scenarios:(a, c)OD= 10 cm and AF= 1 d−1; (b, d) OD= 2 cm and AF= 1/5 d−1. Comparisons account for the
six pondered sets of initial parameters: S1(©), S2(�), S3(∗), S4(1), S5(+) and S6(♦). The dotted line indicates the true value.

Table 4. Average RMSE of the state profiles estimated during the last 15 days of simulations with the six sets of initial parameters (S1–
S6), considering either one, two or all three uncertain parameters. The results refer to the open loop simulations, the SKF (involving only
state retrieving) with OD= 10 cm and AF= 1 d−1, the DSUKF with OD= 10 cm and AF= 1 d−1, and the DSUKF with OD= 2 cm and
AF = 1/5 d−1.

h-h mode θ -θ mode

Uncertain Open DSUKF DSUKF Open DSUKF DSUKF
parameters loop SKF OD= 10, OD= 2, loop SKF OD= 10, OD= 2,

AF = 1 d−1 AF = 1/5 d−1 AF = 1 d−1 AF = 1/5 d−1

Ks 0.300 0.174 0.035 0.049 0.334 0.204 0.040 0.070
α 1.788 1.187 0.040 0.065 0.283 0.621 0.058 0.072
n 0.348 0.388 0.038 0.062 1.059 0.345 0.040 0.035
Ks, α 1.777 1.097 0.049 0.081 0.465 0.627 0.071 0.094
Ks, n 0.473 0.514 0.046 0.078 0.888 0.250 0.064 0.093
α, n 2.225 2.467 0.043 0.093 1.066 0.676 0.060 0.085
Ks, α, n 1.866 0.993 0.047 0.102 0.946 0.829 0.073 0.104

www.hydrol-earth-syst-sci.net/18/2521/2014/ Hydrol. Earth Syst. Sci., 18, 2521–2541, 2014



2536 H. Medina et al.: Part 2: A dual filter approach for simultaneous retrieval of states and parameters

Figure 8. Box plots representing the posterior uncertainty of the
parameters by performing DSUKF and DEnKF for 500 randomly
chosen sets of initial parameters considering(a) theh-h (b) andθ -θ
modes.

within the temporal extent of this experiment), making the
model poorly sensitive to the errors of this parameter.

The box plots in Fig. 8 illustrate the posterior uncer-
tainty of the parameters estimated with the DSUKF and the
DEnKF, considering the 500 randomly chosen sets of initial
parameters described in the previous section. The uncertainty
ranges of the proposed method are roughly comparable to
those obtained by Moradkhani et al. (2005) within the first
150 days of simulation. As emphasized, both methods fail to
identify parameterKs correctly. The decrease in accuracy by
assuming only 12 ensemble members, especially during ma-
tric head retrieving, is also considerable. Both accuracy and
precision of the estimatedn values are superior using DEnKF
under theh-h mode, except for ensembles of 12 members
(Fig. 8a). However, for the same scheme, the median of pa-
rameterα provided by the DSUKF is less biased than that
provided by the nonlinear approach, which overestimates the
true value. The performance of the DSUKF is comparable
to that of the DEnKF(25), although the interquartile ranges
of α andn are slightly smaller with the latter method. The
uncertainty regions of the estimated parameters in theh-h
mode are narrower than in theθ -θ mode (Fig. 8b). In this lat-
ter case, the DEnKF(25) provides wider uncertainty bounds
and less accurate estimates of parametersα andn than the
DSUKF.

It could be argued that, given the scope of the present
study, a classical calibration method could also provide sim-
ilar results. For a more reliable analysis of the pros and cons
of the DSUKF, we also implemented gradient iterative algo-
rithms based on the Levenberg–Marquardt algorithm (Kool
and Parker, 1988), considering the six sets of parameters S1–
S6 in theh-h mode. The algorithms were implemented by
exploiting the solvers embedded in the Matlab® optimization
toolbox.

A major drawback of this technique is its computational
time, which is about 30 times larger than that of the DSUKF.
About 1 week was needed to generate the a posteriori distri-

bution from the 500 sets of initial parameters. The perfor-
mance was also poorer in terms of identifiability. The re-
trievedn values varied between a minimum of 1.64 for S2
and a maximum of 2.23 for S5, whileα varied between
0.0055 for S1 and 0.012 cm−1 for S6. Ks remains clearly
not identified. The identifiability problems of traditional ap-
proaches like this have been documented in the literature
(e.g. Kool et al., 1987; Romano and Santini, 1999; van Dam,
2000). Finally, a third difficulty is that these variational meth-
ods, although they can be easily implemented, demand some
expertise for suitably tuning the parameters involved in the
numerical solvers (e.g. tolerance threshold values applied in
the numerical algorithm).

4.3 Influence of the type of observed variables with
respect to the selected state variables

The analyses in the previous section focused on the perfor-
mance of theh-h andθ-θ retrieval modes, i.e. when observed
and retrieved variables are of the same type. This allows im-
plementing a linear observation equation (Eq. 2), with a stan-
dard Kalman filter for state retrievals. Nevertheless, part of
the study also focused on the relation between the type of as-
similated data and theh-based form orθ -based form of the
state equation.

In principle, the numerical algorithm can be structured to
assimilate soil moisture observations (or some information
linked to it) in theh-based form of the Richards equation by
dealing with a nonlinear observation equation, above referred
to as theθ -h retrieval mode. This issue can be frequent, given
the structure of many widely used simulation models as well
as the type of information provided by current remote sens-
ing techniques and ground-based sensors.

At this point, it is important to note that the inversion of
the observation variable, i.e. converting soil water contents
to matric pressure heads by means of a water retention func-
tion with guessed (wrong) parameters, would be a serious
mistake, because the observations would be significantly bi-
ased, incorporating an unpredictable error in the retrieval al-
gorithm. By contrast, a nonlinear relationship for transform-
ing an exogenous observation variable (such as soil surface
temperature from thermal infrared remote sensing) in soil
moisture can be directly employed prior to applying the ob-
servation operatorHk in Eq. (11).

The effect of dealing with a nonlinear observation operator
within the retrieval algorithm is illustrated in Fig. 9. Figure 9a
shows the retrieved parameters using an hourly assimilation
frequency, with theh-h retrieval mode. Figure 9b shows the
analogous results, but with theθ-h retrieval mode, i.e. by as-
similating soil moisture observations and using matric heads
as state variables. This last case requires the VGM analyti-
cal model to be used as a (nonlinear) observation equation
for mapping the predicted matric heads into the soil moisture
space.
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Figure 9. VGM parametersKs, α andn retrieved with the DSUKF algorithm, using(a) theh-h and(b) θ -h retrieval modes by assimilating
observations every hour, with observation depth OD= 10 cm. Comparisons account for the six pondered sets of initial parameters: S1(©),
S2(�), S3(∗), S4(1), S5(+) and S6(♦).

The unscented algorithm is also employed for dealing with
the nonlinearity of the observation equation, similarly to
what is done for retrieving the parameters. During each time
step we propagate the a priori mean and covariance of the
matric heads using the SKF, as currently done in theh-h and
θ -θ retrieval modes. When the observation vector becomes
available for assimilation, we sample the predicted state vari-
able around the mean, following the UKF precepts, using the
estimated a priori covariance,P−

k . The sample state vectors
are propagated through the VGM expression using the a pos-
teriori mean of the parameters at timek − 1. Then the cross-
covariance between predicted states and predicted measure-
ments,Pxy,k, and the auto-covariance of these predicted mea-
surements,Pyy,k, are estimated analogously to what is done
for the parameters (Eqs. 20, 22, respectively). The Kalman
gain is then estimated asK k = Pxy,k

(
Pυυ,k

)−1, from which
the estimations of the a posteriori state mean and covariance
are straightforward.

Such linearization clearly incorporates a certain amount of
error, which affects the overall identifiability of the unknown
parameters. Even the identifiability of parameterα is affected
by this assimilation strategy. With low assimilation frequen-
cies the algorithm is subjected to persistent failures.

According to such results, while applying the DSUKF, the
state variable and observation variable should be preferably
of the same type, either in theh-based form or inθ -based
form, to avoid the need to linearize the observation equation
(Eq. 11) with respect to the states.

Finally, it is useful to see that in an extended Kalman filter
framework, the non-zero entries of the linearized observa-
tion operatorHk would correspond to the hydraulic capac-
ities C(h), evaluated in the prior state valuesx̂−

k , at the ob-
servation nodes. This provides an idea of the unpredictability
of the uncertainty due to the linearization process, as this is
strongly influenced by the soil properties.

4.4 Influence of the initial covariance matrices

The DSUKF algorithm, like its analogous approaches, re-
quires initial values for the state covariance,P, and the pa-
rameter covariance,Pw. The effects of the initial state covari-
ance matrix,P, and of the noise covariance matricesQ and
R on the assimilation scheme are clear and have been widely
examined (see for example Walker, 1999; Nelson, 2000). The
values that should be used for the initial parameter covari-
ancePw and the artificial noise covariancesQw andRw, are
less clear and depend on several factors (Nelson, 2000).

An initial value 10−2 for the diagonal entries ofPw,0 per-
formed well for most of the cases, with both soil water con-
tents and matric heads as state variables, as found by Nel-
son (2000), who also employed normalized parameterization.
Once the normalizedPw is fixed, the values of the noise co-
variances depend on the variance of the data, and hence of
the state variable.

The effect of evaluating different scenarios accounting for
the variability of the parameter noise covariances is illus-
trated in Fig. 10, showing the daily retrievals of parameter
n, using OD= 10 cm. Figure 10a and b account for scenarios
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Figure 10. Daily retrieval of parametern with the DSUKF algo-
rithm, considering different values of the coefficientsλRLS (see
Eq. 25) and of the artificial observation noise covariances, accord-
ing to the scenarios of Table 3:(a) scenarios 2–4;(b) scenarios 6–8;
(c) 1, 3 and 5;(d) scenarios 8–10. Simulations involve the initial
parameters set S4(1) and an observation depth OD= 10 cm.

from 2 to 4 and from 6 to 8, respectively, considering three
values of the forgetting factor (λRLS) for theh-h mode and
three values for theθ -θ mode. AssumingλRLS = 1 entails
no process noiseQw for the parameters, while a smallλRLS
incorporates a significant noise in the retrieval process.

The prediction error covarianceQw is a key variable, hav-
ing effects on parameter retrieving for longer time inter-
vals, and it is decisive in convergence and tracking. For the
adoptedh-based form, where parameter retrieving considers
the log transformation of the states,λRLS = 0.975 is appre-
ciated as a fair value. However, when assuming the original
(i.e. non-transformed) state values, we observe that a simi-
lar value ofλRLS compromises the stability in some cases,
due to the added volatility. SettingλRLS = 0.95 definitively
adds too much error to the estimated parameters. Using the
θ -θ mode, a value of aroundλRLS = 0.9999 produces good
results (Fig. 10b), whileλRLS = 0.995 improves the conver-
gence, although it affects the stability in a few cases. An in-
termediate value between 0.995 and 0.9999 could be a good
choice.

Van der Merwe (2000) and Wan and van der Merwe (2001)
suggested two other options on how to choose the matrixQw.
One is to setQw equal to an arbitrary “fixed” diagonal value,
which may then be annealed toward zero as training contin-
ues. Another choice is to apply a Robbins–Monro stochas-
tic approximation scheme for estimating the innovations (see
Wan and van der Merwe, 2001 and van der Merwe, 2004, for
details about the applied expression). Our preliminary anal-
ysis suggests that the most efficient approach is to use the
method currently adopted, i.e. the forgetting factor, although
further research is required to address this issue.

The effect of the artificial observation covarianceRw for
each retrieval mode can be evaluated by comparing the re-
sults obtained with scenarios 1, 3 and 5 (Fig. 10c), and 8,
9 and 10 (Fig. 10d). As stated by Nelson (2000),Rw acts
as a scaling term, determining the relative influence of the
initial covariancePw,0 on later covariance matricesPw,k.
For a prefixedPw,0, a largeRw produces a more stable (i.e,
lower variance) behaviour, but this produces significantly
biased estimates ofwk for small time steps. A very small
Rw exposes the algorithm to retrieve parameters toward the
corresponding limiting values, undermining its stability and
convergence.

Using theh-h mode (Fig. 10c),Rw = 10−3 has been found
appropriate for many of the examined cases. Again,Rw =
10−4 improves the convergence but at the price of lower sta-
bility. When retrieving soil moisture (Fig. 10d),Rw has been
set equal to 10−5. Rw= 10 −3 is too large, since with this
value the Kalman gainKw adopts a relatively low value, thus
allowing for less variability in the estimations.Rw = 10−4 is
also a suitable value; insteadRw =10−6 persistently induces
the collapse of the system.

In general, higherRw values are required for a larger vari-
ability of the retrieved variable involved. As a general guide-
line, we observe a roughly linear relationship between the log
of the initial state value and the log of the adoptedRw, ful-
filling the relationship Rw = 4.23× 10−5x2.04

0 , x0 being the
value of the initial states. That said, the selection of proper
values for λRLS and Rw deserves more attention in fur-
ther studies, because they act as important stability factors,
particularly when using matric pressure heads.

5 Conclusions

This study presented a DSUKF formulation for the simulta-
neous retrieval of states and parameters controlling the soil
water dynamics in a homogeneous soil column, by assimilat-
ing near-surface observations into the Richards equation. The
proposed approach takes advantage of the standard Kalman
filter applied to a linear numerical scheme of the Richards
equation for straightforward retrieval of the states within
a linear system of small dimension, and of the unscented
Kalman filter for retrieving a small number of soil hydraulic
parameters defined according to the nonlinear VGM rela-
tions. A transformation of variables is used to deal with the
physical constraints and the marked differences in the range
of variability of the VGM parameters, thus improving the
operational stability.

The unscented approach deals with the nonlinearity of the
model with respect to the parameters, without the need to per-
form any analytical differentiation, thus making the compu-
tational implementation simple and of general applicability,
i.e. independent of the analytic equations employed.
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By means of a synthetic experiment, we showed that the
DSUKF, with an ensemble of seven sigma points of the pa-
rameter space, provides predictions with an accuracy simi-
lar to that provided by a dual ensemble Kalman filter with
an ensemble size of 25 members (DEnKF(25)), but with a
computational time three times smaller. The DEnKF guar-
antees more accurate states and parameter predictions than
the DSUKF, with an ensemble of 35 or more members, but
at the cost of a large increase in computational effort. The
study also demonstrated that DEnKF(12), whose computa-
tional expense is slightly larger than that of the DSUKF, does
not ensure a substantial reduction in the posterior uncertainty
of states and parameters due to the relatively large sampling
errors involved in this scheme.

Except for the case with 12 ensemble members, the
DEnKF provided less biased estimates of parametern. In-
stead, with the DSUKF, we achieved less biased estimates of
parameterα. The performance in reducing the uncertainty of
Ks was poor, both for the DSUKF and the DEnKF, even with
50 ensemble members.

The dual Kalman filter approach is able to retrieve states
close to true values, even for observations at very shallow
depths, i.e. using observation depths of 2 cm and an assim-
ilation frequency of one every 5 days. Comparison between
parameter initialization, observation depth and assimilation
frequency, evidenced that the latter has the most dominant
effect on the evolving errors.

The problem associated with the choice of either theh-
based form orθ -based form of the Richards equation in
the dual Kalman filter algorithm was explored. The former
scheme is generally preferred for practical applications, par-
ticularly when having to deal with both saturated and un-
saturated flows. The matric head retrieval algorithm outper-
formed that using soil water content in terms of state conver-
gence and final accuracy. However, to avoid some stability
problems in this mode, a log transformation of the predicted
model observations and measurements was needed prior to
applying the parameter equations.

The assimilation of near-surface soil moisture observa-
tions recalls some considerations about the system sensitiv-
ity to the VGM parameters, at least when the system is ini-
tialized with wet conditions. The identifiability of parame-
ter α is markedly higher than that ofn, particularly when
using matric pressure head as state variable. The impact of
the uncertainty of parametersα andn depends on whether
the state and observed variables coincide with the soil wa-
ter content (θ-θ retrieval mode) or with the matric pressure
head (h-h retrieval mode). The retrieved matric head profiles
are markedly influenced by the uncertainty of parameterα,
while the retrieved soil moisture profiles are preponderantly
influenced by the uncertainty of parametern.

The identifiability of the saturated hydraulic conductivity
Ks is very poor in all cases, unlessKs is the only uncer-
tain parameter. This limitation in the identifiability ofKs can
be ascribed to the strong correlation between the parameters

(not shown for the sake of brevity), and particularly between
n andKs, which in turn also causes the cross covariance be-
tween states andKs to become too poor to make the model
sensitive enough to the errors of this parameter. The limited
identifiability of Ks in a dual framework was also experi-
enced with the DEnKF. A large ensemble size (in the order
of 500) is required to achieve the convergence ofKs, but the
solution remains vulnerable to slight oscillations of the other
two parameters (for instance ofα in theh-h retrieval mode).
These results suggest the advisability of employing other an-
alytical models for the soil hydraulic functions, represent-
ing the hydraulic conductivity decoupled from the retention
function.

By examining different combinations of retrieved and as-
similated variables, the study also highlights some other
issues to be considered beyond the efficiency of the dual
Kalman filter approach. In this synthetic experiment, the
performance of the overall retrieval process is significantly
dampened when adopting soil moisture as the observed vari-
able and matric pressure head as the state variable, even when
observations are assimilated hourly.

Finally, we point out that the implementation of a dual (or
a joint) exercise for state and parameter estimation demands
more caution, as compared with a standard KF approach, par-
ticularly with respect to the initialization of the covariances,
not only of the parameters, but even of the states. This can
be seen as the price to be paid for achieving more accurate
results.
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